-
Notifications
You must be signed in to change notification settings - Fork 0
/
WGAN_GP.py
450 lines (368 loc) · 18.7 KB
/
WGAN_GP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch import autograd
import time as t
import matplotlib.pyplot as plt
import torch.optim.lr_scheduler as lr_scheduler
plt.switch_backend('agg')
import os
from tensorboard_logger import Logger
from itertools import chain
from torchvision import utils
SAVE_PER_TIMES = 100
class Generator(torch.nn.Module):
def __init__(self, channels):
super().__init__()
# Filters [1024, 512, 256]
# Input_dim = 100
# Output_dim = C (number of channels)
# Z latent vector 100
self.conv1=nn.ConvTranspose2d(in_channels=100, out_channels=1024, kernel_size=4, stride=1, padding=0),
self.bn1 =nn.BatchNorm2d(num_features=1024),
self.relu1=nn.LeakyReLU(True),
# State (1024x4x4)
self.conv2 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=4, stride=2, padding=1),
self.bn2 = nn.BatchNorm2d(num_features=512),
self.relu2 = nn.LeakyReLU(True),
# State (512x8x8)
self.conv3 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1),
self.bn3 = nn.BatchNorm2d(num_features=256),
self.relu3 = nn.LeakyReLU(True),
# State (256x16x16)
self.conv4 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1),
self.bn4 = nn.BatchNorm2d(num_features=256),
self.relu4 = nn.LeakyReLU(True),
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# State (256x32x32)
self.conv5 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1),
self.bn5 = nn.BatchNorm2d(num_features=256),
self.relu5 = nn.LeakyReLU(True),
# State (256x64x64)
self.conv5 =nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1),
self.bn5 = nn.BatchNorm2d(num_features=256),
self.relu5 =nn.LeakyReLU(True),
# State (256x128x128)
nn.ConvTranspose2d(in_channels=256, out_channels=channels, kernel_size=4, stride=2, padding=1),
# output of main module --> Image (Cx256x256)
self.output = nn.Tanh()
def forward(self, x):
x = self.main_module(x)
return self.output(x)
class Discriminator(torch.nn.Module):
def __init__(self, channels):
super().__init__()
# Filters [256, 512, 1024]
# Input_dim = channels (Cx64x64)
# Output_dim = 1
self.main_module = nn.Sequential(
# Omitting batch normalization in critic because our new penalized training objective (WGAN with gradient penalty) is no longer valid
# in this setting, since we penalize the norm of the critic's gradient with respect to each input independently and not the enitre batch.
# There is not good & fast implementation of layer normalization --> using per instance normalization nn.InstanceNorm2d()
# Image (Cx32x32)
# State (Cx256x256)
nn.Conv2d(in_channels=channels, out_channels=256, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(256, affine=True),
nn.LeakyReLU(0.2, inplace=True),
# State (256x128x128)
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(256, affine=True),
nn.LeakyReLU(0.2, inplace=True),
# State (256x64x64)
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(256, affine=True),
nn.LeakyReLU(0.2, inplace=True),
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# State (256x32x32)
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(256, affine=True),
nn.LeakyReLU(0.2, inplace=True),
# State (256x16x16)
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(512, affine=True),
nn.LeakyReLU(0.2, inplace=True),
# State (512x8x8)
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(1024, affine=True),
nn.LeakyReLU(0.2, inplace=True))
# output of main module --> State (1024x4x4)
self.output = nn.Sequential(
# The output of D is no longer a probability, we do not apply sigmoid at the output of D.
nn.Conv2d(in_channels=1024, out_channels=1, kernel_size=4, stride=1, padding=0))
def forward(self, x):
x = self.main_module(x)
return self.output(x)
def feature_extraction(self, x):
# Use discriminator for feature extraction then flatten to vector of 16384
x = self.main_module(x)
return x.view(-1, 1024 * 4 * 4)
class WGAN_GP(object):
def __init__(self, args):
print("WGAN_GradientPenalty init model.")
self.G = Generator(args.channels)
self.D = Discriminator(args.channels)
self.C = args.channels
# Check if cuda is available
self.check_cuda(args.cuda)
# WGAN values from paper
self.learning_rate = 1e-4
self.b1 = 0.5
self.b2 = 0.999
self.batch_size = 64
# WGAN_gradient penalty uses ADAM
self.d_optimizer = optim.Adam(self.D.parameters(), lr=self.learning_rate, betas=(self.b1, self.b2))
self.g_optimizer = optim.Adam(self.G.parameters(), lr=self.learning_rate, betas=(self.b1, self.b2))
self.d_scheduler = lr_scheduler.StepLR(self.d_optimizer, step_size=30, gamma=0.1)
self.g_scheduler = lr_scheduler.StepLR(self.g_optimizer, step_size=30, gamma=0.1)
# # 替换为 RMSprop 优化器
# self.d_optimizer = optim.RMSprop(self.D.parameters(), lr=self.learning_rate)
# self.g_optimizer = optim.RMSprop(self.G.parameters(), lr=self.learning_rate)
# Set the logger
self.logger = Logger('./logs')
self.logger.writer.flush()
self.number_of_images = 10
self.generator_iters = args.generator_iters
self.critic_iter = 5
self.lambda_term = 10
def get_torch_variable(self, arg):
if self.cuda:
return Variable(arg).cuda(self.cuda_index)
else:
return Variable(arg)
def check_cuda(self, cuda_flag=False):
print(cuda_flag)
if cuda_flag:
self.cuda_index = 0
self.cuda = True
self.D.cuda(self.cuda_index)
self.G.cuda(self.cuda_index)
print("Cuda enabled flag: {}".format(self.cuda))
else:
self.cuda = False
def train(self, train_loader):
G_losses = []
D_losses = []
self.t_begin = t.time()
self.file = open("inception_score_graph.txt", "w")
# Now batches are callable self.data.next()
self.data = self.get_infinite_batches(train_loader)
one = torch.tensor(1, dtype=torch.float)
mone = one * -1
if self.cuda:
one = one.cuda(self.cuda_index)
mone = mone.cuda(self.cuda_index)
for g_iter in range(self.generator_iters):
# Requires grad, Generator requires_grad = False
for p in self.D.parameters():
p.requires_grad = True
d_loss_real = 0
d_loss_fake = 0
Wasserstein_D = 0
# Train Dicriminator forward-loss-backward-update self.critic_iter times while 1 Generator forward-loss-backward-update
for d_iter in range(self.critic_iter):
self.D.zero_grad()
images = self.data.__next__()
# Check for batch to have full batch_size
if (images.size()[0] != self.batch_size):
continue
z = torch.rand((self.batch_size, 100, 1, 1))
images, z = self.get_torch_variable(images), self.get_torch_variable(z)
# Train discriminator
# WGAN - Training discriminator more iterations than generator
# Train with real images
images = images.view(self.batch_size, 1, 256, 256)
d_loss_real = self.D(images)
d_loss_real = d_loss_real.mean()
d_loss_real.backward(mone)
# Train with fake images
z = self.get_torch_variable(torch.randn(self.batch_size, 100, 1, 1))
fake_images = self.G(z)
d_loss_fake = self.D(fake_images)
d_loss_fake = d_loss_fake.mean()
d_loss_fake.backward(one)
# Train with gradient penalty
gradient_penalty = self.calculate_gradient_penalty(images.data, fake_images.data)
gradient_penalty.backward()
d_loss = d_loss_fake - d_loss_real + gradient_penalty
Wasserstein_D = d_loss_real - d_loss_fake
self.d_optimizer.step()
D_losses.append(d_loss.tolist())
print(
f' Discriminator iteration: {d_iter}/{self.critic_iter}, loss_fake: {d_loss_fake}, loss_real: {d_loss_real}')
self.d_scheduler.step()
# Generator update
for p in self.D.parameters():
p.requires_grad = False # to avoid computation
self.G.zero_grad()
# train generator
# compute loss with fake images
z = self.get_torch_variable(torch.randn(self.batch_size, 100, 1, 1))
fake_images = self.G(z)
g_loss = self.D(fake_images)
g_loss = g_loss.mean()
g_loss.backward(mone)
g_cost = -g_loss
self.g_optimizer.step()
self.g_scheduler.step()
print(f'Generator iteration: {g_iter}/{self.generator_iters}, g_loss: {g_loss}')
G_losses.append(g_loss.tolist())
# 每个 epoch 结束后绘制折线图
plt.plot(G_losses, label='Generator Loss')
plt.plot(D_losses, label='Discriminator Loss')
plt.legend()
plt.title('WGAN Training Loss')
plt.xlabel('Iterations')
plt.ylabel('Loss')
# 保存图像为文件
plt.savefig('aaaa.png')
# Saving model and sampling images every 1000th generator iterations
if (g_iter) % SAVE_PER_TIMES == 0:
self.save_model()
# # Workaround because graphic card memory can't store more than 830 examples in memory for generating image
# # Therefore doing loop and generating 800 examples and stacking into list of samples to get 8000 generated images
# # This way Inception score is more correct since there are different generated examples from every class of Inception model
# sample_list = []
# for i in range(125):
# samples = self.data.__next__()
# # z = Variable(torch.randn(800, 100, 1, 1)).cuda(self.cuda_index)
# # samples = self.G(z)
# sample_list.append(samples.data.cpu().numpy())
# #
# # # Flattening list of list into one list
# new_sample_list = list(chain.from_iterable(sample_list))
# print("Calculating Inception Score over 8k generated images")
# # # Feeding list of numpy arrays
# inception_score = get_inception_score(new_sample_list, cuda=True, batch_size=32,
# resize=True, splits=10)
if not os.path.exists('training_result_images/'):
os.makedirs('training_result_images/')
# Denormalize images and save them in grid 8x8
z = self.get_torch_variable(torch.randn(800, 100, 1, 1))
samples = self.G(z)
samples = samples.mul(0.5).add(0.5)
samples = samples.data.cpu()[:64]
grid = utils.make_grid(samples)
utils.save_image(grid, 'training_result_images/img_generatori_iter_{}.png'.format(str(g_iter).zfill(3)))
# Testing
time = t.time() - self.t_begin
# print("Real Inception score: {}".format(inception_score))
print("Generator iter: {}".format(g_iter))
print("Time {}".format(time))
# Write to file inception_score, gen_iters, time
# output = str(g_iter) + " " + str(time) + " " + str(inception_score[0]) + "\n"
# self.file.write(output)
# ============ TensorBoard logging ============#
# (1) Log the scalar values
info = {
'Wasserstein distance': Wasserstein_D.data,
'Loss D': d_loss.data,
'Loss G': g_cost.data,
'Loss D Real': d_loss_real.data,
'Loss D Fake': d_loss_fake.data
}
for tag, value in info.items():
self.logger.scalar_summary(tag, value.cpu(), g_iter + 1)
# (3) Log the images
info = {
'real_images': self.real_images(images, self.number_of_images),
'generated_images': self.generate_img(z, self.number_of_images)
}
for tag, images in info.items():
self.logger.image_summary(tag, images, g_iter + 1)
self.t_end = t.time()
print('Time of training-{}'.format((self.t_end - self.t_begin)))
# self.file.close()
# Save the trained parameters
self.save_model()
def evaluate(self, test_loader, D_model_path, G_model_path):
self.load_model(D_model_path, G_model_path)
z = self.get_torch_variable(torch.randn(self.batch_size, 100, 1, 1))
samples = self.G(z)
samples = samples.mul(0.5).add(0.5)
samples = samples.data.cpu()
grid = utils.make_grid(samples)
print("Grid of 8x8 images saved to 'dgan_model_image.png'.")
