From 4c6c69d1db3507e7c5291601e587101d563030f8 Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 15:18:26 +0800 Subject: [PATCH 1/8] Dump docstrings to key-value json format --- Project.toml | 1 + src/JuliaZH.jl | 5 ++++- src/docstrings.jl | 57 +++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 62 insertions(+), 1 deletion(-) create mode 100644 src/docstrings.jl diff --git a/Project.toml b/Project.toml index b1bfd9f8..b3b70dc8 100644 --- a/Project.toml +++ b/Project.toml @@ -3,6 +3,7 @@ uuid = "652e05fd-ed22-5b6c-bf99-44e63a676e5f" version = "1.5.0" [deps] +JSON3 = "0f8b85d8-7281-11e9-16c2-39a750bddbf1" REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [compat] diff --git a/src/JuliaZH.jl b/src/JuliaZH.jl index 323e9a26..1ecfce2c 100644 --- a/src/JuliaZH.jl +++ b/src/JuliaZH.jl @@ -1,5 +1,8 @@ module JuliaZH +include("docstrings.jl") +export dump_docstrings, dump_all_docstrings + import Base.Docs: DocStr const keywords = Dict{Symbol,DocStr}() @@ -48,7 +51,7 @@ function generate_startup(mirror_name::String = "BFSU") new_upstream = mirrors[mirror_name] new_line = "ENV[\"JULIA_PKG_SERVER\"] = \"$(new_upstream)\"" - + pkg_matches = map(x->match(regex_PKG_SERVER, x), startup_lines) pkg_indices = findall(x->!isnothing(x), pkg_matches) if isempty(pkg_indices) diff --git a/src/docstrings.jl b/src/docstrings.jl new file mode 100644 index 00000000..dbd88994 --- /dev/null +++ b/src/docstrings.jl @@ -0,0 +1,57 @@ +using JSON3 + +const MODULE_MAP = Dict( + "Base" => Base, + # "BaseDocs" => Base.BaseDocs, + "Cartesian" => Base.Cartesian, + # "Docs" => Base.Docs, + "Enums" => Base.Enums, + "Experimental" => Base.Experimental, + "FastMath" => Base.FastMath, + "Filesystem" => Base.Filesystem, + "GC" => Base.GC, + "Grisu" => Base.Grisu, + "Iterators" => Base.Iterators, + "Libc" => Base.Libc, + "Math" => Base.Math, + "MathConstants" => Base.MathConstants, + "Meta" => Base.Meta, + "Multimedia" => Base.Multimedia, + # "MultiplicativeInverses" => Base.MultiplicativeInverses, + "MPFR" => Base.MPFR, + # "Order" => Base.Order, + "Rounding" => Base.Rounding, + "SimdLoop" => Base.SimdLoop, + "Sys" => Base.Sys, + "Threads" => Base.Threads, + "Unicode" => Base.Unicode, +) + +function dump_docstrings(m::Module) + doc = getfield(m, Base.Docs.META) + docstrings = "{" + buffer = IOBuffer() + for bind in keys(doc) + multidoc = doc[bind] + bind.mod == m || continue # only dump current module + name = string(bind.mod) * "." * string(bind.var) + strs = Vector{Pair{String,String}}() + for signature in keys(multidoc.docs) + text = string(multidoc.docs[signature].text...) + push!(strs, string(signature) => text) + end + JSON3.write(buffer, name => strs) + docstrings *= String(take!(buffer)) |> s -> strip(s, ['{', '}']) + docstrings *= "," + end + + return docstrings[1:end-1] * "}" +end + +function dump_all_docstrings(prefix = joinpath(@__DIR__, "..", "en", "docstrings"), + suffix = "_docstrings.json") + for (k, v) in MODULE_MAP + s = dump_docstrings(v) + write(joinpath(prefix, k*suffix), s) + end +end From 11990998b00604b7dfdefa25dd3e330900a0c1cc Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 15:18:44 +0800 Subject: [PATCH 2/8] Dump docstrings --- en/docstrings/Base_docstrings.json | 1 + en/docstrings/Cartesian_docstrings.json | 1 + en/docstrings/Enums_docstrings.json | 1 + en/docstrings/Experimental_docstrings.json | 1 + en/docstrings/FastMath_docstrings.json | 1 + en/docstrings/Filesystem_docstrings.json | 1 + en/docstrings/GC_docstrings.json | 1 + en/docstrings/Grisu_docstrings.json | 1 + en/docstrings/Iterators_docstrings.json | 1 + en/docstrings/Libc_docstrings.json | 1 + en/docstrings/MPFR_docstrings.json | 1 + en/docstrings/MathConstants_docstrings.json | 1 + en/docstrings/Math_docstrings.json | 1 + en/docstrings/Meta_docstrings.json | 1 + en/docstrings/Multimedia_docstrings.json | 1 + en/docstrings/Rounding_docstrings.json | 1 + en/docstrings/SimdLoop_docstrings.json | 1 + en/docstrings/Sys_docstrings.json | 1 + en/docstrings/Threads_docstrings.json | 1 + en/docstrings/Unicode_docstrings.json | 1 + 20 files changed, 20 insertions(+) create mode 100644 en/docstrings/Base_docstrings.json create mode 100644 en/docstrings/Cartesian_docstrings.json create mode 100644 en/docstrings/Enums_docstrings.json create mode 100644 en/docstrings/Experimental_docstrings.json create mode 100644 en/docstrings/FastMath_docstrings.json create mode 100644 en/docstrings/Filesystem_docstrings.json create mode 100644 en/docstrings/GC_docstrings.json create mode 100644 en/docstrings/Grisu_docstrings.json create mode 100644 en/docstrings/Iterators_docstrings.json create mode 100644 en/docstrings/Libc_docstrings.json create mode 100644 en/docstrings/MPFR_docstrings.json create mode 100644 en/docstrings/MathConstants_docstrings.json create mode 100644 en/docstrings/Math_docstrings.json create mode 100644 en/docstrings/Meta_docstrings.json create mode 100644 en/docstrings/Multimedia_docstrings.json create mode 100644 en/docstrings/Rounding_docstrings.json create mode 100644 en/docstrings/SimdLoop_docstrings.json create mode 100644 en/docstrings/Sys_docstrings.json create mode 100644 en/docstrings/Threads_docstrings.json create mode 100644 en/docstrings/Unicode_docstrings.json diff --git a/en/docstrings/Base_docstrings.json b/en/docstrings/Base_docstrings.json new file mode 100644 index 00000000..1bbfd181 --- /dev/null +++ b/en/docstrings/Base_docstrings.json @@ -0,0 +1 @@ +{"Base.htol":[{"Tuple{Any}":" htol(x)\n\nConvert the endianness of a value from that used by the Host to Little-endian.\n"}],"Base.zeros":[{"Union{}":" zeros([T=Float64,] dims::Tuple)\n zeros([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all zeros with size specified by `dims`.\nSee also [`fill`](@ref), [`ones`](@ref).\n\n# Examples\n```jldoctest\njulia> zeros(1)\n1-element Array{Float64,1}:\n 0.0\n\njulia> zeros(Int8, 2, 3)\n2×3 Array{Int8,2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.div12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = div12(x, y)\n\nA high-precision representation of `x / y` for floating-point\nnumbers. Mathematically, `zhi + zlo ≈ x / y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x, y = Float32(π), 3.1f0\n(3.1415927f0, 3.1f0)\n\njulia> x / y\n1.013417f0\n\njulia> Float64(x) / Float64(y)\n1.0134170444063078\n\njulia> hi, lo = Base.div12(x, y)\n(1.013417f0, 3.8867366f-8)\n\njulia> Float64(hi) + Float64(lo)\n1.0134170444063066\n"}],"Base.iseven":[{"Tuple{Integer}":" iseven(x::Integer) -> Bool\n\nReturn `true` is `x` is even (that is, divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> iseven(9)\nfalse\n\njulia> iseven(10)\ntrue\n```\n"}],"Base.foldr":[{"Tuple{Any,Any}":" foldr(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed right associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldr(=>, 1:4)\n1 => (2 => (3 => 4))\n\njulia> foldr(=>, 1:4; init=0)\n1 => (2 => (3 => (4 => 0)))\n```\n"}],"Base.lastindex":[{"Tuple{AbstractArray}":" lastindex(collection) -> Integer\n lastindex(collection, d) -> Integer\n\nReturn the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.\n\nThe syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and\n`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.\n\n# Examples\n```jldoctest\njulia> lastindex([1,2,4])\n3\n\njulia> lastindex(rand(3,4,5), 2)\n4\n```\n"}],"Base.FlatteningRF":[{"Union{}":" FlatteningRF(rf) -> rf′\n\nCreate a flattening reducing function that is roughly equivalent to\n`rf′(acc, x) = foldl(rf, x; init=acc)`.\n"}],"Base.istaskstarted":[{"Tuple{Task}":" istaskstarted(t::Task) -> Bool\n\nDetermine whether a task has started executing.\n\n# Examples\n```jldoctest\njulia> a3() = sum(i for i in 1:1000);\n\njulia> b = Task(a3);\n\njulia> istaskstarted(b)\nfalse\n```\n"}],"Base.Csize_t":[{"Union{}":" Csize_t\n\nEquivalent to the native `size_t` c-type (`UInt`).\n"}],"Base.&":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" &(x, y)\n\nBitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `true`.\n\n# Examples\n```jldoctest\njulia> 4 & 10\n0\n\njulia> 4 & 12\n4\n\njulia> true & missing\nmissing\n\njulia> false & missing\nfalse\n```\n"}],"Base.Timer":[{"Union{}":" Timer(delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object).\n\nWaiting tasks are woken after an initial delay of `delay` seconds, and then repeating with the given\n`interval` in seconds. If `interval` is equal to `0`, the timer is only triggered once. When\nthe timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n"},{"Tuple{Function,Real}":" Timer(callback::Function, delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object) and\ncalls the function `callback`.\n\nWaiting tasks are woken and the function `callback` is called after an initial delay of `delay` seconds,\nand then repeating with the given `interval` in seconds. If `interval` is equal to `0`, the timer\nis only triggered once. The function `callback` is called with a single argument, the timer itself.\nWhen the timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n\n# Examples\n\nHere the first number is printed after a delay of two seconds, then the following numbers are printed quickly.\n\n```julia-repl\njulia> begin\n i = 0\n cb(timer) = (global i += 1; println(i))\n t = Timer(cb, 2, interval=0.2)\n wait(t)\n sleep(0.5)\n close(t)\n end\n1\n2\n3\n```\n"}],"Base.Cssize_t":[{"Union{}":" Cssize_t\n\nEquivalent to the native `ssize_t` c-type.\n"}],"Base.unsafe_write":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_write(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from `ref` (converted to a pointer) into the `IO` object.\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.open":[{"Union{Tuple{Base.AbstractCmd}, Tuple{Base.AbstractCmd,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, stdio=devnull; write::Bool = false, read::Bool = !write)\n\nStart running `command` asynchronously, and return a `process::IO` object. If `read` is\ntrue, then reads from the process come from the process's standard output and `stdio` optionally\nspecifies the process's standard input stream. If `write` is true, then writes go to\nthe process's standard input and `stdio` optionally specifies the process's standard output\nstream.\nThe process's standard error stream is connected to the current global `stderr`.\n"},{"Tuple{Function,Vararg{Any,N} where N}":" open(f::Function, args...; kwargs....)\n\nApply the function `f` to the result of `open(args...; kwargs...)` and close the resulting file\ndescriptor upon completion.\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n write(io, \"Hello world!\")\n end;\n\njulia> open(f->read(f, String), \"myfile.txt\")\n\"Hello world!\"\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Union{Tuple{Base.AbstractCmd,AbstractString}, Tuple{Base.AbstractCmd,AbstractString,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, mode::AbstractString, stdio=devnull)\n\nRun `command` asynchronously. Like `open(command, stdio; read, write)` except specifying\nthe read and write flags via a mode string instead of keyword arguments.\nPossible mode strings are:\n\n| Mode | Description | Keywords |\n|:-----|:------------|:---------------------------------|\n| `r` | read | none |\n| `w` | write | `write = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write | `read = true, write = true` |\n"},{"Tuple{Function,Base.AbstractCmd,Vararg{Any,N} where N}":" open(f::Function, command, args...; kwargs...)\n\nSimilar to `open(command, args...; kwargs...)`, but calls `f(stream)` on the resulting process\nstream, then closes the input stream and waits for the process to complete.\nReturns the value returned by `f`.\n"},{"Tuple{AbstractString}":" open(filename::AbstractString; keywords...) -> IOStream\n\nOpen a file in a mode specified by five boolean keyword arguments:\n\n| Keyword | Description | Default |\n|:-----------|:-----------------------|:----------------------------------------|\n| `read` | open for reading | `!write` |\n| `write` | open for writing | `truncate \\| append` |\n| `create` | create if non-existent | `!read & write \\| truncate \\| append` |\n| `truncate` | truncate to zero size | `!read & write` |\n| `append` | seek to end | `false` |\n\nThe default when no keywords are passed is to open files for reading only.\nReturns a stream for accessing the opened file.\n"},{"Tuple{AbstractString,AbstractString}":" open(filename::AbstractString, [mode::AbstractString]) -> IOStream\n\nAlternate syntax for open, where a string-based mode specifier is used instead of the five\nbooleans. The values of `mode` correspond to those from `fopen(3)` or Perl `open`, and are\nequivalent to setting the following boolean groups:\n\n| Mode | Description | Keywords |\n|:-----|:------------------------------|:------------------------------------|\n| `r` | read | none |\n| `w` | write, create, truncate | `write = true` |\n| `a` | write, create, append | `append = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write, create, truncate | `truncate = true, read = true` |\n| `a+` | read, write, create, append | `append = true, read = true` |\n\n# Examples\n```jldoctest\njulia> io = open(\"myfile.txt\", \"w\");\n\njulia> write(io, \"Hello world!\");\n\njulia> close(io);\n\njulia> io = open(\"myfile.txt\", \"r\");\n\njulia> read(io, String)\n\"Hello world!\"\n\njulia> write(io, \"This file is read only\")\nERROR: ArgumentError: write failed, IOStream is not writeable\n[...]\n\njulia> close(io)\n\njulia> io = open(\"myfile.txt\", \"a\");\n\njulia> write(io, \"This stream is not read only\")\n28\n\njulia> close(io)\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Tuple{RawFD}":" open(fd::OS_HANDLE) -> IO\n\nTake a raw file descriptor wrap it in a Julia-aware IO type,\nand take ownership of the fd handle.\nCall `open(Libc.dup(fd))` to avoid the ownership capture\nof the original handle.\n\n!!! warn\n Do not call this on a handle that's already owned by some\n other part of the system.\n"}],"Base.hash":[{"Tuple{Any}":" hash(x[, h::UInt])\n\nCompute an integer hash code such that `isequal(x,y)` implies `hash(x)==hash(y)`. The\noptional second argument `h` is a hash code to be mixed with the result.\n\nNew types should implement the 2-argument form, typically by calling the 2-argument `hash`\nmethod recursively in order to mix hashes of the contents with each other (and with `h`).\nTypically, any type that implements `hash` should also implement its own `==` (hence\n`isequal`) to guarantee the property mentioned above. Types supporting subtraction\n(operator `-`) should also implement [`widen`](@ref), which is required to hash\nvalues inside heterogeneous arrays.\n"}],"Base.ismalformed":[{"Tuple{AbstractChar}":" ismalformed(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents malformed (non-Unicode) data according to the\nencoding used by `c`. Defaults to `false` for non-`Char` types. See also\n[`show_invalid`](@ref).\n"}],"Base.ntoh":[{"Tuple{Any}":" ntoh(x)\n\nConvert the endianness of a value from Network byte order (big-endian) to that used by the Host.\n"}],"Base.length":[{"Union{}":" length(collection) -> Integer\n\nReturn the number of elements in the collection.\n\nUse [`lastindex`](@ref) to get the last valid index of an indexable collection.\n\n# Examples\n```jldoctest\njulia> length(1:5)\n5\n\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractArray}":" length(A::AbstractArray)\n\nReturn the number of elements in the array, defaults to `prod(size(A))`.\n\n# Examples\n```jldoctest\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractString}":" length(s::AbstractString) -> Int\n length(s::AbstractString, i::Integer, j::Integer) -> Int\n\nThe number of characters in string `s` from indices `i` through `j`. This is\ncomputed as the number of code unit indices from `i` to `j` which are valid\ncharacter indices. With only a single string argument, this computes the\nnumber of characters in the entire string. With `i` and `j` arguments it\ncomputes the number of indices between `i` and `j` inclusive that are valid\nindices in the string `s`. In addition to in-bounds values, `i` may take the\nout-of-bounds value `ncodeunits(s) + 1` and `j` may take the out-of-bounds\nvalue `0`.\n\nSee also: [`isvalid`](@ref), [`ncodeunits`](@ref), [`lastindex`](@ref),\n[`thisind`](@ref), [`nextind`](@ref), [`prevind`](@ref)\n\n# Examples\n```jldoctest\njulia> length(\"jμΛIα\")\n5\n```\n"}],"Base.copymutable":[{"Tuple{AbstractArray}":" copymutable(a)\n\nMake a mutable copy of an array or iterable `a`. For `a::Array`,\nthis is equivalent to `copy(a)`, but for other array types it may\ndiffer depending on the type of `similar(a)`. For generic iterables\nthis is equivalent to `collect(a)`.\n\n# Examples\n```jldoctest\njulia> tup = (1, 2, 3)\n(1, 2, 3)\n\njulia> Base.copymutable(tup)\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.Inf64":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.Pipe":[{"Tuple{}":"Construct an uninitialized Pipe object.\n\nThe appropriate end of the pipe will be automatically initialized if\nthe object is used in process spawning. This can be useful to easily\nobtain references in process pipelines, e.g.:\n\n```\njulia> err = Pipe()\n\n# After this `err` will be initialized and you may read `foo`'s\n# stderr from the `err` pipe.\njulia> run(pipeline(pipeline(`foo`, stderr=err), `cat`), wait=false)\n```\n"}],"Base.Condition":[{"Union{}":" Condition()\n\nCreate an edge-triggered event source that tasks can wait for. Tasks that call [`wait`](@ref) on a\n`Condition` are suspended and queued. Tasks are woken up when [`notify`](@ref) is later called on\nthe `Condition`. Edge triggering means that only tasks waiting at the time [`notify`](@ref) is\ncalled can be woken up. For level-triggered notifications, you must keep extra state to keep\ntrack of whether a notification has happened. The [`Channel`](@ref) and [`Threads.Event`](@ref) types do\nthis, and can be used for level-triggered events.\n\nThis object is NOT thread-safe. See [`Threads.Condition`](@ref) for a thread-safe version.\n"}],"Base.collect":[{"Tuple{Any}":" collect(collection)\n\nReturn an `Array` of all items in a collection or iterator. For dictionaries, returns\n`Pair{KeyType, ValType}`. If the argument is array-like or is an iterator with the\n[`HasShape`](@ref IteratorSize) trait, the result will have the same shape\nand number of dimensions as the argument.\n\n# Examples\n```jldoctest\njulia> collect(1:2:13)\n7-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n 13\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" collect(element_type, collection)\n\nReturn an `Array` with the given element type of all items in a collection or iterable.\nThe result has the same shape and number of dimensions as `collection`.\n\n# Examples\n```jldoctest\njulia> collect(Float64, 1:2:5)\n3-element Array{Float64,1}:\n 1.0\n 3.0\n 5.0\n```\n"}],"Base.include":[{"Union{}":" Base.include([m::Module,] path::AbstractString)\n\nEvaluate the contents of the input source file in the global scope of module `m`.\nEvery module (except those defined with [`baremodule`](@ref)) has its own 1-argument\ndefinition of `include`, which evaluates the file in that module.\nReturns the result of the last evaluated expression of the input file. During including,\na task-local include path is set to the directory containing the file. Nested calls to\n`include` will search relative to that path. This function is typically used to load source\ninteractively, or to combine files in packages that are broken into multiple source files.\n"}],"Base.success":[{"Tuple{Base.AbstractCmd}":" success(command)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual), and tell whether it was successful (exited with a code of 0).\nAn exception is raised if the process cannot be started.\n"}],"Base.skip":[{"Tuple{IOStream,Integer}":" skip(s, offset)\n\nSeek a stream relative to the current position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> skip(io, 10);\n\njulia> read(io, Char)\n'G': ASCII/Unicode U+0047 (category Lu: Letter, uppercase)\n```\n"}],"Base.chop":[{"Tuple{AbstractString}":" chop(s::AbstractString; head::Integer = 0, tail::Integer = 1)\n\nRemove the first `head` and the last `tail` characters from `s`.\nThe call `chop(s)` removes the last character from `s`.\nIf it is requested to remove more characters than `length(s)`\nthen an empty string is returned.\n\n# Examples\n```jldoctest\njulia> a = \"March\"\n\"March\"\n\njulia> chop(a)\n\"Marc\"\n\njulia> chop(a, head = 1, tail = 2)\n\"ar\"\n\njulia> chop(a, head = 5, tail = 5)\n\"\"\n```\n"}],"Base.factorial":[{"Tuple{Integer}":" factorial(n::Integer)\n\nFactorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an\ninteger (promoted to at least 64 bits). Note that this may overflow if `n` is not small,\nbut you can use `factorial(big(n))` to compute the result exactly in arbitrary precision.\n\n# Examples\n```jldoctest\njulia> factorial(6)\n720\n\njulia> factorial(21)\nERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead\nStacktrace:\n[...]\n\njulia> factorial(big(21))\n51090942171709440000\n```\n\n# See also\n* [`binomial`](@ref)\n\n# External links\n* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia.\n"}],"Base.isascii":[{"Tuple{Char}":" isascii(c::Union{AbstractChar,AbstractString}) -> Bool\n\nTest whether a character belongs to the ASCII character set, or whether this is true for\nall elements of a string.\n\n# Examples\n```jldoctest\njulia> isascii('a')\ntrue\n\njulia> isascii('α')\nfalse\n\njulia> isascii(\"abc\")\ntrue\n\njulia> isascii(\"αβγ\")\nfalse\n```\n"}],"Base.windowserror":[{"Tuple{Any,Bool}":" windowserror(sysfunc[, code::UInt32=Libc.GetLastError()])\n windowserror(sysfunc, iftrue::Bool)\n\nLike [`systemerror`](@ref), but for Windows API functions that use [`GetLastError`](@ref Base.Libc.GetLastError) to\nreturn an error code instead of setting [`errno`](@ref Base.Libc.errno).\n"}],"Base.setenv":[{"Tuple{Cmd,Any}":" setenv(command::Cmd, env; dir=\"\")\n\nSet environment variables to use when running the given `command`. `env` is either a\ndictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, or zero\nor more `\"var\"=>val` pair arguments. In order to modify (rather than replace) the existing\nenvironment, create `env` by `copy(ENV)` and then setting `env[\"var\"]=val` as desired, or\nuse `withenv`.\n\nThe `dir` keyword argument can be used to specify a working directory for the command.\n"}],"Base.asyncmap!":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)\n\nLike [`asyncmap`](@ref), but stores output in `results` rather than\nreturning a collection.\n"}],"Base.cconvert":[{"Union{}":" cconvert(T,x)\n\nConvert `x` to a value to be passed to C code as type `T`, typically by calling `convert(T, x)`.\n\nIn cases where `x` cannot be safely converted to `T`, unlike [`convert`](@ref), `cconvert` may\nreturn an object of a type different from `T`, which however is suitable for\n[`unsafe_convert`](@ref) to handle. The result of this function should be kept valid (for the GC)\nuntil the result of [`unsafe_convert`](@ref) is not needed anymore.\nThis can be used to allocate memory that will be accessed by the `ccall`.\nIf multiple objects need to be allocated, a tuple of the objects can be used as return value.\n\nNeither `convert` nor `cconvert` should take a Julia object and turn it into a `Ptr`.\n"}],"Base.@nospecialize":[{"Tuple":" @nospecialize\n\nApplied to a function argument name, hints to the compiler that the method\nshould not be specialized for different types of that argument,\nbut instead to use precisely the declared type for each argument.\nThis is only a hint for avoiding excess code generation.\nCan be applied to an argument within a formal argument list,\nor in the function body.\nWhen applied to an argument, the macro must wrap the entire argument expression.\nWhen used in a function body, the macro must occur in statement position and\nbefore any code.\n\nWhen used without arguments, it applies to all arguments of the parent scope.\nIn local scope, this means all arguments of the containing function.\nIn global (top-level) scope, this means all methods subsequently defined in the current module.\n\nSpecialization can reset back to the default by using [`@specialize`](@ref).\n\n```julia\nfunction example_function(@nospecialize x)\n ...\nend\n\nfunction example_function(@nospecialize(x = 1), y)\n ...\nend\n\nfunction example_function(x, y, z)\n @nospecialize x y\n ...\nend\n\n@nospecialize\nf(y) = [x for x in y]\n@specialize\n```\n"}],"Base.rationalize":[{"Union{Tuple{T}, Tuple{Type{T},AbstractFloat,Real}} where T<:Integer":" rationalize([T<:Integer=Int,] x; tol::Real=eps(x))\n\nApproximate floating point number `x` as a [`Rational`](@ref) number with components\nof the given integer type. The result will differ from `x` by no more than `tol`.\n\n# Examples\n```jldoctest\njulia> rationalize(5.6)\n28//5\n\njulia> a = rationalize(BigInt, 10.3)\n103//10\n\njulia> typeof(numerator(a))\nBigInt\n```\n"}],"Base.floatmax":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmax(T)\n\nThe highest finite value representable by the given floating-point DataType `T`.\n\n# Examples\n```jldoctest\njulia> floatmax(Float16)\nFloat16(6.55e4)\n\njulia> floatmax(Float32)\n3.4028235f38\n```\n"}],"Base.isconst":[{"Tuple{Module,Symbol}":" isconst(m::Module, s::Symbol) -> Bool\n\nDetermine whether a global is declared `const` in a given `Module`.\n"}],"Base.unsafe_string":[{"Tuple{Union{Ptr{Int8}, Ptr{UInt8}},Integer}":" unsafe_string(p::Ptr{UInt8}, [length::Integer])\n\nCopy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8.\n(The pointer can be safely freed afterwards.) If `length` is specified\n(the length of the data in bytes), the string does not have to be NUL-terminated.\n\nThis function is labeled \"unsafe\" because it will crash if `p` is not\na valid memory address to data of the requested length.\n"}],"Base.VecOrMat":[{"Union{}":" VecOrMat{T}\n\nUnion type of [`Vector{T}`](@ref) and [`Matrix{T}`](@ref).\n"}],"Base.mul12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = mul12(x, y)\n\nA high-precision representation of `x * y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x * y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x = Float32(π)\n3.1415927f0\n\njulia> x * x\n9.869605f0\n\njulia> Float64(x) * Float64(x)\n9.869604950382893\n\njulia> hi, lo = Base.mul12(x, x)\n(9.869605f0, -1.140092f-7)\n\njulia> Float64(hi) + Float64(lo)\n9.869604950382893\n```\n"}],"Base.issubset":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.Generator":[{"Union{}":" Generator(f, iter)\n\nGiven a function `f` and an iterator `iter`, construct an iterator that yields\nthe values of `f` applied to the elements of `iter`.\nThe syntax `f(x) for x in iter [if cond(x)::Bool]` is syntax for constructing an instance of this\ntype. The `[if cond(x)::Bool]` expression is optional and acts as a \"guard\", effectively\nfiltering out values where the condition is false.\n\n```jldoctest\njulia> g = (abs2(x) for x in 1:5 if x != 3);\n\njulia> for x in g\n println(x)\n end\n1\n4\n16\n25\n\njulia> collect(g)\n4-element Array{Int64,1}:\n 1\n 4\n 16\n 25\n```\n"}],"Base.unsigned":[{"Tuple{Any}":" unsigned(x) -> Unsigned\n\nConvert a number to an unsigned integer. If the argument is signed, it is reinterpreted as\nunsigned without checking for negative values.\n\n# Examples\n```jldoctest\njulia> unsigned(-2)\n0xfffffffffffffffe\n\njulia> unsigned(2)\n0x0000000000000002\n\njulia> signed(unsigned(-2))\n-2\n```\n"}],"Base.big":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" big(T::Type)\n\nCompute the type that represents the numeric type `T` with arbitrary precision.\nEquivalent to `typeof(big(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> big(Rational)\nRational{BigInt}\n\njulia> big(Float64)\nBigFloat\n\njulia> big(Complex{Int})\nComplex{BigInt}\n```\n"}],"Base.=>":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.copy!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" copy!(dst, src) -> dst\n\nIn-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing\nelements in `dst`.\nIf `dst` and `src` are of the same type, `dst == src` should hold after\nthe call. If `dst` and `src` are multidimensional arrays, they must have\nequal [`axes`](@ref).\nSee also [`copyto!`](@ref).\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 this method\n is available from the `Future` standard library as `Future.copy!`.\n"}],"Base.seek":[{"Tuple{IOStream,Integer}":" seek(s, pos)\n\nSeek a stream to the given position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n```\n"}],"Base.evalfile":[{"Union{Tuple{AbstractString}, Tuple{AbstractString,Array{String,1}}}":" evalfile(path::AbstractString, args::Vector{String}=String[])\n\nLoad the file using [`include`](@ref), evaluate all expressions,\nand return the value of the last one.\n"}],"Base.decode_overlong":[{"Union{}":" decode_overlong(c::AbstractChar) -> Integer\n\nWhen [`isoverlong(c)`](@ref) is `true`, `decode_overlong(c)` returns\nthe Unicode codepoint value of `c`. `AbstractChar` implementations\nthat support overlong encodings should implement `Base.decode_overlong`.\n"}],"Base.eachline":[{"Union{Tuple{}, Tuple{IO}}":" eachline(io::IO=stdin; keep::Bool=false)\n eachline(filename::AbstractString; keep::Bool=false)\n\nCreate an iterable `EachLine` object that will yield each line from an I/O stream\nor a file. Iteration calls [`readline`](@ref) on the stream argument repeatedly with\n`keep` passed through, determining whether trailing end-of-line characters are\nretained. When called with a file name, the file is opened once at the beginning of\niteration and closed at the end. If iteration is interrupted, the file will be\nclosed when the `EachLine` object is garbage collected.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\n It has many members.\\n\");\n end;\n\njulia> for line in eachline(\"my_file.txt\")\n print(line)\n end\nJuliaLang is a GitHub organization. It has many members.\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.divrem":[{"Tuple{Any,Any}":" divrem(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient and remainder from Euclidean division.\nEquivalent to `(div(x,y,r), rem(x,y,r))`. Equivalently, with the the default\nvalue of `r`, this call is equivalent to `(x÷y, x%y)`.\n\n# Examples\n```jldoctest\njulia> divrem(3,7)\n(0, 3)\n\njulia> divrem(7,3)\n(2, 1)\n```\n"}],"Base.cis":[{"Tuple{Complex}":" cis(z)\n\nReturn ``\\exp(iz)``.\n\n# Examples\n```jldoctest\njulia> cis(π) ≈ -1\ntrue\n```\n"}],"Base.cumprod!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" cumprod!(y::AbstractVector, x::AbstractVector)\n\nCumulative product of a vector `x`, storing the result in `y`.\nSee also [`cumprod`](@ref).\n"},{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumprod!(B, A; dims::Integer)\n\nCumulative product of `A` along the dimension `dims`, storing the result in `B`.\nSee also [`cumprod`](@ref).\n"}],"Base.isoverlong":[{"Tuple{AbstractChar}":" isoverlong(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents an overlong UTF-8 sequence. Defaults\nto `false` for non-`Char` types. See also [`decode_overlong`](@ref)\nand [`show_invalid`](@ref).\n"}],"Base.unsafe_convert":[{"Union{}":" unsafe_convert(T, x)\n\nConvert `x` to a C argument of type `T`\nwhere the input `x` must be the return value of `cconvert(T, ...)`.\n\nIn cases where [`convert`](@ref) would need to take a Julia object\nand turn it into a `Ptr`, this function should be used to define and perform\nthat conversion.\n\nBe careful to ensure that a Julia reference to `x` exists as long as the result of this\nfunction will be used. Accordingly, the argument `x` to this function should never be an\nexpression, only a variable name or field reference. For example, `x=a.b.c` is acceptable,\nbut `x=[a,b,c]` is not.\n\nThe `unsafe` prefix on this function indicates that using the result of this function after\nthe `x` argument to this function is no longer accessible to the program may cause undefined\nbehavior, including program corruption or segfaults, at any later time.\n\nSee also [`cconvert`](@ref)\n"}],"Base.Cuint":[{"Union{}":" Cuint\n\nEquivalent to the native `unsigned int` c-type ([`UInt32`](@ref)).\n"}],"Base.MissingException":[{"Union{}":" MissingException(msg)\n\nException thrown when a [`missing`](@ref) value is encountered in a situation\nwhere it is not supported. The error message, in the `msg` field\nmay provide more specific details.\n"}],"Base.structdiff":[{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,Union{Type{NamedTuple{bn,T} where T<:Tuple}, NamedTuple{bn,T} where T<:Tuple}}} where bn where an":" structdiff(a::NamedTuple{an}, b::Union{NamedTuple{bn},Type{NamedTuple{bn}}}) where {an,bn}\n\nConstruct a copy of named tuple `a`, except with fields that exist in `b` removed.\n`b` can be a named tuple, or a type of the form `NamedTuple{field_names}`.\n"}],"Base.put!":[{"Union{Tuple{T}, Tuple{Channel{T},Any}} where T":" put!(c::Channel, v)\n\nAppend an item `v` to the channel `c`. Blocks if the channel is full.\n\nFor unbuffered channels, blocks until a [`take!`](@ref) is performed by a different\ntask.\n\n!!! compat \"Julia 1.1\"\n `v` now gets converted to the channel's type with [`convert`](@ref) as `put!` is called.\n"}],"Base.Culonglong":[{"Union{}":" Culonglong\n\nEquivalent to the native `unsigned long long` c-type ([`UInt64`](@ref)).\n"}],"Base.cumsum!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumsum!(B, A; dims::Integer)\n\nCumulative sum of `A` along the dimension `dims`, storing the result in `B`. See also [`cumsum`](@ref).\n"}],"Base.>":[{"Tuple{Any}":" >(x)\n\nCreate a function that compares its argument to `x` using [`>`](@ref), i.e.\na function equivalent to `y -> y > x`.\nThe returned function is of type `Base.Fix2{typeof(>)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >(x, y)\n\nGreater-than comparison operator. Falls back to `y < x`.\n\n# Implementation\nGenerally, new types should implement [`<`](@ref) instead of this function,\nand rely on the fallback definition `>(x, y) = y < x`.\n\n# Examples\n```jldoctest\njulia> 'a' > 'b'\nfalse\n\njulia> 7 > 3 > 1\ntrue\n\njulia> \"abc\" > \"abd\"\nfalse\n\njulia> 5 > 3\ntrue\n```\n"}],"Base.SecretBuffer":[{"Union{}":" Base.SecretBuffer()\n\nAn [`IOBuffer`](@ref)-like object where the contents will be securely wiped when garbage collected.\n\nIt is considered best practice to wipe the buffer using `Base.shred!(::SecretBuffer)` as\nsoon as the secure data are no longer required. When initializing with existing data, the\n`SecretBuffer!` method is highly recommended to securely zero the passed argument. Avoid\ninitializing with and converting to `String`s as they are unable to be securely zeroed.\n\n# Examples\n```jldoctest\njulia> s = Base.SecretBuffer()\nSecretBuffer(\"*******\")\n\njulia> write(s, 's', 'e', 'c', 'r', 'e', 't')\n6\n\njulia> seek(s, 0); Char(read(s, UInt8))\n's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)\n\njulia> Base.shred!(s)\nSecretBuffer(\"*******\")\n\njulia> eof(s)\ntrue\n```\n"},{"Tuple{AbstractString}":" SecretBuffer(str::AbstractString)\n\nA convenience constructor to initialize a `SecretBuffer` from a non-secret string.\n\nStrings are bad at keeping secrets because they are unable to be securely\nzeroed or destroyed. Therefore, avoid using this constructor with secret data.\nInstead of starting with a string, either construct the `SecretBuffer`\nincrementally with `SecretBuffer()` and [`write`](@ref), or use a `Vector{UInt8}` with\nthe `Base.SecretBuffer!(::Vector{UInt8})` constructor.\n"}],"Base.ImmutableDict":[{"Union{}":" ImmutableDict\n\nImmutableDict is a Dictionary implemented as an immutable linked list,\nwhich is optimal for small dictionaries that are constructed over many individual insertions\nNote that it is not possible to remove a value, although it can be partially overridden and hidden\nby inserting a new value with the same key\n\n ImmutableDict(KV::Pair)\n\nCreate a new entry in the Immutable Dictionary for the key => value pair\n\n - use `(key => value) in dict` to see if this particular combination is in the properties set\n - use `get(dict, key, default)` to retrieve the most recent value for a particular key\n\n"}],"Base.@inline":[{"Tuple{Any}":" @inline\n\nGive a hint to the compiler that this function is worth inlining.\n\nSmall functions typically do not need the `@inline` annotation,\nas the compiler does it automatically. By using `@inline` on bigger functions,\nan extra nudge can be given to the compiler to inline it.\nThis is shown in the following example:\n\n```julia\n@inline function bigfunction(x)\n #=\n Function Definition\n =#\nend\n```\n"}],"Base.step":[{"Tuple{StepRange}":" step(r)\n\nGet the step size of an [`AbstractRange`](@ref) object.\n\n# Examples\n```jldoctest\njulia> step(1:10)\n1\n\njulia> step(1:2:10)\n2\n\njulia> step(2.5:0.3:10.9)\n0.3\n\njulia> step(range(2.5, stop=10.9, length=85))\n0.1\n```\n"}],"Base.conj":[{"Tuple{Complex}":" conj(z)\n\nCompute the complex conjugate of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> conj(1 + 3im)\n1 - 3im\n```\n"}],"Base.last":[{"Tuple{Any}":" last(coll)\n\nGet the last element of an ordered collection, if it can be computed in O(1) time. This is\naccomplished by calling [`lastindex`](@ref) to get the last index. Return the end\npoint of an [`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> last(1:2:10)\n9\n\njulia> last([1; 2; 3; 4])\n4\n```\n"},{"Tuple{AbstractString,Integer}":" last(s::AbstractString, n::Integer)\n\nGet a string consisting of the last `n` characters of `s`.\n\n```jldoctest\njulia> last(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 1)\n\"0\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 3)\n\"²>0\"\n```\n"}],"Base.fetch":[{"Tuple{Task}":" fetch(t::Task)\n\nWait for a Task to finish, then return its result value.\nIf the task fails with an exception, a `TaskFailedException` (which wraps the failed task)\nis thrown.\n"},{"Tuple{Channel}":" fetch(c::Channel)\n\nWait for and get the first available item from the channel. Does not\nremove the item. `fetch` is unsupported on an unbuffered (0-size) channel.\n"}],"Base.DenseVecOrMat":[{"Union{}":" DenseVecOrMat{T}\n\nUnion type of [`DenseVector{T}`](@ref) and [`DenseMatrix{T}`](@ref).\n"}],"Base.isreadable":[{"Union{}":" isreadable(io) -> Bool\n\nReturn `true` if the specified IO object is readable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n isreadable(io)\n end\nfalse\n\njulia> open(\"myfile.txt\", \"r\") do io\n isreadable(io)\n end\ntrue\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.Set":[{"Tuple{Any}":" Set([itr])\n\nConstruct a [`Set`](@ref) of the values generated by the given iterable object, or an\nempty set. Should be used instead of [`BitSet`](@ref) for sparse integer sets, or\nfor sets of arbitrary objects.\n"}],"Base.minmax":[{"Tuple{Any,Any}":" minmax(x, y)\n\nReturn `(min(x,y), max(x,y))`. See also: [`extrema`](@ref) that returns `(minimum(x), maximum(x))`.\n\n# Examples\n```jldoctest\njulia> minmax('c','b')\n('b', 'c')\n```\n"}],"Base.rotl90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotl90(A, k)\n\nLeft-rotate matrix `A` 90 degrees counterclockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a,1)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotl90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotl90(a,3)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotl90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotl90(A)\n\nRotate matrix `A` left 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n```\n"}],"Base.⊆":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.oftype":[{"Tuple{Any,Any}":" oftype(x, y)\n\nConvert `y` to the type of `x` (`convert(typeof(x), y)`).\n\n# Examples\n```jldoctest\njulia> x = 4;\n\njulia> y = 3.;\n\njulia> oftype(x, y)\n3\n\njulia> oftype(y, x)\n4.0\n```\n"}],"Base.isequal":[{"Tuple{Any}":" isequal(x)\n\nCreate a function that compares its argument to `x` using [`isequal`](@ref), i.e.\na function equivalent to `y -> isequal(y, x)`.\n\nThe returned function is of type `Base.Fix2{typeof(isequal)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" isequal(x, y)\n\nSimilar to [`==`](@ref), except for the treatment of floating point numbers\nand of missing values. `isequal` treats all floating-point `NaN` values as equal\nto each other, treats `-0.0` as unequal to `0.0`, and [`missing`](@ref) as equal\nto `missing`. Always returns a `Bool` value.\n\n# Implementation\nThe default implementation of `isequal` calls `==`, so a type that does not involve\nfloating-point values generally only needs to define `==`.\n\n`isequal` is the comparison function used by hash tables (`Dict`). `isequal(x,y)` must imply\nthat `hash(x) == hash(y)`.\n\nThis typically means that types for which a custom `==` or `isequal` method exists must\nimplement a corresponding `hash` method (and vice versa). Collections typically implement\n`isequal` by calling `isequal` recursively on all contents.\n\nScalar types generally do not need to implement `isequal` separate from `==`, unless they\nrepresent floating-point numbers amenable to a more efficient implementation than that\nprovided as a generic fallback (based on `isnan`, `signbit`, and `==`).\n\n# Examples\n```jldoctest\njulia> isequal([1., NaN], [1., NaN])\ntrue\n\njulia> [1., NaN] == [1., NaN]\nfalse\n\njulia> 0.0 == -0.0\ntrue\n\njulia> isequal(0.0, -0.0)\nfalse\n```\n"}],"Base.^":[{"Tuple{Number,Number}":" ^(x, y)\n\nExponentiation operator. If `x` is a matrix, computes matrix exponentiation.\n\nIf `y` is an `Int` literal (e.g. `2` in `x^2` or `-3` in `x^-3`), the Julia code\n`x^y` is transformed by the compiler to `Base.literal_pow(^, x, Val(y))`, to\nenable compile-time specialization on the value of the exponent.\n(As a default fallback we have `Base.literal_pow(^, x, Val(y)) = ^(x,y)`,\nwhere usually `^ == Base.^` unless `^` has been defined in the calling\nnamespace.)\n\n```jldoctest\njulia> 3^5\n243\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> A^3\n2×2 Array{Int64,2}:\n 37 54\n 81 118\n```\n"},{"Tuple{Regex,Integer}":" ^(s::Regex, n::Integer)\n\nRepeat a regex `n` times.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> r\"Test \"^2\nr\"(?:Test ){2}\"\n\njulia> match(r\"Test \"^2, \"Test Test \")\nRegexMatch(\"Test Test \")\n```\n"},{"Tuple{Union{AbstractChar, AbstractString},Integer}":" ^(s::Union{AbstractString,AbstractChar}, n::Integer)\n\nRepeat a string or character `n` times. This can also be written as `repeat(s, n)`.\n\nSee also: [`repeat`](@ref)\n\n# Examples\n```jldoctest\njulia> \"Test \"^3\n\"Test Test Test \"\n```\n"}],"Base.print_matrix_vdots":[{"Union{Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer}, Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer,Bool}}":"`print_matrix_vdots` is used to show a series of vertical ellipsis instead\nof a bunch of rows for long matrices. Not only is the string vdots shown\nbut it also repeated every M elements if desired.\n"}],"Base.redirect_stdout":[{"Union{}":" redirect_stdout([stream]) -> (rd, wr)\n\nCreate a pipe to which all C and Julia level [`stdout`](@ref) output\nwill be redirected.\nReturns a tuple `(rd, wr)` representing the pipe ends.\nData written to [`stdout`](@ref) may now be read from the `rd` end of\nthe pipe. The `wr` end is given for convenience in case the old\n[`stdout`](@ref) object was cached by the user and needs to be replaced\nelsewhere.\n\nIf called with the optional `stream` argument, then returns `stream` itself.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdout(f::Function, stream)\n\nRun the function `f` while redirecting [`stdout`](@ref) to `stream`.\nUpon completion, [`stdout`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.fldmod1":[{"Tuple{Any,Any}":" fldmod1(x, y)\n\nReturn `(fld1(x,y), mod1(x,y))`.\n\nSee also: [`fld1`](@ref), [`mod1`](@ref).\n"}],"Base.@__MODULE__":[{"Tuple{}":" @__MODULE__ -> Module\n\nGet the `Module` of the toplevel eval,\nwhich is the `Module` code is currently being read from.\n"}],"Base.accumulate!":[{"Tuple{Any,Any,Any}":" accumulate!(op, B, A; [dims], [init])\n\nCumulative operation `op` on `A` along the dimension `dims`, storing the result in `B`.\nProviding `dims` is optional for vectors. If the keyword argument `init` is given, its\nvalue is used to instantiate the accumulation. See also [`accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 0, 2, 0, 3];\n\njulia> y = [0, 0, 0, 0, 0];\n\njulia> accumulate!(+, y, x);\n\njulia> y\n5-element Array{Int64,1}:\n 1\n 1\n 3\n 3\n 6\n\njulia> A = [1 2; 3 4];\n\njulia> B = [0 0; 0 0];\n\njulia> accumulate!(-, B, A, dims=1);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 2\n -2 -2\n\njulia> accumulate!(-, B, A, dims=2);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 -1\n 3 -1\n```\n"}],"Base.redirect_stdin":[{"Union{}":" redirect_stdin([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stdin`](@ref).\nNote that the order of the return tuple is still `(rd, wr)`,\ni.e. data to be read from [`stdin`](@ref) may be written to `wr`.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdin(f::Function, stream)\n\nRun the function `f` while redirecting [`stdin`](@ref) to `stream`.\nUpon completion, [`stdin`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.Cptrdiff_t":[{"Union{}":" Cptrdiff_t\n\nEquivalent to the native `ptrdiff_t` c-type (`Int`).\n"}],"Base.findfirst":[{"Tuple{Any}":" findfirst(A)\n\nReturn the index or key of the first `true` value in `A`.\nReturn `nothing` if no such value is found.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findfirst(A)\n3\n\njulia> findfirst(falses(3)) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findfirst(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findfirst(predicate::Function, A)\n\nReturn the index or key of the first element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2]\n4-element Array{Int64,1}:\n 1\n 4\n 2\n 2\n\njulia> findfirst(iseven, A)\n2\n\njulia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL\n\njulia> findfirst(isequal(4), A)\n2\n\njulia> A = [1 4; 2 2]\n2×2 Array{Int64,2}:\n 1 4\n 2 2\n\njulia> findfirst(iseven, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findfirst(pattern::AbstractString, string::AbstractString)\n findfirst(pattern::Regex, string::String)\n\nFind the first occurrence of `pattern` in `string`. Equivalent to\n[`findnext(pattern, string, firstindex(s))`](@ref).\n\n# Examples\n```jldoctest\njulia> findfirst(\"z\", \"Hello to the world\") # returns nothing, but not printed in the REPL\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findfirst(ch::AbstractChar, string::AbstractString)\n\nFind the first occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findfirst('a', \"happy\")\n2\n\njulia> findfirst('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.notnothing":[{"Tuple{Any}":" notnothing(x)\n\nThrow an error if `x === nothing`, and return `x` if not.\n"}],"Base.Cwchar_t":[{"Union{}":" Cwchar_t\n\nEquivalent to the native `wchar_t` c-type ([`Int32`](@ref)).\n"}],"Base.fieldname":[{"Tuple{DataType,Integer}":" fieldname(x::DataType, i::Integer)\n\nGet the name of field `i` of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldname(Rational, 1)\n:num\n\njulia> fieldname(Rational, 2)\n:den\n```\n"}],"Base.nextfloat":[{"Tuple{Union{Float16, Float32, Float64},Integer}":" nextfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `nextfloat` to `x` if `n >= 0`, or `-n`\napplications of `prevfloat` if `n < 0`.\n"},{"Tuple{AbstractFloat}":" nextfloat(x::AbstractFloat)\n\nReturn the smallest floating point number `y` of the same type as `x` such `x < y`. If no\nsuch `y` exists (e.g. if `x` is `Inf` or `NaN`), then return `x`.\n"}],"Base.prevind":[{"Tuple{AbstractString,Integer,Integer}":" prevind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts before index `i`. In other words, if `i` is the start of a\n character, return the start of the previous character; if `i` is not the start\n of a character, rewind until the start of a character and return that index.\n If `i` is equal to `1` return `0`.\n If `i` is equal to `ncodeunits(str)+1` return `lastindex(str)`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `prevind` for `n==1`. The only difference\n is that if `n` is so large that applying `prevind` would reach `0` then each remaining\n iteration decreases the returned value by `1`.\n This means that in this case `prevind` can return a negative value.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `str` or is equal to `ncodeunits(str)+1`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> prevind(\"α\", 3)\n1\n\njulia> prevind(\"α\", 1)\n0\n\njulia> prevind(\"α\", 0)\nERROR: BoundsError: attempt to access String\n at index [0]\n[...]\n\njulia> prevind(\"α\", 2, 2)\n0\n\njulia> prevind(\"α\", 2, 3)\n-1\n```\n"}],"Base.<<":[{"Tuple{BitArray{1},Int64}":" <<(B::BitVector, n) -> BitVector\n\nLeft bit shift operator, `B << n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions backwards, filling with `false`\nvalues. If `n < 0`, elements are shifted forwards. Equivalent to\n`B >> -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B << 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n\njulia> B << -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n```\n"},{"Tuple{Integer,Integer}":" <<(x, n)\n\nLeft bit shift operator, `x << n`. For `n >= 0`, the result is `x` shifted left\nby `n` bits, filling with `0`s. This is equivalent to `x * 2^n`. For `n < 0`,\nthis is equivalent to `x >> -n`.\n\n# Examples\n```jldoctest\njulia> Int8(3) << 2\n12\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> bitstring(Int8(12))\n\"00001100\"\n```\nSee also [`>>`](@ref), [`>>>`](@ref).\n"}],"Base.fill":[{"Union{}":" fill(x, dims::Tuple)\n fill(x, dims...)\n\nCreate an array filled with the value `x`. For example, `fill(1.0, (5,5))` returns a 5×5\narray of floats, with each element initialized to `1.0`.\n\n`dims` may be specified as either a tuple or a sequence of arguments. For example,\nthe common idiom `fill(x)` creates a zero-dimensional array containing the single value `x`.\n\n# Examples\n```jldoctest\njulia> fill(1.0, (5,5))\n5×5 Array{Float64,2}:\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n\njulia> fill(0.5, 1, 2)\n1×2 Array{Float64,2}:\n 0.5 0.5\n\njulia> fill(42)\n0-dimensional Array{Int64,0}:\n42\n```\n\nIf `x` is an object reference, all elements will refer to the same object. `fill(Foo(),\ndims)` will return an array filled with the result of evaluating `Foo()` once.\n"}],"Base.BitSet":[{"Tuple{Any}":" BitSet([itr])\n\nConstruct a sorted set of `Int`s generated by the given iterable object, or an\nempty set. Implemented as a bit string, and therefore designed for dense integer sets.\nIf the set will be sparse (for example, holding a few\nvery large integers), use [`Set`](@ref) instead.\n"}],"Base.LinRange":[{"Union{}":" LinRange{T}\n\nA range with `len` linearly spaced elements between its `start` and `stop`.\nThe size of the spacing is controlled by `len`, which must\nbe an `Int`.\n\n# Examples\n```jldoctest\njulia> LinRange(1.5, 5.5, 9)\n9-element LinRange{Float64}:\n 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5\n```\n"}],"Base.signbit":[{"Tuple{Real}":" signbit(x)\n\nReturns `true` if the value of the sign of `x` is negative, otherwise `false`.\n\n# Examples\n```jldoctest\njulia> signbit(-4)\ntrue\n\njulia> signbit(5)\nfalse\n\njulia> signbit(5.5)\nfalse\n\njulia> signbit(-4.1)\ntrue\n```\n"}],"Base.empty":[{"Tuple{AbstractDict}":" empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])\n\nCreate an empty `AbstractDict` container which can accept indices of type `index_type` and\nvalues of type `value_type`. The second and third arguments are optional and default to the\ninput's `keytype` and `valtype`, respectively. (If only one of the two types is specified,\nit is assumed to be the `value_type`, and the `index_type` we default to `keytype(a)`).\n\nCustom `AbstractDict` subtypes may choose which specific dictionary type is best suited to\nreturn for the given index and value types, by specializing on the three-argument signature.\nThe default is to return an empty `Dict`.\n"},{"Tuple{Tuple}":" empty(x::Tuple)\n\nReturns an empty tuple, `()`.\n"},{"Union{Tuple{AbstractArray{T,1}}, Tuple{U}, Tuple{T}, Tuple{AbstractArray{T,1},Type{U}}} where U where T":" empty(v::AbstractVector, [eltype])\n\nCreate an empty vector similar to `v`, optionally changing the `eltype`.\n\n# Examples\n\n```jldoctest\njulia> empty([1.0, 2.0, 3.0])\n0-element Array{Float64,1}\n\njulia> empty([1.0, 2.0, 3.0], String)\n0-element Array{String,1}\n```\n"}],"Base.symdiff":[{"Tuple{Any,Vararg{Any,N} where N}":" symdiff(s, itrs...)\n\nConstruct the symmetric difference of elements in the passed in sets.\nWhen `s` is not an `AbstractSet`, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n\n# Examples\n```jldoctest\njulia> symdiff([1,2,3], [3,4,5], [4,5,6])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> symdiff([1,2,1], [2, 1, 2])\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> symdiff(unique([1,2,1]), unique([2, 1, 2]))\n0-element Array{Int64,1}\n```\n"}],"Base.may_invoke_generator":[{"Tuple{Core.MethodInstance}":" may_invoke_generator(method, atypes, sparams)\n\nComputes whether or not we may invoke the generator for the given `method` on\nthe given atypes and sparams. For correctness, all generated function are\nrequired to return monotonic answers. However, since we don't expect users to\nbe able to successfully implement this criterion, we only call generated\nfunctions on concrete types. The one exception to this is that we allow calling\ngenerators with abstract types if the generator does not use said abstract type\n(and thus cannot incorrectly use it to break monotonicity). This function\ncomputes whether we are in either of these cases.\n\nUnlike normal functions, the compilation heuristics still can't generate good dispatch\nin some cases, but this may still allow inference not to fall over in some limited cases.\n"}],"Base.@locals":[{"Tuple{}":" @locals()\n\nConstruct a dictionary of the names (as symbols) and values of all local\nvariables defined as of the call site.\n\n!!! compat \"Julia 1.1\"\n This macro requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> let x = 1, y = 2\n Base.@locals\n end\nDict{Symbol,Any} with 2 entries:\n :y => 2\n :x => 1\n\njulia> function f(x)\n local y\n show(Base.@locals); println()\n for i = 1:1\n show(Base.@locals); println()\n end\n y = 2\n show(Base.@locals); println()\n nothing\n end;\n\njulia> f(42)\nDict{Symbol,Any}(:x => 42)\nDict{Symbol,Any}(:i => 1,:x => 42)\nDict{Symbol,Any}(:y => 2,:x => 42)\n```\n"}],"Base.!":[{"Tuple{Bool}":" !(x)\n\nBoolean not. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if `x` is `missing`.\n\n# Examples\n```jldoctest\njulia> !true\nfalse\n\njulia> !false\ntrue\n\njulia> !missing\nmissing\n\njulia> .![true false true]\n1×3 BitArray{2}:\n 0 1 0\n```\n"},{"Tuple{Function}":" !f::Function\n\nPredicate function negation: when the argument of `!` is a function, it returns a\nfunction which computes the boolean negation of `f`.\n\n# Examples\n```jldoctest\njulia> str = \"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\njulia> filter(isletter, str)\n\"εδxyδfxfyε\"\n\njulia> filter(!isletter, str)\n\"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < \"\n```\n"}],"Base.stride":[{"Tuple{AbstractArray,Integer}":" stride(A, k::Integer)\n\nReturn the distance in memory (in number of elements) between adjacent elements in dimension `k`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> stride(A,2)\n3\n\njulia> stride(A,3)\n12\n```\n"}],"Base.IdentityUnitRange":[{"Union{}":" IdentityUnitRange(range::AbstractUnitRange)\n\nRepresent an AbstractUnitRange `range` as an offset vector such that `range[i] == i`.\n\n`IdentityUnitRange`s are frequently used as axes for offset arrays.\n"}],"Base.ARGS":[{"Union{}":" ARGS\n\nAn array of the command line arguments passed to Julia, as strings.\n"}],"Base.disable_sigint":[{"Tuple{Function}":" disable_sigint(f::Function)\n\nDisable Ctrl-C handler during execution of a function on the current task,\nfor calling external code that may call julia code that is not interrupt safe.\nIntended to be called using `do` block syntax as follows:\n\n disable_sigint() do\n # interrupt-unsafe code\n ...\n end\n\nThis is not needed on worker threads (`Threads.threadid() != 1`) since the\n`InterruptException` will only be delivered to the master thread.\nExternal functions that do not call julia code or julia runtime\nautomatically disable sigint during their execution.\n"}],"Base.LogicalIndex":[{"Union{}":" LogicalIndex(mask)\n\nThe `LogicalIndex` type is a special vector that simply contains all indices I\nwhere `mask[I]` is true. This specialized type does not support indexing\ndirectly as doing so would require O(n) lookup time. `AbstractArray{Bool}` are\nwrapped with `LogicalIndex` upon calling [`to_indices`](@ref).\n"}],"Base.shell_escape_posixly":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape_posixly(args::Union{Cmd,AbstractString...})\n\nThe unexported `shell_escape_posixly` function\ntakes a string or command object and escapes any special characters in such a way that\nit is safe to pass it as an argument to a posix shell.\n\n# Examples\n```jldoctest\njulia> Base.shell_escape_posixly(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' '&&' echo done\"\n\njulia> Base.shell_escape_posixly(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this '&&' that\"\n```\n"}],"Base.IndexStyle":[{"Tuple{AbstractArray}":" IndexStyle(A)\n IndexStyle(typeof(A))\n\n`IndexStyle` specifies the \"native indexing style\" for array `A`. When\nyou define a new [`AbstractArray`](@ref) type, you can choose to implement\neither linear indexing (with [`IndexLinear`](@ref)) or cartesian indexing.\nIf you decide to only implement linear indexing, then you must set this trait for your array\ntype:\n\n Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()\n\nThe default is [`IndexCartesian()`](@ref).\n\nJulia's internal indexing machinery will automatically (and invisibly)\nrecompute all indexing operations into the preferred style. This allows users\nto access elements of your array using any indexing style, even when explicit\nmethods have not been provided.\n\nIf you define both styles of indexing for your `AbstractArray`, this\ntrait can be used to select the most performant indexing style. Some\nmethods check this trait on their inputs, and dispatch to different\nalgorithms depending on the most efficient access pattern. In\nparticular, [`eachindex`](@ref) creates an iterator whose type depends\non the setting of this trait.\n"}],"Base.iszero":[{"Tuple{Any}":" iszero(x)\n\nReturn `true` if `x == zero(x)`; if `x` is an array, this checks whether\nall of the elements of `x` are zero.\n\n# Examples\n```jldoctest\njulia> iszero(0.0)\ntrue\n\njulia> iszero([1, 9, 0])\nfalse\n\njulia> iszero([false, 0, 0])\ntrue\n```\n"}],"Base.promote":[{"Union{}":" promote(xs...)\n\nConvert all arguments to a common type, and return them all (as a tuple).\nIf no arguments can be converted, an error is raised.\n\n# Examples\n```jldoctest\njulia> promote(Int8(1), Float16(4.5), Float32(4.1))\n(1.0f0, 4.5f0, 4.1f0)\n```\n"}],"Base.findprev":[{"Tuple{Function,Any,Any}":" findprev(predicate::Function, A, i)\n\nFind the previous index before or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [4, 6, 1, 2]\n4-element Array{Int64,1}:\n 4\n 6\n 1\n 2\n\njulia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL\n\njulia> findprev(isodd, A, 3)\n3\n\njulia> A = [4 6; 1 2]\n2×2 Array{Int64,2}:\n 4 6\n 1 2\n\njulia> findprev(isodd, A, CartesianIndex(1, 2))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Any,Any}":" findprev(A, i)\n\nFind the previous index before or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, true]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 1\n\njulia> findprev(A, 3)\n3\n\njulia> findprev(A, 1) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true true]\n2×2 Array{Bool,2}:\n 0 0\n 1 1\n\njulia> findprev(A, CartesianIndex(2, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findprev(pattern::AbstractString, string::AbstractString, start::Integer)\n\nFind the previous occurrence of `pattern` in `string` starting at position `start`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findprev(x, s, i)] == x`:\n\n`findprev(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `stop <= i`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findprev(\"z\", \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev(\"o\", \"Hello to the world\", 18)\n15:15\n\njulia> findprev(\"Julia\", \"JuliaLang\", 6)\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findprev(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the previous occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findprev('z', \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev('o', \"Hello to the world\", 18)\n15\n```\n"}],"Base.findmin":[{"Tuple{Any}":" findmin(itr) -> (x, index)\n\nReturn the minimum element of the collection `itr` and its index. If there are multiple\nminimal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `min`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmin([8,0.1,-9,pi])\n(-9.0, 3)\n\njulia> findmin([7,1,1,6])\n(1, 2)\n\njulia> findmin([7,1,1,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmin(A; dims) -> (minval, index)\n\nFor an array input, returns the value and index of the minimum over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmin(A, dims=1)\n([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])\n\njulia> findmin(A, dims=2)\n([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])\n```\n"}],"Base.LOAD_PATH":[{"Union{}":" LOAD_PATH\n\nAn array of paths for `using` and `import` statements to consider as project\nenvironments or package directories when loading code. It is populated based on\nthe [`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH) environment variable if set;\notherwise it defaults to `[\"@\", \"@v#.#\", \"@stdlib\"]`. Entries starting with `@`\nhave special meanings:\n\n- `@` refers to the \"current active environment\", the initial value of which is\n initially determined by the [`JULIA_PROJECT`](@ref JULIA_PROJECT) environment\n variable or the `--project` command-line option.\n\n- `@stdlib` expands to the absolute path of the current Julia installation's\n standard library directory.\n\n- `@name` refers to a named environment, which are stored in depots (see\n [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)) under the `environments`\n subdirectory. The user's named environments are stored in\n `~/.julia/environments` so `@name` would refer to the environment in\n `~/.julia/environments/name` if it exists and contains a `Project.toml` file.\n If `name` contains `#` characters, then they are replaced with the major, minor\n and patch components of the Julia version number. For example, if you are\n running Julia 1.2 then `@v#.#` expands to `@v1.2` and will look for an\n environment by that name, typically at `~/.julia/environments/v1.2`.\n\nThe fully expanded value of `LOAD_PATH` that is searched for projects and packages\ncan be seen by calling the `Base.load_path()` function.\n\nSee also:\n[`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH),\n[`JULIA_PROJECT`](@ref JULIA_PROJECT),\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.match":[{"Union{}":" match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])\n\nSearch for the first match of the regular expression `r` in `s` and return a `RegexMatch`\nobject containing the match, or nothing if the match failed. The matching substring can be\nretrieved by accessing `m.match` and the captured sequences can be retrieved by accessing\n`m.captures` The optional `idx` argument specifies an index at which to start the search.\n\n# Examples\n```jldoctest\njulia> rx = r\"a(.)a\"\nr\"a(.)a\"\n\njulia> m = match(rx, \"cabac\")\nRegexMatch(\"aba\", 1=\"b\")\n\njulia> m.captures\n1-element Array{Union{Nothing, SubString{String}},1}:\n \"b\"\n\njulia> m.match\n\"aba\"\n\njulia> match(rx, \"cabac\", 3) === nothing\ntrue\n```\n"}],"Base.rsplit":[{"Union{}":" rsplit(s::AbstractString; limit::Integer=0, keepempty::Bool=false)\n rsplit(s::AbstractString, chars; limit::Integer=0, keepempty::Bool=true)\n\nSimilar to [`split`](@ref), but starting from the end of the string.\n\n# Examples\n```jldoctest\njulia> a = \"M.a.r.c.h\"\n\"M.a.r.c.h\"\n\njulia> rsplit(a,\".\")\n5-element Array{SubString{String},1}:\n \"M\"\n \"a\"\n \"r\"\n \"c\"\n \"h\"\n\njulia> rsplit(a,\".\";limit=1)\n1-element Array{SubString{String},1}:\n \"M.a.r.c.h\"\n\njulia> rsplit(a,\".\";limit=2)\n2-element Array{SubString{String},1}:\n \"M.a.r.c\"\n \"h\"\n```\n"}],"Base.isodd":[{"Tuple{Integer}":" isodd(x::Integer) -> Bool\n\nReturn `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isodd(9)\ntrue\n\njulia> isodd(10)\nfalse\n```\n"}],"Base.operator_associativity":[{"Tuple{Symbol}":" operator_associativity(s::Symbol)\n\nReturn a symbol representing the associativity of operator `s`. Left- and right-associative\noperators return `:left` and `:right`, respectively. Return `:none` if `s` is non-associative\nor an invalid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_associativity(:-), Base.operator_associativity(:+), Base.operator_associativity(:^)\n(:left, :none, :right)\n\njulia> Base.operator_associativity(:⊗), Base.operator_associativity(:sin), Base.operator_associativity(:→)\n(:left, :none, :right)\n```\n"}],"Base.setdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff!(s, itrs...)\n\nRemove from set `s` (in-place) each element of each iterable from `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> setdiff!(a, 1:2:6);\n\njulia> a\nSet{Int64} with 1 element:\n 4\n```\n"}],"Base.ispow2":[{"Tuple{Integer}":" ispow2(n::Integer) -> Bool\n\nTest whether `n` is a power of two.\n\n# Examples\n```jldoctest\njulia> ispow2(4)\ntrue\n\njulia> ispow2(5)\nfalse\n```\n"}],"Base.hcat":[{"Tuple":" hcat(A...)\n\nConcatenate along dimension 2.\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3; 4; 5]\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> b = [6 7; 8 9; 10 11; 12 13; 14 15]\n5×2 Array{Int64,2}:\n 6 7\n 8 9\n 10 11\n 12 13\n 14 15\n\njulia> hcat(a,b)\n5×3 Array{Int64,2}:\n 1 6 7\n 2 8 9\n 3 10 11\n 4 12 13\n 5 14 15\n\njulia> c = ([1; 2; 3], [4; 5; 6])\n([1, 2, 3], [4, 5, 6])\n\njulia> hcat(c...)\n3×2 Array{Int64,2}:\n 1 4\n 2 5\n 3 6\n```\n"}],"Base.showarg":[{"Union{Tuple{T}, Tuple{IO,Type{T},Any}} where T":" showarg(io::IO, x, toplevel)\n\nShow `x` as if it were an argument to a function. This function is\nused by [`summary`](@ref) to display type information in terms of sequences of\nfunction calls on objects. `toplevel` is `true` if this is\nthe direct call from `summary` and `false` for nested (recursive) calls.\n\nThe fallback definition is to print `x` as \"::\\$(typeof(x))\",\nrepresenting argument `x` in terms of its type. (The double-colon is\nomitted if `toplevel=true`.) However, you can\nspecialize this function for specific types to customize printing.\n\n# Example\n\nA SubArray created as `view(a, :, 3, 2:5)`, where `a` is a\n3-dimensional Float64 array, has type\n\n SubArray{Float64,2,Array{Float64,3},Tuple{Colon,Int64,UnitRange{Int64}},false}\n\nThe default `show` printing would display this full type.\nHowever, the summary for SubArrays actually prints as\n\n 2×4 view(::Array{Float64,3}, :, 3, 2:5) with eltype Float64\n\nbecause of a definition similar to\n\n function Base.showarg(io::IO, v::SubArray, toplevel)\n print(io, \"view(\")\n showarg(io, parent(v), false)\n print(io, \", \", join(v.indices, \", \"))\n print(io, ')')\n toplevel && print(io, \" with eltype \", eltype(v))\n end\n\nNote that we're calling `showarg` recursively for the parent array\ntype, indicating that any recursed calls are not at the top level.\nPrinting the parent as `::Array{Float64,3}` is the fallback (non-toplevel)\nbehavior, because no specialized method for `Array` has been defined.\n"}],"Base.isapprox":[{"Tuple{Number,Number}":" isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)\n\nInexact equality comparison: `true` if `norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))`. The\ndefault `atol` is zero and the default `rtol` depends on the types of `x` and `y`. The keyword\nargument `nans` determines whether or not NaN values are considered equal (defaults to false).\n\nFor real or complex floating-point values, if an `atol > 0` is not specified, `rtol` defaults to\nthe square root of [`eps`](@ref) of the type of `x` or `y`, whichever is bigger (least precise).\nThis corresponds to requiring equality of about half of the significand digits. Otherwise,\ne.g. for integer arguments or if an `atol > 0` is supplied, `rtol` defaults to zero.\n\n`x` and `y` may also be arrays of numbers, in which case `norm` defaults to the usual\n`norm` function in LinearAlgebra, but\nmay be changed by passing a `norm::Function` keyword argument. (For numbers, `norm` is the\nsame thing as `abs`.) When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`\nor `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are\napproximately equal component-wise.\n\nThe binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`\nis equivalent to `!isapprox(x,y)`.\n\nNote that `x ≈ 0` (i.e., comparing to zero with the default tolerances) is\nequivalent to `x == 0` since the default `atol` is `0`. In such cases, you should either\nsupply an appropriate `atol` (or use `norm(x) ≤ atol`) or rearrange your code (e.g.\nuse `x ≈ y` rather than `x - y ≈ 0`). It is not possible to pick a nonzero `atol`\nautomatically because it depends on the overall scaling (the \"units\") of your problem:\nfor example, in `x - y ≈ 0`, `atol=1e-9` is an absurdly small tolerance if `x` is the\n[radius of the Earth](https://en.wikipedia.org/wiki/Earth_radius) in meters,\nbut an absurdly large tolerance if `x` is the\n[radius of a Hydrogen atom](https://en.wikipedia.org/wiki/Bohr_radius) in meters.\n\n\n# Examples\n```jldoctest\njulia> 0.1 ≈ (0.1 - 1e-10)\ntrue\n\njulia> isapprox(10, 11; atol = 2)\ntrue\n\njulia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])\ntrue\n\njulia> 1e-10 ≈ 0\nfalse\n\njulia> isapprox(1e-10, 0, atol=1e-8)\ntrue\n```\n"}],"Base.summary":[{"Tuple{IO,Any}":" summary(io::IO, x)\n str = summary(x)\n\nPrint to a stream `io`, or return a string `str`, giving a brief description of\na value. By default returns `string(typeof(x))`, e.g. [`Int64`](@ref).\n\nFor arrays, returns a string of size and type info,\ne.g. `10-element Array{Int64,1}`.\n\n# Examples\n```jldoctest\njulia> summary(1)\n\"Int64\"\n\njulia> summary(zeros(2))\n\"2-element Array{Float64,1}\"\n```\n"}],"Base.keytype":[{"Tuple{AbstractArray}":" keytype(T::Type{<:AbstractArray})\n keytype(A::AbstractArray)\n\nReturn the key type of an array. This is equal to the\n`eltype` of the result of `keys(...)`, and is provided\nmainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> keytype([1, 2, 3]) == Int\ntrue\n\njulia> keytype([1 2; 3 4])\nCartesianIndex{2}\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"},{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" keytype(type)\n\nGet the key type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> keytype(Dict(Int32(1) => \"foo\"))\nInt32\n```\n"}],"Base.intersect!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nIntersect all passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n"}],"Base.unaliascopy":[{"Tuple{Array}":" Base.unaliascopy(A)\n\nMake a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against\nanother array in order to preserve consistent semantics as that other array is mutated.\n\nThis must return an object of the same type as `A` to preserve optimal performance in the\nmuch more common case where aliasing does not occur. By default,\n`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where\n`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of\n`Base.unaliascopy(A)`.\n"}],"Base.bitstring":[{"Union{}":" bitstring(n)\n\nA string giving the literal bit representation of a number.\n\n# Examples\n```jldoctest\njulia> bitstring(4)\n\"0000000000000000000000000000000000000000000000000000000000000100\"\n\njulia> bitstring(2.2)\n\"0100000000000001100110011001100110011001100110011001100110011010\"\n```\n"}],"Base.to_index":[{"Tuple{Any,Any}":" to_index(A, i)\n\nConvert index `i` to an `Int` or array of indices to be used as an index into array `A`.\n\nCustom array types may specialize `to_index(::CustomArray, i)` to provide\nspecial indexing behaviors. Note that some index types (like `Colon`) require\nmore context in order to transform them into an array of indices; those get\nconverted in the more complicated `to_indices` function. By default, this\nsimply calls the generic `to_index(i)`. This must return either an `Int` or an\n`AbstractArray` of scalar indices that are supported by `A`.\n"},{"Tuple{Integer}":" to_index(i)\n\nConvert index `i` to an `Int` or array of `Int`s to be used as an index for all arrays.\n\nCustom index types may specialize `to_index(::CustomIndex)` to provide special\nindexing behaviors. This must return either an `Int` or an `AbstractArray` of\n`Int`s.\n"}],"Base.floatmin":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmin(T)\n\nThe smallest in absolute value non-subnormal value representable by the given\nfloating-point DataType `T`.\n"}],"Base.@static":[{"Tuple{Any}":" @static\n\nPartially evaluate an expression at parse time.\n\nFor example, `@static Sys.iswindows() ? foo : bar` will evaluate `Sys.iswindows()` and insert\neither `foo` or `bar` into the expression.\nThis is useful in cases where a construct would be invalid on other platforms,\nsuch as a `ccall` to a non-existent function.\n`@static if Sys.isapple() foo end` and `@static foo <&&,||> bar` are also valid syntax.\n"}],"Base.notify":[{"Tuple{Base.GenericCondition,Any}":" notify(condition, val=nothing; all=true, error=false)\n\nWake up tasks waiting for a condition, passing them `val`. If `all` is `true` (the default),\nall waiting tasks are woken, otherwise only one is. If `error` is `true`, the passed value\nis raised as an exception in the woken tasks.\n\nReturn the count of tasks woken up. Return 0 if no tasks are waiting on `condition`.\n"}],"Base.schedule":[{"Tuple{Task,Any}":" schedule(t::Task, [val]; error=false)\n\nAdd a [`Task`](@ref) to the scheduler's queue. This causes the task to run constantly when the system\nis otherwise idle, unless the task performs a blocking operation such as [`wait`](@ref).\n\nIf a second argument `val` is provided, it will be passed to the task (via the return value of\n[`yieldto`](@ref)) when it runs again. If `error` is `true`, the value is raised as an exception in\nthe woken task.\n\n# Examples\n```jldoctest\njulia> a5() = sum(i for i in 1:1000);\n\njulia> b = Task(a5);\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskstarted(b)\ntrue\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.channeled_tasks":[{"Tuple{Int64,Vararg{Any,N} where N}":" channeled_tasks(n::Int, funcs...; ctypes=fill(Any,n), csizes=fill(0,n))\n\nA convenience method to create `n` channels and bind them to tasks started\nfrom the provided functions in a single call. Each `func` must accept `n` arguments\nwhich are the created channels. Channel types and sizes may be specified via\nkeyword arguments `ctypes` and `csizes` respectively. If unspecified, all channels are\nof type `Channel{Any}(0)`.\n\nReturns a tuple, `(Array{Channel}, Array{Task})`, of the created channels and tasks.\n"}],"Base.startswith":[{"Tuple{AbstractString,Regex}":" startswith(s::AbstractString, prefix::Regex)\n\nReturn `true` if `s` starts with the regex pattern, `prefix`.\n\n!!! note\n `startswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"^...\", s)` is faster than `startswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`endswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", r\"Julia|Romeo\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" startswith(s::AbstractString, prefix::AbstractString)\n\nReturn `true` if `s` starts with `prefix`. If `prefix` is a vector or set\nof characters, test whether the first character of `s` belongs to that set.\n\nSee also [`endswith`](@ref).\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", \"Julia\")\ntrue\n```\n"}],"Base.WeakKeyDict":[{"Union{}":" WeakKeyDict([itr])\n\n`WeakKeyDict()` constructs a hash table where the keys are weak\nreferences to objects which may be garbage collected even when\nreferenced in a hash table.\n\nSee [`Dict`](@ref) for further help. Note, unlike [`Dict`](@ref),\n`WeakKeyDict` does not convert keys on insertion.\n"}],"Base.setdiff":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff(s, itrs...)\n\nConstruct the set of elements in `s` but not in any of the iterables in `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> setdiff([1,2,3], [3,4,5])\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.lock":[{"Tuple{Any,Base.AbstractLock}":" lock(f::Function, lock)\n\nAcquire the `lock`, execute `f` with the `lock` held, and release the `lock` when `f`\nreturns. If the lock is already locked by a different task/thread, wait for it to become\navailable.\n\nWhen this function returns, the `lock` has been released, so the caller should\nnot attempt to `unlock` it.\n"},{"Tuple{ReentrantLock}":" lock(lock)\n\nAcquire the `lock` when it becomes available.\nIf the lock is already locked by a different task/thread,\nwait for it to become available.\n\nEach `lock` must be matched by an [`unlock`](@ref).\n"}],"Base.Vector":[{"Union{}":" Vector{T} <: AbstractVector{T}\n\nOne-dimensional dense array with elements of type `T`, often used to represent\na mathematical vector. Alias for [`Array{T,1}`](@ref).\n"}],"Base.lpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" lpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the left with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> lpad(\"March\", 10)\n\" March\"\n```\n"}],"Base.invperm":[{"Tuple{AbstractArray{T,1} where T}":" invperm(v)\n\nReturn the inverse permutation of `v`.\nIf `B = A[v]`, then `A == B[invperm(v)]`.\n\n# Examples\n```jldoctest\njulia> v = [2; 4; 3; 1];\n\njulia> invperm(v)\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 2\n\njulia> A = ['a','b','c','d'];\n\njulia> B = A[v]\n4-element Array{Char,1}:\n 'b'\n 'd'\n 'c'\n 'a'\n\njulia> B[invperm(v)]\n4-element Array{Char,1}:\n 'a'\n 'b'\n 'c'\n 'd'\n```\n"}],"Base.unsafe_pointer_to_objref":[{"Tuple{Ptr}":" unsafe_pointer_to_objref(p::Ptr)\n\nConvert a `Ptr` to an object reference. Assumes the pointer refers to a valid heap-allocated\nJulia object. If this is not the case, undefined behavior results, hence this function is\nconsidered \"unsafe\" and should be used with care.\n\nSee also: [`pointer_from_objref`](@ref).\n"}],"Base.readlines":[{"Tuple{AbstractString}":" readlines(io::IO=stdin; keep::Bool=false)\n readlines(filename::AbstractString; keep::Bool=false)\n\nRead all lines of an I/O stream or a file as a vector of strings. Behavior is\nequivalent to saving the result of reading [`readline`](@ref) repeatedly with the same\narguments and saving the resulting lines as a vector of strings.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readlines(\"my_file.txt\")\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\"\n \"It has many members.\"\n\njulia> readlines(\"my_file.txt\", keep=true)\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\\n\"\n \"It has many members.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.promote_type":[{"Union{}":" promote_type(type1, type2)\n\nPromotion refers to converting values of mixed types to a single common type.\n`promote_type` represents the default promotion behavior in Julia when\noperators (usually mathematical) are given arguments of differing types.\n`promote_type` generally tries to return a type which can at least approximate\nmost values of either input type without excessively widening. Some loss is\ntolerated; for example, `promote_type(Int64, Float64)` returns\n[`Float64`](@ref) even though strictly, not all [`Int64`](@ref) values can be\nrepresented exactly as `Float64` values.\n\n```jldoctest\njulia> promote_type(Int64, Float64)\nFloat64\n\njulia> promote_type(Int32, Int64)\nInt64\n\njulia> promote_type(Float32, BigInt)\nBigFloat\n\njulia> promote_type(Int16, Float16)\nFloat16\n\njulia> promote_type(Int64, Float16)\nFloat16\n\njulia> promote_type(Int8, UInt16)\nUInt16\n```\n"}],"Base.@polly":[{"Tuple{Any}":" @polly\n\nTells the compiler to apply the polyhedral optimizer Polly to a function.\n"}],"Base.ReinterpretArray":[{"Union{}":"Gives a reinterpreted view (of element type T) of the underlying array (of element type S).\nIf the size of `T` differs from the size of `S`, the array will be compressed/expanded in\nthe first dimension.\n"}],"Base.binomial":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" binomial(n::Integer, k::Integer)\n\nThe _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in\nthe polynomial expansion of ``(1+x)^n``.\n\nIf ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items:\n```math\n\\binom{n}{k} = \\frac{n!}{k! (n-k)!}\n```\nwhere ``n!`` is the [`factorial`](@ref) function.\n\nIf ``n`` is negative, then it is defined in terms of the identity\n```math\n\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k}\n```\n\n# Examples\n```jldoctest\njulia> binomial(5, 3)\n10\n\njulia> factorial(5) ÷ (factorial(5-3) * factorial(3))\n10\n\njulia> binomial(-5, 3)\n-35\n```\n\n# See also\n* [`factorial`](@ref)\n\n# External links\n* [Binomial coeffient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia.\n"}],"Base.TwicePrecision":[{"Union{}":" TwicePrecision{T}(hi::T, lo::T)\n TwicePrecision{T}((num, denom))\n\nA number with twice the precision of `T`, e.g., quad-precision if `T =\nFloat64`. `hi` represents the high bits (most significant bits) and\n`lo` the low bits (least significant bits). Rational values\n`num//denom` can be approximated conveniently using the syntax\n`TwicePrecision{T}((num, denom))`.\n\nWhen used with `T<:Union{Float16,Float32,Float64}` to construct an \"exact\"\n`StepRangeLen`, `ref` should be the range element with smallest\nmagnitude and `offset` set to the corresponding index. For\nefficiency, multiplication of `step` by the index is not performed at\ntwice precision: `step.hi` should have enough trailing zeros in its\n`bits` representation that `(0:len-1)*step.hi` is exact (has no\nroundoff error). If `step` has an exact rational representation\n`num//denom`, then you can construct `step` using\n\n step = TwicePrecision{T}((num, denom), nb)\n\nwhere `nb` is the number of trailing zero bits of `step.hi`. For\nranges, you can set `nb = ceil(Int, log2(len-1))`.\n"}],"Base.copysign":[{"Tuple{Real,Real}":" copysign(x, y) -> z\n\nReturn `z` which has the magnitude of `x` and the same sign as `y`.\n\n# Examples\n```jldoctest\njulia> copysign(1, -2)\n-1\n\njulia> copysign(-1, 2)\n1\n```\n"}],"Base.permute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" permute!(v, p)\n\nPermute vector `v` in-place, according to permutation `p`. No checking is done\nto verify that `p` is a permutation.\n\nTo return a new permutation, use `v[p]`. Note that this is generally faster than\n`permute!(v,p)` for large vectors.\n\nSee also [`invpermute!`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> permute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 1\n 4\n 3\n 1\n```\n"}],"Base._show_nonempty":[{"Tuple{IO,AbstractArray{T,2} where T,String}":"`_show_nonempty(io, X::AbstractMatrix, prefix)` prints matrix X with opening and closing square brackets,\npreceded by `prefix`, supposed to encode the type of the elements.\n"}],"Base.lstrip":[{"Tuple{Any,AbstractString}":" lstrip([pred=isspace,] str::AbstractString) -> SubString\n lstrip(str::AbstractString, chars) -> SubString\n\nRemove leading characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = lpad(\"March\", 20)\n\" March\"\n\njulia> lstrip(a)\n\"March\"\n```\n"}],"Base.filter":[{"Tuple{Any,AbstractDict}":" filter(f, d::AbstractDict)\n\nReturn a copy of `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Examples\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\")\nDict{Int64,String} with 2 entries:\n 2 => \"b\"\n 1 => \"a\"\n\njulia> filter(p->isodd(p.first), d)\nDict{Int64,String} with 1 entry:\n 1 => \"a\"\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{Any,Array{T,N}}} where N where T":" filter(f, a::AbstractArray)\n\nReturn a copy of `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> a = 1:10\n1:10\n\njulia> filter(isodd, a)\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"},{"Tuple{Any,Base.SkipMissing{#s662} where #s662<:AbstractArray}":" filter(f, itr::SkipMissing{<:AbstractArray})\n\nReturn a vector similar to the array wrapped by the given `SkipMissing` iterator\nbut with all missing elements and those for which `f` returns `false` removed.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> x = [1 2; missing 4]\n2×2 Array{Union{Missing, Int64},2}:\n 1 2\n missing 4\n\njulia> filter(isodd, skipmissing(x))\n1-element Array{Int64,1}:\n 1\n```\n"}],"Base.Semaphore":[{"Union{}":" Semaphore(sem_size)\n\nCreate a counting semaphore that allows at most `sem_size`\nacquires to be in use at any time.\nEach acquire must be matched with a release.\n"}],"Base.SubstitutionString":[{"Union{}":" SubstitutionString(substr)\n\nStores the given string `substr` as a `SubstitutionString`, for use in regular expression\nsubstitutions. Most commonly constructed using the [`@s_str`](@ref) macro.\n\n```jldoctest\njulia> SubstitutionString(\"Hello \\\\g, it's \\\\1\")\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> subst = s\"Hello \\g, it's \\1\"\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> typeof(subst)\nSubstitutionString{String}\n\n```\n\n"}],"Base.CodeUnits":[{"Union{}":" CodeUnits(s::AbstractString)\n\nWrap a string (without copying) in an immutable vector-like object that accesses the code units\nof the string's representation.\n"}],"Base.isready":[{"Tuple{Channel}":" isready(c::Channel)\n\nDetermine whether a [`Channel`](@ref) has a value stored to it. Returns\nimmediately, does not block.\n\nFor unbuffered channels returns `true` if there are tasks waiting\non a [`put!`](@ref).\n"}],"Base.count_ones":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" count_ones(x::Integer) -> Integer\n\nNumber of ones in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_ones(7)\n3\n```\n"}],"Base.@elapsed":[{"Tuple{Any}":" @elapsed\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\nnumber of seconds it took to execute as a floating-point number.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@allocated`](@ref).\n\n```julia-repl\njulia> @elapsed sleep(0.3)\n0.301391426\n```\n"}],"Base.bytes2hex":[{"Union{}":" bytes2hex(a::AbstractArray{UInt8}) -> String\n bytes2hex(io::IO, a::AbstractArray{UInt8})\n\nConvert an array `a` of bytes to its hexadecimal string representation, either\nreturning a `String` via `bytes2hex(a)` or writing the string to an `io` stream\nvia `bytes2hex(io, a)`. The hexadecimal characters are all lowercase.\n\n# Examples\n```jldoctest\njulia> a = string(12345, base = 16)\n\"3039\"\n\njulia> b = hex2bytes(a)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> bytes2hex(b)\n\"3039\"\n```\n"}],"Base.isbinaryoperator":[{"Tuple{Symbol}":" isbinaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a binary (infix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isbinaryoperator(:-), Base.isbinaryoperator(:√), Base.isbinaryoperator(:f)\n(true, false, false)\n```\n"}],"Base.KeyError":[{"Union{}":" KeyError(key)\n\nAn indexing operation into an `AbstractDict` (`Dict`) or `Set` like object tried to access or\ndelete a non-existent element.\n"}],"Base.isless":[{"Union{}":" isless(x, y)\n\nTest whether `x` is less than `y`, according to a fixed total order.\n`isless` is not defined on all pairs of values `(x, y)`. However, if it\nis defined, it is expected to satisfy the following:\n- If `isless(x, y)` is defined, then so is `isless(y, x)` and `isequal(x, y)`,\n and exactly one of those three yields `true`.\n- The relation defined by `isless` is transitive, i.e.,\n `isless(x, y) && isless(y, z)` implies `isless(x, z)`.\n\nValues that are normally unordered, such as `NaN`,\nare ordered in an arbitrary but consistent fashion.\n[`missing`](@ref) values are ordered last.\n\nThis is the default comparison used by [`sort`](@ref).\n\n# Implementation\nNon-numeric types with a total order should implement this function.\nNumeric types only need to implement it if they have special values such as `NaN`.\nTypes with a partial order should implement [`<`](@ref).\n"},{"Tuple{Tuple,Tuple}":" isless(t1::Tuple, t2::Tuple)\n\nReturns true when t1 is less than t2 in lexicographic order.\n"},{"Tuple{AbstractString,AbstractString}":" isless(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether string `a` comes before string `b` in alphabetical order\n(technically, in lexicographical order by Unicode code points).\n\n# Examples\n```jldoctest\njulia> isless(\"a\", \"b\")\ntrue\n\njulia> isless(\"β\", \"α\")\nfalse\n\njulia> isless(\"a\", \"a\")\nfalse\n```\n"}],"Base.IdDict":[{"Union{}":" IdDict([itr])\n\n`IdDict{K,V}()` constructs a hash table using object-id as hash and\n`===` as equality with keys of type `K` and values of type `V`.\n\nSee [`Dict`](@ref) for further help.\n"}],"Base.@b_str":[{"Tuple{Any}":" @b_str\n\nCreate an immutable byte (`UInt8`) vector using string syntax.\n\n# Examples\n```jldoctest\njulia> v = b\"12\\x01\\x02\"\n4-element Base.CodeUnits{UInt8,String}:\n 0x31\n 0x32\n 0x01\n 0x02\n\njulia> v[2]\n0x32\n```\n"}],"Base.strip":[{"Tuple{AbstractString}":" strip([pred=isspace,] str::AbstractString) -> SubString\n strip(str::AbstractString, chars) -> SubString\n\nRemove leading and trailing characters from `str`, either those specified by `chars` or\nthose for which the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, vector or set of characters.\n\n!!! compat \"Julia 1.2\"\n The method which accepts a predicate function requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> strip(\"{3, 5}\\n\", ['{', '}', '\\n'])\n\"3, 5\"\n```\n"}],"Base.promote_typejoin":[{"Tuple{Any,Any}":" promote_typejoin(T, S)\n\nCompute a type that contains both `T` and `S`, which could be\neither a parent of both types, or a `Union` if appropriate.\nFalls back to [`typejoin`](@ref).\n"}],"Base.DimensionMismatch":[{"Union{}":" DimensionMismatch([msg])\n\nThe objects called do not have matching dimensionality. Optional argument `msg` is a\ndescriptive error string.\n"}],"Base.AbstractRange":[{"Union{}":" AbstractRange{T}\n\nSupertype for ranges with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.IndexLinear":[{"Union{}":" IndexLinear()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by one linear index.\n\nA linear indexing style uses one integer index to describe the position in the array\n(even if it's a multidimensional array) and column-major\nordering is used to efficiently access the elements. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexLinear` will return\na simple one-dimensional range, even if it is multidimensional.\n\nA custom array that reports its `IndexStyle` as `IndexLinear` only needs\nto implement indexing (and indexed assignment) with a single `Int` index;\nall other indexing expressions — including multidimensional accesses — will\nbe recomputed to the linear index. For example, if `A` were a `2×3` custom\nmatrix with linear indexing, and we referenced `A[1, 3]`, this would be\nrecomputed to the equivalent linear index and call `A[5]` since `2*1 + 3 = 5`.\n\nSee also [`IndexCartesian`](@ref).\n"}],"Base.append!":[{"Tuple{Array{T,1} where T,AbstractArray{T,1} where T}":" append!(collection, collection2) -> collection.\n\nFor an ordered container `collection`, add the elements of `collection2` to the end of it.\n\n# Examples\n```jldoctest\njulia> append!([1],[2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> append!([1, 2, 3], [4, 5, 6])\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nUse [`push!`](@ref) to add individual items to `collection` which are not already\nthemselves in another collection. The result of the preceding example is equivalent to\n`push!([1, 2, 3], 4, 5, 6)`.\n"}],"Base.countlines":[{"Tuple{IO}":" countlines(io::IO; eol::AbstractChar = '\\n')\n\nRead `io` until the end of the stream/file and count the number of lines. To specify a file\npass the filename as the first argument. EOL markers other than `'\\n'` are supported by\npassing them as the second argument. The last non-empty line of `io` is counted even if it does not\nend with the EOL, matching the length returned by [`eachline`](@ref) and [`readlines`](@ref).\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\\n\");\n\njulia> countlines(io)\n1\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> countlines(io)\n1\n\njulia> countlines(io, eol = '.')\n0\n```\n"}],"Base.shell_escape_winsomely":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escaped_winsomely(args::Union{Cmd,AbstractString...})::String\n\nConvert the collection of strings `args` into single string suitable for passing as the argument\nstring for a Windows command line. Windows passes the entire command line as a single string to\nthe application (unlike POSIX systems, where the list of arguments are passed separately).\nMany Windows API applications (including julia.exe), use the conventions of the [Microsoft C\nruntime](https://docs.microsoft.com/en-us/cpp/c-language/parsing-c-command-line-arguments) to\nsplit that command line into a list of strings. This function implements the inverse of such a\nC runtime command-line parser. It joins command-line arguments to be passed to a Windows console\napplication into a command line, escaping or quoting meta characters such as space,\ndouble quotes and backslash where needed. This may be useful in concert with the `windows_verbatim`\nflag to [`Cmd`](@ref) when constructing process pipelines.\n\n# Example\n```jldoctest\njulia> println(shell_escaped_winsomely(\"A B\\\", \"C\"))\n\"A B\\\" C\n"}],"Base.CFunction":[{"Union{}":" CFunction struct\n\nGarbage-collection handle for the return value from `@cfunction`\nwhen the first argument is annotated with '\\$'.\nLike all `cfunction` handles, it should be passed to `ccall` as a `Ptr{Cvoid}`,\nand will be converted automatically at the call site to the appropriate type.\n\nSee [`@cfunction`](@ref).\n"}],"Base.fieldindex":[{"Union{Tuple{DataType,Symbol}, Tuple{DataType,Symbol,Bool}}":" Base.fieldindex(T, name::Symbol, err:Bool=true)\n\nGet the index of a named field, throwing an error if the field does not exist (when err==true)\nor returning 0 (when err==false).\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> Base.fieldindex(Foo, :z)\nERROR: type Foo has no field z\nStacktrace:\n[...]\n\njulia> Base.fieldindex(Foo, :z, false)\n0\n```\n"}],"Base.methods":[{"Tuple{Any,Any,Union{Nothing, Module, AbstractArray{Module,N} where N}}":" methods(f, [types], [module])\n\nReturn the method table for `f`.\n\nIf `types` is specified, return an array of methods whose types match.\nIf `module` is specified, return an array of methods defined in that module.\nA list of modules can also be specified as an array.\n\n!!! compat \"Julia 1.4\"\n At least Julia 1.4 is required for specifying a module.\n"}],"Base.PipeBuffer":[{"Union{Tuple{}, Tuple{Array{UInt8,1}}}":" PipeBuffer(data::Vector{UInt8}=UInt8[]; maxsize::Integer = typemax(Int))\n\nAn [`IOBuffer`](@ref) that allows reading and performs writes by appending.\nSeeking and truncating are not supported.\nSee [`IOBuffer`](@ref) for the available constructors.\nIf `data` is given, creates a `PipeBuffer` to operate on a data vector,\noptionally specifying a size beyond which the underlying `Array` may not be grown.\n"}],"Base.Cuchar":[{"Union{}":" Cuchar\n\nEquivalent to the native `unsigned char` c-type ([`UInt8`](@ref)).\n"}],"Base.count":[{"Tuple{Union{Regex, AbstractString},AbstractString}":" count(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn the number of matches for `pattern` in `string`. This is equivalent to\ncalling `length(findall(pattern, string))` but more efficient.\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Any,Any}":" count(p, itr) -> Integer\n count(itr) -> Integer\n\nCount the number of elements in `itr` for which predicate `p` returns `true`.\nIf `p` is omitted, counts the number of `true` elements in `itr` (which\nshould be a collection of boolean values).\n\n# Examples\n```jldoctest\njulia> count(i->(4<=i<=6), [2,3,4,5,6])\n3\n\njulia> count([true, false, true, true])\n3\n```\n"}],"Base.@assert":[{"Tuple{Any,Vararg{Any,N} where N}":" @assert cond [text]\n\nThrow an [`AssertionError`](@ref) if `cond` is `false`. Preferred syntax for writing assertions.\nMessage `text` is optionally displayed upon assertion failure.\n\n!!! warning\n An assert might be disabled at various optimization levels.\n Assert should therefore only be used as a debugging tool\n and not used for authentication verification (e.g., verifying passwords),\n nor should side effects needed for the function to work correctly\n be used inside of asserts.\n\n# Examples\n```jldoctest\njulia> @assert iseven(3) \"3 is an odd number!\"\nERROR: AssertionError: 3 is an odd number!\n\njulia> @assert isodd(3) \"What even are numbers?\"\n```\n"}],"Base.@show":[{"Tuple":" @show\n\nShow an expression and result, returning the result. See also [`show`](@ref).\n"}],"Base.readuntil":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" readuntil(stream::IO, delim; keep::Bool = false)\n readuntil(filename::AbstractString, delim; keep::Bool = false)\n\nRead a string from an I/O stream or a file, up to the given delimiter.\nThe delimiter can be a `UInt8`, `AbstractChar`, string, or vector.\nKeyword argument `keep` controls whether the delimiter is included in the result.\nThe text is assumed to be encoded in UTF-8.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readuntil(\"my_file.txt\", 'L')\n\"Julia\"\n\njulia> readuntil(\"my_file.txt\", '.', keep = true)\n\"JuliaLang is a GitHub organization.\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.reduce_empty":[{"Tuple{Any,Any}":" Base.reduce_empty(op, T)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref) or [`foldr`](@ref)\nwith reduction `op` over an empty array with element type of `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.ndims":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" ndims(A::AbstractArray) -> Integer\n\nReturn the number of dimensions of `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> ndims(A)\n3\n```\n"}],"Base.yield":[{"Tuple{Task,Any}":" yield(t::Task, arg = nothing)\n\nA fast, unfair-scheduling version of `schedule(t, arg); yield()` which\nimmediately yields to `t` before calling the scheduler.\n"},{"Tuple{}":" yield()\n\nSwitch to the scheduler to allow another scheduled task to run. A task that calls this\nfunction is still runnable, and will be restarted immediately if there are no other runnable\ntasks.\n"}],"Base.download":[{"Tuple{Any,Any}":" download(url::AbstractString, [localfile::AbstractString])\n\nDownload a file from the given url, optionally renaming it to the given local file name. If\nno filename is given this will download into a randomly-named file in your temp directory.\nNote that this function relies on the availability of external tools such as `curl`, `wget`\nor `fetch` to download the file and is provided for convenience. For production use or\nsituations in which more options are needed, please use a package that provides the desired\nfunctionality instead.\n\nReturns the filename of the downloaded file.\n"}],"Base.isqrt":[{"Tuple{Integer}":" isqrt(n::Integer)\n\nInteger square root: the largest integer `m` such that `m*m <= n`.\n\n```jldoctest\njulia> isqrt(5)\n2\n```\n"}],"Base.parse":[{"Tuple{Type,Any}":" parse(type, str; base)\n\nParse a string as a number. For `Integer` types, a base can be specified\n(the default is 10). For floating-point types, the string is parsed as a decimal\nfloating-point number. `Complex` types are parsed from decimal strings\nof the form `\"R±Iim\"` as a `Complex(R,I)` of the requested type; `\"i\"` or `\"j\"` can also be\nused instead of `\"im\"`, and `\"R\"` or `\"Iim\"` are also permitted.\nIf the string does not contain a valid number, an error is raised.\n\n!!! compat \"Julia 1.1\"\n `parse(Bool, str)` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> parse(Int, \"1234\")\n1234\n\njulia> parse(Int, \"1234\", base = 5)\n194\n\njulia> parse(Int, \"afc\", base = 16)\n2812\n\njulia> parse(Float64, \"1.2e-3\")\n0.0012\n\njulia> parse(Complex{Float64}, \"3.2e-1 + 4.5im\")\n0.32 + 4.5im\n```\n"}],"Base.esc":[{"Tuple{Any}":" esc(e)\n\nOnly valid in the context of an [`Expr`](@ref) returned from a macro. Prevents the macro hygiene\npass from turning embedded variables into gensym variables. See the [Macros](@ref man-macros)\nsection of the Metaprogramming chapter of the manual for more details and examples.\n"}],"Base.prod!":[{"Tuple{Any,Any}":" prod!(r, A)\n\nMultiply elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 12\n\njulia> prod!([1 1], A)\n1×2 Array{Int64,2}:\n 3 8\n```\n"}],"Base.\\":[{"Tuple{Any,Any}":" \\(x, y)\n\nLeft division operator: multiplication of `y` by the inverse of `x` on the left. Gives\nfloating-point results for integer arguments.\n\n# Examples\n```jldoctest\njulia> 3 \\ 6\n2.0\n\njulia> inv(3) * 6\n2.0\n\njulia> A = [4 3; 2 1]; x = [5, 6];\n\njulia> A \\ x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n\njulia> inv(A) * x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n```\n"}],"Base.SubString":[{"Union{}":" SubString(s::AbstractString, i::Integer, j::Integer=lastindex(s))\n SubString(s::AbstractString, r::UnitRange{<:Integer})\n\nLike [`getindex`](@ref), but returns a view into the parent string `s`\nwithin range `i:j` or `r` respectively instead of making a copy.\n\n# Examples\n```jldoctest\njulia> SubString(\"abc\", 1, 2)\n\"ab\"\n\njulia> SubString(\"abc\", 1:2)\n\"ab\"\n\njulia> SubString(\"abc\", 2)\n\"bc\"\n```\n"}],"Base.eachmatch":[{"Tuple{Regex,AbstractString}":" eachmatch(r::Regex, s::AbstractString; overlap::Bool=false)\n\nSearch for all matches of a the regular expression `r` in `s` and return a iterator over the\nmatches. If overlap is `true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from distinct character ranges.\n\n# Examples\n```jldoctest\njulia> rx = r\"a.a\"\nr\"a.a\"\n\njulia> m = eachmatch(rx, \"a1a2a3a\")\nBase.RegexMatchIterator(r\"a.a\", \"a1a2a3a\", false)\n\njulia> collect(m)\n2-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a3a\")\n\njulia> collect(eachmatch(rx, \"a1a2a3a\", overlap = true))\n3-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a2a\")\n RegexMatch(\"a3a\")\n```\n"}],"Base.print_matrix":[{"Union{Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer,Integer}}":" print_matrix(io::IO, mat, pre, sep, post, hdots, vdots, ddots, hmod, vmod)\n\nPrints a matrix with limited output size. If `io` sets `:limit` to true,\nthen only the corners of the matrix are printed, separated with vertical,\nhorizontal, and diagonal ellipses as appropriate.\nOptional arguments are string pre (printed before the matrix, e.g. an opening bracket)\nwhich will cause a corresponding same-size indent on following rows, and\nstring post (printed at the end of the last row of the matrix).\nAlso options to use different ellipsis characters hdots, vdots, ddots.\nThese are repeated every hmod or vmod elements.\n"}],"Base.pkgdir":[{"Tuple{Module}":" pkgdir(m::Module)\n\nReturn the root directory of the package that imported module `m`,\nor `nothing` if `m` was not imported from a package.\n"}],"Base.union":[{"Union{}":" union(s, itrs...)\n ∪(s, itrs...)\n\nConstruct the union of sets. Maintain order with arrays.\n\n# Examples\n```jldoctest\njulia> union([1, 2], [3, 4])\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> union([1, 2], [2, 4])\n3-element Array{Int64,1}:\n 1\n 2\n 4\n\njulia> union([4, 2], 1:2)\n3-element Array{Int64,1}:\n 4\n 2\n 1\n\njulia> union(Set([1, 2]), 2:3)\nSet{Int64} with 3 elements:\n 2\n 3\n 1\n```\n"}],"Base.falses":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" falses(dims)\n\nCreate a `BitArray` with all values set to `false`.\n\n# Examples\n```jldoctest\njulia> falses(2,3)\n2×3 BitArray{2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.skipchars":[{"Tuple{Any,IO}":" skipchars(predicate, io::IO; linecomment=nothing)\n\nAdvance the stream `io` such that the next-read character will be the first remaining for\nwhich `predicate` returns `false`. If the keyword argument `linecomment` is specified, all\ncharacters from that character until the start of the next line are ignored.\n\n# Examples\n```jldoctest\njulia> buf = IOBuffer(\" text\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=1, mark=-1)\n\njulia> skipchars(isspace, buf)\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=5, mark=-1)\n\njulia> String(readavailable(buf))\n\"text\"\n```\n"}],"Base.checkindex":[{"Tuple{Type{Bool},AbstractUnitRange,Any}":" checkindex(Bool, inds::AbstractUnitRange, index)\n\nReturn `true` if the given `index` is within the bounds of\n`inds`. Custom types that would like to behave as indices for all\narrays can extend this method in order to provide a specialized bounds\nchecking implementation.\n\n# Examples\n```jldoctest\njulia> checkindex(Bool, 1:20, 8)\ntrue\n\njulia> checkindex(Bool, 1:20, 21)\nfalse\n```\n"}],"Base.fld":[{"Tuple{Any,Any}":" fld(x, y)\n\nLargest integer less than or equal to `x/y`. Equivalent to `div(x, y, RoundDown)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> fld(7.3,5.5)\n1.0\n```\n"}],"Base.dump":[{"Tuple{Any}":" dump(x; maxdepth=8)\n\nShow every part of the representation of a value.\nThe depth of the output is truncated at `maxdepth`.\n\n# Examples\n```jldoctest\njulia> struct MyStruct\n x\n y\n end\n\njulia> x = MyStruct(1, (2,3));\n\njulia> dump(x)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n 1: Int64 2\n 2: Int64 3\n\njulia> dump(x; maxdepth = 1)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n```\n"}],"Base.reenable_sigint":[{"Tuple{Function}":" reenable_sigint(f::Function)\n\nRe-enable Ctrl-C handler during execution of a function.\nTemporarily reverses the effect of [`disable_sigint`](@ref).\n"}],"Base.real":[{"Tuple{Complex}":" real(z)\n\nReturn the real part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> real(1 + 3im)\n1\n```\n"},{"Tuple{Type}":" real(T::Type)\n\nReturn the type that represents the real part of a value of type `T`.\ne.g: for `T == Complex{R}`, returns `R`.\nEquivalent to `typeof(real(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> real(Complex{Int})\nInt64\n\njulia> real(Float64)\nFloat64\n```\n"}],"Base.string":[{"Tuple":" string(xs...)\n\nCreate a string from any values, except `nothing`, using the [`print`](@ref) function.\n\n`string` should usually not be defined directly. Instead, define a method\n`print(io::IO, x::MyType)`. If `string(x)` for a certain type needs to be\nhighly efficient, then it may make sense to add a method to `string` and\ndefine `print(io::IO, x::MyType) = print(io, string(x))` to ensure the\nfunctions are consistent.\n\n# Examples\n```jldoctest\njulia> string(\"a\", 1, true)\n\"a1true\"\n```\n"},{"Tuple{Integer}":" string(n::Integer; base::Integer = 10, pad::Integer = 1)\n\nConvert an integer `n` to a string in the given `base`,\noptionally specifying a number of digits to pad to.\n\n```jldoctest\njulia> string(5, base = 13, pad = 4)\n\"0005\"\n\njulia> string(13, base = 5, pad = 4)\n\"0023\"\n```\n"}],"Base.indentation":[{"Tuple{AbstractString}":" indentation(str::AbstractString; tabwidth=8) -> (Int, Bool)\n\nCalculate the width of leading white space. Return the width and a flag to indicate\nif the string is empty.\n\n# Examples\n```jldoctest\njulia> Base.indentation(\"\")\n(0, true)\n\njulia> Base.indentation(\" a\")\n(2, false)\n\njulia> Base.indentation(\"\\ta\"; tabwidth=3)\n(3, false)\n```\n"}],"Base.@timev":[{"Tuple{Any}":" @timev\n\nThis is a verbose version of the `@time` macro. It first prints the same information as\n`@time`, then any non-zero memory allocation counters, and then returns the value of the\nexpression.\n\nSee also [`@time`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> @timev rand(10^6);\n 0.001006 seconds (7 allocations: 7.630 MiB)\nelapsed time (ns): 1005567\nbytes allocated: 8000256\npool allocs: 6\nmalloc() calls: 1\n```\n"}],"Base.⊊":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.sprint":[{"Tuple{Function,Vararg{Any,N} where N}":" sprint(f::Function, args...; context=nothing, sizehint=0)\n\nCall the given function with an I/O stream and the supplied extra arguments.\nEverything written to this I/O stream is returned as a string.\n`context` can be either an [`IOContext`](@ref) whose properties will be used,\nor a `Pair` specifying a property and its value. `sizehint` suggests the capacity\nof the buffer (in bytes).\n\nThe optional keyword argument `context` can be set to `:key=>value` pair\nor an `IO` or [`IOContext`](@ref) object whose attributes are used for the I/O\nstream passed to `f`. The optional `sizehint` is a suggested size (in bytes)\nto allocate for the buffer used to write the string.\n\n# Examples\n```jldoctest\njulia> sprint(show, 66.66666; context=:compact => true)\n\"66.6667\"\n\njulia> sprint(showerror, BoundsError([1], 100))\n\"BoundsError: attempt to access 1-element Array{Int64,1} at index [100]\"\n```\n"}],"Base.something":[{"Union{}":" something(x, y...)\n\nReturn the first value in the arguments which is not equal to [`nothing`](@ref),\nif any. Otherwise throw an error.\nArguments of type [`Some`](@ref) are unwrapped.\n\nSee also [`coalesce`](@ref).\n\n# Examples\n```jldoctest\njulia> something(nothing, 1)\n1\n\njulia> something(Some(1), nothing)\n1\n\njulia> something(missing, nothing)\nmissing\n\njulia> something(nothing, nothing)\nERROR: ArgumentError: No value arguments present\n```\n"}],"Base.@__LINE__":[{"Tuple{}":" @__LINE__ -> Int\n\nExpand to the line number of the location of the macrocall.\nReturn `0` if the line number could not be determined.\n"}],"Base.fieldtypes":[{"Tuple{Type}":" fieldtypes(T::Type)\n\nThe declared types of all fields in a composite DataType `T` as a tuple.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> fieldtypes(Foo)\n(Int64, String)\n```\n"}],"Base.AbstractDict":[{"Union{}":" AbstractDict{K, V}\n\nSupertype for dictionary-like types with keys of type `K` and values of type `V`.\n[`Dict`](@ref), [`IdDict`](@ref) and other types are subtypes of this.\nAn `AbstractDict{K, V}` should be an iterator of `Pair{K, V}`.\n"}],"Base.div":[{"Union{}":" div(x, y)\n ÷(x, y)\n\nThe quotient from Euclidean division. Computes `x/y`, truncated to an integer.\n\n# Examples\n```jldoctest\njulia> 9 ÷ 4\n2\n\njulia> -5 ÷ 3\n-1\n\njulia> 5.0 ÷ 2\n2.0\n```\n"},{"Tuple{Any,Any,RoundingMode}":" div(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient from Euclidean division. Computes x/y, rounded to an integer according\nto the rounding mode `r`. In other words, the quantity\n\n round(x/y,r)\n\nwithout any intermediate rounding.\n\nSee also: [`fld`](@ref), [`cld`](@ref) which are special cases of this function\n\n# Examples:\n```jldoctest\njulia> div(4, 3, RoundDown) # Matches fld(4, 3)\n1\njulia> div(4, 3, RoundUp) # Matches cld(4, 3)\n2\njulia> div(5, 2, RoundNearest)\n2\njulia> div(5, 2, RoundNearestTiesAway)\n3\njulia> div(-5, 2, RoundNearest)\n-2\njulia> div(-5, 2, RoundNearestTiesAway)\n-3\njulia> div(-5, 2, RoundNearestTiesUp)\n-2\n```\n"}],"Base.copyto!":[{"Tuple{AbstractArray,CartesianIndices,AbstractArray,CartesianIndices}":" copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest\n\nCopy the block of `src` in the range of `Rsrc` to the block of `dest`\nin the range of `Rdest`. The sizes of the two regions must match.\n"},{"Tuple{Any,Any}":" copyto!(dest::AbstractArray, src) -> dest\n\n\nCopy all elements from collection `src` to array `dest`, whose length must be greater than\nor equal to the length `n` of `src`. The first `n` elements of `dest` are overwritten,\nthe other elements are left untouched.\n\n# Examples\n```jldoctest\njulia> x = [1., 0., 3., 0., 5.];\n\njulia> y = zeros(7);\n\njulia> copyto!(y, x);\n\njulia> y\n7-element Array{Float64,1}:\n 1.0\n 0.0\n 3.0\n 0.0\n 5.0\n 0.0\n 0.0\n```\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Integer,Array{T,N} where N,Integer,Integer}} where T":" copyto!(dest, do, src, so, N)\n\nCopy `N` elements from collection `src` starting at offset `so`, to array `dest` starting at\noffset `do`. Return `dest`.\n"}],"Base.isbitstype":[{"Tuple{Type}":" isbitstype(T)\n\nReturn `true` if type `T` is a \"plain data\" type,\nmeaning it is immutable and contains no references to other values,\nonly `primitive` types and other `isbitstype` types.\nTypical examples are numeric types such as [`UInt8`](@ref),\n[`Float64`](@ref), and [`Complex{Float64}`](@ref).\nThis category of types is significant since they are valid as type parameters,\nmay not track [`isdefined`](@ref) / [`isassigned`](@ref) status,\nand have a defined layout that is compatible with C.\n\n# Examples\n```jldoctest\njulia> isbitstype(Complex{Float64})\ntrue\n\njulia> isbitstype(Complex)\nfalse\n```\n"}],"Base.repr":[{"Tuple{Any}":" repr(x; context=nothing)\n\nCreate a string from any value using the [`show`](@ref) function.\nYou should not add methods to `repr`; define a `show` method instead.\n\nThe optional keyword argument `context` can be set to an `IO` or [`IOContext`](@ref)\nobject whose attributes are used for the I/O stream passed to `show`.\n\nNote that `repr(x)` is usually similar to how the value of `x` would\nbe entered in Julia. See also [`repr(MIME(\"text/plain\"), x)`](@ref) to instead\nreturn a \"pretty-printed\" version of `x` designed more for human consumption,\nequivalent to the REPL display of `x`.\n\n# Examples\n```jldoctest\njulia> repr(1)\n\"1\"\n\njulia> repr(zeros(3))\n\"[0.0, 0.0, 0.0]\"\n\njulia> repr(big(1/3))\n\"0.333333333333333314829616256247390992939472198486328125\"\n\njulia> repr(big(1/3), context=:compact => true)\n\"0.333333\"\n\n```\n"}],"Base.promote_rule":[{"Union{}":" promote_rule(type1, type2)\n\nSpecifies what type should be used by [`promote`](@ref) when given values of types `type1` and\n`type2`. This function should not be called directly, but should have definitions added to\nit for new types as appropriate.\n"}],"Base.print_matrix_row":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,Array{T,1} where T,Integer,AbstractArray{T,1} where T,AbstractString}":"`print_matrix_row(io, X, A, i, cols, sep)` produces the aligned output for\na single matrix row X[i, cols] where the desired list of columns is given.\nThe corresponding alignment A is used, and the separation between elements\nis specified as string sep.\n`print_matrix_row` will also respect compact output for elements.\n"}],"Base.unsafe_load":[{"Union{Tuple{Ptr}, Tuple{Ptr,Integer}}":" unsafe_load(p::Ptr{T}, i::Integer=1)\n\nLoad a value of type `T` from the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1]`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may segfault your program or return\ngarbage answers, in the same manner as C.\n"}],"Base.LinearIndices":[{"Union{}":" LinearIndices(A::AbstractArray)\n\nReturn a `LinearIndices` array with the same shape and [`axes`](@ref) as `A`,\nholding the linear index of each entry in `A`. Indexing this array with\ncartesian indices allows mapping them to linear indices.\n\nFor arrays with conventional indexing (indices start at 1), or any multidimensional\narray, linear indices range from 1 to `length(A)`. However, for `AbstractVector`s\nlinear indices are `axes(A, 1)`, and therefore do not start at 1 for vectors with\nunconventional indexing.\n\nCalling this function is the \"safe\" way to write algorithms that\nexploit linear indexing.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> b = LinearIndices(A);\n\njulia> extrema(b)\n(1, 210)\n```\n\n LinearIndices(inds::CartesianIndices) -> R\n LinearIndices(sz::Dims) -> R\n LinearIndices((istart:istop, jstart:jstop, ...)) -> R\n\nReturn a `LinearIndices` array with the specified shape or [`axes`](@ref).\n\n# Example\n\nThe main purpose of this constructor is intuitive conversion\nfrom cartesian to linear indexing:\n\n```jldoctest\njulia> linear = LinearIndices((1:3, 1:2))\n3×2 LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}:\n 1 4\n 2 5\n 3 6\n\njulia> linear[1,2]\n4\n```\n"}],"Base.min":[{"Tuple{Any,Any}":" min(x, y, ...)\n\nReturn the minimum of the arguments. See also the [`minimum`](@ref) function\nto take the minimum element from a collection.\n\n# Examples\n```jldoctest\njulia> min(2, 5, 1)\n1\n```\n"}],"Base.SystemError":[{"Union{}":" SystemError(prefix::AbstractString, [errno::Int32])\n\nA system call failed with an error code (in the `errno` global variable).\n"}],"Base.julia_cmd":[{"Union{Tuple{}, Tuple{Any}}":" Base.julia_cmd(juliapath=joinpath(Sys.BINDIR::String, julia_exename()))\n\nReturn a julia command similar to the one of the running process.\nPropagates any of the `--cpu-target`, `--sysimage`, `--compile`, `--sysimage-native-code`,\n`--compiled-modules`, `--inline`, `--check-bounds`, `--optimize`, `-g`,\n`--code-coverage`, and `--depwarn`\ncommand line arguments that are not at their default values.\n\nAmong others, `--math-mode`, `--warn-overwrite`, and `--trace-compile` are notably not propagated currently.\n\n!!! compat \"Julia 1.1\"\n Only the `--cpu-target`, `--sysimage`, `--depwarn`, `--compile` and `--check-bounds` flags were propagated before Julia 1.1.\n"}],"Base.isconcretetype":[{"Tuple{Any}":" isconcretetype(T)\n\nDetermine whether type `T` is a concrete type, meaning it could have direct instances\n(values `x` such that `typeof(x) === T`).\n\n# Examples\n```jldoctest\njulia> isconcretetype(Complex)\nfalse\n\njulia> isconcretetype(Complex{Float32})\ntrue\n\njulia> isconcretetype(Vector{Complex})\ntrue\n\njulia> isconcretetype(Vector{Complex{Float32}})\ntrue\n\njulia> isconcretetype(Union{})\nfalse\n\njulia> isconcretetype(Union{Int,String})\nfalse\n```\n"}],"Base.trailing_ones":[{"Tuple{Integer}":" trailing_ones(x::Integer) -> Integer\n\nNumber of ones trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_ones(3)\n2\n```\n"}],"Base.*":[{"Tuple{Union{AbstractChar, AbstractString},Vararg{Union{AbstractChar, AbstractString},N} where N}":" *(s::Union{AbstractString, AbstractChar}, t::Union{AbstractString, AbstractChar}...) -> AbstractString\n\nConcatenate strings and/or characters, producing a [`String`](@ref). This is equivalent\nto calling the [`string`](@ref) function on the arguments. Concatenation of built-in\nstring types always produces a value of type `String` but other string types may choose\nto return a string of a different type as appropriate.\n\n# Examples\n```jldoctest\njulia> \"Hello \" * \"world\"\n\"Hello world\"\n\njulia> 'j' * \"ulia\"\n\"julia\"\n```\n"},{"Tuple{Union{Regex, AbstractChar, AbstractString},Vararg{Union{Regex, AbstractChar, AbstractString},N} where N}":" *(s::Regex, t::Union{Regex,AbstractString,AbstractChar}) -> Regex\n *(s::Union{Regex,AbstractString,AbstractChar}, t::Regex) -> Regex\n\nConcatenate regexes, strings and/or characters, producing a [`Regex`](@ref).\nString and character arguments must be matched exactly in the resulting regex,\nmeaning that the contained characters are devoid of any special meaning\n(they are quoted with \"\\Q\" and \"\\E\").\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> match(r\"Hello|Good bye\" * ' ' * \"world\", \"Hello world\")\nRegexMatch(\"Hello world\")\n\njulia> r = r\"a|b\" * \"c|d\"\nr\"(?:a|b)\\Qc|d\\E\"\n\njulia> match(r, \"ac\") == nothing\ntrue\n\njulia> match(r, \"ac|d\")\nRegexMatch(\"ac|d\")\n```\n"}],"Base.pairs":[{"Tuple{Any}":" pairs(collection)\n\nReturn an iterator over `key => value` pairs for any\ncollection that maps a set of keys to a set of values.\nThis includes arrays, where the keys are the array indices.\n"}],"Base.pipeline":[{"Tuple{Base.AbstractCmd}":" pipeline(command; stdin, stdout, stderr, append=false)\n\nRedirect I/O to or from the given `command`. Keyword arguments specify which of the\ncommand's streams should be redirected. `append` controls whether file output appends to the\nfile. This is a more general version of the 2-argument `pipeline` function.\n`pipeline(from, to)` is equivalent to `pipeline(from, stdout=to)` when `from` is a command,\nand to `pipeline(to, stdin=from)` when `from` is another kind of data source.\n\n**Examples**:\n\n```julia\nrun(pipeline(`dothings`, stdout=\"out.txt\", stderr=\"errs.txt\"))\nrun(pipeline(`update`, stdout=\"log.txt\", append=true))\n```\n"},{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" pipeline(from, to, ...)\n\nCreate a pipeline from a data source to a destination. The source and destination can be\ncommands, I/O streams, strings, or results of other `pipeline` calls. At least one argument\nmust be a command. Strings refer to filenames. When called with more than two arguments,\nthey are chained together from left to right. For example, `pipeline(a,b,c)` is equivalent to\n`pipeline(pipeline(a,b),c)`. This provides a more concise way to specify multi-stage\npipelines.\n\n**Examples**:\n\n```julia\nrun(pipeline(`ls`, `grep xyz`))\nrun(pipeline(`ls`, \"out.txt\"))\nrun(pipeline(\"out.txt\", `grep xyz`))\n```\n"}],"Base.reverse!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse!(v [, start=1 [, stop=length(v) ]]) -> v\n\nIn-place version of [`reverse`](@ref).\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse!(A);\n\njulia> A\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.error":[{"Tuple{AbstractString}":" error(message::AbstractString)\n\nRaise an `ErrorException` with the given message.\n"},{"Union{Tuple{Vararg{Any,N}}, Tuple{N}} where N":" error(msg...)\n\nRaise an `ErrorException` with the given message.\n"}],"Base.runtests":[{"Union{Tuple{}, Tuple{Any}}":" Base.runtests(tests=[\"all\"]; ncores=ceil(Int, Sys.CPU_THREADS / 2),\n exit_on_error=false, [seed])\n\nRun the Julia unit tests listed in `tests`, which can be either a string or an array of\nstrings, using `ncores` processors. If `exit_on_error` is `false`, when one test\nfails, all remaining tests in other files will still be run; they are otherwise discarded,\nwhen `exit_on_error == true`.\nIf a seed is provided via the keyword argument, it is used to seed the\nglobal RNG in the context where the tests are run; otherwise the seed is chosen randomly.\n"}],"Base.isone":[{"Tuple{Any}":" isone(x)\n\nReturn `true` if `x == one(x)`; if `x` is an array, this checks whether\n`x` is an identity matrix.\n\n# Examples\n```jldoctest\njulia> isone(1.0)\ntrue\n\njulia> isone([1 0; 0 2])\nfalse\n\njulia> isone([1 0; 0 true])\ntrue\n```\n"}],"Base.deepcopy":[{"Tuple{Any}":" deepcopy(x)\n\nCreate a deep copy of `x`: everything is copied recursively, resulting in a fully\nindependent object. For example, deep-copying an array produces a new array whose elements\nare deep copies of the original elements. Calling `deepcopy` on an object should generally\nhave the same effect as serializing and then deserializing it.\n\nAs a special case, functions can only be actually deep-copied if they are anonymous,\notherwise they are just copied. The difference is only relevant in the case of closures,\ni.e. functions which may contain hidden internal references.\n\nWhile it isn't normally necessary, user-defined types can override the default `deepcopy`\nbehavior by defining a specialized version of the function\n`deepcopy_internal(x::T, dict::IdDict)` (which shouldn't otherwise be used),\nwhere `T` is the type to be specialized for, and `dict` keeps track of objects copied\nso far within the recursion. Within the definition, `deepcopy_internal` should be used\nin place of `deepcopy`, and the `dict` variable should be\nupdated as appropriate before returning.\n"}],"Base.@__FILE__":[{"Tuple{}":" @__FILE__ -> AbstractString\n\nExpand to a string with the path to the file containing the\nmacrocall, or an empty string if evaluated by `julia -e `.\nReturn `nothing` if the macro was missing parser source information.\nAlternatively see [`PROGRAM_FILE`](@ref).\n"}],"Base.precision":[{"Union{}":" precision(num::AbstractFloat)\n\nGet the precision of a floating point number, as defined by the effective number of bits in\nthe mantissa.\n"}],"Base.isnothing":[{"Tuple{Any}":" isnothing(x)\n\nReturn `true` if `x === nothing`, and return `false` if not.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.eps":[{"Tuple{Type{#s662} where #s662<:AbstractFloat}":" eps(::Type{T}) where T<:AbstractFloat\n eps()\n\nReturn the *machine epsilon* of the floating point type `T` (`T = Float64` by\ndefault). This is defined as the gap between 1 and the next largest value representable by\n`typeof(one(T))`, and is equivalent to `eps(one(T))`. (Since `eps(T)` is a\nbound on the *relative error* of `T`, it is a \"dimensionless\" quantity like [`one`](@ref).)\n\n# Examples\n```jldoctest\njulia> eps()\n2.220446049250313e-16\n\njulia> eps(Float32)\n1.1920929f-7\n\njulia> 1.0 + eps()\n1.0000000000000002\n\njulia> 1.0 + eps()/2\n1.0\n```\n"},{"Tuple{AbstractFloat}":" eps(x::AbstractFloat)\n\nReturn the *unit in last place* (ulp) of `x`. This is the distance between consecutive\nrepresentable floating point values at `x`. In most cases, if the distance on either side\nof `x` is different, then the larger of the two is taken, that is\n\n eps(x) == max(x-prevfloat(x), nextfloat(x)-x)\n\nThe exceptions to this rule are the smallest and largest finite values\n(e.g. `nextfloat(-Inf)` and `prevfloat(Inf)` for [`Float64`](@ref)), which round to the\nsmaller of the values.\n\nThe rationale for this behavior is that `eps` bounds the floating point rounding\nerror. Under the default `RoundNearest` rounding mode, if ``y`` is a real number and ``x``\nis the nearest floating point number to ``y``, then\n\n```math\n|y-x| \\leq \\operatorname{eps}(x)/2.\n```\n\n# Examples\n```jldoctest\njulia> eps(1.0)\n2.220446049250313e-16\n\njulia> eps(prevfloat(2.0))\n2.220446049250313e-16\n\njulia> eps(2.0)\n4.440892098500626e-16\n\njulia> x = prevfloat(Inf) # largest finite Float64\n1.7976931348623157e308\n\njulia> x + eps(x)/2 # rounds up\nInf\n\njulia> x + prevfloat(eps(x)/2) # rounds down\n1.7976931348623157e308\n```\n"}],"Base.get":[{"Tuple{Function,Any,Any}":" get(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, return\n`f()`. Use [`get!`](@ref) to also store the default value in the dictionary.\n\nThis is intended to be called using `do` block syntax\n\n```julia\nget(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get(collection, key, default)\n\nReturn the value stored for the given key, or the given default value if no mapping for the\nkey is present.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> get(d, \"a\", 3)\n1\n\njulia> get(d, \"c\", 3)\n3\n```\n"}],"Base.identity":[{"Tuple{Any}":" identity(x)\n\nThe identity function. Returns its argument.\n\n# Examples\n```jldoctest\njulia> identity(\"Well, what did you expect?\")\n\"Well, what did you expect?\"\n```\n"}],"Base.IOStream":[{"Union{}":" IOStream\n\nA buffered IO stream wrapping an OS file descriptor.\nMostly used to represent files returned by [`open`](@ref).\n"}],"Base.im":[{"Union{}":" im\n\nThe imaginary unit.\n\n# Examples\n```jldoctest\njulia> im * im\n-1 + 0im\n```\n"}],"Base.typemax":[{"Union{}":" typemax(T)\n\nThe highest value representable by the given (real) numeric `DataType`.\n\n# Examples\n```jldoctest\njulia> typemax(Int8)\n127\n\njulia> typemax(UInt32)\n0xffffffff\n```\n"}],"Base.atreplinit":[{"Tuple{Function}":" atreplinit(f)\n\nRegister a one-argument function to be called before the REPL interface is initialized in\ninteractive sessions; this is useful to customize the interface. The argument of `f` is the\nREPL object. This function should be called from within the `.julia/config/startup.jl`\ninitialization file.\n"}],"Base.size":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" size(A::AbstractArray, [dim])\n\nReturn a tuple containing the dimensions of `A`. Optionally you can specify a\ndimension to just get the length of that dimension.\n\nNote that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)\nmay be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (2,3,4));\n\njulia> size(A)\n(2, 3, 4)\n\njulia> size(A, 2)\n3\n```\n"}],"Base.backtrace":[{"Tuple{}":" backtrace()\n\nGet a backtrace object for the current program point.\n"}],"Base.filter!":[{"Tuple{Any,AbstractDict}":" filter!(f, d::AbstractDict)\n\nUpdate `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Example\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\", 3=>\"c\")\nDict{Int64,String} with 3 entries:\n 2 => \"b\"\n 3 => \"c\"\n 1 => \"a\"\n\njulia> filter!(p->isodd(p.first), d)\nDict{Int64,String} with 2 entries:\n 3 => \"c\"\n 1 => \"a\"\n```\n"},{"Tuple{Any,AbstractArray{T,1} where T}":" filter!(f, a::AbstractVector)\n\nUpdate `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> filter!(isodd, Vector(1:10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"}],"Base.codeunits":[{"Tuple{AbstractString}":" codeunits(s::AbstractString)\n\nObtain a vector-like object containing the code units of a string.\nReturns a `CodeUnits` wrapper by default, but `codeunits` may optionally be defined\nfor new string types if necessary.\n"}],"Base.<":[{"Tuple{Any}":" <(x)\n\nCreate a function that compares its argument to `x` using [`<`](@ref), i.e.\na function equivalent to `y -> y < x`.\nThe returned function is of type `Base.Fix2{typeof(<)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <(x, y)\n\nLess-than comparison operator. Falls back to [`isless`](@ref).\nBecause of the behavior of floating-point NaN values, this operator implements\na partial order.\n\n# Implementation\nNew numeric types with a canonical partial order should implement this function for\ntwo arguments of the new type.\nTypes with a canonical total order should implement [`isless`](@ref) instead.\n(x < y) | (x == y)\n\n# Examples\n```jldoctest\njulia> 'a' < 'b'\ntrue\n\njulia> \"abc\" < \"abd\"\ntrue\n\njulia> 5 < 3\nfalse\n```\n"}],"Base.haskey":[{"Tuple{Dict,Any}":" haskey(collection, key) -> Bool\n\nDetermine whether a collection has a mapping for a given `key`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> haskey(D, 'a')\ntrue\n\njulia> haskey(D, 'c')\nfalse\n```\n"}],"Base.circshift":[{"Tuple{AbstractArray,Any}":" circshift(A, shifts)\n\nCircularly shift, i.e. rotate, the data in an array. The second argument is a tuple or\nvector giving the amount to shift in each dimension, or an integer to shift only in the\nfirst dimension.\n\n# Examples\n```jldoctest\njulia> b = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> circshift(b, (0,2))\n4×4 Array{Int64,2}:\n 9 13 1 5\n 10 14 2 6\n 11 15 3 7\n 12 16 4 8\n\njulia> circshift(b, (-1,0))\n4×4 Array{Int64,2}:\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n 1 5 9 13\n\njulia> a = BitArray([true, true, false, false, true])\n5-element BitArray{1}:\n 1\n 1\n 0\n 0\n 1\n\njulia> circshift(a, 1)\n5-element BitArray{1}:\n 1\n 1\n 1\n 0\n 0\n\njulia> circshift(a, -1)\n5-element BitArray{1}:\n 1\n 0\n 0\n 1\n 1\n```\n\nSee also [`circshift!`](@ref).\n"}],"Base.acquire":[{"Tuple{Base.Semaphore}":" acquire(s::Semaphore)\n\nWait for one of the `sem_size` permits to be available,\nblocking until one can be acquired.\n"}],"Base.mod":[{"Tuple{Integer,Base.OneTo}":" mod(x::Integer, r::AbstractUnitRange)\n\nFind `y` in the range `r` such that ``x ≡ y (mod n)``, where `n = length(r)`,\ni.e. `y = mod(x - first(r), n) + first(r)`.\n\nSee also: [`mod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod(0, Base.OneTo(3))\n3\n\njulia> mod(3, 0:2)\n0\n```\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"},{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" mod(x, y)\n rem(x, y, RoundDown)\n\nThe reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored\ndivision by `y`, i.e. `x - y*fld(x,y)` if computed without intermediate rounding.\n\nThe result will have the same sign as `y`, and magnitude less than `abs(y)` (with some\nexceptions, see note below).\n\n!!! note\n\n When used with floating point values, the exact result may not be representable by the\n type, and so rounding error may occur. In particular, if the exact result is very\n close to `y`, then it may be rounded to `y`.\n\n```jldoctest\njulia> mod(8, 3)\n2\n\njulia> mod(9, 3)\n0\n\njulia> mod(8.9, 3)\n2.9000000000000004\n\njulia> mod(eps(), 3)\n2.220446049250313e-16\n\njulia> mod(-eps(), 3)\n3.0\n```\n"}],"Base.mapfoldl":[{"Tuple{Any,Any,Any}":" mapfoldl(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed left associativity, as in [`foldl`](@ref).\nIf provided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.MappingRF":[{"Union{}":" MappingRF(f, rf) -> rf′\n\nCreate a mapping reducing function `rf′(acc, x) = rf(acc, f(x))`.\n"}],"Base.float":[{"Tuple{Any}":" float(x)\n\nConvert a number or array to a floating point data type.\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" float(T::Type)\n\nReturn an appropriate type to represent a value of type `T` as a floating point value.\nEquivalent to `typeof(float(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> float(Complex{Int})\nComplex{Float64}\n\njulia> float(Int)\nFloat64\n```\n"}],"Base.asyncmap":[{"Tuple{Any,Vararg{Any,N} where N}":" asyncmap(f, c...; ntasks=0, batch_size=nothing)\n\nUses multiple concurrent tasks to map `f` over a collection (or multiple\nequal length collections). For multiple collection arguments, `f` is\napplied elementwise.\n\n`ntasks` specifies the number of tasks to run concurrently.\nDepending on the length of the collections, if `ntasks` is unspecified,\nup to 100 tasks will be used for concurrent mapping.\n\n`ntasks` can also be specified as a zero-arg function. In this case, the\nnumber of tasks to run in parallel is checked before processing every element and a new\ntask started if the value of `ntasks_func` is less than the current number\nof tasks.\n\nIf `batch_size` is specified, the collection is processed in batch mode. `f` must\nthen be a function that must accept a `Vector` of argument tuples and must\nreturn a vector of results. The input vector will have a length of `batch_size` or less.\n\nThe following examples highlight execution in different tasks by returning\nthe `objectid` of the tasks in which the mapping function is executed.\n\nFirst, with `ntasks` undefined, each element is processed in a different task.\n```\njulia> tskoid() = objectid(current_task());\n\njulia> asyncmap(x->tskoid(), 1:5)\n5-element Array{UInt64,1}:\n 0x6e15e66c75c75853\n 0x440f8819a1baa682\n 0x9fb3eeadd0c83985\n 0xebd3e35fe90d4050\n 0x29efc93edce2b961\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5)))\n5\n```\n\nWith `ntasks=2` all elements are processed in 2 tasks.\n```\njulia> asyncmap(x->tskoid(), 1:5; ntasks=2)\n5-element Array{UInt64,1}:\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))\n2\n```\n\nWith `batch_size` defined, the mapping function needs to be changed to accept an array\nof argument tuples and return an array of results. `map` is used in the modified mapping\nfunction to achieve this.\n```\njulia> batch_func(input) = map(x->string(\"args_tuple: \", x, \", element_val: \", x[1], \", task: \", tskoid()), input)\nbatch_func (generic function with 1 method)\n\njulia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)\n5-element Array{String,1}:\n \"args_tuple: (1,), element_val: 1, task: 9118321258196414413\"\n \"args_tuple: (2,), element_val: 2, task: 4904288162898683522\"\n \"args_tuple: (3,), element_val: 3, task: 9118321258196414413\"\n \"args_tuple: (4,), element_val: 4, task: 4904288162898683522\"\n \"args_tuple: (5,), element_val: 5, task: 9118321258196414413\"\n```\n\n!!! note\n Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently,\n `asyncmap` is beneficial only when the mapping function involves any I/O - disk, network, remote\n worker invocation, etc.\n\n"}],"Base.fullname":[{"Tuple{Module}":" fullname(m::Module)\n\nGet the fully-qualified name of a module as a tuple of symbols. For example,\n\n# Examples\n```jldoctest\njulia> fullname(Base.Iterators)\n(:Base, :Iterators)\n\njulia> fullname(Main)\n(:Main,)\n```\n"}],"Base.stderr":[{"Union{}":" stderr\n\nGlobal variable referring to the standard error stream.\n"}],"Base.sizehint!":[{"Union{}":" sizehint!(s, n)\n\nSuggest that collection `s` reserve capacity for at least `n` elements. This can improve performance.\n"}],"Base.reshape":[{"Union{}":" reshape(A, dims...) -> AbstractArray\n reshape(A, dims) -> AbstractArray\n\nReturn an array with the same data as `A`, but with different\ndimension sizes or number of dimensions. The two arrays share the same\nunderlying data, so that the result is mutable if and only if `A` is\nmutable, and setting elements of one alters the values of the other.\n\nThe new dimensions may be specified either as a list of arguments or\nas a shape tuple. At most one dimension may be specified with a `:`,\nin which case its length is computed such that its product with all\nthe specified dimensions is equal to the length of the original array\n`A`. The total number of elements must not change.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:16)\n16-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n 7\n 8\n 9\n 10\n 11\n 12\n 13\n 14\n 15\n 16\n\njulia> reshape(A, (4, 4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reshape(A, 2, :)\n2×8 Array{Int64,2}:\n 1 3 5 7 9 11 13 15\n 2 4 6 8 10 12 14 16\n\njulia> reshape(1:6, 2, 3)\n2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:\n 1 3 5\n 2 4 6\n```\n"}],"Base.wait":[{"Tuple{Base.GenericCondition}":" wait([x])\n\nBlock the current task until some event occurs, depending on the type of the argument:\n\n* [`Channel`](@ref): Wait for a value to be appended to the channel.\n* [`Condition`](@ref): Wait for [`notify`](@ref) on a condition.\n* `Process`: Wait for a process or process chain to exit. The `exitcode` field of a process\n can be used to determine success or failure.\n* [`Task`](@ref): Wait for a `Task` to finish. If the task fails with an exception, a\n `TaskFailedException` (which wraps the failed task) is thrown.\n* [`RawFD`](@ref): Wait for changes on a file descriptor (see the `FileWatching` package).\n\nIf no argument is passed, the task blocks for an undefined period. A task can only be\nrestarted by an explicit call to [`schedule`](@ref) or [`yieldto`](@ref).\n\nOften `wait` is called within a `while` loop to ensure a waited-for condition is met before\nproceeding.\n"}],"Base.run":[{"Tuple{Base.AbstractCmd,Vararg{Any,N} where N}":" run(command, args...; wait::Bool = true)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual). Throws an error if anything goes wrong, including the process\nexiting with a non-zero status (when `wait` is true).\n\nIf `wait` is false, the process runs asynchronously. You can later wait for it and check\nits exit status by calling `success` on the returned process object.\n\nWhen `wait` is false, the process' I/O streams are directed to `devnull`.\nWhen `wait` is true, I/O streams are shared with the parent process.\nUse [`pipeline`](@ref) to control I/O redirection.\n"}],"Base.isnan":[{"Tuple{AbstractFloat}":" isnan(f) -> Bool\n\nTest whether a number value is a NaN, an indeterminate value which is neither an infinity\nnor a finite number (\"not a number\").\n"}],"Base.hasproperty":[{"Tuple{Any,Symbol}":" hasproperty(x, s::Symbol)\n\nReturn a boolean indicating whether the object `x` has `s` as one of its own properties.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.isbits":[{"Tuple{Any}":" isbits(x)\n\nReturn `true` if `x` is an instance of an `isbitstype` type.\n"}],"Base.eltype":[{"Tuple{Type}":" eltype(type)\n\nDetermine the type of the elements generated by iterating a collection of the given `type`.\nFor dictionary types, this will be a `Pair{KeyType,ValType}`. The definition\n`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed\ninstead of types. However the form that accepts a type argument should be defined for new\ntypes.\n\n# Examples\n```jldoctest\njulia> eltype(fill(1f0, (2,2)))\nFloat32\n\njulia> eltype(fill(0x1, (2,2)))\nUInt8\n```\n"}],"Base.retry":[{"Tuple{Any}":" retry(f; delays=ExponentialBackOff(), check=nothing) -> Function\n\nReturn an anonymous function that calls function `f`. If an exception arises,\n`f` is repeatedly called again, each time `check` returns `true`, after waiting the\nnumber of seconds specified in `delays`. `check` should input `delays`'s\ncurrent state and the `Exception`.\n\n!!! compat \"Julia 1.2\"\n Before Julia 1.2 this signature was restricted to `f::Function`.\n\n# Examples\n```julia\nretry(f, delays=fill(5.0, 3))\nretry(f, delays=rand(5:10, 2))\nretry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))\nretry(http_get, check=(s,e)->e.status == \"503\")(url)\nretry(read, check=(s,e)->isa(e, IOError))(io, 128; all=false)\n```\n"}],"Base.reinterpret":[{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" reinterpret(type, A)\n\nChange the type-interpretation of a block of memory.\nFor arrays, this constructs a view of the array with the same binary data as the given\narray, but with the specified element type.\nFor example,\n`reinterpret(Float32, UInt32(7))` interprets the 4 bytes corresponding to `UInt32(7)` as a\n[`Float32`](@ref).\n\n# Examples\n```jldoctest\njulia> reinterpret(Float32, UInt32(7))\n1.0f-44\n\njulia> reinterpret(Float32, UInt32[1 2 3 4 5])\n1×5 reinterpret(Float32, ::Array{UInt32,2}):\n 1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45\n```\n"}],"Base.@irrational":[{"Tuple{Any,Any,Any}":"\t@irrational sym val def\n\t@irrational(sym, val, def)\n\nDefine a new `Irrational` value, `sym`, with pre-computed `Float64` value `val`,\nand arbitrary-precision definition in terms of `BigFloat`s given be the expression `def`.\n"}],"Base.NaN32":[{"Union{}":" NaN32\n\nA not-a-number value of type [`Float32`](@ref).\n"}],"Base.deleteat!":[{"Tuple{Array{T,1} where T,Integer}":" deleteat!(a::Vector, i::Integer)\n\nRemove the item at the given `i` and return the modified `a`. Subsequent items\nare shifted to fill the resulting gap.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 2)\n5-element Array{Int64,1}:\n 6\n 4\n 3\n 2\n 1\n```\n"},{"Tuple{Array{T,1} where T,Any}":" deleteat!(a::Vector, inds)\n\nRemove the items at the indices given by `inds`, and return the modified `a`.\nSubsequent items are shifted to fill the resulting gap.\n\n`inds` can be either an iterator or a collection of sorted and unique integer indices,\nor a boolean vector of the same length as `a` with `true` indicating entries to delete.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))\nERROR: ArgumentError: indices must be unique and sorted\nStacktrace:\n[...]\n```\n"}],"Base.selectdim":[{"Tuple{AbstractArray,Integer,Any}":" selectdim(A, d::Integer, i)\n\nReturn a view of all the data of `A` where the index for dimension `d` equals `i`.\n\nEquivalent to `view(A,:,:,...,i,:,:,...)` where `i` is in position `d`.\n\n# Examples\n```jldoctest\njulia> A = [1 2 3 4; 5 6 7 8]\n2×4 Array{Int64,2}:\n 1 2 3 4\n 5 6 7 8\n\njulia> selectdim(A, 2, 3)\n2-element view(::Array{Int64,2}, :, 3) with eltype Int64:\n 3\n 7\n```\n"}],"Base.hasfield":[{"Union{Tuple{T}, Tuple{Type{T},Symbol}} where T":" hasfield(T::Type, name::Symbol)\n\nReturn a boolean indicating whether `T` has `name` as one of its own fields.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.pop!":[{"Tuple{Array{T,1} where T}":" pop!(collection) -> item\n\nRemove an item in `collection` and return it. If `collection` is an\nordered container, the last item is returned.\n\n# Examples\n```jldoctest\njulia> A=[1, 2, 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> pop!(A)\n3\n\njulia> A\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> S = Set([1, 2])\nSet{Int64} with 2 elements:\n 2\n 1\n\njulia> pop!(S)\n2\n\njulia> S\nSet{Int64} with 1 element:\n 1\n\njulia> pop!(Dict(1=>2))\n1 => 2\n```\n"},{"Tuple{Any,Any,Any}":" pop!(collection, key[, default])\n\nDelete and return the mapping for `key` if it exists in `collection`, otherwise return\n`default`, or throw an error if `default` is not specified.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> pop!(d, \"a\")\n1\n\njulia> pop!(d, \"d\")\nERROR: KeyError: key \"d\" not found\nStacktrace:\n[...]\n\njulia> pop!(d, \"e\", 4)\n4\n```\n"}],"Base.intersect":[{"Tuple{AbstractSet,Any,Vararg{Any,N} where N}":" intersect(s, itrs...)\n ∩(s, itrs...)\n\nConstruct the intersection of sets.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> intersect([1, 2, 3], [3, 4, 5])\n1-element Array{Int64,1}:\n 3\n\njulia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])\n2-element Array{Int64,1}:\n 4\n 6\n\njulia> intersect(Set([1, 2]), BitSet([2, 3]))\nSet{Int64} with 1 element:\n 2\n```\n"}],"Base.isimmutable":[{"Tuple{Any}":" isimmutable(v) -> Bool\n\nReturn `true` iff value `v` is immutable. See [Mutable Composite Types](@ref)\nfor a discussion of immutability. Note that this function works on values, so if you give it\na type, it will tell you that a value of `DataType` is mutable.\n\n# Examples\n```jldoctest\njulia> isimmutable(1)\ntrue\n\njulia> isimmutable([1,2])\nfalse\n```\n"}],"Base.denominator":[{"Tuple{Integer}":" denominator(x)\n\nDenominator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> denominator(2//3)\n3\n\njulia> denominator(4)\n1\n```\n"}],"Base.@goto":[{"Tuple{Symbol}":" @goto name\n\n`@goto name` unconditionally jumps to the statement at the location [`@label name`](@ref).\n\n`@label` and `@goto` cannot create jumps to different top-level statements. Attempts cause an\nerror. To still use `@goto`, enclose the `@label` and `@goto` in a block.\n"}],"Base.bitsunionsize":[{"Tuple{Union}":" Base.bitsunionsize(U::Union)\n\nFor a `Union` of [`isbitstype`](@ref) types, return the size of the largest type; assumes `Base.isbitsunion(U) == true`.\n\n# Examples\n```jldoctest\njulia> Base.bitsunionsize(Union{Float64, UInt8})\n0x0000000000000008\n\njulia> Base.bitsunionsize(Union{Float64, UInt8, Int128})\n0x0000000000000010\n```\n"}],"Base.unsafe_wrap":[{"Union{Tuple{N}, Tuple{T}, Tuple{Union{Type{Array}, Type{Array{T,N} where N}, Type{Array{T,N}}},Ptr{T},Tuple{Vararg{Int64,N}}}} where N where T":" unsafe_wrap(Array, pointer::Ptr{T}, dims; own = false)\n\nWrap a Julia `Array` object around the data at the address given by `pointer`,\nwithout making a copy. The pointer element type `T` determines the array\nelement type. `dims` is either an integer (for a 1d array) or a tuple of the array dimensions.\n`own` optionally specifies whether Julia should take ownership of the memory,\ncalling `free` on the pointer when the array is no longer referenced.\n\nThis function is labeled \"unsafe\" because it will crash if `pointer` is not\na valid memory address to data of the requested length.\n"}],"Base.nextpow":[{"Tuple{Real,Real}":" nextpow(a, x)\n\nThe smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be\ngreater than 1, and `x` must be greater than 0.\n\n# Examples\n```jldoctest\njulia> nextpow(2, 7)\n8\n\njulia> nextpow(2, 9)\n16\n\njulia> nextpow(5, 20)\n25\n\njulia> nextpow(4, 16)\n16\n```\n\nSee also [`prevpow`](@ref).\n"}],"Base.all!":[{"Tuple{Any,Any}":" all!(r, A)\n\nTest whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> all!([1; 1], A)\n2-element Array{Int64,1}:\n 0\n 0\n\njulia> all!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.map":[{"Tuple{Any,Any}":" map(f, c...) -> collection\n\nTransform collection `c` by applying `f` to each element. For multiple collection arguments,\napply `f` elementwise.\n\nSee also: [`mapslices`](@ref)\n\n# Examples\n```jldoctest\njulia> map(x -> x * 2, [1, 2, 3])\n3-element Array{Int64,1}:\n 2\n 4\n 6\n\njulia> map(+, [1, 2, 3], [10, 20, 30])\n3-element Array{Int64,1}:\n 11\n 22\n 33\n```\n"}],"Base.∋":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"}],"Base.datatype_haspadding":[{"Tuple{DataType}":" Base.datatype_haspadding(dt::DataType) -> Bool\n\nReturn whether the fields of instances of this type are packed in memory,\nwith no intervening padding bytes.\nCan be called on any `isconcretetype`.\n"}],"Base.hex2bytes":[{"Union{}":" hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})\n\nGiven a string or array `s` of ASCII codes for a sequence of hexadecimal digits, returns a\n`Vector{UInt8}` of bytes corresponding to the binary representation: each successive pair\nof hexadecimal digits in `s` gives the value of one byte in the return vector.\n\nThe length of `s` must be even, and the returned array has half of the length of `s`.\nSee also [`hex2bytes!`](@ref) for an in-place version, and [`bytes2hex`](@ref) for the inverse.\n\n# Examples\n```jldoctest\njulia> s = string(12345, base = 16)\n\"3039\"\n\njulia> hex2bytes(s)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> a = b\"01abEF\"\n6-element Base.CodeUnits{UInt8,String}:\n 0x30\n 0x31\n 0x61\n 0x62\n 0x45\n 0x46\n\njulia> hex2bytes(a)\n3-element Array{UInt8,1}:\n 0x01\n 0xab\n 0xef\n```\n"}],"Base.ENDIAN_BOM":[{"Union{}":" ENDIAN_BOM\n\nThe 32-bit byte-order-mark indicates the native byte order of the host machine.\nLittle-endian machines will contain the value `0x04030201`. Big-endian machines will contain\nthe value `0x01020304`.\n"}],"Base.replace":[{"Tuple{AbstractString,Pair}":" replace(s::AbstractString, pat=>r; [count::Integer])\n\nSearch for the given pattern `pat` in `s`, and replace each occurrence with `r`.\nIf `count` is provided, replace at most `count` occurrences.\n`pat` may be a single character, a vector or a set of characters, a string,\nor a regular expression.\nIf `r` is a function, each occurrence is replaced with `r(s)`\nwhere `s` is the matched substring (when `pat` is a `Regex` or `AbstractString`) or\ncharacter (when `pat` is an `AbstractChar` or a collection of `AbstractChar`).\nIf `pat` is a regular expression and `r` is a [`SubstitutionString`](@ref), then capture group\nreferences in `r` are replaced with the corresponding matched text.\nTo remove instances of `pat` from `string`, set `r` to the empty `String` (`\"\"`).\n\n# Examples\n```jldoctest\njulia> replace(\"Python is a programming language.\", \"Python\" => \"Julia\")\n\"Julia is a programming language.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"slow\", count=1)\n\"The slow foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"\", count=1)\n\"The foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", r\"fox(es)?\" => s\"bus\\1\")\n\"The quick buses run quickly.\"\n```\n"},{"Tuple{Union{Function, Type},Any}":" replace(new::Function, A; [count::Integer])\n\nReturn a copy of `A` where each value `x` in `A` is replaced by `new(x)`\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace(A, old_new::Pair...; [count::Integer])\n\nReturn a copy of collection `A` where, for each pair `old=>new` in `old_new`,\nall occurrences of `old` are replaced by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\n\nThe element type of the result is chosen using promotion (see [`promote_type`](@ref))\nbased on the element type of `A` and on the types of the `new` values in pairs.\nIf `count` is omitted and the element type of `A` is a `Union`, the element type\nof the result will not include singleton types which are replaced with values of\na different type: for example, `Union{T,Missing}` will become `T` if `missing` is\nreplaced.\n\nSee also [`replace!`](@ref).\n\n# Examples\n```jldoctest\njulia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace([1, missing], missing=>0)\n2-element Array{Int64,1}:\n 1\n 0\n```\n"}],"Base.|":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" |(x, y)\n\nBitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `false`.\n\n# Examples\n```jldoctest\njulia> 4 | 10\n14\n\njulia> 4 | 1\n5\n\njulia> true | missing\ntrue\n\njulia> false | missing\nmissing\n```\n"}],"Base.fld1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" fld1(x, y)\n\nFlooring division, returning a value consistent with `mod1(x,y)`\n\nSee also: [`mod1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> fld1(x, y)\n4\n\njulia> x == fld(x, y) * y + mod(x, y)\ntrue\n\njulia> x == (fld1(x, y) - 1) * y + mod1(x, y)\ntrue\n```\n"}],"Base.ismarked":[{"Tuple{IO}":" ismarked(s)\n\nReturn `true` if stream `s` is marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`reset`](@ref).\n"}],"Base.trylock":[{"Tuple{ReentrantLock}":" trylock(lock) -> Success (Boolean)\n\nAcquire the lock if it is available,\nand return `true` if successful.\nIf the lock is already locked by a different task/thread,\nreturn `false`.\n\nEach successful `trylock` must be matched by an [`unlock`](@ref).\n"}],"Base.release":[{"Tuple{Base.Semaphore}":" release(s::Semaphore)\n\nReturn one permit to the pool,\npossibly allowing another task to acquire it\nand resume execution.\n"}],"Base.Cmd":[{"Union{}":" Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)\n\nConstruct a new `Cmd` object, representing an external program and arguments, from `cmd`,\nwhile changing the settings of the optional keyword arguments:\n\n* `ignorestatus::Bool`: If `true` (defaults to `false`), then the `Cmd` will not throw an\n error if the return code is nonzero.\n* `detach::Bool`: If `true` (defaults to `false`), then the `Cmd` will be run in a new\n process group, allowing it to outlive the `julia` process and not have Ctrl-C passed to\n it.\n* `windows_verbatim::Bool`: If `true` (defaults to `false`), then on Windows the `Cmd` will\n send a command-line string to the process with no quoting or escaping of arguments, even\n arguments containing spaces. (On Windows, arguments are sent to a program as a single\n \"command-line\" string, and programs are responsible for parsing it into arguments. By\n default, empty arguments and arguments with spaces or tabs are quoted with double quotes\n `\"` in the command line, and `\\` or `\"` are preceded by backslashes.\n `windows_verbatim=true` is useful for launching programs that parse their command line in\n nonstandard ways.) Has no effect on non-Windows systems.\n* `windows_hide::Bool`: If `true` (defaults to `false`), then on Windows no new console\n window is displayed when the `Cmd` is executed. This has no effect if a console is\n already open or on non-Windows systems.\n* `env`: Set environment variables to use when running the `Cmd`. `env` is either a\n dictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, an\n array or tuple of `\"var\"=>val` pairs, or `nothing`. In order to modify (rather than\n replace) the existing environment, create `env` by `copy(ENV)` and then set\n `env[\"var\"]=val` as desired.\n* `dir::AbstractString`: Specify a working directory for the command (instead\n of the current directory).\n\nFor any keywords that are not specified, the current settings from `cmd` are used. Normally,\nto create a `Cmd` object in the first place, one uses backticks, e.g.\n\n Cmd(`echo \"Hello world\"`, ignorestatus=true, detach=false)\n"}],"Base.FilteringRF":[{"Union{}":" FilteringRF(f, rf) -> rf′\n\nCreate a filtering reducing function `rf′(acc, x) = f(x) ? rf(acc, x) : acc`.\n"}],"Base.typejoin":[{"Tuple{}":" typejoin(T, S)\n\n\nReturn the closest common ancestor of `T` and `S`, i.e. the narrowest type from which\nthey both inherit.\n"}],"Base.IOBuffer":[{"Tuple{String}":" IOBuffer(string::String)\n\nCreate a read-only `IOBuffer` on the data underlying the given string.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"Haho\");\n\njulia> String(take!(io))\n\"Haho\"\n\njulia> String(take!(io))\n\"Haho\"\n```\n"},{"Tuple{AbstractArray{UInt8,1}}":" IOBuffer([data::AbstractVector{UInt8}]; keywords...) -> IOBuffer\n\nCreate an in-memory I/O stream, which may optionally operate on a pre-existing array.\n\nIt may take optional keyword arguments:\n- `read`, `write`, `append`: restricts operations to the buffer; see `open` for details.\n- `truncate`: truncates the buffer size to zero length.\n- `maxsize`: specifies a size beyond which the buffer may not be grown.\n- `sizehint`: suggests a capacity of the buffer (`data` must implement `sizehint!(data, size)`).\n\nWhen `data` is not given, the buffer will be both readable and writable by default.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> io = IOBuffer(b\"JuliaLang is a GitHub organization.\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=35, maxsize=Inf, ptr=1, mark=-1)\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization.\"\n\njulia> write(io, \"This isn't writable.\")\nERROR: ArgumentError: ensureroom failed, IOBuffer is not writeable\n\njulia> io = IOBuffer(UInt8[], read=true, write=true, maxsize=34)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=34, ptr=1, mark=-1)\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n34\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization\"\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=false)))\n4\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=true)))\n0\n```\n"}],"Base.argmax":[{"Tuple{Any}":" argmax(itr) -> Integer\n\nReturn the index of the maximum element in a collection. If there are multiple maximal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmax([8,0.1,-9,pi])\n1\n\njulia> argmax([1,7,7,6])\n2\n\njulia> argmax([1,7,7,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmax(A; dims) -> indices\n\nFor an array input, return the indices of the maximum elements over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmax(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(2, 1) CartesianIndex(2, 2)\n\njulia> argmax(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n```\n"}],"Base.isperm":[{"Tuple{Any}":" isperm(v) -> Bool\n\nReturn `true` if `v` is a valid permutation.\n\n# Examples\n```jldoctest\njulia> isperm([1; 2])\ntrue\n\njulia> isperm([1; 3])\nfalse\n```\n"}],"Base.Cushort":[{"Union{}":" Cushort\n\nEquivalent to the native `unsigned short` c-type ([`UInt16`](@ref)).\n"}],"Base.allunique":[{"Tuple{Any}":" allunique(itr) -> Bool\n\nReturn `true` if all values from `itr` are distinct when compared with [`isequal`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> allunique([a, a])\nfalse\n```\n"}],"Base.AlwaysLockedST":[{"Union{}":" AlwaysLockedST\n\nThis struct does not implement a real lock, but instead\npretends to be always locked on the original thread it was allocated on,\nand simply ignores all other interactions.\nIt also does not synchronize tasks; for that use a real lock such as [`RecursiveLock`](@ref).\nThis can be used in the place of a real lock to, instead, simply and cheaply assert\nthat the operation is only occurring on a single cooperatively-scheduled thread.\nIt is thus functionally equivalent to allocating a real, recursive, task-unaware lock\nimmediately calling `lock` on it, and then never calling a matching `unlock`,\nexcept that calling `lock` from another thread will throw a concurrency violation exception.\n"}],"Base.circcopy!":[{"Tuple{Any,Any}":" circcopy!(dest, src)\n\nCopy `src` to `dest`, indexing each dimension modulo its length.\n`src` and `dest` must have the same size, but can be offset in\ntheir indices; any offset results in a (circular) wraparound. If the\narrays have overlapping indices, then on the domain of the overlap\n`dest` agrees with `src`.\n\n# Examples\n```julia-repl\njulia> src = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> dest = OffsetArray{Int}(undef, (0:3,2:5))\n\njulia> circcopy!(dest, src)\nOffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:\n 8 12 16 4\n 5 9 13 1\n 6 10 14 2\n 7 11 15 3\n\njulia> dest[1:3,2:4] == src[1:3,2:4]\ntrue\n```\n"}],"Base.@propagate_inbounds":[{"Tuple{Any}":" @propagate_inbounds\n\nTells the compiler to inline a function while retaining the caller's inbounds context.\n"}],"Base.splat":[{"Tuple{Any}":" splat(f)\n\nDefined as\n```julia\n splat(f) = args->f(args...)\n```\ni.e. given a function returns a new function that takes one argument and splats\nits argument into the original function. This is useful as an adaptor to pass\na multi-argument function in a context that expects a single argument, but\npasses a tuple as that single argument.\n\n# Example usage:\n```jldoctest\njulia> map(Base.splat(+), zip(1:3,4:6))\n3-element Array{Int64,1}:\n 5\n 7\n 9\n```\n"}],"Base.truncate":[{"Tuple{IOStream,Integer}":" truncate(file, n)\n\nResize the file or buffer given by the first argument to exactly `n` bytes, filling\npreviously unallocated space with '\\0' if the file or buffer is grown.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n35\n\njulia> truncate(io, 15)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=15, maxsize=Inf, ptr=16, mark=-1)\n\njulia> String(take!(io))\n\"JuliaLang is a \"\n\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\");\n\njulia> truncate(io, 40);\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization.\\0\\0\\0\\0\\0\"\n```\n"}],"Base.ascii":[{"Tuple{AbstractString}":" ascii(s::AbstractString)\n\nConvert a string to `String` type and check that it contains only ASCII data, otherwise\nthrowing an `ArgumentError` indicating the position of the first non-ASCII byte.\n\n# Examples\n```jldoctest\njulia> ascii(\"abcdeγfgh\")\nERROR: ArgumentError: invalid ASCII at index 6 in \"abcdeγfgh\"\nStacktrace:\n[...]\n\njulia> ascii(\"abcdefgh\")\n\"abcdefgh\"\n```\n"}],"Base.hvcat":[{"Tuple{Tuple{Vararg{Int64,N} where N},Vararg{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,N} where N}":" hvcat(rows::Tuple{Vararg{Int}}, values...)\n\nHorizontal and vertical concatenation in one call. This function is called for block matrix\nsyntax. The first argument specifies the number of arguments to concatenate in each block\nrow.\n\n# Examples\n```jldoctest\njulia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6\n(1, 2, 3, 4, 5, 6)\n\njulia> [a b c; d e f]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> hvcat((3,3), a,b,c,d,e,f)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> [a b;c d; e f]\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n\njulia> hvcat((2,2,2), a,b,c,d,e,f)\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n```\n\nIf the first argument is a single integer `n`, then all block rows are assumed to have `n`\nblock columns.\n"}],"Base.fd":[{"Tuple{IOStream}":" fd(stream)\n\nReturn the file descriptor backing the stream or file. Note that this function only applies\nto synchronous `File`'s and `IOStream`'s not to any of the asynchronous streams.\n"}],"Base.accumulate":[{"Tuple{Any,Any}":" accumulate(op, A; dims::Integer, [init])\n\nCumulative operation `op` along the dimension `dims` of `A` (providing `dims` is optional\nfor vectors). An initial value `init` may optionally be provided by a keyword argument. See\nalso [`accumulate!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow). For common operations\nthere are specialized variants of `accumulate`, see: [`cumsum`](@ref), [`cumprod`](@ref)\n\n# Examples\n```jldoctest\njulia> accumulate(+, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 3\n 6\n\njulia> accumulate(*, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> accumulate(+, [1,2,3]; init=100)\n3-element Array{Int64,1}:\n 101\n 103\n 106\n\njulia> accumulate(min, [1,2,-1]; init=0)\n3-element Array{Int64,1}:\n 0\n 0\n -1\n\njulia> accumulate(+, fill(1, 3, 3), dims=1)\n3×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n\njulia> accumulate(+, fill(1, 3, 3), dims=2)\n3×3 Array{Int64,2}:\n 1 2 3\n 1 2 3\n 1 2 3\n```\n"}],"Base.TaskFailedException":[{"Union{}":" TaskFailedException\n\nThis exception is thrown by a `wait(t)` call when task `t` fails.\n`TaskFailedException` wraps the failed task `t`.\n"}],"Base.print":[{"Tuple{IO,Any}":" print([io::IO], xs...)\n\nWrite to `io` (or to the default output stream [`stdout`](@ref)\nif `io` is not given) a canonical (un-decorated) text representation.\nThe representation used by `print` includes minimal formatting and tries to\navoid Julia-specific details.\n\n`print` falls back to calling `show`, so most types should just define\n`show`. Define `print` if your type has a separate \"plain\" representation.\nFor example, `show` displays strings with quotes, and `print` displays strings\nwithout quotes.\n\n[`string`](@ref) returns the output of `print` as a string.\n\n# Examples\n```jldoctest\njulia> print(\"Hello World!\")\nHello World!\njulia> io = IOBuffer();\n\njulia> print(io, \"Hello\", ' ', :World!)\n\njulia> String(take!(io))\n\"Hello World!\"\n```\n"}],"Base.atexit":[{"Tuple{Function}":" atexit(f)\n\nRegister a zero-argument function `f()` to be called at process exit. `atexit()` hooks are\ncalled in last in first out (LIFO) order and run before object finalizers.\n\nExit hooks are allowed to call `exit(n)`, in which case Julia will exit with\nexit code `n` (instead of the original exit code). If more than one exit hook\ncalls `exit(n)`, then Julia will exit with the exit code corresponding to the\nlast called exit hook that calls `exit(n)`. (Because exit hooks are called in\nLIFO order, \"last called\" is equivalent to \"first registered\".)\n"}],"Base.BitVector":[{"Tuple{Tuple{Vararg{Bool,N} where N}}":" BitVector(nt::Tuple{Vararg{Bool}})\n\nConstruct a `BitVector` from a tuple of `Bool`.\n# Examples\n```julia-repl\njulia> nt = (true, false, true, false)\n(true, false, true, false)\n\njulia> BitVector(nt)\n4-element BitArray{1}:\n 1\n 0\n 1\n 0\n```\n"}],"Base.replace_with_centered_mark":[{"Tuple{AbstractString}":"Unexported convenience function used in body of `replace_in_print_matrix`\nmethods. By default returns a string of the same width as original with a\ncentered cdot, used in printing of structural zeros of structured matrices.\nAccept keyword args `c` for alternate single character marker.\n"}],"Base.all":[{"Tuple{Any}":" all(itr) -> Bool\n\nTest whether all elements of a boolean collection are `true`, returning `false` as\nsoon as the first `false` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> all(a)\nfalse\n\njulia> all((println(i); v) for (i, v) in enumerate(a))\n1\n2\nfalse\n\njulia> all([missing, false])\nfalse\n\njulia> all([true, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" all(A; dims)\n\nTest whether all values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true true]\n2×2 Array{Bool,2}:\n 1 0\n 1 1\n\njulia> all(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> all(A, dims=2)\n2×1 Array{Bool,2}:\n 0\n 1\n```\n"},{"Tuple{Any,Any}":" all(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for all elements of `itr`, returning\n`false` as soon as the first item in `itr` for which `p` returns `false` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> all(i->(4<=i<=6), [4,5,6])\ntrue\n\njulia> all(i -> (println(i); i < 3), 1:10)\n1\n2\n3\nfalse\n\njulia> all(i -> i > 0, [1, missing])\nmissing\n\njulia> all(i -> i > 0, [-1, missing])\nfalse\n\njulia> all(i -> i > 0, [1, 2])\ntrue\n```\n"}],"Base.rot180":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rot180(A, k)\n\nRotate matrix `A` 180 degrees an integer `k` number of times.\nIf `k` is even, this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a,1)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rot180(a,2)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rot180(A)\n\nRotate matrix `A` 180 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n```\n"}],"Base.compilecache":[{"Tuple{Base.PkgId}":" Base.compilecache(module::PkgId)\n\nCreates a precompiled cache file for a module and all of its dependencies.\nThis can be used to reduce package load times. Cache files are stored in\n`DEPOT_PATH[1]/compiled`. See [Module initialization and precompilation](@ref)\nfor important notes.\n"}],"Base.zero":[{"Tuple{Number}":" zero(x)\n\nGet the additive identity element for the type of `x` (`x` can also specify the type itself).\n\n# Examples\n```jldoctest\njulia> zero(1)\n0\n\njulia> zero(big\"2.0\")\n0.0\n\njulia> zero(rand(2,2))\n2×2 Array{Float64,2}:\n 0.0 0.0\n 0.0 0.0\n```\n"}],"Base.bswap":[{"Tuple{Union{Int8, UInt8}}":" bswap(n)\n\nReverse the byte order of `n`.\n\n(See also [`ntoh`](@ref) and [`hton`](@ref) to convert between the current native byte order and big-endian order.)\n\n# Examples\n```jldoctest\njulia> a = bswap(0x10203040)\n0x40302010\n\njulia> bswap(a)\n0x10203040\n\njulia> string(1, base = 2)\n\"1\"\n\njulia> string(bswap(1), base = 2)\n\"100000000000000000000000000000000000000000000000000000000\"\n```\n"}],"Base.timedwait":[{"Tuple{Function,Float64}":" timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)\n\nWaits until `testcb` returns `true` or for `secs` seconds, whichever is earlier.\n`testcb` is polled every `pollint` seconds.\n\nReturns :ok, :timed_out, or :error\n"}],"Base.issubnormal":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" issubnormal(f) -> Bool\n\nTest whether a floating point number is subnormal.\n"}],"Base.eachrow":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachrow(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the first dimension of vector or matrix `A`,\nreturning the rows as views.\n\nSee also [`eachcol`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.view":[{"Union{Tuple{N}, Tuple{AbstractArray,Vararg{Any,N}}} where N":" view(A, inds...)\n\nLike [`getindex`](@ref), but returns a view into the parent array `A` with the\ngiven indices instead of making a copy. Calling [`getindex`](@ref) or\n[`setindex!`](@ref) on the returned `SubArray` computes the\nindices to the parent array on the fly without checking bounds.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = view(A, :, 1)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A # Note A has changed even though we modified b\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.strides":[{"Union{}":" strides(A)\n\nReturn a tuple of the memory strides in each dimension.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> strides(A)\n(1, 3, 12)\n```\n"}],"Base.supertype":[{"Tuple{DataType}":" supertype(T::DataType)\n\nReturn the supertype of DataType `T`.\n\n# Examples\n```jldoctest\njulia> supertype(Int32)\nSigned\n```\n"}],"Base.current_task":[{"Tuple{}":" current_task()\n\nGet the currently running [`Task`](@ref).\n"}],"Base.dropdims":[{"Tuple{Any}":" dropdims(A; dims)\n\nRemove the dimensions specified by `dims` from array `A`.\nElements of `dims` must be unique and within the range `1:ndims(A)`.\n`size(A,i)` must equal 1 for all `i` in `dims`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:4),(2,2,1,1))\n2×2×1×1 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\njulia> dropdims(a; dims=3)\n2×2×1 Array{Int64,3}:\n[:, :, 1] =\n 1 3\n 2 4\n```\n"}],"Base.replace!":[{"Tuple{Union{Function, Type},Any}":" replace!(new::Function, A; [count::Integer])\n\nReplace each element `x` in collection `A` by `new(x)`.\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace!(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n\njulia> replace!(x->2x, Set([3, 6]))\nSet{Int64} with 2 elements:\n 6\n 12\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace!(A, old_new::Pair...; [count::Integer])\n\nFor each pair `old=>new` in `old_new`, replace all occurrences\nof `old` in collection `A` by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\nSee also [`replace`](@ref replace(A, old_new::Pair...)).\n\n# Examples\n```jldoctest\njulia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace!(Set([1, 2, 3]), 1=>0)\nSet{Int64} with 3 elements:\n 0\n 2\n 3\n```\n"}],"Base.@cfunction":[{"Tuple{Any,Any,Any}":" @cfunction(callable, ReturnType, (ArgumentTypes...,)) -> Ptr{Cvoid}\n @cfunction($callable, ReturnType, (ArgumentTypes...,)) -> CFunction\n\nGenerate a C-callable function pointer from the Julia function `callable`\nfor the given type signature.\nTo pass the return value to a `ccall`, use the argument type `Ptr{Cvoid}` in the signature.\n\nNote that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression\n(although it can include a splat expression). And that these arguments will be evaluated in global scope\nduring compile-time (not deferred until runtime).\nAdding a '\\$' in front of the function argument changes this to instead create a runtime closure\nover the local variable `callable` (this is not supported on all architectures).\n\nSee [manual section on ccall and cfunction usage](@ref Calling-C-and-Fortran-Code).\n\n# Examples\n```julia-repl\njulia> function foo(x::Int, y::Int)\n return x + y\n end\n\njulia> @cfunction(foo, Int, (Int, Int))\nPtr{Cvoid} @0x000000001b82fcd0\n```\n"}],"Base.code_typed":[{"Tuple{Any,Any}":" code_typed(f, types; optimize=true, debuginfo=:default)\n\nReturns an array of type-inferred lowered form (IR) for the methods matching the given\ngeneric function and type signature. The keyword argument `optimize` controls whether\nadditional optimizations, such as inlining, are also applied.\nThe keyword `debuginfo` controls the amount of code metadata present in the output,\npossible options are `:source` or `:none`.\n"}],"Base.@timed":[{"Tuple{Any}":" @timed\n\nA macro to execute an expression, and return the value of the expression, elapsed time,\ntotal bytes allocated, garbage collection time, and an object with various memory allocation\ncounters.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> val, t, bytes, gctime, memallocs = @timed rand(10^6);\n\njulia> t\n0.006634834\n\njulia> bytes\n8000256\n\njulia> gctime\n0.0055765\n\njulia> fieldnames(typeof(memallocs))\n(:allocd, :malloc, :realloc, :poolalloc, :bigalloc, :freecall, :total_time, :pause, :full_sweep)\n\njulia> memallocs.total_time\n5576500\n```\n"}],"Base.issingletontype":[{"Tuple{Any}":" Base.issingletontype(T)\n\nDetermine whether type `T` has exactly one possible instance; for example, a\nstruct type with no fields.\n"}],"Base.Complex":[{"Union{}":" Complex{T<:Real} <: Number\n\nComplex number type with real and imaginary part of type `T`.\n\n`ComplexF16`, `ComplexF32` and `ComplexF64` are aliases for\n`Complex{Float16}`, `Complex{Float32}` and `Complex{Float64}` respectively.\n"}],"Base.AbstractMatrix":[{"Union{}":" AbstractMatrix{T}\n\nSupertype for two-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,2}`](@ref).\n"}],"Base.widen":[{"Union{Tuple{T}, Tuple{T}} where T":" widen(x)\n\nIf `x` is a type, return a \"larger\" type, defined so that arithmetic operations\n`+` and `-` are guaranteed not to overflow nor lose precision for any combination\nof values that type `x` can hold.\n\nFor fixed-size integer types less than 128 bits, `widen` will return a type with\ntwice the number of bits.\n\nIf `x` is a value, it is converted to `widen(typeof(x))`.\n\n# Examples\n```jldoctest\njulia> widen(Int32)\nInt64\n\njulia> widen(1.5f0)\n1.5\n```\n"}],"Base.@eval":[{"Tuple{Any}":" @eval [mod,] ex\n\nEvaluate an expression with values interpolated into it using `eval`.\nIf two arguments are provided, the first is the module to evaluate in.\n"}],"Base.seekend":[{"Tuple{IOStream}":" seekend(s)\n\nSeek a stream to its end.\n"}],"Base.pointer_from_objref":[{"Tuple{Any}":" pointer_from_objref(x)\n\nGet the memory address of a Julia object as a `Ptr`. The existence of the resulting `Ptr`\nwill not protect the object from garbage collection, so you must ensure that the object\nremains referenced for the whole time that the `Ptr` will be used.\n\nThis function may not be called on immutable objects, since they do not have\nstable memory addresses.\n\nSee also: [`unsafe_pointer_to_objref`](@ref).\n"}],"Base.mapslices":[{"Tuple{Any,AbstractArray}":" mapslices(f, A; dims)\n\nTransform the given dimensions of array `A` using function `f`. `f` is called on each slice\nof `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the\ncolons go in this expression. The results are concatenated along the remaining dimensions.\nFor example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]`\nfor all `i` and `j`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16),(2,2,2,2))\n2×2×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\n[:, :, 2, 1] =\n 5 7\n 6 8\n\n[:, :, 1, 2] =\n 9 11\n 10 12\n\n[:, :, 2, 2] =\n 13 15\n 14 16\n\njulia> mapslices(sum, a, dims = [1,2])\n1×1×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 10\n\n[:, :, 2, 1] =\n 26\n\n[:, :, 1, 2] =\n 42\n\n[:, :, 2, 2] =\n 58\n```\n"}],"Base.text_colors":[{"Union{}":"Dictionary of color codes for the terminal.\n\nAvailable colors are: `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow` as well as the integers 0 to 255 inclusive.\n\nThe color `:default` will print text in the default color while the color `:normal`\nwill print text with all text properties (like boldness) reset.\nPrinting with the color `:nothing` will print the string without modifications.\n"}],"Base.thisind":[{"Tuple{AbstractString,Integer}":" thisind(s::AbstractString, i::Integer) -> Int\n\nIf `i` is in bounds in `s` return the index of the start of the character whose\nencoding code unit `i` is part of. In other words, if `i` is the start of a\ncharacter, return `i`; if `i` is not the start of a character, rewind until the\nstart of a character and return that index. If `i` is equal to 0 or `ncodeunits(s)+1`\nreturn `i`. In all other cases throw `BoundsError`.\n\n# Examples\n```jldoctest\njulia> thisind(\"α\", 0)\n0\n\njulia> thisind(\"α\", 1)\n1\n\njulia> thisind(\"α\", 2)\n1\n\njulia> thisind(\"α\", 3)\n3\n\njulia> thisind(\"α\", 4)\nERROR: BoundsError: attempt to access String\n at index [4]\n[...]\n\njulia> thisind(\"α\", -1)\nERROR: BoundsError: attempt to access String\n at index [-1]\n[...]\n```\n"}],"Base.yieldto":[{"Tuple{Task,Any}":" yieldto(t::Task, arg = nothing)\n\nSwitch to the given task. The first time a task is switched to, the task's function is\ncalled with no arguments. On subsequent switches, `arg` is returned from the task's last\ncall to `yieldto`. This is a low-level call that only switches tasks, not considering states\nor scheduling in any way. Its use is discouraged.\n"}],"Base.NaN":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.Fix2":[{"Union{}":" Fix2(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the second argument fixed to the value \"x\". In other words,\n`Fix2(f, x)` behaves similarly to `y->f(y, x)`.\n"}],"Base.foreach":[{"Tuple{Any}":" foreach(f, c...) -> Nothing\n\nCall function `f` on each element of iterable `c`.\nFor multiple iterable arguments, `f` is called elementwise.\n`foreach` should be used instead of `map` when the results of `f` are not\nneeded, for example in `foreach(println, array)`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:7;\n\njulia> foreach(x -> println(x^2), a)\n1\n16\n49\n```\n"}],"Base.@gensym":[{"Tuple":" @gensym\n\nGenerates a gensym symbol for a variable. For example, `@gensym x y` is transformed into\n`x = gensym(\"x\"); y = gensym(\"y\")`.\n"}],"Base.StepRange":[{"Union{}":" StepRange{T, S} <: OrdinalRange{T, S}\n\nRanges with elements of type `T` with spacing of type `S`. The step\nbetween each element is constant, and the range is defined in terms\nof a `start` and `stop` of type `T` and a `step` of type `S`. Neither\n`T` nor `S` should be floating point types. The syntax `a:b:c` with `b > 1`\nand `a`, `b`, and `c` all integers creates a `StepRange`.\n\n# Examples\n```jldoctest\njulia> collect(StepRange(1, Int8(2), 10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n\njulia> typeof(StepRange(1, Int8(2), 10))\nStepRange{Int64,Int8}\n\njulia> typeof(1:3:6)\nStepRange{Int64,Int64}\n```\n"}],"Base.print_range":[{"Union{Tuple{IO,AbstractRange}, Tuple{IO,AbstractRange,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString,AbstractString}}":"`print_range(io, r)` prints out a nice looking range r in terms of its elements\nas if it were `collect(r)`, dependent on the size of the\nterminal, and taking into account whether compact numbers should be shown.\nIt figures out the width in characters of each element, and if they\nend up too wide, it shows the first and last elements separated by a\nhorizontal ellipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`.\n\n`print_range(io, r, pre, sep, post, hdots)` uses optional\nparameters `pre` and `post` characters for each printed row,\n`sep` separator string between printed elements,\n`hdots` string for the horizontal ellipsis.\n"}],"Base.repeat":[{"Tuple{AbstractString,Integer}":" repeat(s::AbstractString, r::Integer)\n\nRepeat a string `r` times. This can be written as `s^r`.\n\nSee also: [`^`](@ref)\n\n# Examples\n```jldoctest\njulia> repeat(\"ha\", 3)\n\"hahaha\"\n```\n"},{"Tuple{AbstractArray}":" repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))\n\nConstruct an array by repeating the entries of `A`. The i-th element of `inner` specifies\nthe number of times that the individual entries of the i-th dimension of `A` should be\nrepeated. The i-th element of `outer` specifies the number of times that a slice along the\ni-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition\nis performed.\n\n# Examples\n```jldoctest\njulia> repeat(1:2, inner=2)\n4-element Array{Int64,1}:\n 1\n 1\n 2\n 2\n\njulia> repeat(1:2, outer=2)\n4-element Array{Int64,1}:\n 1\n 2\n 1\n 2\n\njulia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))\n4×6 Array{Int64,2}:\n 1 2 1 2 1 2\n 1 2 1 2 1 2\n 3 4 3 4 3 4\n 3 4 3 4 3 4\n```\n"},{"Tuple{AbstractChar,Integer}":" repeat(c::AbstractChar, r::Integer) -> String\n\nRepeat a character `r` times. This can equivalently be accomplished by calling [`c^r`](@ref ^).\n\n# Examples\n```jldoctest\njulia> repeat('A', 3)\n\"AAA\"\n```\n"},{"Tuple{AbstractArray,Vararg{Integer,N} where N}":" repeat(A::AbstractArray, counts::Integer...)\n\nConstruct an array by repeating array `A` a given number of times in each dimension, specified by `counts`.\n\n# Examples\n```jldoctest\njulia> repeat([1, 2, 3], 2)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 1\n 2\n 3\n\njulia> repeat([1, 2, 3], 2, 3)\n6×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n 1 1 1\n 2 2 2\n 3 3 3\n```\n"}],"Base.foldl":[{"Tuple{Any,Any}":" foldl(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed left associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldl(=>, 1:4)\n((1 => 2) => 3) => 4\n\njulia> foldl(=>, 1:4; init=0)\n(((0 => 1) => 2) => 3) => 4\n```\n"}],"Base.mapreduce":[{"Tuple{Any,Any,Any}":" mapreduce(f, op, itrs...; [init])\n\nApply function `f` to each element(s) in `itrs`, and then reduce the result using the binary\nfunction `op`. If provided, `init` must be a neutral element for `op` that will be returned\nfor empty collections. It is unspecified whether `init` is used for non-empty collections.\nIn general, it will be necessary to provide `init` to work with empty collections.\n\n[`mapreduce`](@ref) is functionally equivalent to calling\n`reduce(op, map(f, itr); init=init)`, but will in general execute faster since no\nintermediate collection needs to be created. See documentation for [`reduce`](@ref) and\n[`map`](@ref).\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9\n14\n```\n\nThe associativity of the reduction is implementation-dependent. Additionally, some\nimplementations may reuse the return value of `f` for elements that appear multiple times in\n`itr`. Use [`mapfoldl`](@ref) or [`mapfoldr`](@ref) instead for\nguaranteed left or right associativity and invocation of `f` for every value.\n"},{"Tuple{Any,Any,AbstractArray}":" mapreduce(f, op, A::AbstractArray...; dims=:, [init])\n\nEvaluates to the same as `reduce(op, map(f, A); dims=dims, init=init)`, but is generally\nfaster because the intermediate array is avoided.\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> mapreduce(isodd, *, a, dims=1)\n1×4 Array{Bool,2}:\n 0 0 0 0\n\njulia> mapreduce(isodd, |, a, dims=1)\n1×4 Array{Bool,2}:\n 1 1 1 1\n```\n"}],"Base.diff":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" diff(A::AbstractVector)\n diff(A::AbstractArray; dims::Integer)\n\nFinite difference operator on a vector or a multidimensional array `A`. In the\nlatter case the dimension to operate on needs to be specified with the `dims`\nkeyword argument.\n\n!!! compat \"Julia 1.1\"\n `diff` for arrays with dimension higher than 2 requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> a = [2 4; 6 16]\n2×2 Array{Int64,2}:\n 2 4\n 6 16\n\njulia> diff(a, dims=2)\n2×1 Array{Int64,2}:\n 2\n 10\n\njulia> diff(vec(a))\n3-element Array{Int64,1}:\n 4\n -2\n 12\n```\n"}],"Base.alignment":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractArray{T,1} where T,AbstractArray{T,1} where T,Integer,Integer,Integer}":"`alignment(X, rows, cols, cols_if_complete, cols_otherwise, sep)` returns the\nalignment for specified parts of array `X`, returning the (left,right) info.\nIt will look in X's `rows`, `cols` (both lists of indices)\nand figure out what's needed to be fully aligned, for example looking all\nthe way down a column and finding out the maximum size of each element.\nParameter `sep::Integer` is number of spaces to put between elements.\n`cols_if_complete` and `cols_otherwise` indicate screen width to use.\nAlignment is reported as a vector of (left,right) tuples, one for each\ncolumn going across the screen.\n"},{"Tuple{IO,Integer}":"`alignment(42)` yields (2,0)"},{"Tuple{IO,Any}":"`alignment(X)` returns a tuple (left,right) showing how many characters are\nneeded on either side of an alignment feature such as a decimal point.\n"},{"Tuple{IO,Real}":"`alignment(4.23)` yields (1,3) for `4` and `.23`"},{"Tuple{IO,Complex}":"`alignment(1 + 10im)` yields (3,5) for `1 +` and `_10im` (plus sign on left, space on right)"}],"Base.AbstractIrrational":[{"Union{}":" AbstractIrrational <: Real\n\nNumber type representing an exact irrational value.\n"}],"Base.isdone":[{"Tuple{Any,Vararg{Any,N} where N}":" isdone(itr, state...) -> Union{Bool, Missing}\n\nThis function provides a fast-path hint for iterator completion.\nThis is useful for mutable iterators that want to avoid having elements\nconsumed, if they are not going to be exposed to the user (e.g. to check\nfor done-ness in `isempty` or `zip`). Mutable iterators that want to\nopt into this feature should define an isdone method that returns\ntrue/false depending on whether the iterator is done or not. Stateless\niterators need not implement this function. If the result is `missing`,\ncallers may go ahead and compute `iterate(x, state...) === nothing` to\ncompute a definite answer.\n"}],"Base.sum":[{"Tuple{Any}":" sum(itr)\n\nReturns the sum of all elements in a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(1:20)\n210\n```\n"},{"Tuple{AbstractArray}":" sum(A::AbstractArray; dims)\n\nSum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum(A, dims=1)\n1×2 Array{Int64,2}:\n 4 6\n\njulia> sum(A, dims=2)\n2×1 Array{Int64,2}:\n 3\n 7\n```\n"},{"Tuple{Any,Any}":" sum(f, itr)\n\nSum the results of calling function `f` on each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(abs2, [2; 3; 4])\n29\n```\n\nNote the important difference between `sum(A)` and `reduce(+, A)` for arrays\nwith small integer eltype:\n\n```jldoctest\njulia> sum(Int8[100, 28])\n128\n\njulia> reduce(+, Int8[100, 28])\n-128\n```\n\nIn the former case, the integers are widened to system word size and therefore\nthe result is 128. In the latter case, no such widening happens and integer\noverflow results in -128.\n"}],"Base.unsafe_copyto!":[{"Union{Tuple{T}, Tuple{Ptr{T},Ptr{T},Any}} where T":" unsafe_copyto!(dest::Ptr{T}, src::Ptr{T}, N)\n\nCopy `N` elements from a source pointer to a destination, with no checking. The size of an\nelement is determined by the type of the pointers.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointers `dest` and `src` to ensure that they are valid. Incorrect usage may corrupt or\nsegfault your program, in the same manner as C.\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Any,Array{T,N} where N,Any,Any}} where T":" unsafe_copyto!(dest::Array, do, src::Array, so, N)\n\nCopy `N` elements from a source array to a destination, starting at offset `so` in the\nsource and `do` in the destination (1-indexed).\n\nThe `unsafe` prefix on this function indicates that no validation is performed to ensure\nthat N is inbounds on either array. Incorrect usage may corrupt or segfault your program, in\nthe same manner as C.\n"}],"Base.functionloc":[{"Tuple{Method}":" functionloc(m::Method)\n\nReturns a tuple `(filename,line)` giving the location of a `Method` definition.\n"},{"Tuple{Any,Any}":" functionloc(f::Function, types)\n\nReturns a tuple `(filename,line)` giving the location of a generic `Function` definition.\n"}],"Base.@isdefined":[{"Tuple{Symbol}":" @isdefined s -> Bool\n\nTests whether variable `s` is defined in the current scope.\n\nSee also [`isdefined`](@ref).\n\n# Examples\n```jldoctest\njulia> function f()\n println(@isdefined x)\n x = 3\n println(@isdefined x)\n end\nf (generic function with 1 method)\n\njulia> f()\nfalse\ntrue\n```\n"}],"Base.isunaryoperator":[{"Tuple{Symbol}":" isunaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a unary (prefix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isunaryoperator(:-), Base.isunaryoperator(:√), Base.isunaryoperator(:f)\n(true, true, false)\n```\n"}],"Base.Irrational":[{"Union{}":" Irrational{sym} <: AbstractIrrational\n\nNumber type representing an exact irrational value denoted by the\nsymbol `sym`.\n"}],"Base.unescape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" unescape_string(str::AbstractString, keep = ())::AbstractString\n unescape_string(io, s::AbstractString, keep = ())::Nothing\n\nGeneral unescaping of traditional C and Unicode escape sequences. The first form returns\nthe escaped string, the second prints the result to `io`.\nThe argument `keep` specifies a collection of characters which (along with backlashes) are\nto be kept as they are.\n\nThe following escape sequences are recognised:\n - Escaped backslash (`\\\\`)\n - Escaped double-quote (`\\\"`)\n - Standard C escape sequences (`\\a`, `\\b`, `\\t`, `\\n`, `\\v`, `\\f`, `\\r`, `\\e`)\n - Unicode BMP code points (`\\u` with 1-4 trailing hex digits)\n - All Unicode code points (`\\U` with 1-8 trailing hex digits; max value = 0010ffff)\n - Hex bytes (`\\x` with 1-2 trailing hex digits)\n - Octal bytes (`\\` with 1-3 trailing octal digits)\n\n# Examples\n```jldoctest\njulia> unescape_string(\"aaa\\\\nbbb\") # C escape sequence\n\"aaa\\nbbb\"\n\njulia> unescape_string(\"\\\\u03c0\") # unicode\n\"π\"\n\njulia> unescape_string(\"\\\\101\") # octal\n\"A\"\n\njulia> unescape_string(\"aaa \\\\g \\\\n\", ['g']) # using `keep` argument\n\"aaa \\\\g \\n\"\n```\n\n## See also\n[`escape_string`](@ref).\n"}],"Base.show":[{"Tuple{Any}":" show(x)\n\nWrite an informative text representation of a value to the current output stream. New types\nshould overload `show(io::IO, x)` where the first argument is a stream. The representation used\nby `show` generally includes Julia-specific formatting and type information.\n\n[`repr`](@ref) returns the output of `show` as a string.\n\nSee also [`print`](@ref), which writes un-decorated representations.\n\n# Examples\n```jldoctest\njulia> show(\"Hello World!\")\n\"Hello World!\"\njulia> print(\"Hello World!\")\nHello World!\n```\n"}],"Base.iswritable":[{"Union{}":" iswritable(io) -> Bool\n\nReturn `true` if the specified IO object is writable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n iswritable(io)\n end\ntrue\n\njulia> open(\"myfile.txt\", \"r\") do io\n iswritable(io)\n end\nfalse\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.maxintfloat":[{"Union{Tuple{T}, Tuple{S}, Tuple{Type{S},Type{T}}} where T<:Integer where S<:AbstractFloat":" maxintfloat(T, S)\n\nThe largest consecutive integer representable in the given floating-point type `T` that\nalso does not exceed the maximum integer representable by the integer type `S`. Equivalently,\nit is the minimum of `maxintfloat(T)` and [`typemax(S)`](@ref).\n"},{"Tuple{Type{Float64}}":" maxintfloat(T=Float64)\n\nThe largest consecutive integer-valued floating-point number that is exactly represented in\nthe given floating-point type `T` (which defaults to `Float64`).\n\nThat is, `maxintfloat` returns the smallest positive integer-valued floating-point number\n`n` such that `n+1` is *not* exactly representable in the type `T`.\n\nWhen an `Integer`-type value is needed, use `Integer(maxintfloat(T))`.\n"}],"Base.checkbounds":[{"Tuple{Type{Bool},AbstractArray,Vararg{Any,N} where N}":" checkbounds(Bool, A, I...)\n\nReturn `true` if the specified indices `I` are in bounds for the given\narray `A`. Subtypes of `AbstractArray` should specialize this method\nif they need to provide custom bounds checking behaviors; however, in\nmany cases one can rely on `A`'s indices and [`checkindex`](@ref).\n\nSee also [`checkindex`](@ref).\n\n# Examples\n```jldoctest\njulia> A = rand(3, 3);\n\njulia> checkbounds(Bool, A, 2)\ntrue\n\njulia> checkbounds(Bool, A, 3, 4)\nfalse\n\njulia> checkbounds(Bool, A, 1:3)\ntrue\n\njulia> checkbounds(Bool, A, 1:3, 2:4)\nfalse\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" checkbounds(A, I...)\n\nThrow an error if the specified indices `I` are not in bounds for the given array `A`.\n"}],"Base.skipmissing":[{"Tuple{Any}":" skipmissing(itr)\n\nReturn an iterator over the elements in `itr` skipping [`missing`](@ref) values.\nThe returned object can be indexed using indices of `itr` if the latter is indexable.\nIndices corresponding to missing values are not valid: they are skipped by [`keys`](@ref)\nand [`eachindex`](@ref), and a `MissingException` is thrown when trying to use them.\n\nUse [`collect`](@ref) to obtain an `Array` containing the non-`missing` values in\n`itr`. Note that even if `itr` is a multidimensional array, the result will always\nbe a `Vector` since it is not possible to remove missings while preserving dimensions\nof the input.\n\n# Examples\n```jldoctest\njulia> x = skipmissing([1, missing, 2])\nBase.SkipMissing{Array{Union{Missing, Int64},1}}(Union{Missing, Int64}[1, missing, 2])\n\njulia> sum(x)\n3\n\njulia> x[1]\n1\n\njulia> x[2]\nERROR: MissingException: the value at index (2,) is missing\n[...]\n\njulia> argmax(x)\n3\n\njulia> collect(keys(x))\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> collect(skipmissing([1, missing, 2]))\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> collect(skipmissing([1 missing; 2 missing]))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.BitArray":[{"Union{}":" BitArray{N} <: AbstractArray{Bool, N}\n\nSpace-efficient `N`-dimensional boolean array, using just one bit for each boolean value.\n\n`BitArray`s pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency\nover `Array{Bool, N}` and allowing some operations to work on 64 values at once.\n\nBy default, Julia returns `BitArrays` from [broadcasting](@ref Broadcasting) operations\nthat generate boolean elements (including dotted-comparisons like `.==`) as well as from\nthe functions [`trues`](@ref) and [`falses`](@ref).\n"},{"Tuple{Any}":" BitArray(itr)\n\nConstruct a [`BitArray`](@ref) generated by the given iterable object.\nThe shape is inferred from the `itr` object.\n\n# Examples\n```jldoctest\njulia> BitArray([1 0; 0 1])\n2×2 BitArray{2}:\n 1 0\n 0 1\n\njulia> BitArray(x+y == 3 for x = 1:2, y = 1:3)\n2×3 BitArray{2}:\n 0 1 0\n 1 0 0\n\njulia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)\n6-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"},{"Tuple{UndefInitializer,Vararg{Integer,N} where N}":" BitArray(undef, dims::Integer...)\n BitArray{N}(undef, dims::NTuple{N,Int})\n\nConstruct an undef [`BitArray`](@ref) with the given dimensions.\nBehaves identically to the [`Array`](@ref) constructor. See [`undef`](@ref).\n\n# Examples\n```julia-repl\njulia> BitArray(undef, 2, 2)\n2×2 BitArray{2}:\n 0 0\n 0 0\n\njulia> BitArray(undef, (3, 1))\n3×1 BitArray{2}:\n 0\n 0\n 0\n```\n"}],"Base.mul_prod":[{"Tuple{Any,Any}":" Base.mul_prod(x, y)\n\nThe reduction operator used in `prod`. The main difference from [`*`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.isinteractive":[{"Tuple{}":" isinteractive() -> Bool\n\nDetermine whether Julia is running an interactive session.\n"}],"Base.nextprod":[{"Tuple{Array{Int64,1},Any}":" nextprod([k_1, k_2,...], n)\n\nNext integer greater than or equal to `n` that can be written as ``\\prod k_i^{p_i}`` for integers\n``p_1``, ``p_2``, etc.\n\n# Examples\n```jldoctest\njulia> nextprod([2, 3], 105)\n108\n\njulia> 2^2 * 3^3\n108\n```\n"}],"Base.eachcol":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachcol(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the second dimension of matrix `A`, returning the\ncolumns as views.\n\nSee also [`eachrow`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.reset":[{"Union{Tuple{T}, Tuple{T}} where T<:IO":" reset(s)\n\nReset a stream `s` to a previously marked position, and remove the mark. Return the\npreviously marked position. Throw an error if the stream is not marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`ismarked`](@ref).\n"}],"Base.argmin":[{"Tuple{Any}":" argmin(itr) -> Integer\n\nReturn the index of the minimum element in a collection. If there are multiple minimal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmin([8,0.1,-9,pi])\n3\n\njulia> argmin([7,1,1,6])\n2\n\njulia> argmin([7,1,1,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmin(A; dims) -> indices\n\nFor an array input, return the indices of the minimum elements over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmin(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1) CartesianIndex(1, 2)\n\njulia> argmin(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n```\n"}],"Base.mapfoldr":[{"Tuple{Any,Any,Any}":" mapfoldr(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed right associativity, as in [`foldr`](@ref). If\nprovided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.AbstractSet":[{"Union{}":" AbstractSet{T}\n\nSupertype for set-like types whose elements are of type `T`.\n[`Set`](@ref), [`BitSet`](@ref) and other types are subtypes of this.\n"}],"Base.isiterable":[{"Tuple{Any}":" isiterable(T) -> Bool\n\nTest if type `T` is an iterable collection type or not,\nthat is whether it has an `iterate` method or not.\n"}],"Base.Missing":[{"Union{}":" Missing\n\nA type with no fields whose singleton instance [`missing`](@ref) is used\nto represent missing values.\n"}],"Base.flipsign":[{"Tuple{Real,Real}":" flipsign(x, y)\n\nReturn `x` with its sign flipped if `y` is negative. For example `abs(x) = flipsign(x,x)`.\n\n# Examples\n```jldoctest\njulia> flipsign(5, 3)\n5\n\njulia> flipsign(5, -3)\n-5\n```\n"}],"Base.finalizer":[{"Tuple{Any,Any}":" finalizer(f, x)\n\nRegister a function `f(x)` to be called when there are no program-accessible references to\n`x`, and return `x`. The type of `x` must be a `mutable struct`, otherwise the behavior of\nthis function is unpredictable.\n\n`f` must not cause a task switch, which excludes most I/O operations such as `println`.\n`@schedule println(\"message\")` or `ccall(:jl_, Cvoid, (Any,), \"message\")` may be helpful for\ndebugging purposes.\n"}],"Base.summarysize":[{"Tuple{Any}":" Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int\n\nCompute the amount of memory, in bytes, used by all unique objects reachable from the argument.\n\n# Keyword Arguments\n- `exclude`: specifies the types of objects to exclude from the traversal.\n- `chargeall`: specifies the types of objects to always charge the size of all of their\n fields, even if those fields would normally be excluded.\n"}],"Base.isprimitivetype":[{"Tuple{Type}":" isprimitivetype(T) -> Bool\n\nDetermine whether type `T` was declared as a primitive type\n(i.e. using the `primitive` keyword).\n"}],"Base.trues":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" trues(dims)\n\nCreate a `BitArray` with all values set to `true`.\n\n# Examples\n```jldoctest\njulia> trues(2,3)\n2×3 BitArray{2}:\n 1 1 1\n 1 1 1\n```\n"}],"Base.sleep":[{"Tuple{Real}":" sleep(seconds)\n\nBlock the current task for a specified number of seconds. The minimum sleep time is 1\nmillisecond or input of `0.001`.\n"}],"Base.fieldnames":[{"Tuple{DataType}":" fieldnames(x::DataType)\n\nGet a tuple with the names of the fields of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldnames(Rational)\n(:num, :den)\n```\n"}],"Base.digits":[{"Tuple{Integer}":" digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)\n\nReturn an array with element type `T` (default `Int`) of the digits of `n` in the given\nbase, optionally padded with zeros to a specified size. More significant digits are at\nhigher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`.\n\n# Examples\n```jldoctest\njulia> digits(10, base = 10)\n2-element Array{Int64,1}:\n 0\n 1\n\njulia> digits(10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits(10, base = 2, pad = 6)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.prevfloat":[{"Tuple{AbstractFloat}":" prevfloat(x::AbstractFloat)\n\nReturn the largest floating point number `y` of the same type as `x` such `y < x`. If no\nsuch `y` exists (e.g. if `x` is `-Inf` or `NaN`), then return `x`.\n"},{"Tuple{AbstractFloat,Integer}":" prevfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `prevfloat` to `x` if `n >= 0`, or `-n`\napplications of `nextfloat` if `n < 0`.\n"}],"Base.digits!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,1},Integer}} where T<:Integer":" digits!(array, n::Integer; base::Integer = 10)\n\nFills an array of the digits of `n` in the given base. More significant digits are at higher\nindices. If the array length is insufficient, the least significant digits are filled up to\nthe array length. If the array length is excessive, the excess portion is filled with zeros.\n\n# Examples\n```jldoctest\njulia> digits!([2,2,2,2], 10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits!([2,2,2,2,2,2], 10, base = 2)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.signed":[{"Tuple{Any}":" signed(x)\n\nConvert a number to a signed integer. If the argument is unsigned, it is reinterpreted as\nsigned without checking for overflow.\n"}],"Base.∉":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.conj!":[{"Tuple{AbstractArray{#s662,N} where N where #s662<:Number}":" conj!(A)\n\nTransform an array to its complex conjugate in-place.\n\nSee also [`conj`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1+im 2-im; 2+2im 3+im]\n2×2 Array{Complex{Int64},2}:\n 1+1im 2-1im\n 2+2im 3+1im\n\njulia> conj!(A);\n\njulia> A\n2×2 Array{Complex{Int64},2}:\n 1-1im 2+1im\n 2-2im 3-1im\n```\n"}],"Base.>>>":[{"Tuple{BitArray{1},Int64}":" >>>(B::BitVector, n) -> BitVector\n\nUnsigned right bitshift operator, `B >>> n`. Equivalent to `B >> n`. See [`>>`](@ref) for\ndetails and examples.\n"},{"Tuple{Integer,Integer}":" >>>(x, n)\n\nUnsigned right bit shift operator, `x >>> n`. For `n >= 0`, the result is `x`\nshifted right by `n` bits, where `n >= 0`, filling with `0`s. For `n < 0`, this\nis equivalent to `x << -n`.\n\nFor [`Unsigned`](@ref) integer types, this is equivalent to [`>>`](@ref). For\n[`Signed`](@ref) integer types, this is equivalent to `signed(unsigned(x) >> n)`.\n\n# Examples\n```jldoctest\njulia> Int8(-14) >>> 2\n60\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(60))\n\"00111100\"\n```\n\n[`BigInt`](@ref)s are treated as if having infinite size, so no filling is required and this\nis equivalent to [`>>`](@ref).\n\nSee also [`>>`](@ref), [`<<`](@ref).\n"}],"Base.parent":[{"Tuple{AbstractArray}":" parent(A)\n\nReturns the \"parent array\" of an array view type (e.g., `SubArray`), or the array itself if\nit is not a view.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> V = view(A, 1:2, :)\n2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64:\n 1 2\n 3 4\n\njulia> parent(V)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"}],"Base.widemul":[{"Tuple{Number,Number}":" widemul(x, y)\n\nMultiply `x` and `y`, giving the result as a larger type.\n\n# Examples\n```jldoctest\njulia> widemul(Float32(3.), 4.)\n12.0\n```\n"}],"Base.Dims":[{"Union{}":" Dims{N}\n\nAn `NTuple` of `N` `Int`s used to represent the dimensions\nof an [`AbstractArray`](@ref).\n"}],"Base.code_lowered":[{"Tuple{Any,Any}":" code_lowered(f, types; generated=true, debuginfo=:default)\n\nReturn an array of the lowered forms (IR) for the methods matching the given generic function\nand type signature.\n\nIf `generated` is `false`, the returned `CodeInfo` instances will correspond to fallback\nimplementations. An error is thrown if no fallback implementation exists.\nIf `generated` is `true`, these `CodeInfo` instances will correspond to the method bodies\nyielded by expanding the generators.\n\nThe keyword debuginfo controls the amount of code metadata present in the output.\n\nNote that an error will be thrown if `types` are not leaf types when `generated` is\n`true` and any of the corresponding methods are an `@generated` method.\n"}],"Base.reverseind":[{"Tuple{AbstractString,Integer}":" reverseind(v, i)\n\nGiven an index `i` in [`reverse(v)`](@ref), return the corresponding index in\n`v` so that `v[reverseind(v,i)] == reverse(v)[i]`. (This can be nontrivial in\ncases where `v` contains non-ASCII characters.)\n\n# Examples\n```jldoctest\njulia> r = reverse(\"Julia\")\n\"ailuJ\"\n\njulia> for i in 1:length(r)\n print(r[reverseind(\"Julia\", i)])\n end\nJulia\n```\n"}],"Base.fma":[{"Union{}":" fma(x, y, z)\n\nComputes `x*y+z` without rounding the intermediate result `x*y`. On some systems this is\nsignificantly more expensive than `x*y+z`. `fma` is used to improve accuracy in certain\nalgorithms. See [`muladd`](@ref).\n"}],"Base.require":[{"Tuple{Module,Symbol}":" require(into::Module, module::Symbol)\n\nThis function is part of the implementation of [`using`](@ref) / [`import`](@ref), if a module is not\nalready defined in `Main`. It can also be called directly to force reloading a module,\nregardless of whether it has been loaded before (for example, when interactively developing\nlibraries).\n\nLoads a source file, in the context of the `Main` module, on every active node, searching\nstandard locations for files. `require` is considered a top-level operation, so it sets the\ncurrent `include` path but does not use it to search for files (see help for [`include`](@ref)).\nThis function is typically used to load library code, and is implicitly called by `using` to\nload packages.\n\nWhen searching for files, `require` first looks for package code in the global array\n[`LOAD_PATH`](@ref). `require` is case-sensitive on all platforms, including those with\ncase-insensitive filesystems like macOS and Windows.\n\nFor more details regarding code loading, see the manual sections on [modules](@ref modules) and\n[parallel computing](@ref code-availability).\n"}],"Base.write":[{"Union{}":" write(io::IO, x)\n write(filename::AbstractString, x)\n\nWrite the canonical binary representation of a value to the given I/O stream or file.\nReturn the number of bytes written into the stream. See also [`print`](@ref) to\nwrite a text representation (with an encoding that may depend upon `io`).\n\nYou can write multiple values with the same `write` call. i.e. the following are equivalent:\n\n write(io, x, y...)\n write(io, x) + write(io, y...)\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> write(io, \"Sometimes those members\") + write(io, \" write documentation.\")\n44\n\njulia> String(take!(io))\n\"Sometimes those members write documentation.\"\n```\nUser-defined plain-data types without `write` methods can be written when wrapped in a `Ref`:\n```jldoctest\njulia> struct MyStruct; x::Float64; end\n\njulia> io = IOBuffer()\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=Inf, ptr=1, mark=-1)\n\njulia> write(io, Ref(MyStruct(42.0)))\n8\n\njulia> seekstart(io); read!(io, Ref(MyStruct(NaN)))\nBase.RefValue{MyStruct}(MyStruct(42.0))\n```\n"}],"Base.axes":[{"Tuple{Any}":" axes(A)\n\nReturn the tuple of valid indices for array `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A)\n(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" axes(A, d)\n\nReturn the valid range of indices for array `A` along dimension `d`.\n\nSee also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A, 2)\nBase.OneTo(6)\n```\n"}],"Base.ReentrantLock":[{"Union{}":" ReentrantLock()\n\nCreates a re-entrant lock for synchronizing [`Task`](@ref)s.\nThe same task can acquire the lock as many times as required.\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n"}],"Base.position":[{"Tuple{IOStream}":" position(s)\n\nGet the current position of a stream.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> position(io)\n5\n\njulia> skip(io, 10);\n\njulia> position(io)\n15\n\njulia> seekend(io);\n\njulia> position(io)\n35\n```\n"}],"Base.readline":[{"Tuple{AbstractString}":" readline(io::IO=stdin; keep::Bool=false)\n readline(filename::AbstractString; keep::Bool=false)\n\nRead a single line of text from the given I/O stream or file (defaults to `stdin`).\nWhen reading from a file, the text is assumed to be encoded in UTF-8. Lines in the\ninput end with `'\\n'` or `\"\\r\\n\"` or the end of an input stream. When `keep` is\nfalse (as it is by default), these trailing newline characters are removed from the\nline before it is returned. When `keep` is true, they are returned as part of the\nline.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readline(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\"\n\njulia> readline(\"my_file.txt\", keep=true)\n\"JuliaLang is a GitHub organization.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.kill":[{"Tuple{Base.Process,Integer}":" kill(p::Process, signum=Base.SIGTERM)\n\nSend a signal to a process. The default is to terminate the process.\nReturns successfully if the process has already exited, but throws an\nerror if killing the process failed for other reasons (e.g. insufficient\npermissions).\n"}],"Base.circshift!":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any,Tuple{Vararg{Integer,N}} where N}} where N where T":" circshift!(dest, src, shifts)\n\nCircularly shift, i.e. rotate, the data in `src`, storing the result in\n`dest`. `shifts` specifies the amount to shift in each dimension.\n\nThe `dest` array must be distinct from the `src` array (they cannot\nalias each other).\n\nSee also [`circshift`](@ref).\n"}],"Base.⊇":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.@label":[{"Tuple{Symbol}":" @label name\n\nLabels a statement with the symbolic label `name`. The label marks the end-point\nof an unconditional jump with [`@goto name`](@ref).\n"}],"Base.AsyncCondition":[{"Union{}":" AsyncCondition()\n\nCreate a async condition that wakes up tasks waiting for it\n(by calling [`wait`](@ref) on the object)\nwhen notified from C by a call to `uv_async_send`.\nWaiting tasks are woken with an error when the object is closed (by [`close`](@ref).\nUse [`isopen`](@ref) to check whether it is still active.\n"},{"Tuple{Function}":" AsyncCondition(callback::Function)\n\nCreate a async condition that calls the given `callback` function. The `callback` is passed one argument,\nthe async condition object itself.\n"}],"Base.!==":[{"Tuple{Any,Any}":" !==(x, y)\n ≢(x,y)\n\nAlways gives the opposite answer as [`===`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1, 2]; b = [1, 2];\n\njulia> a ≢ b\ntrue\n\njulia> a ≢ a\nfalse\n```\n"}],"Base.isbitsunion":[{"Tuple{Union}":" Base.isbitsunion(::Type{T})\n\nReturn whether a type is an \"is-bits\" Union type, meaning each type included in a Union is [`isbitstype`](@ref).\n\n# Examples\n```jldoctest\njulia> Base.isbitsunion(Union{Float64, UInt8})\ntrue\n\njulia> Base.isbitsunion(Union{Float64, String})\nfalse\n```\n"}],"Base.⊈":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.DenseVector":[{"Union{}":" DenseVector{T}\n\nOne-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,1}`.\n"}],"Base.@time":[{"Tuple{Any}":" @time\n\nA macro to execute an expression, printing the time it took to execute, the number of\nallocations, and the total number of bytes its execution caused to be allocated, before\nreturning the value of the expression.\n\nSee also [`@timev`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n!!! note\n For more serious benchmarking, consider the `@btime` macro from the BenchmarkTools.jl\n package which among other things evaluates the function multiple times in order to\n reduce noise.\n\n```julia-repl\njulia> @time rand(10^6);\n 0.001525 seconds (7 allocations: 7.630 MiB)\n\njulia> @time begin\n sleep(0.3)\n 1+1\n end\n 0.301395 seconds (8 allocations: 336 bytes)\n2\n```\n"}],"Base.bytesavailable":[{"Tuple{Base.AbstractPipe}":" bytesavailable(io)\n\nReturn the number of bytes available for reading before a read from this stream or buffer will block.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> bytesavailable(io)\n34\n```\n"}],"Base.replace_ref_end!":[{"Tuple{Any}":" replace_ref_end!(ex)\n\nRecursively replace occurrences of the symbol :end in a \"ref\" expression (i.e. A[...]) `ex`\nwith the appropriate function calls (`lastindex` or `size`). Replacement uses\nthe closest enclosing ref, so\n\n A[B[end]]\n\nshould transform to\n\n A[B[lastindex(B)]]\n\n"}],"Base.systemerror":[{"Tuple{Any,Bool}":" systemerror(sysfunc[, errno::Cint=Libc.errno()])\n systemerror(sysfunc, iftrue::Bool)\n\nRaises a `SystemError` for `errno` with the descriptive string `sysfunc` if `iftrue` is `true`\n"}],"Base.padding":[{"Tuple{Any}":" Compute the location of padding in a type.\n"}],"Base.parentindices":[{"Tuple{AbstractArray}":" parentindices(A)\n\nReturn the indices in the [`parent`](@ref) which correspond to the array view `A`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> V = view(A, 1, :)\n2-element view(::Array{Int64,2}, 1, :) with eltype Int64:\n 1\n 2\n\njulia> parentindices(V)\n(1, Base.Slice(Base.OneTo(2)))\n```\n"}],"Base.missing":[{"Union{}":" missing\n\nThe singleton instance of type [`Missing`](@ref) representing a missing value.\n"}],"Base.tryparse":[{"Union{Tuple{T}, Tuple{Type{T},AbstractString}} where T<:Integer":" tryparse(type, str; base)\n\nLike [`parse`](@ref), but returns either a value of the requested type,\nor [`nothing`](@ref) if the string does not contain a valid number.\n"}],"Base.mod1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" mod1(x, y)\n\nModulus after flooring division, returning a value `r` such that `mod(r, y) == mod(x, y)`\nin the range ``(0, y]`` for positive `y` and in the range ``[y,0)`` for negative `y`.\n\nSee also: [`fld1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod1(4, 2)\n2\n\njulia> mod1(4, 3)\n1\n```\n"}],"Base.AsyncCollector":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing) -> iterator\n\nReturn an iterator which applies `f` to each element of `c` asynchronously\nand collects output into `results`.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `iterate(::AsyncCollector, state) -> (nothing, state)`. A successful return\n from `iterate` indicates that the next element from the input collection is\n being processed asynchronously. It blocks until a free worker task becomes\n available.\n\n!!! note\n `for _ in AsyncCollector(f, results, c...; ntasks=1) end` is equivalent to\n `map!(f, results, c...)`.\n"}],"Base.add12":[{"Union{Tuple{T}, Tuple{T,T}} where T":" zhi, zlo = add12(x, y)\n\nA high-precision representation of `x + y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x + y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nBecause of the way floating-point numbers are printed, `lo` may not\nlook the way you might expect from the standpoint of decimal\nrepresentation, even though it is exact from the standpoint of binary\nrepresentation.\n\nExample:\n```julia\njulia> 1.0 + 1.0001e-15\n1.000000000000001\n\njulia> big(1.0) + big(1.0001e-15)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n\njulia> hi, lo = Base.add12(1.0, 1.0001e-15)\n(1.000000000000001, -1.1012302462515652e-16)\n\njulia> big(hi) + big(lo)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n```\n\n`lo` differs from 1.0e-19 because `hi` is not exactly equal to\nthe first 16 decimal digits of the answer.\n"}],"Base.trailing_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" trailing_zeros(x::Integer) -> Integer\n\nNumber of zeros trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_zeros(2)\n1\n```\n"}],"Base.vect":[{"Tuple":" vect(X...)\n\nCreate a [`Vector`](@ref) with element type computed from the `promote_typeof` of the argument,\ncontaining the argument list.\n\n# Examples\n```jldoctest\njulia> a = Base.vect(UInt8(1), 2.5, 1//2)\n3-element Array{Float64,1}:\n 1.0\n 2.5\n 0.5\n```\n"}],"Base.time_ns":[{"Tuple{}":" time_ns()\n\nGet the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.\n"}],"Base.parameter_upper_bound":[{"Tuple{UnionAll,Any}":" Base.parameter_upper_bound(t::UnionAll, idx)\n\nDetermine the upper bound of a type parameter in the underlying datatype.\nThis method should generally not be relied upon:\ncode instead should usually use static parameters in dispatch to extract these values.\n\n# Examples\n```jldoctest\njulia> struct Foo{T<:AbstractFloat, N}\n x::Tuple{T, N}\n end\n\njulia> Base.parameter_upper_bound(Foo, 1)\nAbstractFloat\n\njulia> Base.parameter_upper_bound(Foo, 2)\nAny\n```\n"}],"Base.rpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" rpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the right with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> rpad(\"March\", 20)\n\"March \"\n```\n"}],"Base.redirect_stderr":[{"Union{}":" redirect_stderr([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stderr`](@ref).\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stderr(f::Function, stream)\n\nRun the function `f` while redirecting [`stderr`](@ref) to `stream`.\nUpon completion, [`stderr`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.first":[{"Tuple{Any}":" first(coll)\n\nGet the first element of an iterable collection. Return the start point of an\n[`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> first(2:2:10)\n2\n\njulia> first([1; 2; 3; 4])\n1\n```\n"},{"Tuple{AbstractString,Integer}":" first(s::AbstractString, n::Integer)\n\nGet a string consisting of the first `n` characters of `s`.\n\n```jldoctest\njulia> first(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 1)\n\"∀\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 3)\n\"∀ϵ≠\"\n```\n"}],"Base.fill!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" fill!(A, x)\n\nFill array `A` with the value `x`. If `x` is an object reference, all elements will refer to\nthe same object. `fill!(A, Foo())` will return `A` filled with the result of evaluating\n`Foo()` once.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,3)\n2×3 Array{Float64,2}:\n 0.0 0.0 0.0\n 0.0 0.0 0.0\n\njulia> fill!(A, 2.)\n2×3 Array{Float64,2}:\n 2.0 2.0 2.0\n 2.0 2.0 2.0\n\njulia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A\n3-element Array{Array{Int64,1},1}:\n [2, 1, 1]\n [2, 1, 1]\n [2, 1, 1]\n\njulia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())\n3-element Array{Int64,1}:\n 1\n 1\n 1\n```\n"}],"Base.close":[{"Union{}":" close(stream)\n\nClose an I/O stream. Performs a [`flush`](@ref) first.\n"},{"Union{Tuple{Channel}, Tuple{Channel,Exception}}":" close(c::Channel[, excp::Exception])\n\nClose a channel. An exception (optionally given by `excp`), is thrown by:\n\n* [`put!`](@ref) on a closed channel.\n* [`take!`](@ref) and [`fetch`](@ref) on an empty, closed channel.\n"}],"Base.@task":[{"Tuple{Any}":" @task\n\nWrap an expression in a [`Task`](@ref) without executing it, and return the [`Task`](@ref). This only\ncreates a task, and does not run it.\n\n# Examples\n```jldoctest\njulia> a1() = sum(i for i in 1:1000);\n\njulia> b = @task a1();\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.oneunit":[{"Union{Tuple{T}, Tuple{T}} where T":" oneunit(x::T)\n oneunit(T::Type)\n\nReturns `T(one(x))`, where `T` is either the type of the argument or\n(if a type is passed) the argument. This differs from [`one`](@ref) for\ndimensionful quantities: `one` is dimensionless (a multiplicative identity)\nwhile `oneunit` is dimensionful (of the same type as `x`, or of type `T`).\n\n# Examples\n```jldoctest\njulia> oneunit(3.7)\n1.0\n\njulia> import Dates; oneunit(Dates.Day)\n1 day\n```\n"}],"Base.sizeof":[{"Tuple{Any}":" sizeof(T::DataType)\n sizeof(obj)\n\nSize, in bytes, of the canonical binary representation of the given `DataType` `T`, if any.\nSize, in bytes, of object `obj` if it is not `DataType`.\n\n# Examples\n```jldoctest\njulia> sizeof(Float32)\n4\n\njulia> sizeof(ComplexF64)\n16\n\njulia> sizeof(1.0)\n8\n\njulia> sizeof([1.0:10.0;])\n80\n```\n\nIf `DataType` `T` does not have a specific size, an error is thrown.\n\n```jldoctest\njulia> sizeof(AbstractArray)\nERROR: Abstract type AbstractArray does not have a definite size.\nStacktrace:\n[...]\n```\n"},{"Tuple{AbstractString}":" sizeof(str::AbstractString)\n\nSize, in bytes, of the string `str`. Equal to the number of code units in `str` multiplied by\nthe size, in bytes, of one code unit in `str`.\n\n# Examples\n```jldoctest\njulia> sizeof(\"\")\n0\n\njulia> sizeof(\"∀\")\n3\n```\n"}],"Base.isinteger":[{"Tuple{Integer}":" isinteger(x) -> Bool\n\nTest whether `x` is numerically equal to some integer.\n\n# Examples\n```jldoctest\njulia> isinteger(4.0)\ntrue\n```\n"}],"Base.Cchar":[{"Union{}":" Cchar\n\nEquivalent to the native `char` c-type.\n"}],"Base.datatype_pointerfree":[{"Tuple{DataType}":" Base.datatype_pointerfree(dt::DataType) -> Bool\n\nReturn whether instances of this type can contain references to gc-managed memory.\nCan be called on any `isconcretetype`.\n"}],"Base.uabs":[{"Tuple{Integer}":" uabs(x::Integer)\n\nReturn the absolute value of `x`, possibly returning a different type should the\noperation be susceptible to overflow. This typically arises when `x` is a two's complement\nsigned integer, so that `abs(typemin(x)) == typemin(x) < 0`, in which case the result of\n`uabs(x)` will be an unsigned integer of the same size.\n"}],"Base.hasmethod":[{"Tuple{Any,Any}":" hasmethod(f, t::Type{<:Tuple}[, kwnames]; world=typemax(UInt)) -> Bool\n\nDetermine whether the given generic function has a method matching the given\n`Tuple` of argument types with the upper bound of world age given by `world`.\n\nIf a tuple of keyword argument names `kwnames` is provided, this also checks\nwhether the method of `f` matching `t` has the given keyword argument names.\nIf the matching method accepts a variable number of keyword arguments, e.g.\nwith `kwargs...`, any names given in `kwnames` are considered valid. Otherwise\nthe provided names must be a subset of the method's keyword arguments.\n\nSee also [`applicable`](@ref).\n\n!!! compat \"Julia 1.2\"\n Providing keyword argument names requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> hasmethod(length, Tuple{Array})\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:dims,))\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:apples, :bananas))\nfalse\n\njulia> g(; xs...) = 4;\n\njulia> hasmethod(g, Tuple{}, (:a, :b, :c, :d)) # g accepts arbitrary kwargs\ntrue\n```\n"}],"Base.isdispatchtuple":[{"Tuple{Any}":" isdispatchtuple(T)\n\nDetermine whether type `T` is a tuple \"leaf type\",\nmeaning it could appear as a type signature in dispatch\nand has no subtypes (or supertypes) which could appear in a call.\n"}],"Base.process_exited":[{"Tuple{Base.Process}":" process_exited(p::Process)\n\nDetermine whether a process has exited.\n"}],"Base.Val":[{"Union{}":" Val(c)\n\nReturn `Val{c}()`, which contains no run-time data. Types like this can be used to\npass the information between functions through the value `c`, which must be an `isbits`\nvalue. The intent of this construct is to be able to dispatch on constants directly (at\ncompile time) without having to test the value of the constant at run time.\n\n# Examples\n```jldoctest\njulia> f(::Val{true}) = \"Good\"\nf (generic function with 1 method)\n\njulia> f(::Val{false}) = \"Bad\"\nf (generic function with 2 methods)\n\njulia> f(Val(true))\n\"Good\"\n```\n"}],"Base.minimum":[{"Tuple{Any}":" minimum(itr)\n\nReturns the smallest element in a collection.\n\n# Examples\n```jldoctest\njulia> minimum(-20.5:10)\n-20.5\n\njulia> minimum([1,2,3])\n1\n```\n"},{"Tuple{AbstractArray}":" minimum(A::AbstractArray; dims)\n\nCompute the minimum value of an array over the given dimensions. See also the\n[`min(a,b)`](@ref) function to take the minimum of two or more arguments,\nwhich can be applied elementwise to arrays via `min.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum(A, dims=1)\n1×2 Array{Int64,2}:\n 1 2\n\njulia> minimum(A, dims=2)\n2×1 Array{Int64,2}:\n 1\n 3\n```\n"},{"Tuple{Any,Any}":" minimum(f, itr)\n\nReturns the smallest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> minimum(length, [\"Julion\", \"Julia\", \"Jule\"])\n4\n```\n"}],"Base.rethrow":[{"Tuple{}":" rethrow()\n\nRethrow the current exception from within a `catch` block. The rethrown\nexception will continue propagation as if it had not been caught.\n\n!!! note\n The alternative form `rethrow(e)` allows you to associate an alternative\n exception object `e` with the current backtrace. However this misrepresents\n the program state at the time of the error so you're encouraged to instead\n throw a new exception using `throw(e)`. In Julia 1.1 and above, using\n `throw(e)` will preserve the root cause exception on the stack, as\n described in [`catch_stack`](@ref).\n"}],"Base.hasfastin":[{"Tuple{Type}":" hasfastin(T)\n\nDetermine whether the computation `x ∈ collection` where `collection::T` can be considered\nas a \"fast\" operation (typically constant or logarithmic complexity).\nThe definition `hasfastin(x) = hasfastin(typeof(x))` is provided for convenience so that instances\ncan be passed instead of types.\nHowever the form that accepts a type argument should be defined for new types.\n"}],"Base.add_sum":[{"Tuple{Any,Any}":" Base.add_sum(x, y)\n\nThe reduction operator used in `sum`. The main difference from [`+`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.Channel":[{"Union{}":" Channel{T=Any}(size::Int=0)\n\nConstructs a `Channel` with an internal buffer that can hold a maximum of `size` objects\nof type `T`.\n[`put!`](@ref) calls on a full channel block until an object is removed with [`take!`](@ref).\n\n`Channel(0)` constructs an unbuffered channel. `put!` blocks until a matching `take!` is called.\nAnd vice-versa.\n\nOther constructors:\n\n* `Channel()`: default constructor, equivalent to `Channel{Any}(0)`\n* `Channel(Inf)`: equivalent to `Channel{Any}(typemax(Int))`\n* `Channel(sz)`: equivalent to `Channel{Any}(sz)`\n\n!!! compat \"Julia 1.3\"\n The default constructor `Channel()` and default `size=0` were added in Julia 1.3.\n"},{"Union{Tuple{Function}, Tuple{T}, Tuple{Function,Any}} where T":" Channel{T=Any}(func::Function, size=0; taskref=nothing, spawn=false)\n\nCreate a new task from `func`, bind it to a new channel of type\n`T` and size `size`, and schedule the task, all in a single call.\n\n`func` must accept the bound channel as its only argument.\n\nIf you need a reference to the created task, pass a `Ref{Task}` object via\nthe keyword argument `taskref`.\n\nIf `spawn = true`, the Task created for `func` may be scheduled on another thread\nin parallel, equivalent to creating a task via [`Threads.@spawn`](@ref).\n\nReturn a `Channel`.\n\n# Examples\n```jldoctest\njulia> chnl = Channel() do ch\n foreach(i -> put!(ch, i), 1:4)\n end;\n\njulia> typeof(chnl)\nChannel{Any}\n\njulia> for i in chnl\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n```\n\nReferencing the created task:\n\n```jldoctest\njulia> taskref = Ref{Task}();\n\njulia> chnl = Channel(taskref=taskref) do ch\n println(take!(ch))\n end;\n\njulia> istaskdone(taskref[])\nfalse\n\njulia> put!(chnl, \"Hello\");\nHello\n\njulia> istaskdone(taskref[])\ntrue\n```\n\n!!! compat \"Julia 1.3\"\n The `spawn=` parameter was added in Julia 1.3. This constructor was added in Julia 1.3.\n In earlier versions of Julia, Channel used keyword arguments to set `size` and `T`, but\n those constructors are deprecated.\n\n```jldoctest\njulia> chnl = Channel{Char}(1, spawn=true) do ch\n for c in \"hello world\"\n put!(ch, c)\n end\n end\nChannel{Char}(sz_max:1,sz_curr:1)\n\njulia> String(collect(chnl))\n\"hello world\"\n```\n"}],"Base.VERSION":[{"Union{}":" VERSION\n\nA `VersionNumber` object describing which version of Julia is in use. For details see\n[Version Number Literals](@ref man-version-number-literals).\n"}],"Base.union!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" union!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the union of passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> union!(a, 1:2:8);\n\njulia> a\nSet{Int64} with 5 elements:\n 7\n 4\n 3\n 5\n 1\n```\n"}],"Base.findlast":[{"Tuple{Any}":" findlast(A)\n\nReturn the index or key of the last `true` value in `A`.\nReturn `nothing` if there is no `true` value in `A`.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, true, false]\n4-element Array{Bool,1}:\n 1\n 0\n 1\n 0\n\njulia> findlast(A)\n3\n\njulia> A = falses(2,2);\n\njulia> findlast(A) # returns nothing, but not printed in the REPL\n\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> findlast(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findlast(predicate::Function, A)\n\nReturn the index or key of the last element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4]\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> findlast(isodd, A)\n3\n\njulia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> findlast(isodd, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findlast(pattern::AbstractString, string::AbstractString)\n\nFind the last occurrence of `pattern` in `string`. Equivalent to\n[`findprev(pattern, string, lastindex(string))`](@ref).\n\n# Examples\n```jldoctest\njulia> findlast(\"o\", \"Hello to the world\")\n15:15\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findlast(ch::AbstractChar, string::AbstractString)\n\nFind the last occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findlast('p', \"happy\")\n4\n\njulia> findlast('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.Event":[{"Union{}":" Event()\n\nCreate a level-triggered event source. Tasks that call [`wait`](@ref) on an\n`Event` are suspended and queued until `notify` is called on the `Event`.\nAfter `notify` is called, the `Event` remains in a signaled state and\ntasks will no longer block when waiting for it.\n\n!!! compat \"Julia 1.1\"\n This functionality requires at least Julia 1.1.\n"}],"Base.NaN16":[{"Union{}":" NaN16\n\nA not-a-number value of type [`Float16`](@ref).\n"}],"Base.>=":[{"Tuple{Any}":" >=(x)\n\nCreate a function that compares its argument to `x` using [`>=`](@ref), i.e.\na function equivalent to `y -> y >= x`.\nThe returned function is of type `Base.Fix2{typeof(>=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >=(x, y)\n ≥(x,y)\n\nGreater-than-or-equals comparison operator. Falls back to `y <= x`.\n\n# Examples\n```jldoctest\njulia> 'a' >= 'b'\nfalse\n\njulia> 7 ≥ 7 ≥ 3\ntrue\n\njulia> \"abc\" ≥ \"abc\"\ntrue\n\njulia> 5 >= 3\ntrue\n```\n"}],"Base.unique":[{"Tuple{Any}":" unique(itr)\n\nReturn an array containing only the unique elements of collection `itr`,\nas determined by [`isequal`](@ref), in the order that the first of each\nset of equivalent elements originally appears. The element type of the\ninput is preserved.\n\n# Examples\n```jldoctest\njulia> unique([1, 2, 6, 2])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> unique(Real[1, 1.0, 2])\n2-element Array{Real,1}:\n 1\n 2\n```\n"},{"Tuple{AbstractArray}":" unique(A::AbstractArray; dims::Int)\n\nReturn unique regions of `A` along dimension `dims`.\n\n# Examples\n```jldoctest\njulia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))\n2×2×2 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n\n[:, :, 2] =\n 1 1\n 0 0\n\njulia> unique(A)\n2-element Array{Bool,1}:\n 1\n 0\n\njulia> unique(A, dims=2)\n2×1×2 Array{Bool,3}:\n[:, :, 1] =\n 1\n 0\n\n[:, :, 2] =\n 1\n 0\n\njulia> unique(A, dims=3)\n2×2×1 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n```\n"},{"Tuple{Any,Any}":" unique(f, itr)\n\nReturns an array containing one value from `itr` for each unique value produced by `f`\napplied to elements of `itr`.\n\n# Examples\n```jldoctest\njulia> unique(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n```\n"}],"Base.getindex":[{"Union{}":" getindex(collection, key...)\n\nRetrieve the value(s) stored at the given key or index within a collection. The syntax\n`a[i,j,...]` is converted by the compiler to `getindex(a, i, j, ...)`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> getindex(A, \"a\")\n1\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" getindex(A, inds...)\n\nReturn a subset of array `A` as specified by `inds`, where each `ind` may be an\n`Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref). See the manual section on\n[array indexing](@ref man-array-indexing) for details.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> getindex(A, 1)\n1\n\njulia> getindex(A, [2, 1])\n2-element Array{Int64,1}:\n 3\n 1\n\njulia> getindex(A, 2:4)\n3-element Array{Int64,1}:\n 3\n 2\n 4\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Vararg{Any,N} where N}} where T":" getindex(type[, elements...])\n\nConstruct a 1-d array of the specified type. This is usually called with the syntax\n`Type[]`. Element values can be specified using `Type[a,b,c,...]`.\n\n# Examples\n```jldoctest\njulia> Int8[1, 2, 3]\n3-element Array{Int8,1}:\n 1\n 2\n 3\n\njulia> getindex(Int8, 1, 2, 3)\n3-element Array{Int8,1}:\n 1\n 2\n 3\n```\n"}],"Base.ones":[{"Union{}":" ones([T=Float64,] dims::Tuple)\n ones([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all ones with size specified by `dims`.\nSee also: [`fill`](@ref), [`zeros`](@ref).\n\n# Examples\n```jldoctest\njulia> ones(1,2)\n1×2 Array{Float64,2}:\n 1.0 1.0\n\njulia> ones(ComplexF64, 2, 3)\n2×3 Array{Complex{Float64},2}:\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n```\n"}],"Base.iterate":[{"Union{}":" iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}\n\nAdvance the iterator to obtain the next element. If no elements\nremain, `nothing` should be returned. Otherwise, a 2-tuple of the\nnext element and the new iteration state should be returned.\n"},{"Tuple{AbstractString,Integer}":" iterate(s::AbstractString, i::Integer) -> Union{Tuple{<:AbstractChar, Int}, Nothing}\n\nReturn a tuple of the character in `s` at index `i` with the index of the start\nof the following character in `s`. This is the key method that allows strings to\nbe iterated, yielding a sequences of characters. If `i` is out of bounds in `s`\nthen a bounds error is raised. The `iterate` function, as part of the iteration\nprotocol may assume that `i` is the start of a character in `s`.\n\nSee also: [`getindex`](@ref), [`checkbounds`](@ref)\n"}],"Base.readavailable":[{"Union{}":" readavailable(stream)\n\nRead all available data on the stream, blocking the task only if no data is available. The\nresult is a `Vector{UInt8,1}`.\n"}],"Base.fieldoffset":[{"Tuple{DataType,Integer}":" fieldoffset(type, i)\n\nThe byte offset of field `i` of a type relative to the data start. For example, we could\nuse it in the following manner to summarize information about a struct:\n\n```jldoctest\njulia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i = 1:fieldcount(T)];\n\njulia> structinfo(Base.Filesystem.StatStruct)\n12-element Array{Tuple{UInt64,Symbol,DataType},1}:\n (0x0000000000000000, :device, UInt64)\n (0x0000000000000008, :inode, UInt64)\n (0x0000000000000010, :mode, UInt64)\n (0x0000000000000018, :nlink, Int64)\n (0x0000000000000020, :uid, UInt64)\n (0x0000000000000028, :gid, UInt64)\n (0x0000000000000030, :rdev, UInt64)\n (0x0000000000000038, :size, Int64)\n (0x0000000000000040, :blksize, Int64)\n (0x0000000000000048, :blocks, Int64)\n (0x0000000000000050, :mtime, Float64)\n (0x0000000000000058, :ctime, Float64)\n```\n"}],"Base.one":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" one(x)\n one(T::type)\n\nReturn a multiplicative identity for `x`: a value such that\n`one(x)*x == x*one(x) == x`. Alternatively `one(T)` can\ntake a type `T`, in which case `one` returns a multiplicative\nidentity for any `x` of type `T`.\n\nIf possible, `one(x)` returns a value of the same type as `x`,\nand `one(T)` returns a value of type `T`. However, this may\nnot be the case for types representing dimensionful quantities\n(e.g. time in days), since the multiplicative\nidentity must be dimensionless. In that case, `one(x)`\nshould return an identity value of the same precision\n(and shape, for matrices) as `x`.\n\nIf you want a quantity that is of the same type as `x`, or of type `T`,\neven if `x` is dimensionful, use [`oneunit`](@ref) instead.\n\n# Examples\n```jldoctest\njulia> one(3.7)\n1.0\n\njulia> one(Int)\n1\n\njulia> import Dates; one(Dates.Day(1))\n1\n```\n"}],"Base.IteratorSize":[{"Tuple{Any}":" IteratorSize(itertype::Type) -> IteratorSize\n\nGiven the type of an iterator, return one of the following values:\n\n* `SizeUnknown()` if the length (number of elements) cannot be determined in advance.\n* `HasLength()` if there is a fixed, finite length.\n* `HasShape{N}()` if there is a known length plus a notion of multidimensional shape (as for an array).\n In this case `N` should give the number of dimensions, and the [`axes`](@ref) function is valid\n for the iterator.\n* `IsInfinite()` if the iterator yields values forever.\n\nThe default value (for iterators that do not define this function) is `HasLength()`.\nThis means that most iterators are assumed to implement [`length`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate space for their\nresult, and algorithms that resize their result incrementally.\n\n```jldoctest\njulia> Base.IteratorSize(1:5)\nBase.HasShape{1}()\n\njulia> Base.IteratorSize((2,3))\nBase.HasLength()\n```\n"}],"Base.convert":[{"Union{}":" convert(T, x)\n\nConvert `x` to a value of type `T`.\n\nIf `T` is an [`Integer`](@ref) type, an [`InexactError`](@ref) will be raised if `x`\nis not representable by `T`, for example if `x` is not integer-valued, or is outside the\nrange supported by `T`.\n\n# Examples\n```jldoctest\njulia> convert(Int, 3.0)\n3\n\njulia> convert(Int, 3.5)\nERROR: InexactError: Int64(3.5)\nStacktrace:\n[...]\n```\n\nIf `T` is a [`AbstractFloat`](@ref) or [`Rational`](@ref) type,\nthen it will return the closest value to `x` representable by `T`.\n\n```jldoctest\njulia> x = 1/3\n0.3333333333333333\n\njulia> convert(Float32, x)\n0.33333334f0\n\njulia> convert(Rational{Int32}, x)\n1//3\n\njulia> convert(Rational{Int64}, x)\n6004799503160661//18014398509481984\n```\n\nIf `T` is a collection type and `x` a collection, the result of\n`convert(T, x)` may alias all or part of `x`.\n```jldoctest\njulia> x = Int[1, 2, 3];\n\njulia> y = convert(Vector{Int}, x);\n\njulia> y === x\ntrue\n```\n"}],"Base.displaysize":[{"Tuple{IO}":" displaysize([io::IO]) -> (lines, columns)\n\nReturn the nominal size of the screen that may be used for rendering output to\nthis `IO` object.\nIf no input is provided, the environment variables `LINES` and `COLUMNS` are read.\nIf those are not set, a default size of `(24, 80)` is returned.\n\n# Examples\n```jldoctest\njulia> withenv(\"LINES\" => 30, \"COLUMNS\" => 100) do\n displaysize()\n end\n(30, 100)\n```\n\nTo get your TTY size,\n\n```julia\njulia> displaysize(stdout)\n(34, 147)\n```\n"}],"Base.extrema":[{"Tuple{Any,AbstractArray}":" extrema(f, A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum of `f` applied to each element in the given dimensions\nof `A`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n"},{"Tuple{Any}":" extrema(itr) -> Tuple\n\nCompute both the minimum and maximum element in a single pass, and return them as a 2-tuple.\n\n# Examples\n```jldoctest\njulia> extrema(2:10)\n(2, 10)\n\njulia> extrema([9,pi,4.5])\n(3.141592653589793, 9.0)\n```\n"},{"Tuple{AbstractArray}":" extrema(A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = reshape(Vector(1:2:16), (2,2,2))\n2×2×2 Array{Int64,3}:\n[:, :, 1] =\n 1 5\n 3 7\n\n[:, :, 2] =\n 9 13\n 11 15\n\njulia> extrema(A, dims = (1,2))\n1×1×2 Array{Tuple{Int64,Int64},3}:\n[:, :, 1] =\n (1, 7)\n\n[:, :, 2] =\n (9, 15)\n```\n"},{"Tuple{Any,Any}":" extrema(f, itr) -> Tuple\n\nCompute both the minimum and maximum of `f` applied to each element in `itr` and return\nthem as a 2-tuple. Only one pass is made over `itr`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> extrema(sin, 0:π)\n(0.0, 0.9092974268256817)\n```\n"}],"Base.istaskfailed":[{"Tuple{Task}":" istaskfailed(t::Task) -> Bool\n\nDetermine whether a task has exited because an exception was thrown.\n\n# Examples\n```jldoctest\njulia> a4() = error(\"task failed\");\n\njulia> b = Task(a4);\n\njulia> istaskfailed(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskfailed(b)\ntrue\n```\n"}],"Base.map!":[{"Tuple{Any,Base.ValueIterator}":" map!(f, values(dict::AbstractDict))\n\nModifies `dict` by transforming each value from `val` to `f(val)`.\nNote that the type of `dict` cannot be changed: if `f(val)` is not an instance of the value type\nof `dict` then it will be converted to the value type if possible and otherwise raise an error.\n\n# Examples\n```jldoctest\njulia> d = Dict(:a => 1, :b => 2)\nDict{Symbol,Int64} with 2 entries:\n :a => 1\n :b => 2\n\njulia> map!(v -> v-1, values(d))\nBase.ValueIterator for a Dict{Symbol,Int64} with 2 entries. Values:\n 0\n 1\n```\n"},{"Union{Tuple{F}, Tuple{F,AbstractArray,Vararg{AbstractArray,N} where N}} where F":" map!(function, destination, collection...)\n\nLike [`map`](@ref), but stores the result in `destination` rather than a new\ncollection. `destination` must be at least as large as the first collection.\n\n# Examples\n```jldoctest\njulia> a = zeros(3);\n\njulia> map!(x -> x * 2, a, [1, 2, 3]);\n\njulia> a\n3-element Array{Float64,1}:\n 2.0\n 4.0\n 6.0\n```\n"}],"Base.@inbounds":[{"Tuple{Any}":" @inbounds(blk)\n\nEliminates array bounds checking within expressions.\n\nIn the example below the in-range check for referencing\nelement `i` of array `A` is skipped to improve performance.\n\n```julia\nfunction sum(A::AbstractArray)\n r = zero(eltype(A))\n for i = 1:length(A)\n @inbounds r += A[i]\n end\n return r\nend\n```\n\n!!! warning\n\n Using `@inbounds` may return incorrect results/crashes/corruption\n for out-of-bounds indices. The user is responsible for checking it manually.\n Only use `@inbounds` when it is certain from the information locally available\n that all accesses are in bounds.\n"}],"Base.showerror":[{"Tuple{IO,Any}":" showerror(io, e)\n\nShow a descriptive representation of an exception object `e`.\nThis method is used to display the exception after a call to [`throw`](@ref).\n\n# Examples\n```jldoctest\njulia> struct MyException <: Exception\n msg::AbstractString\n end\n\njulia> function Base.showerror(io::IO, err::MyException)\n print(io, \"MyException: \")\n print(io, err.msg)\n end\n\njulia> err = MyException(\"test exception\")\nMyException(\"test exception\")\n\njulia> sprint(showerror, err)\n\"MyException: test exception\"\n\njulia> throw(MyException(\"test exception\"))\nERROR: MyException: test exception\n```\n"}],"Base.islocked":[{"Tuple{ReentrantLock}":" islocked(lock) -> Status (Boolean)\n\nCheck whether the `lock` is held by any task/thread.\nThis should not be used for synchronization (see instead [`trylock`](@ref)).\n"}],"Base.AbstractUnitRange":[{"Union{}":" AbstractUnitRange{T} <: OrdinalRange{T, T}\n\nSupertype for ranges with a step size of [`oneunit(T)`](@ref) with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.Slice":[{"Union{}":" Slice(indices)\n\nRepresent an AbstractUnitRange of indices as a vector of the indices themselves,\nwith special handling to signal they represent a complete slice of a dimension (:).\n\nUpon calling `to_indices`, Colons are converted to Slice objects to represent\nthe indices over which the Colon spans. Slice objects are themselves unit\nranges with the same indices as those they wrap. This means that indexing into\nSlice objects with an integer always returns that exact integer, and they\niterate over all the wrapped indices, even supporting offset indices.\n"}],"Base.IndexCartesian":[{"Union{}":" IndexCartesian()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by a Cartesian index. This is the default\nfor new custom [`AbstractArray`](@ref) subtypes.\n\nA Cartesian indexing style uses multiple integer indices to describe the position in\na multidimensional array, with exactly one index per dimension. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexCartesian` will return\na range of [`CartesianIndices`](@ref).\n\nA `N`-dimensional custom array that reports its `IndexStyle` as `IndexCartesian` needs\nto implement indexing (and indexed assignment) with exactly `N` `Int` indices;\nall other indexing expressions — including linear indexing — will\nbe recomputed to the equivalent Cartesian location. For example, if `A` were a `2×3` custom\nmatrix with cartesian indexing, and we referenced `A[5]`, this would be\nrecomputed to the equivalent Cartesian index and call `A[1, 3]` since `5 = 2*1 + 3`.\n\nIt is significantly more expensive to compute Cartesian indices from a linear index than it is\nto go the other way. The former operation requires division — a very costly operation — whereas\nthe latter only uses multiplication and addition and is essentially free. This asymmetry means it\nis far more costly to use linear indexing with an `IndexCartesian` array than it is to use\nCartesian indexing with an `IndexLinear` array.\n\nSee also [`IndexLinear`](@ref).\n"}],"Base.DenseMatrix":[{"Union{}":" DenseMatrix{T}\n\nTwo-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,2}`.\n"}],"Base.!=":[{"Tuple{Any}":" !=(x)\n\nCreate a function that compares its argument to `x` using [`!=`](@ref), i.e.\na function equivalent to `y -> y != x`.\nThe returned function is of type `Base.Fix2{typeof(!=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" !=(x, y)\n ≠(x,y)\n\nNot-equals comparison operator. Always gives the opposite answer as [`==`](@ref).\n\n# Implementation\nNew types should generally not implement this, and rely on the fallback definition\n`!=(x,y) = !(x==y)` instead.\n\n# Examples\n```jldoctest\njulia> 3 != 2\ntrue\n\njulia> \"foo\" ≠ \"foo\"\nfalse\n```\n"}],"Base.@generated":[{"Tuple{Any}":" @generated f\n @generated(f)\n`@generated` is used to annotate a function which will be generated.\nIn the body of the generated function, only types of arguments can be read\n(not the values). The function returns a quoted expression evaluated when the\nfunction is called. The `@generated` macro should not be used on functions mutating\nthe global scope or depending on mutable elements.\n\nSee [Metaprogramming](@ref) for further details.\n\n## Example:\n```julia\njulia> @generated function bar(x)\n if x <: Integer\n return :(x ^ 2)\n else\n return :(x)\n end\n end\nbar (generic function with 1 method)\n\njulia> bar(4)\n16\n\njulia> bar(\"baz\")\n\"baz\"\n```\n"}],"Base.maximum!":[{"Tuple{Any,Any}":" maximum!(r, A)\n\nCompute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 4\n\njulia> maximum!([1 1], A)\n1×2 Array{Int64,2}:\n 3 4\n```\n"}],"Base.~":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" ~(x)\n\nBitwise not.\n\n# Examples\n```jldoctest\njulia> ~4\n-5\n\njulia> ~10\n-11\n\njulia> ~true\nfalse\n```\n"}],"Base.isvalid":[{"Tuple{AbstractString,Integer}":" isvalid(s::AbstractString, i::Integer) -> Bool\n\nPredicate indicating whether the given index is the start of the encoding of a\ncharacter in `s` or not. If `isvalid(s, i)` is true then `s[i]` will return the\ncharacter whose encoding starts at that index, if it's false, then `s[i]` will\nraise an invalid index error or a bounds error depending on if `i` is in bounds.\nIn order for `isvalid(s, i)` to be an O(1) function, the encoding of `s` must be\n[self-synchronizing](https://en.wikipedia.org/wiki/Self-synchronizing_code) this\nis a basic assumption of Julia's generic string support.\n\nSee also: [`getindex`](@ref), [`iterate`](@ref), [`thisind`](@ref),\n[`nextind`](@ref), [`prevind`](@ref), [`length`](@ref)\n\n# Examples\n\n```jldoctest\njulia> str = \"αβγdef\";\n\njulia> isvalid(str, 1)\ntrue\n\njulia> str[1]\n'α': Unicode U+03B1 (category Ll: Letter, lowercase)\n\njulia> isvalid(str, 2)\nfalse\n\njulia> str[2]\nERROR: StringIndexError(\"αβγdef\", 2)\nStacktrace:\n[...]\n```\n"}],"Base.resize!":[{"Tuple{Array{T,1} where T,Integer}":" resize!(a::Vector, n::Integer) -> Vector\n\nResize `a` to contain `n` elements. If `n` is smaller than the current collection\nlength, the first `n` elements will be retained. If `n` is larger, the new elements are not\nguaranteed to be initialized.\n\n# Examples\n```jldoctest\njulia> resize!([6, 5, 4, 3, 2, 1], 3)\n3-element Array{Int64,1}:\n 6\n 5\n 4\n\njulia> a = resize!([6, 5, 4, 3, 2, 1], 8);\n\njulia> length(a)\n8\n\njulia> a[1:6]\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.@kwdef":[{"Tuple{Any}":" @kwdef typedef\n\nThis is a helper macro that automatically defines a keyword-based constructor for the type\ndeclared in the expression `typedef`, which must be a `struct` or `mutable struct`\nexpression. The default argument is supplied by declaring fields of the form `field::T =\ndefault` or `field = default`. If no default is provided then the keyword argument becomes\na required keyword argument in the resulting type constructor.\n\nInner constructors can still be defined, but at least one should accept arguments in the\nsame form as the default inner constructor (i.e. one positional argument per field) in\norder to function correctly with the keyword outer constructor.\n\n!!! compat \"Julia 1.1\"\n `Base.@kwdef` for parametric structs, and structs with supertypes\n requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> Base.@kwdef struct Foo\n a::Int = 1 # specified default\n b::String # required keyword\n end\nFoo\n\njulia> Foo(b=\"hi\")\nFoo(1, \"hi\")\n\njulia> Foo()\nERROR: UndefKeywordError: keyword argument b not assigned\nStacktrace:\n[...]\n```\n"}],"Base.ltoh":[{"Tuple{Any}":" ltoh(x)\n\nConvert the endianness of a value from Little-endian to that used by the Host.\n"}],"Base.@__DIR__":[{"Tuple{}":" @__DIR__ -> AbstractString\n\nExpand to a string with the absolute path to the directory of the file\ncontaining the macrocall.\nReturn the current working directory if run from a REPL or if evaluated by `julia -e `.\n"}],"Base.precompile":[{"Tuple{Any,Tuple}":" precompile(f, args::Tuple{Vararg{Any}})\n\nCompile the given function `f` for the argument tuple (of types) `args`, but do not execute it.\n"}],"Base.leading_ones":[{"Tuple{Integer}":" leading_ones(x::Integer) -> Integer\n\nNumber of ones leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_ones(UInt32(2 ^ 32 - 2))\n31\n```\n"}],"Base.read!":[{"Union{}":" read!(stream::IO, array::AbstractArray)\n read!(filename::AbstractString, array::AbstractArray)\n\nRead binary data from an I/O stream or file, filling in `array`.\n"}],"Base.prompt":[{"Tuple{IO,IO,AbstractString}":" prompt(message; default=\"\") -> Union{String, Nothing}\n\nDisplays the `message` then waits for user input. Input is terminated when a newline (\\n)\nis encountered or EOF (^D) character is entered on a blank line. If a `default` is provided\nthen the user can enter just a newline character to select the `default`.\n\nSee also `Base.getpass` and `Base.winprompt` for secure entry of passwords.\n"}],"Base.istaskdone":[{"Tuple{Task}":" istaskdone(t::Task) -> Bool\n\nDetermine whether a task has exited.\n\n# Examples\n```jldoctest\njulia> a2() = sum(i for i in 1:1000);\n\njulia> b = Task(a2);\n\njulia> istaskdone(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.AsyncGenerator":[{"Union{}":" AsyncGenerator(f, c...; ntasks=0, batch_size=nothing) -> iterator\n\nApply `f` to each element of `c` using at most `ntasks` asynchronous tasks.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `collect(AsyncGenerator(f, c...; ntasks=1))` is equivalent to\n `map(f, c...)`.\n"}],"Base.@async":[{"Tuple{Any}":" @async\n\nWrap an expression in a [`Task`](@ref) and add it to the local machine's scheduler queue.\n\nValues can be interpolated into `@async` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.open_flags":[{"Tuple{}":" open_flags(; keywords...) -> NamedTuple\n\nCompute the `read`, `write`, `create`, `truncate`, `append` flag value for\na given set of keyword arguments to [`open`](@ref) a [`NamedTuple`](@ref).\n"}],"Base.transcode":[{"Union{}":" transcode(T, src)\n\nConvert string data between Unicode encodings. `src` is either a\n`String` or a `Vector{UIntXX}` of UTF-XX code units, where\n`XX` is 8, 16, or 32. `T` indicates the encoding of the return value:\n`String` to return a (UTF-8 encoded) `String` or `UIntXX`\nto return a `Vector{UIntXX}` of UTF-`XX` data. (The alias [`Cwchar_t`](@ref)\ncan also be used as the integer type, for converting `wchar_t*` strings\nused by external C libraries.)\n\nThe `transcode` function succeeds as long as the input data can be\nreasonably represented in the target encoding; it always succeeds for\nconversions between UTF-XX encodings, even for invalid Unicode data.\n\nOnly conversion to/from UTF-8 is currently supported.\n"}],"Base.round":[{"Tuple{Type,Any}":" round([T,] x, [r::RoundingMode])\n round(x, [r::RoundingMode]; digits::Integer=0, base = 10)\n round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)\n\nRounds the number `x`.\n\nWithout keyword arguments, `x` is rounded to an integer value, returning a value of type\n`T`, or of the same type of `x` if no `T` is provided. An [`InexactError`](@ref) will be\nthrown if the value is not representable by `T`, similar to [`convert`](@ref).\n\nIf the `digits` keyword argument is provided, it rounds to the specified number of digits\nafter the decimal place (or before if negative), in base `base`.\n\nIf the `sigdigits` keyword argument is provided, it rounds to the specified number of\nsignificant digits, in base `base`.\n\nThe [`RoundingMode`](@ref) `r` controls the direction of the rounding; the default is\n[`RoundNearest`](@ref), which rounds to the nearest integer, with ties (fractional values\nof 0.5) being rounded to the nearest even integer. Note that `round` may give incorrect\nresults if the global rounding mode is changed (see [`rounding`](@ref)).\n\n# Examples\n```jldoctest\njulia> round(1.7)\n2.0\n\njulia> round(Int, 1.7)\n2\n\njulia> round(1.5)\n2.0\n\njulia> round(2.5)\n2.0\n\njulia> round(pi; digits=2)\n3.14\n\njulia> round(pi; digits=3, base=2)\n3.125\n\njulia> round(123.456; sigdigits=2)\n120.0\n\njulia> round(357.913; sigdigits=4, base=2)\n352.0\n```\n\n!!! note\n Rounding to specified digits in bases other than 2 can be inexact when\n operating on binary floating point numbers. For example, the [`Float64`](@ref)\n value represented by `1.15` is actually *less* than 1.15, yet will be\n rounded to 1.2.\n\n # Examples\n ```jldoctest; setup = :(using Printf)\n julia> x = 1.15\n 1.15\n\n julia> @sprintf \"%.20f\" x\n \"1.14999999999999991118\"\n\n julia> x < 115//100\n true\n\n julia> round(x, digits=1)\n 1.2\n ```\n\n# Extensions\n\nTo extend `round` to new numeric types, it is typically sufficient to define `Base.round(x::NewType, r::RoundingMode)`.\n"},{"Union{Tuple{Complex}, Tuple{Complex,RoundingMode}, Tuple{Complex,RoundingMode,RoundingMode}}":" round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10)\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)\n\nReturn the nearest integral value of the same type as the complex-valued `z` to `z`,\nbreaking ties using the specified [`RoundingMode`](@ref)s. The first\n[`RoundingMode`](@ref) is used for rounding the real components while the\nsecond is used for rounding the imaginary components.\n\n# Example\n```jldoctest\njulia> round(3.14 + 4.5im)\n3.0 + 4.0im\n```\n"}],"Base.invpermute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" invpermute!(v, p)\n\nLike [`permute!`](@ref), but the inverse of the given permutation is applied.\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> invpermute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 1\n```\n"}],"Base.withenv":[{"Union{Tuple{T}, Tuple{Function,Vararg{Pair{T,B} where B,N} where N}} where T<:AbstractString":" withenv(f::Function, kv::Pair...)\n\nExecute `f` in an environment that is temporarily modified (not replaced as in `setenv`)\nby zero or more `\"var\"=>val` arguments `kv`. `withenv` is generally used via the\n`withenv(kv...) do ... end` syntax. A value of `nothing` can be used to temporarily unset an\nenvironment variable (if it is set). When `withenv` returns, the original environment has\nbeen restored.