-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
376 lines (309 loc) · 15.7 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""People Counter."""
import imutils
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit person to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import time
import socket
import json
import cv2
from imutils.video import FPS
from datetime import datetime
import logging as log
import paho.mqtt.client as mqtt
from argparse import ArgumentParser
from inference import Network
from sklearn.metrics.pairwise import cosine_similarity
# MQTT server environment variables
HOSTNAME = socket.gethostname()
IPADDRESS = socket.gethostbyname(HOSTNAME)
MQTT_HOST = IPADDRESS
MQTT_PORT = 3001
MQTT_KEEPALIVE_INTERVAL = 60
EXTENSIONS = ['mp4', 'avi', 'jpeg', 'png']
def build_argparser():
"""
Parse command line arguments.
:return: command line arguments
"""
parser = ArgumentParser()
parser.add_argument("-m", "--model", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-m2", "--model2", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-i", "--input", required=False, type=str,
help="Path to image or video file")
parser.add_argument("-l", "--cpu_extension", required=False, type=str,
default=None,
help="MKLDNN (CPU)-targeted custom layers."
"Absolute path to a shared library with the"
"kernels impl.")
parser.add_argument("-d", "--device", type=str, default="CPU",
help="Specify the target device to infer on: "
"CPU, GPU, FPGA or MYRIAD is acceptable. Sample "
"will look for a suitable plugin for device "
"specified (CPU by default)")
parser.add_argument("-pt", "--prob_threshold", type=float, default=0.5,
help="Probability threshold for detections filtering"
"(0.5 by default)")
return parser
def connect_mqtt():
### TODO: Connect to the MQTT client ###
client = mqtt.Client()
client.connect(MQTT_HOST, MQTT_PORT, MQTT_KEEPALIVE_INTERVAL)
return client
def pre_process(frame, net_input_shape):
p_frame = cv2.resize(frame, (net_input_shape[3], net_input_shape[2]))
p_frame = p_frame.transpose(2, 0, 1)
# p_frame = np.expand_dims(p_frame, axis=1)
p_frame = p_frame.reshape(1, *p_frame.shape)
return p_frame
def imshow(name, frame):
cv2.imshow('output', imutils.resize(frame, width=900))
total = []
import numpy as np
def itenfy_new_person(network, crop, shape, conf):
processed = pre_process(crop, net_input_shape=shape)
network.exec_net(processed)
if network.wait() == 0: # 256 dimentional unique descriptor
ident_output = network.get_output()
for i in range(len(ident_output)):
latesr_person_embeddings = ident_output[i].reshape(1, -1)
if (len(total) == 0):
total.append([latesr_person_embeddings])
else:
similarities = []
for k in range(len(total)):
person_similarities = []
for person in total[k]:
person_similarities.append(cosine_similarity(latesr_person_embeddings, person)[0][0])
similarities.append(person_similarities)
if(len(similarities) < 2):
if(np.max(similarities[0]) > 0.65 and np.mean(similarities[0]) > 0.30):
# if len(total[0]) > 20: #keeping only latest 20 frames
# # total[0] = total[0][1:21]
total[0].append(latesr_person_embeddings)
else:
total.append([latesr_person_embeddings]) #adding as new person
else:
shouldAdd = True
#check is there any cluster which has more similarities
for index in range(len(total)):
if(np.max(similarities[index]) > 0.65 and np.mean(similarities[index]) > 0.30):
# if len(total[index]) > 20: #keeping only latest 20 frames
# total[index] = total[index][1:21]
total[index].append(latesr_person_embeddings)
shouldAdd = False
break
if shouldAdd:
total.append([latesr_person_embeddings]) #adding as new person
return
def reidentification(networkReIdentification, crop_person, identification_input_shape, total_unique_persons, conf):
idetification_frame = pre_process(crop_person, net_input_shape=identification_input_shape)
networkReIdentification.exec_net(idetification_frame)
if networkReIdentification.wait() == 0: # 256 dimentional unique descriptor
ident_output = networkReIdentification.get_output()
for i in range(len(ident_output)):
if (len(total_unique_persons) == 0):
# print(ident_output[i].reshape(1,-1).shape)
total_unique_persons.append(ident_output[i].reshape(1, -1))
else:
# print("Checking SIMILARITY WITH PREVIOUS PEOPLE IF THEY MATCH THEN ALTERTING PERSON COMES SECONF TIME ELSE INCREMENTING TOTAL PEOPLE")
newFound = True
detected_person = ident_output[i].reshape(1, -1)
for index in range(len(total_unique_persons)): # checking that detected person is in out list or not
similarity = cosine_similarity(detected_person, total_unique_persons[index])[0][0]
# print(similarity)
if similarity > 0.65: #0.58
# print("SAME PERSON FOUD")
print(str(similarity) + "at "+str(index))
newFound = False
total_unique_persons[index] = detected_person # updating detetected one
break
if newFound and conf > 0.90:
total_unique_persons.append(detected_person)
print('NEW PERSON FOUND')
print(len(total_unique_persons))
return total_unique_persons
def infer_on_stream(args, client):
"""
Initialize the inference network, stream video to network,
and output stats and video.
