-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
322 lines (258 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 6 00:17:31 2020
@author: urixs
"""
import numpy as np
from sklearn import decomposition
import argparse
from itertools import count
import os
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
import scatterHist as sh
import utils
# ==============================================================================
# = Input arguments =
# ==============================================================================
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--n_blocks',
type=int,
default=2,
help='Number of resNet blocks')
parser.add_argument('--file1',
type=str,
default="./data/sample1.csv",
help='path to file 1')
parser.add_argument('--file2',
type=str,
default="./data/sample2.csv",
help='path to file 2')
parser.add_argument("--scale_k",
type=int,
default=5,
help="Number of neighbors for determining the RBF scale")
parser.add_argument('--batch_size',
type=int,
default=128,
help='Batch size (default=128)')
parser.add_argument('--lr',
type=float,
default=1e-3,
help='learning_rate (default=1e-3)')
parser.add_argument("--min_lr",
type=float,
default=1e-5,
help="Minimal learning rate")
parser.add_argument("--decay_step_size",
type=int,
default=50000,
help="LR decay step size")
parser.add_argument("--lr_decay_factor",
type=float,
default=0.1,
help="LR decay factor")
parser.add_argument("--weight_decay",
type=float,
default=0e-4,
help="l_2 weight penalty")
parser.add_argument("--epochs_wo_im",
type=int,
default=15,
help="Number of epochs without improvement before stopping")
parser.add_argument("--save_dir",
type=str,
default='./calibrated_data',
help="Directory for calibrated data")
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# ==============================================================================
# = Dataset =
# ==============================================================================
sample1 = np.loadtxt(args.file1, delimiter=',')
sample2 = np.loadtxt(args.file2, delimiter=',')
sample1_tensor = torch.Tensor(sample1)
sample1_dataset = torch.utils.data.TensorDataset(sample1_tensor)
sample2_tensor = torch.Tensor(sample2)
sample2_dataset = torch.utils.data.TensorDataset(sample2_tensor)
sample1_loader = torch.utils.data.DataLoader(sample1_dataset,
batch_size=args.batch_size,
shuffle=True)
sample2_loader = torch.utils.data.DataLoader(sample2_dataset,
batch_size=args.batch_size,
shuffle=True)
input_dim1 = sample1.shape[1]
input_dim2 = sample2.shape[1]
assert input_dim1 == input_dim2, "samples are of different dimensions"
input_dim = input_dim1
# ==============================================================================
# = Model =
# ==============================================================================
class ResnetBlock(nn.Module):
"""Define a Resnet block"""
def __init__(self,
dim,
use_dropout=False):
"""Initialize the Resnet block"""
super(ResnetBlock, self).__init__()
self.block = self.build_resnet_block(dim,
use_dropout)
def build_resnet_block(self,
dim,
use_dropout=False):
block = [torch.nn.Linear(dim, dim),
torch.nn.BatchNorm1d(dim),
torch.nn.PReLU()]
if use_dropout:
block += [nn.Dropout(0.5)]
block += [torch.nn.Linear(dim, dim),
torch.nn.BatchNorm1d(dim),
torch.nn.PReLU()]
if use_dropout:
block += [nn.Dropout(0.5)]
return nn.Sequential(*block)
def forward(self, x):
"""Forward function (with skip connections)"""
out = x + self.block(x) # add skip connections
return out
class Mmd_resnet(nn.Module):
def __init__(self,
input_dim,
n_blocks,
use_dropout=False):
super(Mmd_resnet, self).__init__()
model = []
for i in range(n_blocks): # add resnet blocks layers
model += [ResnetBlock(input_dim,
use_dropout)]
self.model = nn.Sequential(*model)
def forward(self, input):
"""Forward function (with skip connections)"""
out = input + self.model(input) # add skip connection
return out
mmd_resnet = Mmd_resnet(input_dim,
args.n_blocks)
# ==============================================================================
# = Optimizer and Learning rate =
# ==============================================================================
optim = torch.optim.SGD(mmd_resnet.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
def lambda_rule(i_episode) -> float:
""" stepwise learning rate calculator """
exponent = int(np.floor((i_episode + 1) / args.decay_step_size))
return np.power(args.lr_decay_factor, exponent)
scheduler = lr_scheduler.LambdaLR(optim,
lr_lambda=lambda_rule)
def update_lr():
""" Learning rate updater """
scheduler.step()
lr = optim.param_groups[0]['lr']
if lr < args.min_lr:
optim.param_groups[0]['lr'] = args.min_lr
lr = optim.param_groups[0]['lr']
print('Learning rate = %.7f' % lr)
# ==============================================================================
# = Training procedure =
# ==============================================================================
def training_step(batch1, batch2):
calibrated_batch2 = mmd_resnet(batch2)
# Compute distance matrices
D1 = utils.compute_dist_mat(batch1, device=device)
D2 = utils.compute_dist_mat(calibrated_batch2, device=device)
D12 = utils.compute_dist_mat(batch1, calibrated_batch2)
# Compute scale
Dis, _ = utils.nn_search(batch1, k=args.scale_k)
scale = utils.compute_scale(Dis, k=args.scale_k)
# Compute kernel matrices
K1 = utils.compute_kernel_mat(D1, scale)
K2 = utils.compute_kernel_mat(D2, scale)
K12 = utils.compute_kernel_mat(D12, scale)
# Loss function and backprop
mmd = torch.mean(K1) - 2 * torch.mean(K12) + torch.mean(K2)
loss = torch.sqrt(mmd)
optim.zero_grad()
loss.backward()
optim.step()
return loss.item()
# ==============================================================================
# = Main =
# ==============================================================================
def main():
best_loss = 100
eps = 1e-3
epoch_counter = 0
for epoch in count(1):
batch_losses = []
samp2_batches = enumerate(sample2_loader)
for batch_idx, batch1 in enumerate(sample1_loader):
try:
_, batch2 = next(samp2_batches)
except:
samp2_batches = enumerate(sample2_loader)
_, batch2 = next(samp2_batches)
batch1 = batch1[0].to(device=device)
batch2 = batch2[0].to(device=device)
batch_loss = training_step(batch1, batch2)
batch_losses.append(batch_loss)
epoch_loss = np.mean(batch_losses)
if epoch_loss < best_loss - eps:
best_loss = epoch_loss
epoch_counter = 0
else:
epoch_counter += 1
print('Epoch {}, loss: {:.3f}, counter: {}'.format(epoch,
epoch_loss,
epoch_counter)
)
update_lr()
if epoch_counter == args.epochs_wo_im:
break
print('Finished training')
# calibrate sample2 -> batch 1
calibrated_sample2 = []
for batch_idx, batch2 in enumerate(sample2_loader):
batch2 = batch2[0].to(device=device)
calibrated_batch = mmd_resnet(batch2)
calibrated_sample2 += [calibrated_batch.detach().cpu().numpy()]
calibrated_sample2 = np.concatenate(calibrated_sample2)
# ==============================================================================
# = visualize calibration =
# ==============================================================================
# PCA
pca = decomposition.PCA()
pca.fit(sample1)
pc1 = 0
pc2 = 1
axis1 = 'PC'+str(pc1)
axis2 = 'PC'+str(pc2)
# plot data before calibration
sample1_pca = pca.transform(sample1)
sample2_pca = pca.transform(sample2)
sh.scatterHist(sample1_pca[:,pc1],
sample1_pca[:,pc2],
sample2_pca[:,pc1],
sample2_pca[:,pc2],
axis1,
axis2,
title="Data before calibration",
name1='sample1',
name2='sample2')
# plot data after calibration
calibrated_sample2_pca = pca.transform(calibrated_sample2)
sh.scatterHist(sample1_pca[:,pc1],
sample1_pca[:,pc2],
calibrated_sample2_pca[:,pc1],
calibrated_sample2_pca[:,pc2],
axis1,
axis2,
title="Data after calibration",
name1='recon. sample1',
name2='calib. sample2')
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
np.save(args.save_dir + '/sample1.csv', sample1)
np.save(args.save_dir + '/calibrated_sample2.csv', calibrated_sample2)
if __name__ == '__main__':
main()