diff --git a/perf/runbenchmarks.jl b/perf/runbenchmarks.jl index 75867a79..fb892afe 100644 --- a/perf/runbenchmarks.jl +++ b/perf/runbenchmarks.jl @@ -39,24 +39,33 @@ using StaticArrays # samples: 9809 # evals/sample: 1 -let - h = hrep([HalfSpace([ 1., 1], 1), - HalfSpace([ 1., -1], 0), - HalfSpace([-1., 0], 0)]) +using BenchmarkTools +using Polyhedra + +function vector(T) + h = hrep([HalfSpace(T[ 1, 1], T(1)), + HalfSpace(T[ 1, -1], T(0)), + HalfSpace(T[-1, 0], T(0))]) display(@benchmark(doubledescription($h))) end -let - h = hrep([HalfSpace((@SVector [ 1, 1]), 1), - HalfSpace((@SVector [ 1, -1]), 0), - HalfSpace((@SVector [-1, 0]), 0)]) +using StaticArrays +function static(T) + h = hrep([HalfSpace((@SVector T[ 1, 1]), T(1)), + HalfSpace((@SVector T[ 1, -1]), T(0)), + HalfSpace((@SVector T[-1, 0]), T(0))]) display(@benchmark(doubledescription($h))) + @profview_allocs for _ in 1:10000 + doubledescription(h) + end end -let - h = hrep([ 1 1 - 1 -1 - -1 0], - [1., 0, 0]) +function matrix(T) + h = hrep(T[ + 1 1 + 1 -1 + -1 0], + T[1, 0, 0], + ) display(@benchmark(doubledescription($h))) end diff --git a/src/Polyhedra.jl b/src/Polyhedra.jl index bec47008..5841f56a 100644 --- a/src/Polyhedra.jl +++ b/src/Polyhedra.jl @@ -9,8 +9,7 @@ using LinearAlgebra # like RowEchelon.jl (slow) or LU (faster). import GenericLinearAlgebra -import MutableArithmetics -const MA = MutableArithmetics +import MutableArithmetics as MA import MathOptInterface as MOI import MathOptInterface.Utilities as MOIU diff --git a/src/center.jl b/src/center.jl index 3ac6b476..31b2414a 100644 --- a/src/center.jl +++ b/src/center.jl @@ -19,7 +19,7 @@ function maximum_radius_with_center(h::HRep{T}, center) where T return zero(T) end else - new_radius = (hs.β - center ⋅ hs.a) / n + new_radius = (hs.β - _dot(center, hs.a)) / n if radius === nothing radius = new_radius else diff --git a/src/comp.jl b/src/comp.jl index 643459e3..7f6d6f3b 100644 --- a/src/comp.jl +++ b/src/comp.jl @@ -1,14 +1,21 @@ +# We use `Zero` so that it is allocation-free, while `zero(Rational{BigInt})` would be costly +_default_tol(::Type{<:Union{Integer, Rational}}) = MA.Zero() +# `rtoldefault(BigFloat)` is quite slow and allocates a lot so we hope that +# `tol` will be called at some upper level function and passed in here instead +# of created everytime +_default_tol(::Type{T}) where {T<:AbstractFloat} = Base.rtoldefault(T) + isapproxzero(x::T; kws...) where {T<:Real} = x == zero(T) -isapproxzero(x::T; ztol=Base.rtoldefault(T)) where {T<:AbstractFloat} = abs(x) < ztol -isapproxzero(x::AbstractVector{T}; kws...) where {T<:Real} = isapproxzero(maximum(abs.(x)); kws...) +isapproxzero(x::T; tol=Base.rtoldefault(T)) where {T<:AbstractFloat} = abs(x) < tol +isapproxzero(x::AbstractVector{T}; kws...) where {T<:Real} = isapproxzero(maximum(abs, x); kws...) #isapproxzero(x::Union{SymPoint, Ray, Line}; kws...) = isapproxzero(coord(x); kws...) isapproxzero(x::Union{Ray, Line}; kws...) = isapproxzero(coord(x); kws...) isapproxzero(h::HRepElement; kws...) = isapproxzero(h.a; kws...) && isapproxzero(h.β; kws...) -_isapprox(x::Union{T, AbstractArray{T}}, y::Union{T, AbstractArray{T}}) where {T<:Union{Integer, Rational}} = x == y +_isapprox(x::Union{T, AbstractArray{T}}, y::Union{T, AbstractArray{T}}; tol) where {T<:Union{Integer, Rational}} = x == y # I check with zero because isapprox(0, 1e-100) is false... # but isapprox(1e-100, 2e-100) should be false -_isapprox(x, y) = (isapproxzero(x) ? isapproxzero(y) : (isapproxzero(y) ? isapproxzero(x) : isapprox(x, y))) +_isapprox(x, y; tol) = (isapproxzero(x; tol) ? isapproxzero(y; tol) : (isapproxzero(y; tol) ? isapproxzero(x; tol) : isapprox(x, y; rtol = tol))) #Base.isapprox(r::SymPoint, s::SymPoint) = _isapprox(coord(r), coord(s)) || _isapprox(coord(r), -coord(s)) function _scaleray(r::Union{Line, Ray}, s::Union{Line, Ray}) @@ -16,12 +23,12 @@ function _scaleray(r::Union{Line, Ray}, s::Union{Line, Ray}) cs = coord(s) cr * sum(abs.(cs)), cs * sum(abs.(cr)) end -function Base.isapprox(r::Line, s::Line) +function _isapprox(r::Line, s::Line; tol) rs, ss = _scaleray(r, s) - _isapprox(rs, ss) || _isapprox(rs, -ss) + _isapprox(rs, ss; tol) || _isapprox(rs, -ss; tol) end -function Base.isapprox(r::Ray, s::Ray) - _isapprox(_scaleray(r, s)...) +function _isapprox(r::Ray, s::Ray; tol) + _isapprox(_scaleray(r, s)...; tol) end # TODO check that Vec in GeometryTypes also does that function _scalehp(h1, h2) @@ -33,28 +40,28 @@ function Base.:(==)(h1::HyperPlane, h2::HyperPlane) (a1, β1), (a2, β2) = _scalehp(h1, h2) (a1 == a2 && β1 == β2) || (a1 == -a2 && β1 == -β2) end -function Base.isapprox(h1::HyperPlane, h2::HyperPlane) +function _isapprox(h1::HyperPlane, h2::HyperPlane; tol) (a1, β1), (a2, β2) = _scalehp(h1, h2) - (_isapprox(a1, a2) && _isapprox(β1, β2)) || (_isapprox(a1, -a2) && _isapprox(β1, -β2)) + (_isapprox(a1, a2; tol) && _isapprox(β1, β2; tol)) || (_isapprox(a1, -a2; tol) && _isapprox(β1, -β2; tol)) end function Base.:(==)(h1::HalfSpace, h2::HalfSpace) (a1, β1), (a2, β2) = _scalehp(h1, h2) a1 == a2 && β1 == β2 end -function Base.isapprox(h1::HalfSpace, h2::HalfSpace) +function _isapprox(h1::HalfSpace, h2::HalfSpace; tol) (a1, β1), (a2, β2) = _scalehp(h1, h2) - _isapprox(a1, a2) && _isapprox(β1, β2) + _isapprox(a1, a2; tol) && _isapprox(β1, β2; tol) end -_lt(x::T, y::T) where {T<:Real} = x < y -_lt(x::T, y::T) where {T<:AbstractFloat} = x < y && !