:param args: Command line arguments parsed by `build_argparser()`
:param client: MQTT client
:return: None
"""
# Initialise the class
network = Network()
# Set Probability threshold for detections
if not args.prob_threshold is None:
prob_threshold = args.prob_threshold
else:
prob_threshold = 0.4
### TODO: Load the model through `infer_network` ###
network.load_model(args.model, args.cpu_extension, args.device)
pedestrian_input_shape = network.get_input_shape()
networkReIdentification = Network()
networkReIdentification.load_model(args.model2, args.cpu_extension, args.device)
identification_input_shape = networkReIdentification.get_input_shape()
# print('Models Loaded Successfully')
#checking that input stream is are in supported extensions
if not args.input.split('.')[1] in EXTENSIONS:
print("The input file is not supported yet")
exit(1)
### TODO: Handle the input stream ###
cap = cv2.VideoCapture(args.input)
fps = FPS().start()
### TODO: Loop until stream is over ###
last_detection_time = None
start = None
total_unique_persons = []
while (cap.isOpened()):
### TODO: Read from the video capture ###
isAnyFrameLeft, frame = cap.read()
width = int(cap.get(3))
height = int(cap.get(4))
### TODO: Pre-process the image as needed ###
if not isAnyFrameLeft:
sys.stdout.flush()
break
displayFrame = frame.copy()
processed_frame = pre_process(frame, net_input_shape=pedestrian_input_shape)
### TODO: Start asynchronous inference for specified request ###
inference_start_time = time.time()
network.exec_net(processed_frame)
### TODO: Wait for the result ###
last_x_min = 0
last_x_max = 0
last_y_max = 0
last_y_min = 0
if network.wait() == 0:
inference_end_time = time.time()
total_inference_time = inference_end_time - inference_start_time
# print("Inference Time "+ total_inference_time)
### TODO: Get the results of the inference request ###
result = network.get_all_output()
### TODO: Extract any desired stats from the results ###
output = result['detection_out']
counter = 0
for detection in output[0][0]:
image_id, label, conf, x_min, y_min, x_max, y_max = detection
if conf > 0.7:
# print("label " + str(label) + "imageid"+ str(image_id))
x_min = int(x_min * width)
x_max = int(x_max * width)
y_min = int(y_min * height)
y_max = int(y_max * height)
try:
if conf > 0.85:
crop_person = frame[y_min:y_max, x_min:x_max]
# cv2.imshow("cropped", crop_img)
# cv2.waitKey(0)
total_unique_persons = reidentification(networkReIdentification, crop_person,
identification_input_shape, total_unique_persons, conf)
# itenfy_new_person(networkReIdentification, crop_person, identification_input_shape, conf)
except Exception as err:
print(err)
pass
# print(err)
x_min_diff = last_x_min - x_min
x_max_diff = last_x_max - x_max
if x_min_diff > 0 and x_max_diff > 0: # ignore multiple drawn bounding boxes
# cv2.waitKey(0)
continue
y_min_diff = abs(last_y_min) - abs(y_min)
y_max_diff = abs(last_y_max) - abs(y_max)
counter = counter + 1
# print("X => " + str(x_min_diff) + " " + str(x_max_diff) + " label" + str(label))
# print(" label" + str(label))
# print("Y => " + str(y_min_diff) + " " + str(y_max_diff))
# print(str(y_min_diff)+ " " + str(y_max_diff))
last_x_min = x_min
last_x_max = x_max
last_y_max = y_max
last_y_min = y_min
cv2.rectangle(displayFrame, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
activity = ""
# print("Y => " + str(y_min_diff) + " " + str(y_max_diff))
if (y_min_diff >= -20):
activity = "standing"
elif y_min_diff < -21 and y_min_diff > -41:
activity = "moving"
else:
activity = "walking"
cv2.putText(displayFrame, activity, (x_max + 10, y_min + 50), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,
(230, 50, 2),
lineType=cv2.LINE_8, thickness=1)
last_detection_time = datetime.now()
# print(total_detected)
if start is None:
start = time.time()
time.clock()
cv2.putText(displayFrame, "Inference time: " + str(round(total_inference_time * 1000, 3)) + "ms", (5, 15),
cv2.FONT_HERSHEY_PLAIN, 0.9, (230, 50, 2),
lineType=cv2.LINE_8, thickness=1)
# cv2.putText(displayFrame, "Totol Unique Persons: "+str(len(total_unique_persons)),(50,150),
# cv2.FONT_HERSHEY_COMPLEX, 1, (100, 150, 250),
# lineType=cv2.LINE_4, thickness=2)
if start is not None and counter == 0:
elapsed = time.time() - start
client.publish("person/duration", json.dumps({"duration": elapsed}))
start = None
# if last_detection_time is not None:
# # if last_detection_time.minute
# second_diff = (datetime.now() - last_detection_time).total_seconds()
# # print(second_diff)
# if second_diff >= 1:
# last_detection_time = None
# start = None
### TODO: Calculate and send relevant information on ###
### current_count, total_count and duration to the MQTT server ###
### Topic "person": keys of "count" and "total" ###
client.publish("person", json.dumps({"count": str(counter), "total": len(total_unique_persons)}))
### Topic "person/duration": key of "duration" ###
sys.stdout.buffer.write(displayFrame)
#
# imshow("frame", displayFrame)
# sys.stdout.buffer.write(displayFrame)
### TODO: Send the frame to the FFMPEG server ###
### TODO: Write an output image if `single_image_mode` ###
if cv2.waitKey(1) & 0xFF == ord('q'):
sys.stdout.flush()
break
def main():
"""
Load the network and parse the output.
:return: None
"""
# Grab command line args
args = build_argparser().parse_args()
# Connect to the MQTT server
client = connect_mqtt()
# Perform inference on the input stream
infer_on_stream(args, client)
if __name__ == '__main__':
# python main2.py -i resources/Pedestrian_Detect_2_1_1.mp4 -m models/intel/pedestrian-detection-adas-0002/FP16/pedestrian-detection-adas-0002.xml -d CPU
# python main2.py -i resources/Pedestrian_Detect_2_1_1.mp4 -m models/intel/pedestrian-detection-adas-0002/FP16/pedestrian-detection-adas-0002.xml -m2 models/intel/person-reidentification-retail-0031/FP16/person-reidentification-retail-0031.xml -d CPU
# python main2.py -i resources/Pedestrian_Detect_2_1_1.mp4 -m models/intel/pedestrian-detection-adas-0002/FP16/pedestrian-detection-adas-0002.xml -m2 models/intel/person-reidentification-retail-0248/FP16/person-reidentification-retail-0248.xml -d CPU
# ffmpeg -f lavfi -i color=c=black:s=1280x720 -vframes 1 black.png
# ffmpeg -f lavfi -i color=c=black:s=1280x720 -vframes 1 black.png
# ffmpeg -v warning -f rawvideo -pixel_format bgr24 -video_size 768x432 -vframes -framerate 24 -i - http://0.0.0.0:3004/fac.ffm
main()