-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
272 lines (260 loc) · 9.07 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
Collections:
- Name: Deformable Convolutional Networks
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- Deformable Convolution
Paper:
URL: https://arxiv.org/abs/1703.06211
Title: "Deformable Convolutional Networks"
README: configs/dcn/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15
Version: v2.0.0
Models:
- Name: faster-rcnn_r50_fpn_dconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.0
inference time (ms/im):
- value: 56.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth
- Name: faster-rcnn_r50_fpn_dpool_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/faster-rcnn_r50_fpn_dpool_1x_coco.py
Metadata:
Training Memory (GB): 5.0
inference time (ms/im):
- value: 58.14
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth
- Name: faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.0
inference time (ms/im):
- value: 80
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth
- Name: faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.3
inference time (ms/im):
- value: 100
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth
- Name: mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.5
inference time (ms/im):
- value: 64.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth
- Name: mask-rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py
Metadata:
Training Techniques:
- SGD with Momentum
- Weight Decay
- Mixed Precision Training
Training Memory (GB): 3.0
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.9
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth
- Name: mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.5
inference time (ms/im):
- value: 85.47
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth
- Name: cascade-rcnn_r50_fpn_dconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.5
inference time (ms/im):
- value: 68.49
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth
- Name: cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.4
inference time (ms/im):
- value: 90.91
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 45.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth
- Name: cascade-mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.0
inference time (ms/im):
- value: 100
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth
- Name: cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 8.0
inference time (ms/im):
- value: 116.28
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 45.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth
- Name: cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco
In Collection: Deformable Convolutional Networks
Config: configs/dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
Metadata:
Training Memory (GB): 9.2
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 47.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth