-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgutils.py
117 lines (92 loc) · 2.88 KB
/
gutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
def norm(v, dim=1):
assert len(v.size())==2
return v.norm(p=2, dim=dim, keepdim=True)
def unit(v, dim=1, eps=1e-8):
vnorm = norm(v, dim)
return v/vnorm.add(eps), vnorm
def xTy(x, y):
assert len(x.size())==2 and len(y.size())==2,'xTy'
return torch.sum(x*y, dim=1, keepdim=True)
import pdb
def clip_by_norm(v, clip_norm):
v_norm = norm(v)
if v.is_cuda:
scale = torch.ones(v_norm.size()).cuda()
else:
scale = torch.ones(v_norm.size())
mask = v_norm > clip_norm
scale[mask] = clip_norm/v_norm[mask]
return v*scale
def sym_matrix(y): # y n-by-n
assert y.size()[0]==y.size()[1]
return (y + y.t())/2
def skew_matrix(y): # y n-by-n
assert y.size()[0]==y.size()[1]
return (y - y.t())/2
def stiefel_proj_tan(y, g): # y,g p-by-n, p <= n
[p,n] = y.size()
skew = skew_matrix(torch.matmul(y, g.t()))
reflect = torch.matmul(y.t(), y)
identity = torch.eye(n).cuda()
reflect = identity - reflect
tan_vec = torch.matmul(y.t(), skew) + torch.matmul(reflect, g.t())
tan_vec.t_()
return tan_vec
def stiefel_proj_norm(y, g): # y,g p-by-n, p <= n
sym = sym_matrix(torch.matmul(y, g.t()))
norm_vec = torch.matmul(y.t(), sym)
return norm_vec.t()
def polar_retraction(tan_vec): # tan_vec, p-by-n, p <= n
[p,n] = tan_vec.size()
U, S, V = torch.svd(tan_vec)
V_trun = V[:,:p]
return torch.matmul(U, V_trun.t())
def qr_retraction(tan_vec): # tan_vec, p-by-n, p <= n
[p,n] = tan_vec.size()
tan_vec.t_()
q,r = torch.qr(tan_vec)
d = torch.diag(r, 0)
ph = d.sign()
q *= ph.expand_as(q)
q.t_()
return q
def Cayley_loop(X, W, tan_vec, t): #
[n, p] = X.size()
Y = X + t * tan_vec
for i in range(5):
Y = X + t * torch.matmul(W, 0.5*(X+Y))
return Y.t()
def check_identity(X):#n-by-p
n,p = X.size()
res = torch.eye(p).cuda() - torch.mm(X.t(), X)
print('n={0}, p={1}, res norm={2}'.format(n, p ,torch.norm(res)))
def stiefel_transport(y, g): # y,g p-by-n, p <= n, project g onto the tangent space of y
return stiefel_proj(y, g)
def gproj(y, g, normalize=False):
if normalize:
y,_ = unit(y)
yTg = xTy(y,g)
return g-(yTg*y)
def gexp(y, h, normalize=False):
if normalize:
y,_ = unit(y)
h = gproj(y,h)
u, hnorm = unit(h)
return y*hnorm.cos() + u*hnorm.sin()
# parallel translation of tangent vector h1 toward h2
# both h1 and h2 are targent vector on y
def gpt2(y, h1, h2, normalize=False):
if normalize:
h1 = gproj(y, h1)
h2 = gproj(y, h2)
# h2 = u * sigma svd of h2
[u, unorm] = unit(h2)
uTh1 = xTy(u,h1)
return h1 - uTh1*( unorm.sin()*y + (1-unorm.cos())*u )
# parallel translation if h1=h2
def gpt(y, h, normalize=False):
if normalize:
h = gproj(y, h)
[u, unorm] = unit(h)
return (u*unorm.cos() - y*unorm.sin())*unorm