forked from tiagoCuervo/EvoFuzzy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mackey.py
71 lines (61 loc) · 2.21 KB
/
mackey.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import time
import matplotlib.pyplot as plt
from diffevo import differential_evolution
from anfis import ANFIS
from fobj import *
# Mackey-Glass series computation
def mackey(n_iters):
x = np.zeros((n_iters,))
x[0:30] = 0.23 * np.ones((30,))
t_s = 30
for i in range(30, n_iters - 1):
a = x[i]
b = x[i - t_s]
y = ((0.2 * b) / (1 + b ** 10)) + 0.9 * a
x[i + 1] = y
return x
# Generate dataset
D = 4 # number of regressors
T = 1 # delay
N = 2000 # Number of points to generate
mg_series = mackey(N)[499:] # Use last 1500 points
data = np.zeros((N - 500 - T - (D - 1) * T, D))
lbls = np.zeros((N - 500 - T - (D - 1) * T,))
for t in range((D - 1) * T, N - 500 - T):
data[t - (D - 1) * T, :] = [mg_series[t - 3 * T], mg_series[t - 2 * T], mg_series[t - T], mg_series[t]]
lbls[t - (D - 1) * T] = mg_series[t + T]
# Creates the inference system
m = 16 # number of rules
fis = ANFIS(D, m)
n_params = 2 * (m * D) + m # Total number of parameters (genome size)
# Evaluates the objective function
def eval_objective(params):
# From the parameter vector (genome) gets each set of parameters (means, standard deviations and sequent singletons)
mus = params[0:fis.m * fis.n]
sigmas = params[fis.m * fis.n:2 * fis.m * fis.n]
y = params[2 * fis.m * fis.n:]
# Sets the FIS parameters to the ones on the genome
fis.setmfs(mus, sigmas, y)
pred = fis.infer(data)
loss = 1 - nse(pred, lbls)
return loss
# Runs the evolution cycle
start_time = time.time()
result = list(differential_evolution(eval_objective, bounds=[(-2, 2)] * n_params, gens=10))
end_time = time.time()
print('Evolution time: %f' % (end_time - start_time))
# Gets the last genome
best_params = result[-1][0]
best_mus = best_params[0:fis.m * fis.n]
best_sigmas = best_params[fis.m * fis.n:2 * fis.m * fis.n]
best_y = best_params[2 * fis.m * fis.n:2 * fis.m * fis.n + fis.m]
# Sets the FIS parameters to the ones of the last genome
fis.setmfs(best_mus, best_sigmas, best_y)
# Predicts output for the training set
best_pred = fis.infer(data)
# Plots the real and predicted one series
plt.plot(mg_series)
plt.plot(best_pred)
plt.legend(['Real', 'Predicted'])
plt.show()
print('Best fitness: %f' % result[-1][1])