_isapprox(x, y) -_lt(x::S, y::T) where {S<:Real,T<:Real} = _lt(promote(x, y)...) -_gt(x::S, y::T) where {S<:Real, T<:Real} = _lt(y, x) -_leq(x::T, y::T) where {T<:Real} = x <= y -_leq(x::T, y::T) where {T<:AbstractFloat} = x <= y || _isapprox(x, y) -_leq(x::S, y::T) where {S<:Real,T<:Real} = _leq(promote(x, y)...) -_geq(x::T, y::T) where {T<:Real} = _leq(y, x) -_pos(x::T) where {T<:Real} = _gt(x, zero(T)) -_neg(x::T) where {T<:Real} = _lt(x, zero(T)) -_nonneg(x::T) where {T<:Real} = _geq(x, zero(T)) -_nonpos(x::T) where {T<:Real} = _leq(x, zero(T)) +_lt(x::T, y::T; tol) where {T<:Real} = x < y +_lt(x::T, y::T; tol) where {T<:AbstractFloat} = x < y && !_isapprox(x, y; tol) +_lt(x::S, y::T; tol) where {S<:Real,T<:Real} = _lt(promote(x, y)...; tol) +_gt(x::S, y::T; tol) where {S<:Real, T<:Real} = _lt(y, x; tol) +_leq(x::T, y::T; tol) where {T<:Real} = x <= y +_leq(x::T, y::T; tol) where {T<:AbstractFloat} = x <= y || _isapprox(x, y; tol) +_leq(x::S, y::T; tol) where {S<:Real,T<:Real} = _leq(promote(x, y)...; tol) +_geq(x::T, y::T; tol) where {T<:Real} = _leq(y, x; tol) +_pos(x::T; tol) where {T<:Real} = _gt(x, zero(T); tol) +_neg(x::T; tol) where {T<:Real} = _lt(x, zero(T); tol) +_nonneg(x::T; tol) where {T<:Real} = _geq(x, zero(T); tol) +_nonpos(x::T; tol) where {T<:Real} = _leq(x, zero(T); tol) diff --git a/src/doubledescription.jl b/src/doubledescription.jl index 3eb7dbbb..e8ba5ea6 100644 --- a/src/doubledescription.jl +++ b/src/doubledescription.jl @@ -19,7 +19,7 @@ function dualfullspace(rep::Representation{T}) where T end """ - doubledescription(h::HRepresentation) + doubledescription(h::HRepresentation; tol) Computes the V-representation of the polyhedron represented by `h` using the Double-Description algorithm [MRTT53, FP96]. It maintains a list of the points, rays and lines that are in the resulting representation @@ -305,21 +305,21 @@ function set_in!(data, I, index) end end end -function add_element!(data, k, el, tight) +function add_element!(data, k, el, tight; tol) cutoff = nothing for i in reverse(1:k) if data.cutline[i] !== nothing el = line_project(el, data.cutline[i], data.halfspaces[i]) # The line is in all halfspaces from `i+1` up so projecting with it does not change it. push!(tight, i) - return add_adjacent_element!(data, i, k, el, data.lineray[i], tight) + return add_adjacent_element!(data, i, k, el, data.lineray[i], tight; tol) end # Could avoid computing `dot` twice between `el` and the halfspace here. - if !(el in data.halfspaces[i]) + if !in(el, data.halfspaces[i]; tol) cutoff = i break end - if el in hyperplane(data.halfspaces[i]) + if in(el, hyperplane(data.halfspaces[i]); tol) push!(tight, i) end end @@ -327,22 +327,22 @@ function add_element!(data, k, el, tight) set_in!(data, (index.cutoff + 1):k, index) return index end -function project_onto_affspace(data, offset, el, hyperplanes) +function project_onto_affspace(data, offset, el, hyperplanes; tol) for i in reverse(eachindex(hyperplanes)) line = data.cutline[offset + i] h = hyperplanes[i] if line !== nothing el = line_project(el, line, h) - elseif !(el in h) + elseif !in(el, h; tol) # e.g. 0x1 + 0x2 = 1 or -1 = x1 = 1, ... return nothing end end return el end -function add_adjacent_element!(data, i, k, el, parent, tight) - index = add_element!(data, i - 1, el, tight) - add_intersection!(data, index, parent, nothing, i - 1) +function add_adjacent_element!(data, i, k, el, parent, tight; tol) + index = add_element!(data, i - 1, el, tight; tol) + add_intersection!(data, index, parent, nothing, i - 1; tol) set_in!(data, i:k, index) return index end @@ -377,11 +377,11 @@ Combine `el1` and `el2` which are on two different sides of the halfspace `h` so that the combination is in the corresponding hyperplane. """ function combine(h::HalfSpace, el1::VRepElement, el2::VRepElement) - combine(h.β, el1, h.a ⋅ el1, el2, h.a ⋅ el2) + combine(h.β, el1, _dot(h.a, el1), el2, _dot(h.a, el2)) end """ - add_intersection!(data, idx1, idx2, hp_idx, hs_idx = hp_idx - 1) + add_intersection!(data, idx1, idx2, hp_idx, hs_idx = hp_idx - 1; tol) Add the intersection of the elements of indices `idx1` and `idx2` that belong to the hyperplane corresponding the halfspace of index `hp_idx` (see 3.2 (ii) of @@ -396,9 +396,9 @@ to avoid adding redundant elements. Double description method revisited *Combinatorics and computer science*, *Springer*, **1996**, 91-111 """ -function add_intersection!(data, idx1, idx2, hp_idx, hs_idx = hp_idx - 1) +function add_intersection!(data, idx1, idx2, hp_idx, hs_idx = hp_idx - 1; tol) if idx1.cutoff > idx2.cutoff - return add_intersection!(data, idx2, idx1, hp_idx, hs_idx) + return add_intersection!(data, idx2, idx1, hp_idx, hs_idx; tol) end i = idx2.cutoff # Condition (c_k) in [FP96] @@ -418,9 +418,13 @@ function add_intersection!(data, idx1, idx2, hp_idx, hs_idx = hp_idx - 1) # in case `rj, rj'` have inherited adjacency tight = tight_halfspace_indices(data, idx1) ∩ tight_halfspace_indices(data, idx2) push!(tight, i) - return add_adjacent_element!(data, i, i, newel, idx1, tight) + return add_adjacent_element!(data, i, i, newel, idx1, tight; tol) end +# `MA.operate` is going to redirect to an implementation that +# exploits the mutable API of `BigFloat` of `BigInt` +_dot(a, b) = MA.operate(LinearAlgebra.dot, a, b) + _shift(el::AbstractVector, line::Line) = el + Polyhedra.coord(line) _shift(el::Line, line::Line) = el + line _shift(el::Ray, line::Line) = el + Polyhedra.Ray(Polyhedra.coord(line)) @@ -428,21 +432,21 @@ function _λ_proj(r::VStruct, line::Line, h::HRepElement) # Line or ray `r`: # (r + λ * line) ⋅ h.a == 0 # λ = -r ⋅ h.a / (line ⋅ h.a) - return -r ⋅ h.a / (line ⋅ h.a) + return -_dot(r, h.a) / _dot(line, h.a) end function _λ_proj(x::AbstractVector, line::Line, h::HRepElement) # Point `x`: # (x + λ * line) ⋅ h.a == h.β # λ = (h.β - x ⋅ h.a) / (line ⋅ h.a) - return (h.β - x ⋅ h.a) / (line ⋅ h.a) + return (h.β - _dot(x, h.a)) / _dot(line, h.a) end function line_project(el, line, h) λ = _λ_proj(el, line, h) return Polyhedra.simplify(_shift(el, λ * line)) end -function hline(data, line::Line, i, h) - value = h.a ⋅ line - if !Polyhedra.isapproxzero(value) +function hline(data, line::Line, i, h; tol) + value = _dot(h.a, line) + if !Polyhedra.isapproxzero(value; tol) if data.cutline[i] === nothing # Make `lineray` point inward data.cutline[i] = value > 0 ? -line : line @@ -456,7 +460,7 @@ function hline(data, line::Line, i, h) end # TODO remove solver arg `_`, it is kept to avoid breaking code -function doubledescription(hr::HRepresentation, _ = nothing) +function doubledescription(hr::HRepresentation{T}, solver = nothing; tol = _default_tol(T)) where {T} v = Polyhedra.dualfullspace(hr) hps = Polyhedra.lazy_collect(hyperplanes(hr)) hss = Polyhedra.lazy_collect(halfspaces(hr)) @@ -464,12 +468,12 @@ function doubledescription(hr::HRepresentation, _ = nothing) for line in lines(v) cut = false for i in reverse(eachindex(hps)) - cut, line = hline(data, line, nhalfspaces(hr) + i, hps[i]) + cut, line = hline(data, line, nhalfspaces(hr) + i, hps[i]; tol) cut && break end if !cut for i in reverse(eachindex(hss)) - cut, line = hline(data, line, i, hss[i]) + cut, line = hline(data, line, i, hss[i]; tol) cut && break end end @@ -484,14 +488,14 @@ function doubledescription(hr::HRepresentation, _ = nothing) line = data.cutline[i] if line !== nothing ray = Polyhedra.Ray(Polyhedra.coord(line)) - data.lineray[i] = add_element!(data, i - 1, ray, BitSet((i + 1):length(hss))) + data.lineray[i] = add_element!(data, i - 1, ray, BitSet((i + 1):length(hss)); tol) end end @assert isone(npoints(v)) # Add the origin - orig = project_onto_affspace(data, nhalfspaces(hr), first(points(v)), hps) + orig = project_onto_affspace(data, nhalfspaces(hr), first(points(v)), hps; tol) if orig !== nothing - add_element!(data, nhalfspaces(hr), orig, resized_bitset(data)) + add_element!(data, nhalfspaces(hr), orig, resized_bitset(data); tol) end for i in reverse(eachindex(hss)) if data.cutline[i] === nothing && isempty(data.cutpoints[i]) && isempty(data.cutrays[i]) @@ -507,11 +511,11 @@ function doubledescription(hr::HRepresentation, _ = nothing) # Catches new adjacent rays, see 3.2 (ii) of [FP96] for p1 in data.pin[i], p2 in data.pin[i] if p1.cutoff < p2.cutoff - add_intersection!(data, p1, p2, i) + add_intersection!(data, p1, p2, i; tol) end end for p in data.pin[i], r in data.rin[i] - add_intersection!(data, p, r, i) + add_intersection!(data, p, r, i; tol) end end deleteat!(data.cutpoints, i) @@ -521,7 +525,7 @@ function doubledescription(hr::HRepresentation, _ = nothing) # We encounter both `r1, r2` and `r2, r1`. # Break this symmetry with: if r1.cutoff < r2.cutoff - add_intersection!(data, r1, r2, i) + add_intersection!(data, r1, r2, i; tol) end end end diff --git a/src/elements.jl b/src/elements.jl index 31f2bef6..1527a89e 100644 --- a/src/elements.jl +++ b/src/elements.jl @@ -161,13 +161,17 @@ Base.:+(r::Line, s::Line) = Line(r.a + s.a) Base.:+(r::Ray, s::Ray) = Ray(r.a + s.a) Base.:+(p::AbstractVector, r::Ray) = p + coord(r) -for op in [:dot, :cross] - @eval begin - LinearAlgebra.$op(x::VStruct, y) = $op(x.a, y) - LinearAlgebra.$op(x, y::VStruct) = $op(x, y.a) - LinearAlgebra.$op(x::VStruct, y::VStruct) = $op(x.a, y.a) - end -end +LinearAlgebra.cross(x::VStruct, y) = cross(x.a, y) +LinearAlgebra.cross(x, y::VStruct) = cross(x, y.a) +LinearAlgebra.cross(x::VStruct, y::VStruct) = cross(x.a, y.a) + +LinearAlgebra.dot(x::VStruct, y) = _dot(x, y) +LinearAlgebra.dot(x, y::VStruct) = _dot(x, y) +LinearAlgebra.dot(x::VStruct, y::VStruct) = _dot(x, y) + +_dot(x::VStruct, y) = _dot(x.a, y) +_dot(x, y::VStruct) = _dot(x, y.a) +_dot(x::VStruct, y::VStruct) = _dot(x.a, y.a) for ElT in (:HyperPlane, :HalfSpace, :Line, :Ray) @eval begin @@ -276,22 +280,22 @@ for ElemT in [:HalfSpace, :HyperPlane, :Ray, :Line] end end -ininterior(r::Ray, h::HalfSpace) = _neg(h.a ⋅ r) -ininterior(l::Line, h::HalfSpace) = _neg(h.a ⋅ l) -ininterior(p::AbstractVector, h::HalfSpace) = _lt(h.a ⋅ p, h.β) +ininterior(r::Ray, h::HalfSpace) = _neg(_dot(h.a, r)) +ininterior(l::Line, h::HalfSpace) = _neg(_dot(h.a, l)) +ininterior(p::AbstractVector, h::HalfSpace) = _lt(_dot(h.a, p), h.β) inrelativeinterior(p::VRepElement, h::HalfSpace) = ininterior(p, h) -Base.in(r::Ray, h::HalfSpace) = _nonpos(h.a ⋅ r) -Base.in(l::Line, h::HalfSpace) = _nonpos(h.a ⋅ l) -Base.in(p::AbstractVector, h::HalfSpace) = _leq(h.a ⋅ p, h.β) +Base.in(r::Ray, h::HalfSpace; kws...) = _nonpos(_dot(h.a, r); kws...) +Base.in(l::Line, h::HalfSpace; kws...) = _nonpos(_dot(h.a, l); kws...) +Base.in(p::AbstractVector, h::HalfSpace; kws...) = _leq(_dot(h.a, p), h.β; kws...) ininterior(p::VRepElement, h::HyperPlane) = false inrelativeinterior(p::VRepElement, h::HyperPlane) = p in h -Base.in(r::Ray, h::HyperPlane) = isapproxzero(h.a ⋅ r) -Base.in(l::Line, h::HyperPlane) = isapproxzero(h.a ⋅ l) -Base.in(p::AbstractVector, h::HyperPlane) = _isapprox(h.a ⋅ p, h.β) +Base.in(r::Ray, h::HyperPlane; kws...) = isapproxzero(_dot(h.a, r); kws...) +Base.in(l::Line, h::HyperPlane; kws...) = isapproxzero(_dot(h.a, l); kws...) +Base.in(p::AbstractVector, h::HyperPlane; kws...) = _isapprox(_dot(h.a, p), h.β; kws...) #function Base.vec(x::FixedVector{T}) where {T} # y = Vector{T}(N) @@ -344,7 +348,7 @@ lift(v::AbstractVector{T}) where {T} = pushbefore(v, one(T)) translate(p::AbstractVector, v) = p + v translate(r::VStruct, v) = r -translate(h::ElemT, p) where {ElemT<:HRepElement} = ElemT(h.a, h.β + h.a ⋅ p) +translate(h::ElemT, p) where {ElemT<:HRepElement} = ElemT(h.a, h.β + _dot(h.a, p)) _simplify(a::AbstractVector) = a _simplify(a::AbstractVector, β) = a, β diff --git a/src/incidence.jl b/src/incidence.jl index 7c931f53..39bf3f5c 100644 --- a/src/incidence.jl +++ b/src/incidence.jl @@ -1,19 +1,19 @@ -isincident(v::VRepElement, h::HRepElement) = v in hyperplane(h) -isincident(h::HRepElement, v::VRepElement) = v in hyperplane(h) -isincident(p::Polyhedron, v::Index, h::Index) = isincident(get(p, v), get(p, h)) +isincident(v::VRepElement, h::HRepElement; tol) = in(v, hyperplane(h); tol) +isincident(h::HRepElement, v::VRepElement; tol) = in(v, hyperplane(h); tol) +isincident(p::Polyhedron, v::Index, h::Index; tol) = isincident(get(p, v), get(p, h); tol) abstract type Incident{T, ElemT<:RepElement{T}, PT<:Polyhedron{T}, IdxT<:Index{T}} end -function Base.get(p::Polyhedron{T}, inc::Incident{T, ElemT}) where {T, ElemT} +function Base.get(p::Polyhedron{T}, inc::Incident{T, ElemT}; tol) where {T, ElemT} el = get(p, inc.idx) incs = _inctype(inc)[] for idx in Indices{T, ElemT}(p) eli = get(p, idx) - if isincident(el, eli) + if isincident(el, eli; tol) push!(incs, _incel(inc, idx, eli)) end end - incs + return incs end struct IncidentElements{T, ElemT, PT, IdxT} <: Incident{T, ElemT, PT, IdxT} diff --git a/src/interval.jl b/src/interval.jl index f31dbc23..b7e49152 100644 --- a/src/interval.jl +++ b/src/interval.jl @@ -17,8 +17,8 @@ mutable struct Interval{T, AT, D} <: Polyhedron{T} length::T end -Interval{T, AT, D}(d::FullDim, it::HIt...) where {T, AT, D} = _hinterval(Intersection{T, AT, D}(d, it...), AT, D) -Interval{T, AT, D}(d::FullDim, it::VIt...) where {T, AT, D} = _vinterval(Hull{T, AT, D}(d, it...), AT, D) +Interval{T, AT, D}(d::FullDim, it::HIt...; tol = _default_tol(T)) where {T, AT, D} = _hinterval(Intersection{T, AT, D}(d, it...), AT, D; tol) +Interval{T, AT, D}(d::FullDim, it::VIt...; tol = _default_tol(T)) where {T, AT, D} = _vinterval(Hull{T, AT, D}(d, it...), AT, D; tol) # If AT is an SVector, it will be StaticArrays.Size{(1,)} # otherwise, it will be 1 @@ -35,8 +35,8 @@ surface(::Interval{T}) where {T} = zero(T) volume(p::Interval) = p.length Base.isempty(p::Interval) = isempty(p.vrep) -function _interval(AT, haslb::Bool, lb::T, hasub::Bool, ub::T, isempty::Bool) where {T} - if haslb && hasub && _gt(lb, ub) +function _interval(AT, haslb::Bool, lb::T, hasub::Bool, ub::T, isempty::Bool; tol) where {T} + if haslb && hasub && _gt(lb, ub; tol) isempty = true end hps = HyperPlane{T, AT}[] @@ -47,7 +47,7 @@ function _interval(AT, haslb::Bool, lb::T, hasub::Bool, ub::T, isempty::Bool) wh if !isempty if hasub push!(ps, StaticArrays.SVector(ub)) - if haslb && _isapprox(lb, ub) + if haslb && _isapprox(lb, ub; tol) push!(hps, HyperPlane(StaticArrays.SVector(one(T)), ub)) else push!(hss, HalfSpace(StaticArrays.SVector(one(T)), ub)) @@ -64,7 +64,7 @@ function _interval(AT, haslb::Bool, lb::T, hasub::Bool, ub::T, isempty::Bool) wh end end if haslb - if !_isapprox(lb, ub) + if !_isapprox(lb, ub; tol) push!(hss, HalfSpace(StaticArrays.SVector(-one(T)), -lb)) push!(ps, StaticArrays.SVector(lb)) end @@ -84,7 +84,7 @@ function Interval{T, AT, D}(haslb::Bool, lb::T, hasub::Bool, ub::T, isempty::Boo return Interval{T, AT, D}(_interval(AT, haslb, lb, hasub, ub, isempty)...) end -function _hinterval(rep::HRep{T}, ::Type{AT}) where {T, AT} +function _hinterval(rep::HRep{T}, ::Type{AT}; tol) where {T, AT} haslb = false lb = zero(T) hasub = false @@ -108,8 +108,8 @@ function _hinterval(rep::HRep{T}, ::Type{AT}) where {T, AT} end for hp in hyperplanes(rep) α = hp.a[1] - if isapproxzero(α) - if !isapproxzero(hp.β) + if isapproxzero(α; tol) + if !isapproxzero(hp.β; tol) empty = true end else @@ -119,7 +119,7 @@ function _hinterval(rep::HRep{T}, ::Type{AT}) where {T, AT} end for hs in halfspaces(rep) α = hs.a[1] - if isapproxzero(α) + if isapproxzero(α; tol) if hs.β < 0 empty = true end @@ -129,14 +129,14 @@ function _hinterval(rep::HRep{T}, ::Type{AT}) where {T, AT} _setub(hs.β / α) end end - return _interval(AT, haslb, lb, hasub, ub, empty) + return _interval(AT, haslb, lb, hasub, ub, empty; tol) end -function _hinterval(rep::HRep{T}, ::Type{AT}, D) where {T, AT} - return Interval{T, AT, D}(_hinterval(rep, AT)...) +function _hinterval(rep::HRep{T}, ::Type{AT}, D; tol) where {T, AT} + return Interval{T, AT, D}(_hinterval(rep, AT; tol)...) end -function _vinterval(v::VRep{T}, ::Type{AT}) where {T, AT} +function _vinterval(v::VRep{T}, ::Type{AT}; tol) where {T, AT} haslb = true lb = zero(T) hasub = true @@ -171,20 +171,20 @@ function _vinterval(v::VRep{T}, ::Type{AT}) where {T, AT} end end end - return _interval(AT, haslb, lb, hasub, ub, isempty) + return _interval(AT, haslb, lb, hasub, ub, isempty; tol) end -function _vinterval(rep::VRep{T}, ::Type{AT}, D) where {T, AT} - return Interval{T, AT, D}(_vinterval(rep, AT)...) +function _vinterval(rep::VRep{T}, ::Type{AT}, D; tol) where {T, AT} + return Interval{T, AT, D}(_vinterval(rep, AT; tol)...) end -Interval{T, AT, D}(p::HRepresentation{T}) where {T, AT, D} = _hinterval(p, AT, D) -Interval{T, AT, D}(p::VRepresentation{T}) where {T, AT, D} = _vinterval(p, AT, D) -function Interval{T, AT, D}(p::Polyhedron{T}) where {T, AT, D} +Interval{T, AT, D}(p::HRepresentation{T}; tol = _default_tol(T)) where {T, AT, D} = _hinterval(p, AT, D; tol) +Interval{T, AT, D}(p::VRepresentation{T}; tol = _default_tol(T)) where {T, AT, D} = _vinterval(p, AT, D; tol) +function Interval{T, AT, D}(p::Polyhedron{T}; tol = _default_tol(T)) where {T, AT, D} if hrepiscomputed(p) - _hinterval(p, AT, D) + _hinterval(p, AT, D; tol) else - _vinterval(p, AT, D) + _vinterval(p, AT, D; tol) end end @@ -205,16 +205,16 @@ function removehredundancy!(::Interval, args...; kws...) end function removevredundancy!(::Interval, args...; kws...) end sethrep!(p::Interval, h::HRep) = resethrep!(p, h) -function resethrep!(p::Interval{T, AT}, h::HRep) where {T, AT} - hnew, v, volume = _hinterval(h, AT) +function resethrep!(p::Interval{T, AT}, h::HRep{U}; tol = _default_tol(U)) where {T, U, AT} + hnew, v, volume = _hinterval(h, AT; tol) p.hrep = hnew p.vrep = v p.length = volume return p end setvrep!(p::Interval, v::VRep) = resetvrep!(p, v) -function resetvrep!(p::Interval{T, AT}, v::VRep) where {T, AT} - h, vnew, volume = _vinterval(v, AT) +function resetvrep!(p::Interval{T, AT}, v::VRep{U}; tol = _default_tol(U)) where {T, U, AT} + h, vnew, volume = _vinterval(v, AT; tol) p.hrep = h p.vrep = vnew p.length = volume diff --git a/src/iterators.jl b/src/iterators.jl index 97627b30..bb6f0a93 100644 --- a/src/iterators.jl +++ b/src/iterators.jl @@ -156,7 +156,7 @@ for (isVrep, elt, loop_singular) in [(true, :AbstractVector, :point), Returns the list of the indices of $plural incident to idx for the polyhedron `p`. """ - $incidx(p::Polyhedron{T}, idx) where {T} = get(p, IncidentIndices{T, $elemtype(p)}(p, idx)) + $incidx(p::Polyhedron{T}, idx; tol) where {T} = get(p, IncidentIndices{T, $elemtype(p)}(p, idx); tol) """ $lenp($horvrep::$HorVRep) diff --git a/src/linearity.jl b/src/linearity.jl index 3fcab565..8cbed30c 100644 --- a/src/linearity.jl +++ b/src/linearity.jl @@ -70,11 +70,11 @@ linearize(r::Ray) = line(r) _aff_push!(aff::HAffineSpace, h) = intersect!(aff, h) _aff_push!(aff::VLinearSpace, l) = convexhull!(aff, l) -function _detect_opposite_element(aff, non_opposite, element; kws...) +function _detect_opposite_element(aff, non_opposite, element; tol) element = remproj(element, aff) - if !isapproxzero(element; kws...) && !any(el -> el ≈ element, non_opposite) + if !isapproxzero(element; tol) && !any(el -> _isapprox(el, element; tol), non_opposite) lin = linearize(element) - i = findfirst(el -> linearize(el) ≈ lin, non_opposite) + i = findfirst(el -> _isapprox(linearize(el), lin; tol), non_opposite) if i === nothing push!(non_opposite, element) else @@ -86,9 +86,9 @@ function _detect_opposite_element(aff, non_opposite, element; kws...) return false end end -function _detect_opposite_elements(aff, non_opposite, elements; kws...) +function _detect_opposite_elements(aff, non_opposite, elements; tol) newlin = true - for i in 1:fulldim(aff) # could use `while newlin` but `for`-loop is safer. + for _ in 1:fulldim(aff) # could use `while newlin` but `for`-loop is safer. newlin || break newlin = false empty!(non_opposite) @@ -96,25 +96,25 @@ function _detect_opposite_elements(aff, non_opposite, elements; kws...) # Remove rays/halfspaces that become zero and detect new lines/hyperplanes # with rays/halfspaces that becomes opposite to each other. for element in elements - newlin |= _detect_opposite_element(aff, non_opposite, element; kws...) + newlin |= _detect_opposite_element(aff, non_opposite, element; tol) end end end """ - detect_new_linearities(rep::HRepresentation{T}, solver; verbose=0, ztol=Base.rtoldefault(T)) where {T} + detect_new_linearities(rep::HRepresentation{T}, solver; verbose=0, tol=Base.rtoldefault(T)) where {T} Given a polyhedron with H-representation `rep`, detect whether a new hyperplane can be generated from the halfspaces in `halfspaces` using an linear program solved by `solver`. The method is similar to the method used for lines described as follows. This function is automatically called by `removehredundancy` if a solver is provided. - detect_new_linearities(rep::VRepresentation{T}, solver; verbose=0, ztol=Base.rtoldefault(T)) where {T} + detect_new_linearities(rep::VRepresentation{T}, solver; verbose=0, tol=Base.rtoldefault(T)) where {T} Given a cone defined by the V-representation `rep` (ignoring the points in the representation if any), detect whether a new line can be generated from the rays in `rays` using an linear program solved by `solver`. The method is as follows (suppose `lines` is empty for simplicity). This function is automatically called by `removevredundancy` if a solver is provided. -The keyword argument `ztol` is used as a tolerance to decide whether a number is zero. +The keyword argument `tol` is used as a tolerance to decide whether a number is zero. If there was a line `l` in the cone, it would mean that there exist `μ >= 0` and `ν >= 0` such that `Σ μ_i r_i = l` and `Σ ν_i r_i = -l`. We deduce from this that `Σ λ_i r_i = 0` where `λ = μ + ν`. @@ -231,7 +231,7 @@ _linearity_space(h::HRepresentation, current) = affinehull(h, current) _linearity_space(v::VRepresentation, current) = linespace(v, current) struct OppositeMockOptimizer end -function _detect_linearity(rep::Representation, solver; kws...) +function _detect_linearity(rep::Representation, solver; verbose = 0, tol) aff = _linearity_space(rep, true) if _hasnonlinearity(rep) if solver === nothing @@ -244,9 +244,9 @@ Set a solver if you believe that the polyhedron may have more linearity. end if solver == OppositeMockOptimizer els = _nonlin_type(rep)[] - _detect_opposite_elements(aff, els, _nonlinearity(rep); kws...) + _detect_opposite_elements(aff, els, _nonlinearity(rep); tol) else - new_lins = detect_new_linearities(rep, solver; kws...) + new_lins = detect_new_linearities(rep, solver; verbose, tol) if new_lins === nothing empty!(aff) els = eltype(_nonlinearity(rep))[] @@ -273,8 +273,8 @@ Return a new H-representation with linearity detected using `solver`. The remaining keyword arguments `kws` are passed to [`detect_new_linearities`](@ref). """ -function detecthlinearity(hr::HRepresentation, solver; kws...) - aff, hs = _detect_linearity(hr, solver; kws...) +function detecthlinearity(hr::HRepresentation{T}, solver; verbose = 0, tol = _default_tol(float(T))) where {T} + aff, hs = _detect_linearity(hr, solver; verbose = 0, tol) typeof(hr)(FullDim(hr), aff.hyperplanes, hs) end @@ -285,7 +285,7 @@ Return a new V-representation with linearity detected using `solver`. The remaining keyword arguments `kws` are passed to [`detect_new_linearities`](@ref). """ -function detectvlinearity(vr::VRepresentation, solver; kws...) - aff, rays = _detect_linearity(vr, solver; kws...) +function detectvlinearity(vr::VRepresentation{T}, solver; tol = _default_tol(float(T)), kws...) where {T} + aff, rays = _detect_linearity(vr, solver; tol, kws...) typeof(vr)(FullDim(vr), preps(vr)..., aff.lines, rays) end diff --git a/src/planar.jl b/src/planar.jl index 1a6e96ec..9ae45a86 100644 --- a/src/planar.jl +++ b/src/planar.jl @@ -92,7 +92,7 @@ end _colinear(counterclockwise, a, b, c) = isapproxzero(counterclockwise(b - a, c - a)) -function _planar_hull(d::FullDim, points, lines, rays, counterclockwise, rotate) +function _planar_hull(d::FullDim, points, lines, rays, counterclockwise, rotate; tol) line = nothing lineleft = false lineright = false @@ -123,10 +123,10 @@ function _planar_hull(d::FullDim, points, lines, rays, counterclockwise, rotate) if xray === nothing xray = yray = coord(r) else - if Line(xray) ≈ linearize(r) && !(Ray(xray) ≈ r) + if _isapprox(Line(xray), linearize(r); tol) && !_isapprox(Ray(xray), r; tol) line = Line(xray) checkleftright(Ray(yray)) - elseif Line(yray) ≈ linearize(r) && !(Ray(yray) ≈ r) + elseif _isapprox(Line(yray), linearize(r); tol) && !_isapprox(Ray(yray), r; tol) line = Line(yray) checkleftright(Ray(xray)) else @@ -188,7 +188,7 @@ function _planar_hull(d::FullDim, points, lines, rays, counterclockwise, rotate) else append!(_points, half_points) push!(_rays, Ray(xray)) - if !(Ray(xray) ≈ Ray(yray)) + if !(_isapprox(Ray(xray), Ray(yray); tol)) push!(_rays, Ray(yray)) end end @@ -215,7 +215,7 @@ end counterclockwise(x, y) = x[1] * y[2] - x[2] * y[1] rotate(x) = convert(typeof(x), StaticArrays.SVector(-x[2], x[1])) -function planar_hull(vr::VRepresentation) +function planar_hull(vr::VRepresentation{T}; tol = _default_tol(T)) where {T} d = FullDim(vr) - vrep(_planar_hull(FullDim(vr), collect(points(vr)), lines(vr), rays(vr), counterclockwise, rotate)...; d = d) + vrep(_planar_hull(FullDim(vr), collect(points(vr)), lines(vr), rays(vr), counterclockwise, rotate; tol)...; d = d) end diff --git a/src/polyhedron.jl b/src/polyhedron.jl index ec2d180a..d7c013a8 100644 --- a/src/polyhedron.jl +++ b/src/polyhedron.jl @@ -119,12 +119,12 @@ end Returns the center of mass of `p`, represented as a `Vector{T}` of length `fulldim(p)`. Throws an error if `p` is degenerate. """ -function center_of_mass(p::Polyhedron{T}) where T +function center_of_mass(p::Polyhedron{T}; tol = _default_tol(T)) where T # Implementation strategy: For a simplex, the center of mass coincides with # the centroid which is easy to compute. So we triangulate `p` into # simplices and compute a volume-weighted average of these simplices' # centers of mass. - simplices = triangulation(p) + simplices = triangulation(p; tol) isempty(simplices) && error("Tried to compute center of mass of a degenerate polyhedron") unscaled_center = zeros(T, fulldim(p)) unscaled_vol = zero(T) diff --git a/src/redundancy.jl b/src/redundancy.jl index 48eaa3cd..6855d93c 100644 --- a/src/redundancy.jl +++ b/src/redundancy.jl @@ -402,9 +402,9 @@ end # V-redundancy # If p is an H-representation, nl needs to be given otherwise if p is a Polyhedron, it can be asked to p. # TODO nlines should be the number of non-redundant lines so something similar to dim -function isredundant(p::HRep{T}, v::Union{AbstractVector, Line, Ray}; strongly = false, nl::Int=nlines(p), solver=nothing) where {T} +function isredundant(p::HRep{T}, v::Union{AbstractVector, Line, Ray}; strongly = false, nl::Int=nlines(p), solver=nothing, tol = _default_tol(T)) where {T} # v is in every hyperplane otherwise it would not be valid - hcount = nhyperplanes(p) + count(h -> v in hyperplane(h), halfspaces(p)) + hcount = nhyperplanes(p) + count(h -> in(v, hyperplane(h); tol), halfspaces(p)) strong = (isray(v) ? fulldim(p) - 1 : fulldim(p)) - nl bound = strongly ? min(strong, 1) : strong if hcount < bound @@ -412,7 +412,7 @@ function isredundant(p::HRep{T}, v::Union{AbstractVector, Line, Ray}; strongly = else A = Matrix{T}(undef, hcount, fulldim(p)) offset = coord_matrix!(A, hyperplanes(p), _ -> true, 0) - offset = coord_matrix!(A, halfspaces(p), h -> v in hyperplane(h), offset) + offset = coord_matrix!(A, halfspaces(p), h -> in(v, hyperplane(h); tol), offset) @assert offset == size(A, 1) return rank(A) < bound end @@ -422,10 +422,10 @@ isredundant(p::HRep{T}, v::Line; strongly = false, nl::Int=nlines(p), solver=not # H-redundancy # If p is a V-representation, nl needs to be given otherwise if p is a Polyhedron, it can be asked to p. -function isredundant(p::VRep{T}, h::HRepElement; strongly = false, d::Int=dim(p), solver=nothing) where {T} +function isredundant(p::VRep{T}, h::HRepElement; strongly = false, d::Int=dim(p), solver=nothing, tol = _default_tol(T)) where {T} checkvconsistency(p) hp = hyperplane(h) - pcount = count(p -> p in hp, points(p)) + pcount = count(p -> in(p, hp; tol), points(p)) # every line is in h, otherwise it would not be valid rcount = nlines(p) + count(r -> r in hp, rays(p)) if pcount < min(d, 1) || (!strongly && pcount + rcount < d) @@ -437,7 +437,7 @@ function isredundant(p::VRep{T}, h::HRepElement; strongly = false, d::Int=dim(p) if pcount > 1 orig = nothing for x in points(p) - if x in hp + if in(x, hp; tol) if orig === nothing orig = x else @@ -495,8 +495,8 @@ function removeduplicates(vrep::VPolytope) typeof(vrep)(FullDim(vrep), premovedups(vrep, emptyspace(vrep))...) end removeduplicates(vrep::VLinearSpace, solver = nothing) = detectvlinearity(vrep, solver) -function removeduplicates(vrep::VRepresentation, solver = nothing) - aff, rs = _detect_linearity(vrep, solver) +function removeduplicates(vrep::VRepresentation{T}, solver = nothing; tol = _default_tol(T)) where {T} + aff, rs = _detect_linearity(vrep, solver; tol) typeof(vrep)(FullDim(vrep), premovedups(vrep, aff)..., aff.lines, rs) end diff --git a/src/repelemop.jl b/src/repelemop.jl index 8049d900..7ad05466 100644 --- a/src/repelemop.jl +++ b/src/repelemop.jl @@ -282,9 +282,9 @@ function Base.intersect(v::VRepresentation{T}, h::HRepElement) where {T} # \ In CDD and ConvexHull.jl, they only consider segments that # \ belongs to the boundary which is way faster than what we do here for p in pins - ap = h.a ⋅ p + ap = _dot(h.a, p) for q in pout - aq = h.a ⋅ q + aq = _dot(h.a, q) λ = (aq - h.β) / (aq - ap) @assert 0 <= λ <= 1 push!(pinp, simplify(λ * p + (1 - λ) * q)) @@ -292,9 +292,9 @@ function Base.intersect(v::VRepresentation{T}, h::HRepElement) where {T} end # Similar but with rays for r in rins - ar = h.a ⋅ r + ar = _dot(h.a, r) for s in rout - as = h.a ⋅ s + as = _dot(h.a, s) # should take # λ = as / (as - ar) @assert 0 <= as / (as - ar) <= 1 @@ -313,9 +313,9 @@ function Base.intersect(v::VRepresentation{T}, h::HRepElement) where {T} # Similar but with one point and one ray for (ps, rs) in ((pins, rout), (pout, rins)) for p in ps - ap = h.a ⋅ p + ap = _dot(h.a, p) for r in rs - ar = h.a ⋅ r + ar = _dot(h.a, r) λ = (h.β - ap) / ar push!(pinp, p + λ * r) end diff --git a/src/triangulation.jl b/src/triangulation.jl index 1dddc5c5..65ed7a41 100644 --- a/src/triangulation.jl +++ b/src/triangulation.jl @@ -35,17 +35,17 @@ function _triangulation(Δs, Δ, v_idx, h_idx, incident_idx, is_weak_adjacent, c end end end -function triangulation_indices(p::Polyhedron) +function triangulation_indices(p::Polyhedron; tol) hasrays(p) && error("Triangulation only supported for polytope.") v_idx = eachindex(points(p)) h_idx = eachindex(halfspaces(p)) Δ = eltype(v_idx)[] Δs = typeof(Δ)[] - incident_idx = Dict(h => Set(incidentpointindices(p, h)) for h in h_idx) + incident_idx = Dict(h => Set(incidentpointindices(p, h; tol)) for h in h_idx) is_weak_adjacent = Dict((hi, hj) => !isempty(incident_idx[hi] ∩ incident_idx[hj]) for hi in h_idx for hj in h_idx) _triangulation(Δs, Δ, v_idx, h_idx, incident_idx, is_weak_adjacent, fulldim(p)) return unique(Δs) end -function triangulation(p::Polyhedron) - return map(Δ -> vrep(get.(p, Δ)), triangulation_indices(p)) +function triangulation(p::Polyhedron; tol) + return map(Δ -> vrep(get.(p, Δ)), triangulation_indices(p; tol)) end diff --git a/src/vrep_optimizer.jl b/src/vrep_optimizer.jl index 730165ad..27726afc 100644 --- a/src/vrep_optimizer.jl +++ b/src/vrep_optimizer.jl @@ -23,10 +23,14 @@ mutable struct VRepOptimizer{T} <: AbstractPolyhedraOptimizer{T} status::MOI.TerminationStatusCode solution::Union{AbstractVector{T}, Nothing} + tol::Union{T,MA.Zero} + function VRepOptimizer{T}(library::Union{Nothing, Library} = nothing) where T new(library, LPHRep(_MOIModel{T}()), nothing, nothing, MOI.FEASIBILITY_SENSE, nothing, zero(T), - MOI.OPTIMIZE_NOT_CALLED, nothing) + MOI.OPTIMIZE_NOT_CALLED, nothing, + _default_tol(T), + ) end end @@ -90,11 +94,11 @@ function MOI.optimize!(lpm::VRepOptimizer{T}) where T lpm.solution = first(points(prob)) else better(a, b) = (lpm.objective_sense == MOI.MAX_SENSE ? a > b : a < b) - _better(a, b) = (lpm.objective_sense == MOI.MAX_SENSE ? _gt(a, b) : _lt(a, b)) + _better(a, b) = (lpm.objective_sense == MOI.MAX_SENSE ? _gt(a, b; tol) : _lt(a, b; tol)) bestobjval = zero(T) lpm.solution = nothing for r in allrays(prob) - objval = obj ⋅ r + objval = _dot(obj, r) if _better(objval, bestobjval) bestobjval = objval lpm.solution = coord(r) @@ -104,7 +108,7 @@ function MOI.optimize!(lpm::VRepOptimizer{T}) where T lpm.status = MOI.DUAL_INFEASIBLE else for p in points(prob) - objval = obj ⋅ p + objval = _dot(obj, p) if lpm.solution === nothing || better(objval, bestobjval) bestobjval = objval lpm.solution = p @@ -137,9 +141,9 @@ function MOI.get(lpm::VRepOptimizer{T}, attr::MOI.ObjectiveValue) where T return zero(T) end if lpm.status == MOI.OPTIMAL - return lpm.objective_func ⋅ lpm.solution + lpm.objective_constant + return _dot(lpm.objective_func, lpm.solution) + lpm.objective_constant elseif lpm.status == MOI.DUAL_INFEASIBLE - return lpm.objective_func ⋅ lpm.solution + return _dot(lpm.objective_func, lpm.solution) else error("No objective value available when termination status is $(lpm.status).") end diff --git a/test/comp.jl b/test/comp.jl index de8b77c4..db65f410 100644 --- a/test/comp.jl +++ b/test/comp.jl @@ -1,6 +1,6 @@ @testset "Comparison" begin #@test SymPoint([1, 2]) ≈ SymPoint([-1, -2]) #@test !(SymPoint([1, 2]) ≈ SymPoint([-2, -1])) - @test Polyhedra._lt(1, 1.5) - @test !Polyhedra._lt(2, 1.5) + @test Polyhedra._lt(1, 1.5; tol = 1e-6) + @test !Polyhedra._lt(2, 1.5; tol = 1e-6) end diff --git a/test/issue301.jl b/test/issue301.jl index c22e7a8f..1eb290fa 100644 --- a/test/issue301.jl +++ b/test/issue301.jl @@ -3,8 +3,8 @@ Test for https://github.com/JuliaPolyhedra/Polyhedra.jl/issues/301 """ function issue301test(lib::Polyhedra.Library) p = polyhedron(vrep([[3, 0], [0, 3], [0, 0], [1, 1]]), lib) - removevredundancy!(p; verbose=0, ztol=1e-7) + removevredundancy!(p; verbose=0, tol=1e-7) @test npoints(p) == 3 - removehredundancy!(p; verbose=0, ztol=1e-7) + removehredundancy!(p; verbose=0, tol=1e-7) @test nhalfspaces(p) == 3 end diff --git a/test/lp_to_polyhedra.jl b/test/lp_to_polyhedra.jl index e9e5410e..f0774959 100644 --- a/test/lp_to_polyhedra.jl +++ b/test/lp_to_polyhedra.jl @@ -68,9 +68,9 @@ function MOI.get(mock::MockOptimizer{T}, attr::MOI.ConstraintPrimal, end function MOI.get(mock::MockOptimizer, ::MOI.ObjectiveValue) if mock.status == MOI.OPTIMAL - return mock.objective_func ⋅ mock.solution + mock.objective_constant + return _dot(mock.objective_func, mock.solution) + mock.objective_constant elseif mock.status == MOI.DUAL_INFEASIBLE - return mock.objective_func ⋅ mock.solution + return _dot(mock.objective_func, mock.solution) else error("No objective value available when termination status is $(mock.status).") end diff --git a/test/lphrep.jl b/test/lphrep.jl index 27572e4d..fbee4dd1 100644 --- a/test/lphrep.jl +++ b/test/lphrep.jl @@ -21,7 +21,6 @@ function test_order_lphrep() @variable(model, x) @variable(model, y <= 1) h = hrep(model) - @show h @test nhalfspaces(h) == 1 @test first(halfspaces(h)) == HalfSpace([0, 1], 1) end diff --git a/test/redundancy.jl b/test/redundancy.jl index c4b32dac..4bd4efca 100644 --- a/test/redundancy.jl +++ b/test/redundancy.jl @@ -358,13 +358,13 @@ end 1210.55555992692 -37126.858723322744 -13.95377106842899 -0.0 -0.0 -0.0 -0.0 -0.0 -1860.676468633397 57155.38024488611 18.21165578673308 -0.0 -0.0 -0.0 -0.0 -0.0 ] - # The last row is almost considered an equality, depends on `ztol`. + # The last row is almost considered an equality, depends on `tol`. # If it's detected as an equality then the polyhedron is detected as empty. # See https://github.com/JuliaPolyhedra/Polyhedra.jl/issues/270 b = [-20.995, -1.007487377909021, -0.9877340129555137, -0.9705208833525414, -0.9548402631790559, -0.025711479466835108, 1.007487377909021, 0.9877340129555137, 0.9705208833525414, 0.9548402631790559, 0.025711479466835108, 0.8046759919340509, -11751.33121007926, 18148.933864538412] lib = DefaultLibrary{Float64}(lp_solver) P = polyhedron(hrep(A, b), lib) - removevredundancy!(P, ztol=1e-4) + removevredundancy!(P, tol=1e-4) @test nhyperplanes(P) >= 4 @test nhalfspaces(P) <= 4 @test npoints(P) > 0