utils.save_image(grid, 'dgan_model_image.png')
def calculate_gradient_penalty(self, real_images, fake_images):
eta = torch.FloatTensor(self.batch_size, 1, 1, 1).uniform_(0, 1)
eta = eta.expand(self.batch_size, real_images.size(1), real_images.size(2), real_images.size(3))
if self.cuda:
eta = eta.cuda(self.cuda_index)
else:
eta = eta
interpolated = eta * real_images + ((1 - eta) * fake_images)
if self.cuda:
interpolated = interpolated.cuda(self.cuda_index)
else:
interpolated = interpolated
# define it to calculate gradient
interpolated = Variable(interpolated, requires_grad=True)
# calculate probability of interpolated examples
prob_interpolated = self.D(interpolated)
# calculate gradients of probabilities with respect to examples
gradients = autograd.grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(
prob_interpolated.size()).cuda(self.cuda_index) if self.cuda else torch.ones(
prob_interpolated.size()),
create_graph=True, retain_graph=True)[0]
# flatten the gradients to it calculates norm batchwise
gradients = gradients.view(gradients.size(0), -1)
grad_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * self.lambda_term
return grad_penalty
def real_images(self, images, number_of_images):
if (self.C == 3):
return self.to_np(images.view(-1, self.C, 256, 256)[:self.number_of_images])
else:
return self.to_np(images.view(-1, 256, 256)[:self.number_of_images])
def generate_img(self, z, number_of_images):
samples = self.G(z).data.cpu().numpy()[:number_of_images]
generated_images = []
for sample in samples:
if self.C == 3:
generated_images.append(sample.reshape(self.C, 256, 256))
else:
generated_images.append(sample.reshape(256, 256))
return generated_images
def to_np(self, x):
return x.data.cpu().numpy()
def save_model(self):
torch.save(self.G.state_dict(), './generator.pkl')
torch.save(self.D.state_dict(), './discriminator.pkl')
print('Models save to ./generator.pkl & ./discriminator.pkl ')
def load_model(self, D_model_filename, G_model_filename):
D_model_path = os.path.join(os.getcwd(), D_model_filename)
G_model_path = os.path.join(os.getcwd(), G_model_filename)
self.D.load_state_dict(torch.load(D_model_path))
self.G.load_state_dict(torch.load(G_model_path))
print('Generator model loaded from {}.'.format(G_model_path))
print('Discriminator model loaded from {}-'.format(D_model_path))
def get_infinite_batches(self, data_loader):
while True:
for i, seed in enumerate(data_loader):
yield seed
def generate_latent_walk(self, number):
if not os.path.exists('interpolated_images/'):
os.makedirs('interpolated_images/')
number_int = 10
# interpolate between twe noise(z1, z2).
z_intp = torch.FloatTensor(1, 100, 1, 1)
z1 = torch.randn(1, 100, 1, 1)
z2 = torch.randn(1, 100, 1, 1)
if self.cuda:
z_intp = z_intp.cuda()
z1 = z1.cuda()
z2 = z2.cuda()
z_intp = Variable(z_intp)
images = []
alpha = 1.0 / float(number_int + 1)
print(alpha)
for i in range(1, number_int + 1):
z_intp.data = z1 * alpha + z2 * (1.0 - alpha)
alpha += alpha
fake_im = self.G(z_intp)
fake_im = fake_im.mul(0.5).add(0.5) # denormalize
images.append(fake_im.view(self.C, 256, 256).data.cpu())
grid = utils.make_grid(images, nrow=number_int)
utils.save_image(grid, 'interpolated_images/interpolated_{}.png'.format(str(number).zfill(3)))
print("Saved interpolated images.")