forked from tiagoCuervo/EvoFuzzy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
anfis.py
42 lines (35 loc) · 1.61 KB
/
anfis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import matplotlib.pyplot as plt
class ANFIS:
def __init__(self, n_inpts, n_rules):
self.n = n = n_inpts
self.m = m = n_rules
self.mus = np.zeros(shape=(1, n * m))
self.sigmas = np.zeros(shape=(1, n * m))
self.y = np.zeros(shape=(1, m))
def setmfs(self, means, stdevs, sequents):
self.mus = means
self.sigmas = stdevs
self.y = sequents
def rule_firing(self, x):
# Evaluates membership functions on each input for the whole batch
F = np.reshape(np.exp(-0.5 * ((np.tile(x, (1, self.m)) - self.mus) ** 2) / (self.sigmas ** 2)),
(-1, self.m, self.n))
# Gets the firing strenght of each rule by applying T-norm (product in this case)
return np.prod(F, axis=2)
def defuzzify(self, w):
return np.sum(self.y * w, axis=1) / np.clip(np.sum(w, axis=1), a_min=1e-12, a_max=1e12)
def infer(self, x):
return self.defuzzify(self.rule_firing(x))
def plotmfs(self):
mus = np.reshape(self.mus, (self.m, self.n))
sigmas = np.reshape(self.sigmas, (self.m, self.n))
xn = np.linspace(np.min(mus) - 3 * np.max(sigmas), np.max(mus) + 3 * np.max(sigmas), 1000)
for r in range(self.m):
if r % 4 == 0:
plt.figure(figsize=(11, 6), dpi=80)
plt.subplot(2, 2, (r % 4) + 1)
ax = plt.subplot(2, 2, (r % 4) + 1)
ax.set_title("Rule %d, sequent center: %f" % ((r + 1), self.y[r]))
for i in range(self.n):
plt.plot(xn, np.exp(-0.5 * ((xn - mus[r, i]) ** 2) / (sigmas[r, i] ** 2)))