\n"}],"Base.Rational":[{"Union{}":" Rational{T<:Integer} <: Real\n\nRational number type, with numerator and denominator of type `T`.\nRationals are checked for overflow.\n"}],"Base.unlock":[{"Tuple{ReentrantLock}":" unlock(lock)\n\nReleases ownership of the `lock`.\n\nIf this is a recursive lock which has been acquired before, decrement an\ninternal counter and return immediately.\n"}],"Base.@boundscheck":[{"Tuple{Any}":" @boundscheck(blk)\n\nAnnotates the expression `blk` as a bounds checking block, allowing it to be elided by [`@inbounds`](@ref).\n\n!!! note\n The function in which `@boundscheck` is written must be inlined into\n its caller in order for `@inbounds` to have effect.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> @inline function g(A, i)\n @boundscheck checkbounds(A, i)\n return \"accessing ($A)[$i]\"\n end;\n\njulia> f1() = return g(1:2, -1);\n\njulia> f2() = @inbounds return g(1:2, -1);\n\njulia> f1()\nERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]\nStacktrace:\n [1] throw_boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:455\n [2] checkbounds at ./abstractarray.jl:420 [inlined]\n [3] g at ./none:2 [inlined]\n [4] f1() at ./none:1\n [5] top-level scope\n\njulia> f2()\n\"accessing (1:2)[-1]\"\n```\n\n!!! warning\n\n The `@boundscheck` annotation allows you, as a library writer, to opt-in to\n allowing *other code* to remove your bounds checks with [`@inbounds`](@ref).\n As noted there, the caller must verify—using information they can access—that\n their accesses are valid before using `@inbounds`. For indexing into your\n [`AbstractArray`](@ref) subclasses, for example, this involves checking the\n indices against its [`size`](@ref). Therefore, `@boundscheck` annotations\n should only be added to a [`getindex`](@ref) or [`setindex!`](@ref)\n implementation after you are certain its behavior is correct.\n"}],"Base.isreadonly":[{"Tuple{Any}":" isreadonly(io) -> Bool\n\nDetermine whether a stream is read-only.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> isreadonly(io)\ntrue\n\njulia> io = IOBuffer();\n\njulia> isreadonly(io)\nfalse\n```\n"}],"Base.rstrip":[{"Tuple{Any,AbstractString}":" rstrip([pred=isspace,] str::AbstractString) -> SubString\n rstrip(str::AbstractString, chars) -> SubString\n\nRemove trailing characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove trailing whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = rpad(\"March\", 20)\n\"March \"\n\njulia> rstrip(a)\n\"March\"\n```\n"}],"Base.escape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" escape_string(str::AbstractString[, esc])::AbstractString\n escape_string(io, str::AbstractString[, esc::])::Nothing\n\nGeneral escaping of traditional C and Unicode escape sequences. The first form returns the\nescaped string, the second prints the result to `io`.\n\nBackslashes (`\\`) are escaped with a double-backslash (`\"\\\\\"`). Non-printable\ncharacters are escaped either with their standard C escape codes, `\"\\0\"` for NUL (if\nunambiguous), unicode code point (`\"\\u\"` prefix) or hex (`\"\\x\"` prefix).\n\nThe optional `esc` argument specifies any additional characters that should also be\nescaped by a prepending backslash (`\"` is also escaped by default in the first form).\n\n# Examples\n```jldoctest\njulia> escape_string(\"aaa\\nbbb\")\n\"aaa\\\\nbbb\"\n\njulia> escape_string(\"\\xfe\\xff\") # invalid utf-8\n\"\\\\xfe\\\\xff\"\n\njulia> escape_string(string('\\u2135','\\0')) # unambiguous\n\"ℵ\\\\0\"\n\njulia> escape_string(string('\\u2135','\\0','0')) # \\0 would be ambiguous\n\"ℵ\\\\x000\"\n```\n\n## See also\n[`unescape_string`](@ref) for the reverse operation.\n"}],"Base.insert!":[{"Union{Tuple{T}, Tuple{Array{T,1},Integer,Any}} where T":" insert!(a::Vector, index::Integer, item)\n\nInsert an `item` into `a` at the given `index`. `index` is the index of `item` in\nthe resulting `a`.\n\n# Examples\n```jldoctest\njulia> insert!([6, 5, 4, 2, 1], 4, 3)\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.unique!":[{"Tuple{Any,AbstractArray{T,1} where T}":" unique!(f, A::AbstractVector)\n\nSelects one value from `A` for each unique value produced by `f` applied to\nelements of `A` , then return the modified A.\n\n!!! compat \"Julia 1.1\"\n This method is available as of Julia 1.1.\n\n# Examples\n```jldoctest\njulia> unique!(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])\n3-element Array{Int64,1}:\n 5\n 1\n 9\n\njulia> unique!(iseven, [2, 3, 5, 7, 9])\n2-element Array{Int64,1}:\n 2\n 3\n```\n"},{"Tuple{Union{AbstractArray{#s662,1} where #s662<:Real, AbstractArray{#s661,1} where #s661<:AbstractString, AbstractArray{#s660,1} where #s660<:Symbol}}":" unique!(A::AbstractVector)\n\nRemove duplicate items as determined by [`isequal`](@ref), then return the modified `A`.\n`unique!` will return the elements of `A` in the order that they occur. If you do not care\nabout the order of the returned data, then calling `(sort!(A); unique!(A))` will be much\nmore efficient as long as the elements of `A` can be sorted.\n\n# Examples\n```jldoctest\njulia> unique!([1, 1, 1])\n1-element Array{Int64,1}:\n 1\n\njulia> A = [7, 3, 2, 3, 7, 5];\n\njulia> unique!(A)\n4-element Array{Int64,1}:\n 7\n 3\n 2\n 5\n\njulia> B = [7, 6, 42, 6, 7, 42];\n\njulia> sort!(B); # unique! is able to process sorted data much more efficiently.\n\njulia> unique!(B)\n3-element Array{Int64,1}:\n 6\n 7\n 42\n```\n"}],"Base.isreal":[{"Tuple{Real}":" isreal(x) -> Bool\n\nTest whether `x` or all its elements are numerically equal to some real number\nincluding infinities and NaNs. `isreal(x)` is true if `isequal(x, real(x))`\nis true.\n\n# Examples\n```jldoctest\njulia> isreal(5.)\ntrue\n\njulia> isreal(Inf + 0im)\ntrue\n\njulia> isreal([4.; complex(0,1)])\nfalse\n```\n"}],"Base.fieldcount":[{"Tuple{Any}":" fieldcount(t::Type)\n\nGet the number of fields that an instance of the given type would have.\nAn error is thrown if the type is too abstract to determine this.\n"}],"Base.Clong":[{"Union{}":" Clong\n\nEquivalent to the native `signed long` c-type.\n"}],"Base.which":[{"Tuple{Any,Any}":" which(f, types)\n\nReturns the method of `f` (a `Method` object) that would be called for arguments of the given `types`.\n\nIf `types` is an abstract type, then the method that would be called by `invoke` is returned.\n"},{"Tuple{Module,Symbol}":" which(module, symbol)\n\nReturn the module in which the binding for the variable referenced by `symbol` in `module` was created.\n"}],"Base.finalize":[{"Tuple{Any}":" finalize(x)\n\nImmediately run finalizers registered for object `x`.\n"}],"Base.prepend!":[{"Union{}":" prepend!(a::Vector, items) -> collection\n\nInsert the elements of `items` to the beginning of `a`.\n\n# Examples\n```jldoctest\njulia> prepend!([3],[1,2])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.IteratorEltype":[{"Tuple{Any}":" IteratorEltype(itertype::Type) -> IteratorEltype\n\nGiven the type of an iterator, return one of the following values:\n\n* `EltypeUnknown()` if the type of elements yielded by the iterator is not known in advance.\n* `HasEltype()` if the element type is known, and [`eltype`](@ref) would return a meaningful value.\n\n`HasEltype()` is the default, since iterators are assumed to implement [`eltype`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate a specific\ntype of result, and algorithms that pick a result type based on the types of yielded\nvalues.\n\n```jldoctest\njulia> Base.IteratorEltype(1:5)\nBase.HasEltype()\n```\n"}],"Base.indexin":[{"Tuple{Any,AbstractArray}":" indexin(a, b)\n\nReturn an array containing the first index in `b` for\neach value in `a` that is a member of `b`. The output\narray contains `nothing` wherever `a` is not a member of `b`.\n\n# Examples\n```jldoctest\njulia> a = ['a', 'b', 'c', 'b', 'd', 'a'];\n\njulia> b = ['a', 'b', 'c'];\n\njulia> indexin(a, b)\n6-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n 2\n nothing\n 1\n\njulia> indexin(b, a)\n3-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n```\n"}],"Base.reim":[{"Tuple{Any}":" reim(z)\n\nReturn both the real and imaginary parts of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> reim(1 + 3im)\n(1, 3)\n```\n"}],"Base.AbstractVecOrMat":[{"Union{}":" AbstractVecOrMat{T}\n\nUnion type of [`AbstractVector{T}`](@ref) and [`AbstractMatrix{T}`](@ref).\n"}],"Base.GenericCondition":[{"Union{}":" GenericCondition\n\nAbstract implementation of a condition object\nfor synchonizing tasks objects with a given lock.\n"}],"Base.SecretBuffer!":[{"Tuple{Array{UInt8,1}}":" SecretBuffer!(data::Vector{UInt8})\n\nInitialize a new `SecretBuffer` from `data`, securely zeroing `data` afterwards.\n"}],"Base.Cintmax_t":[{"Union{}":" Cintmax_t\n\nEquivalent to the native `intmax_t` c-type ([`Int64`](@ref)).\n"}],"Base.Inf32":[{"Union{}":" Inf32\n\nPositive infinity of type [`Float32`](@ref).\n"}],"Base.@sync":[{"Tuple{Any}":" @sync\n\nWait until all lexically-enclosed uses of `@async`, `@spawn`, `@spawnat` and `@distributed`\nare complete. All exceptions thrown by enclosed async operations are collected and thrown as\na `CompositeException`.\n"}],"Base.securezero!":[{"Union{}":" securezero!(o)\n\n`securezero!` fills the memory associated with an object `o` with zeros.\nUnlike `fill!(o,0)` and similar code, which might be optimized away by\nthe compiler for objects about to be discarded, the `securezero!` function\nwill always be called.\n"}],"Base.Regex":[{"Union{}":" Regex(pattern[, flags])\n\nA type representing a regular expression. `Regex` objects can be used to match strings\nwith [`match`](@ref).\n\n`Regex` objects can be created using the [`@r_str`](@ref) string macro. The\n`Regex(pattern[, flags])` constructor is usually used if the `pattern` string needs\nto be interpolated. See the documentation of the string macro for details on flags.\n"}],"Base.reduce_first":[{"Tuple{Any,Any}":" Base.reduce_first(op, x)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref`) or\n[`foldr`](@ref) with reduction `op` over an iterator which contains a single element\n`x`. This value may also used to initialise the recursion, so that `reduce(op, [x, y])`\nmay call `op(reduce_first(op, x), y)`.\n\nThe default is `x` for most types. The main purpose is to ensure type stability, so\nadditional methods should only be defined for cases where `op` gives a result with\ndifferent types than its inputs.\n"}],"Base.dataids":[{"Tuple{AbstractArray}":" Base.dataids(A::AbstractArray)\n\nReturn a tuple of `UInt`s that represent the mutable data segments of an array.\n\nCustom arrays that would like to opt-in to aliasing detection of their component\nparts can specialize this method to return the concatenation of the `dataids` of\ntheir component parts. A typical definition for an array that wraps a parent is\n`Base.dataids(C::CustomArray) = dataids(C.parent)`.\n"}],"Base.unindent":[{"Tuple{AbstractString,Int64}":" unindent(str::AbstractString, indent::Int; tabwidth=8)\n\nRemove leading indentation from string.\n\n# Examples\n```jldoctest\njulia> Base.unindent(\" a\\n b\", 2)\n\" a\\n b\"\n\njulia> Base.unindent(\"\\ta\\n\\tb\", 2, tabwidth=8)\n\" a\\n b\"\n```\n"}],"Base.empty!":[{"Union{Tuple{Dict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" empty!(collection) -> collection\n\nRemove all elements from a `collection`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> empty!(A);\n\njulia> A\nDict{String,Int64} with 0 entries\n```\n"}],"Base.findmax":[{"Tuple{Any}":" findmax(itr) -> (x, index)\n\nReturn the maximum element of the collection `itr` and its index. If there are multiple\nmaximal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `max`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmax([8,0.1,-9,pi])\n(8.0, 1)\n\njulia> findmax([1,7,7,6])\n(7, 2)\n\njulia> findmax([1,7,7,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmax(A; dims) -> (maxval, index)\n\nFor an array input, returns the value and index of the maximum over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmax(A, dims=1)\n([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])\n\njulia> findmax(A, dims=2)\n([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])\n```\n"}],"Base.isabstracttype":[{"Tuple{Any}":" isabstracttype(T)\n\nDetermine whether type `T` was declared as an abstract type\n(i.e. using the `abstract` keyword).\n\n# Examples\n```jldoctest\njulia> isabstracttype(AbstractArray)\ntrue\n\njulia> isabstracttype(Vector)\nfalse\n```\n"}],"Base.include_string":[{"Tuple{Module,String,String}":" include_string(m::Module, code::AbstractString, filename::AbstractString=\"string\")\n\nLike [`include`](@ref), except reads code from the given string rather than from a file.\n"}],"Base.cld":[{"Tuple{Any,Any}":" cld(x, y)\n\nSmallest integer larger than or equal to `x/y`. Equivalent to `div(x, y, RoundUp)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> cld(5.5,2.2)\n3.0\n```\n"}],"Base.@views":[{"Tuple{Any}":" @views expression\n\nConvert every array-slicing operation in the given expression\n(which may be a `begin`/`end` block, loop, function, etc.)\nto return a view. Scalar indices, non-array types, and\nexplicit [`getindex`](@ref) calls (as opposed to `array[...]`) are\nunaffected.\n\n!!! note\n The `@views` macro only affects `array[...]` expressions\n that appear explicitly in the given `expression`, not array slicing that\n occurs in functions called by that code.\n\n# Examples\n```jldoctest\njulia> A = zeros(3, 3);\n\njulia> @views for row in 1:3\n b = A[row, :]\n b[:] .= row\n end\n\njulia> A\n3×3 Array{Float64,2}:\n 1.0 1.0 1.0\n 2.0 2.0 2.0\n 3.0 3.0 3.0\n```\n"}],"Base.eachindex":[{"Tuple{AbstractArray}":" eachindex(A...)\n\nCreate an iterable object for visiting each index of an `AbstractArray` `A` in an efficient\nmanner. For array types that have opted into fast linear indexing (like `Array`), this is\nsimply the range `1:length(A)`. For other array types, return a specialized Cartesian\nrange to efficiently index into the array with indices specified for every dimension. For\nother iterables, including strings and dictionaries, return an iterator object\nsupporting arbitrary index types (e.g. unevenly spaced or non-integer indices).\n\nIf you supply more than one `AbstractArray` argument, `eachindex` will create an\niterable object that is fast for all arguments (a [`UnitRange`](@ref)\nif all inputs have fast linear indexing, a [`CartesianIndices`](@ref)\notherwise).\nIf the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception\nwill be thrown.\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> for i in eachindex(A) # linear indexing\n println(i)\n end\n1\n2\n3\n4\n\njulia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing\n println(i)\n end\nCartesianIndex(1, 1)\nCartesianIndex(2, 1)\n```\n"}],"Base.macroexpand":[{"Tuple{Module,Any}":" macroexpand(m::Module, x; recursive=true)\n\nTake the expression `x` and return an equivalent expression with all macros removed (expanded)\nfor executing in module `m`.\nThe `recursive` keyword controls whether deeper levels of nested macros are also expanded.\nThis is demonstrated in the example below:\n```julia-repl\njulia> module M\n macro m1()\n 42\n end\n macro m2()\n :(@m1())\n end\n end\nM\n\njulia> macroexpand(M, :(@m2()), recursive=true)\n42\n\njulia> macroexpand(M, :(@m2()), recursive=false)\n:(#= REPL[16]:6 =# M.@m1)\n```\n"}],"Base.stdout":[{"Union{}":" stdout\n\nGlobal variable referring to the standard out stream.\n"}],"Base.copyfirst!":[{"Tuple{AbstractArray,AbstractArray}":"Extract first entry of slices of array A into existing array R.\n"}],"Base.Cfloat":[{"Union{}":" Cfloat\n\nEquivalent to the native `float` c-type ([`Float32`](@ref)).\n"}],"Base.mapreduce_empty":[{"Tuple{Any,Any,Any}":" Base.mapreduce_empty(f, op, T)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an empty array with element type\nof `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.ProcessFailedException":[{"Union{}":" ProcessFailedException\n\nIndicates problematic exit status of a process.\nWhen running commands or pipelines, this is thrown to indicate\na nonzero exit code was returned (i.e. that the invoked process failed).\n"}],"Base.valtype":[{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" valtype(type)\n\nGet the value type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> valtype(Dict(Int32(1) => \"foo\"))\nString\n```\n"},{"Tuple{Type{#s662} where #s662<:AbstractArray}":" valtype(T::Type{<:AbstractArray})\n valtype(A::AbstractArray)\n\nReturn the value type of an array. This is identical to `eltype` and is\nprovided mainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> valtype([\"one\", \"two\", \"three\"])\nString\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"}],"Base.take!":[{"Tuple{Base.GenericIOBuffer}":" take!(b::IOBuffer)\n\nObtain the contents of an `IOBuffer` as an array, without copying. Afterwards, the\n`IOBuffer` is reset to its initial state.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n```\n"},{"Tuple{Channel}":" take!(c::Channel)\n\nRemove and return a value from a [`Channel`](@ref). Blocks until data is available.\n\nFor unbuffered channels, blocks until a [`put!`](@ref) is performed by a different\ntask.\n"}],"Base.RangeStepStyle":[{"Union{}":" RangeStepStyle(instance)\n RangeStepStyle(T::Type)\n\nIndicate whether an instance or a type supports constructing a range with\na perfectly regular step or not. A regular step means that\n[`step`](@ref) will always be exactly equal to the difference between two\nsubsequent elements in a range, i.e. for a range `r::AbstractRange{T}`:\n```julia\nall(diff(r) .== step(r))\n```\n\nWhen a type `T` always leads to ranges with regular steps, it should\ndefine the following method:\n```julia\nBase.RangeStepStyle(::Type{<:AbstractRange{<:T}}) = Base.RangeStepRegular()\n```\nThis will allow [`hash`](@ref) to use an O(1) algorithm for `AbstractRange{T}`\nobjects instead of the default O(N) algorithm (with N the length of the range).\n\nIn some cases, whether the step will be regular depends not only on the\nelement type `T`, but also on the type of the step `S`. In that case, more\nspecific methods should be defined:\n```julia\nBase.RangeStepStyle(::Type{<:OrdinalRange{<:T, <:S}}) = Base.RangeStepRegular()\n```\n\nBy default, all range types are assumed to be `RangeStepIrregular`, except\nranges with an element type which is a subtype of `Integer`.\n"}],"Base.println":[{"Tuple{IO,Vararg{Any,N} where N}":" println([io::IO], xs...)\n\nPrint (using [`print`](@ref)) `xs` followed by a newline.\nIf `io` is not supplied, prints to [`stdout`](@ref).\n\n# Examples\n```jldoctest\njulia> println(\"Hello, world\")\nHello, world\n\njulia> io = IOBuffer();\n\njulia> println(io, \"Hello, world\")\n\njulia> String(take!(io))\n\"Hello, world\\n\"\n```\n"}],"Base.promote_op":[{"Tuple{Any,Vararg{Type,N} where N}":" promote_op(f, argtypes...)\n\nGuess what an appropriate container eltype would be for storing results of\n`f(::argtypes...)`. The guess is in part based on type inference, so can change any time.\n\n!!! warning\n Due to its fragility, use of `promote_op` should be avoided. It is preferable to base\n the container eltype on the type of the actual elements. Only in the absence of any\n elements (for an empty result container), it may be unavoidable to call `promote_op`.\n"}],"Base.readbytes!":[{"Union{Tuple{IO,AbstractArray{UInt8,N} where N}, Tuple{IO,AbstractArray{UInt8,N} where N,Any}}":" readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n"},{"Union{Tuple{IOStream,Array{UInt8,N} where N}, Tuple{IOStream,Array{UInt8,N} where N,Any}}":" readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"}],"Base.any":[{"Tuple{Any}":" any(itr) -> Bool\n\nTest whether any elements of a boolean collection are `true`, returning `true` as\nsoon as the first `true` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> any(a)\ntrue\n\njulia> any((println(i); v) for (i, v) in enumerate(a))\n1\ntrue\n\njulia> any([missing, true])\ntrue\n\njulia> any([false, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" any(A; dims)\n\nTest whether any values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> any(A, dims=2)\n2×1 Array{Bool,2}:\n 1\n 1\n```\n"},{"Tuple{Any,Any}":" any(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for any elements of `itr`, returning\n`true` as soon as the first item in `itr` for which `p` returns `true` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> any(i->(4<=i<=6), [3,5,7])\ntrue\n\njulia> any(i -> (println(i); i > 3), 1:10)\n1\n2\n3\n4\ntrue\n\njulia> any(i -> i > 0, [1, missing])\ntrue\n\njulia> any(i -> i > 0, [-1, missing])\nmissing\n\njulia> any(i -> i > 0, [-1, 0])\nfalse\n```\n"}],"Base.ndigits":[{"Tuple{Integer}":" ndigits(n::Integer; base::Integer=10, pad::Integer=1)\n\nCompute the number of digits in integer `n` written in base `base`\n(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros\nto a specified size (the result will never be less than `pad`).\n\n# Examples\n```jldoctest\njulia> ndigits(12345)\n5\n\njulia> ndigits(1022, base=16)\n3\n\njulia> string(1022, base=16)\n\"3fe\"\n\njulia> ndigits(123, pad=5)\n5\n```\n"}],"Base.StringIndexError":[{"Union{}":" StringIndexError(str, i)\n\nAn error occurred when trying to access `str` at index `i` that is not valid.\n"}],"Base.nonmissingtype":[{"Union{Tuple{Type{T}}, Tuple{T}} where T":" nonmissingtype(T::Type)\n\nIf `T` is a union of types containing `Missing`, return a new type with\n`Missing` removed.\n\n# Examples\n```jldoctest\njulia> nonmissingtype(Union{Int64,Missing})\nInt64\n\njulia> nonmissingtype(Any)\nAny\n```\n\n!!! compat \"Julia 1.3\"\n This function is exported as of Julia 1.3.\n"}],"Base.prod":[{"Tuple{Any}":" prod(itr)\n\nReturns the product of all elements of a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(1:20)\n2432902008176640000\n```\n"},{"Tuple{AbstractArray}":" prod(A::AbstractArray; dims)\n\nMultiply elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod(A, dims=1)\n1×2 Array{Int64,2}:\n 3 8\n\njulia> prod(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 12\n```\n"},{"Tuple{Any,Any}":" prod(f, itr)\n\nReturns the product of `f` applied to each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(abs2, [2; 3; 4])\n576\n```\n"}],"Base.range":[{"Tuple{Any}":" range(start[, stop]; length, stop, step=1)\n\nGiven a starting value, construct a range either by length or from `start` to `stop`,\noptionally with a given step (defaults to 1, a [`UnitRange`](@ref)).\nOne of `length` or `stop` is required. If `length`, `stop`, and `step` are all specified, they must agree.\n\nIf `length` and `stop` are provided and `step` is not, the step size will be computed\nautomatically such that there are `length` linearly spaced elements in the range (a [`LinRange`](@ref)).\n\nIf `step` and `stop` are provided and `length` is not, the overall range length will be computed\nautomatically such that the elements are `step` spaced (a [`StepRange`](@ref)).\n\n`stop` may be specified as either a positional or keyword argument.\n\n!!! compat \"Julia 1.1\"\n `stop` as a positional argument requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> range(1, length=100)\n1:100\n\njulia> range(1, stop=100)\n1:100\n\njulia> range(1, step=5, length=100)\n1:5:496\n\njulia> range(1, step=5, stop=100)\n1:5:96\n\njulia> range(1, 10, length=101)\n1.0:0.09:10.0\n\njulia> range(1, 100, step=5)\n1:5:96\n```\n"}],"Base.cat":[{"Tuple":" cat(A...; dims=dims)\n\nConcatenate the input arrays along the specified dimensions in the iterable `dims`. For\ndimensions not in `dims`, all input arrays should have the same size, which will also be the\nsize of the output array along that dimension. For dimensions in `dims`, the size of the\noutput array is the sum of the sizes of the input arrays along that dimension. If `dims` is\na single number, the different arrays are tightly stacked along that dimension. If `dims` is\nan iterable containing several dimensions, this allows one to construct block diagonal\nmatrices and their higher-dimensional analogues by simultaneously increasing several\ndimensions for every new input array and putting zero blocks elsewhere. For example,\n`cat(matrices...; dims=(1,2))` builds a block diagonal matrix, i.e. a block matrix with\n`matrices[1]`, `matrices[2]`, ... as diagonal blocks and matching zero blocks away from the\ndiagonal.\n"}],"Base.Cwstring":[{"Union{}":" Cwstring\n\nA C-style string composed of the native wide character type\n[`Cwchar_t`](@ref)s. `Cwstring`s are NUL-terminated. For\nC-style strings composed of the native character\ntype, see [`Cstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n\n"}],"Base.coalesce":[{"Union{}":" coalesce(x, y...)\n\nReturn the first value in the arguments which is not equal to [`missing`](@ref),\nif any. Otherwise return `missing`.\n\nSee also [`something`](@ref).\n\n# Examples\n\n```jldoctest\njulia> coalesce(missing, 1)\n1\n\njulia> coalesce(1, missing)\n1\n\njulia> coalesce(nothing, 1) # returns `nothing`\n\njulia> coalesce(missing, missing)\nmissing\n```\n"}],"Base.keys":[{"Union{}":" keys(iterator)\n\nFor an iterator or collection that has keys and values (e.g. arrays and dictionaries),\nreturn an iterator over the keys.\n"},{"Tuple{AbstractDict}":" keys(a::AbstractDict)\n\nReturn an iterator over all keys in a dictionary.\n`collect(keys(a))` returns an array of keys.\nWhen the keys are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(keys(D))\n2-element Array{Char,1}:\n 'a'\n 'b'\n```\n"}],"Base.findmax!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmax!(rval, rind, A) -> (maxval, index)\n\nFind the maximum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as greater than all other values.\n"}],"Base.>>":[{"Tuple{Integer,Integer}":" >>(x, n)\n\nRight bit shift operator, `x >> n`. For `n >= 0`, the result is `x` shifted\nright by `n` bits, where `n >= 0`, filling with `0`s if `x >= 0`, `1`s if `x <\n0`, preserving the sign of `x`. This is equivalent to `fld(x, 2^n)`. For `n <\n0`, this is equivalent to `x << -n`.\n\n# Examples\n```jldoctest\njulia> Int8(13) >> 2\n3\n\njulia> bitstring(Int8(13))\n\"00001101\"\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> Int8(-14) >> 2\n-4\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(-4))\n\"11111100\"\n```\nSee also [`>>>`](@ref), [`<<`](@ref).\n"},{"Tuple{BitArray{1},Union{Int64, UInt64}}":" >>(B::BitVector, n) -> BitVector\n\nRight bit shift operator, `B >> n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions forward, filling with `false`\nvalues. If `n < 0`, elements are shifted backwards. Equivalent to\n`B << -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B >> 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n\njulia> B >> -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n```\n"}],"Base.copy":[{"Union{}":" copy(x)\n\nCreate a shallow copy of `x`: the outer structure is copied, but not all internal values.\nFor example, copying an array produces a new array with identically-same elements as the\noriginal.\n"}],"Base.has_bottom_parameter":[{"Tuple{DataType}":" has_bottom_parameter(t) -> Bool\n\nDetermine whether `t` is a Type for which one or more of its parameters is `Union{}`.\n"}],"Base.datatype_fielddesc_type":[{"Tuple{DataType}":" Base.datatype_fielddesc_type(dt::DataType) -> Int\n\nReturn the size in bytes of each field-description entry in the layout array,\nlocated at `(dt.layout + sizeof(DataTypeLayout))`.\nCan be called on any `isconcretetype`.\n\nSee also [`fieldoffset`](@ref).\n"}],"Base.@allocated":[{"Tuple{Any}":" @allocated\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\ntotal number of bytes allocated during evaluation of the expression.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@elapsed`](@ref).\n\n```julia-repl\njulia> @allocated rand(10^6)\n8000080\n```\n"}],"Base.names":[{"Tuple{Module}":" names(x::Module; all::Bool = false, imported::Bool = false)\n\nGet an array of the names exported by a `Module`, excluding deprecated names.\nIf `all` is true, then the list also includes non-exported names defined in the module,\ndeprecated names, and compiler-generated names.\nIf `imported` is true, then names explicitly imported from other modules\nare also included.\n\nAs a special case, all names defined in `Main` are considered \"exported\",\nsince it is not idiomatic to explicitly export names from `Main`.\n"}],"Base.hastypemax":[{"Tuple{Union{Type{Int128}, Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt128}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}}":" hastypemax(T::Type) -> Bool\n\nReturn `true` if and only if `typemax(T)` is defined.\n"}],"Base.isinf":[{"Tuple{Real}":" isinf(f) -> Bool\n\nTest whether a number is infinite.\n"}],"Base.DEPOT_PATH":[{"Union{}":" DEPOT_PATH\n\nA stack of \"depot\" locations where the package manager, as well as Julia's code\nloading mechanisms, look for package registries, installed packages, named\nenvironments, repo clones, cached compiled package images, and configuration\nfiles. By default it includes:\n\n1. `~/.julia` where `~` is the user home as appropriate on the system;\n2. an architecture-specific shared system directory, e.g. `/usr/local/share/julia`;\n3. an architecture-independent shared system directory, e.g. `/usr/share/julia`.\n\nSo `DEPOT_PATH` might be:\n```julia\n[joinpath(homedir(), \".julia\"), \"/usr/local/share/julia\", \"/usr/share/julia\"]\n```\nThe first entry is the \"user depot\" and should be writable by and owned by the\ncurrent user. The user depot is where: registries are cloned, new package versions\nare installed, named environments are created and updated, package repos are cloned,\nnewly compiled package image files are saved, log files are written, development\npackages are checked out by default, and global configuration data is saved. Later\nentries in the depot path are treated as read-only and are appropriate for\nregistries, packages, etc. installed and managed by system administrators.\n\n`DEPOT_PATH` is populated based on the [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)\nenvironment variable if set.\n\nSee also:\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.stdin":[{"Union{}":" stdin\n\nGlobal variable referring to the standard input stream.\n"}],"Base.gensym":[{"Tuple{}":" gensym([tag])\n\nGenerates a symbol which will not conflict with other variable names.\n"}],"Base.@v_str":[{"Tuple{Any}":" @v_str\n\nString macro used to parse a string to a [`VersionNumber`](@ref).\n\n# Examples\n```jldoctest\njulia> v\"1.2.3\"\nv\"1.2.3\"\n\njulia> v\"2.0.1-rc1\"\nv\"2.0.1-rc1\"\n```\n"}],"Base.include_dependency":[{"Tuple{AbstractString}":" include_dependency(path::AbstractString)\n\nIn a module, declare that the file specified by `path` (relative or absolute) is a\ndependency for precompilation; that is, the module will need to be recompiled if this file\nchanges.\n\nThis is only needed if your module depends on a file that is not used via [`include`](@ref). It has\nno effect outside of compilation.\n"}],"Base.@deprecate":[{"Union{Tuple{Any,Any}, Tuple{Any,Any,Any}}":" @deprecate old new [ex=true]\n\nThe first argument `old` is the signature of the deprecated method, the second one\n`new` is the call which replaces it. `@deprecate` exports `old` unless the optional\nthird argument is `false`.\n\n# Examples\n```jldoctest\njulia> @deprecate old(x) new(x)\nold (generic function with 1 method)\n\njulia> @deprecate old(x) new(x) false\nold (generic function with 1 method)\n```\n"}],"Base.unsafe_read":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_read(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from the `IO` stream object into `ref` (converted to a pointer).\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.task_local_storage":[{"Tuple{Any}":" task_local_storage(key)\n\nLook up the value of a key in the current task's task-local storage.\n"},{"Tuple{Function,Any,Any}":" task_local_storage(body, key, value)\n\nCall the function `body` with a modified task-local storage, in which `value` is assigned to\n`key`; the previous value of `key`, or lack thereof, is restored afterwards. Useful\nfor emulating dynamic scoping.\n"},{"Tuple{Any,Any}":" task_local_storage(key, value)\n\nAssign a value to a key in the current task's task-local storage.\n"}],"Base.CompositeException":[{"Union{}":" CompositeException\n\nWrap a `Vector` of exceptions thrown by a [`Task`](@ref) (e.g. generated from a remote worker over a channel\nor an asynchronously executing local I/O write or a remote worker under `pmap`) with information about the series of exceptions.\nFor example, if a group of workers are executing several tasks, and multiple workers fail, the resulting `CompositeException` will\ncontain a \"bundle\" of information from each worker indicating where and why the exception(s) occurred.\n"}],"Base.hex2bytes!":[{"Tuple{AbstractArray{UInt8,1},Union{AbstractArray{UInt8,1}, String}}":" hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})\n\nConvert an array `s` of bytes representing a hexadecimal string to its binary\nrepresentation, similar to [`hex2bytes`](@ref) except that the output is written in-place\nin `d`. The length of `s` must be exactly twice the length of `d`.\n"}],"Base.ignorestatus":[{"Tuple{Cmd}":" ignorestatus(command)\n\nMark a command object so that running it will not throw an error if the result code is non-zero.\n"}],"Base.mightalias":[{"Tuple{AbstractArray,AbstractArray}":" Base.mightalias(A::AbstractArray, B::AbstractArray)\n\nPerform a conservative test to check if arrays `A` and `B` might share the same memory.\n\nBy default, this simply checks if either of the arrays reference the same memory\nregions, as identified by their [`Base.dataids`](@ref).\n"}],"Base.PROGRAM_FILE":[{"Union{}":" PROGRAM_FILE\n\nA string containing the script name passed to Julia from the command line. Note that the\nscript name remains unchanged from within included files. Alternatively see\n[`@__FILE__`](@ref).\n"}],"Base.values":[{"Tuple{Any}":" values(iterator)\n\nFor an iterator or collection that has keys and values, return an iterator\nover the values.\nThis function simply returns its argument by default, since the elements\nof a general iterator are normally considered its \"values\".\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> values(d)\nBase.ValueIterator for a Dict{String,Int64} with 2 entries. Values:\n 2\n 1\n\njulia> values([2])\n1-element Array{Int64,1}:\n 2\n```\n"},{"Tuple{AbstractDict}":" values(a::AbstractDict)\n\nReturn an iterator over all values in a collection.\n`collect(values(a))` returns an array of values.\nWhen the values are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(values(D))\n2-element Array{Int64,1}:\n 2\n 3\n```\n"}],"Base.findall":[{"Tuple{Any}":" findall(A)\n\nReturn a vector `I` of the `true` indices or keys of `A`.\nIf there are no such elements of `A`, return an empty array.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, false, true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> findall(A)\n2-element Array{Int64,1}:\n 1\n 4\n\njulia> A = [true false; false true]\n2×2 Array{Bool,2}:\n 1 0\n 0 1\n\njulia> findall(A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 2)\n\njulia> findall(falses(3))\n0-element Array{Int64,1}\n```\n"},{"Tuple{Union{Regex, AbstractString},AbstractString}":" findall(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn a `Vector{UnitRange{Int}}` of all the matches for `pattern` in `string`.\nEach element of the returned vector is a range of indices where the\nmatching sequence is found, like the return value of [`findnext`](@ref).\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Function,Any}":" findall(f::Function, A)\n\nReturn a vector `I` of the indices or keys of `A` where `f(A[I])` returns `true`.\nIf there are no such elements of `A`, return an empty array.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 3, 4]\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> findall(isodd, x)\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> A = [1 2 0; 3 4 0]\n2×3 Array{Int64,2}:\n 1 2 0\n 3 4 0\njulia> findall(isodd, A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n\njulia> findall(!iszero, A)\n4-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n\njulia> d = Dict(:A => 10, :B => -1, :C => 0)\nDict{Symbol,Int64} with 3 entries:\n :A => 10\n :B => -1\n :C => 0\n\njulia> findall(x -> x >= 0, d)\n2-element Array{Symbol,1}:\n :A\n :C\n\n```\n"}],"Base.any!":[{"Tuple{Any,Any}":" any!(r, A)\n\nTest whether any values in `A` along the singleton dimensions of `r` are `true`, and write\nresults to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 1\n\njulia> any!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.show_invalid":[{"Union{}":" show_invalid(io::IO, c::AbstractChar)\n\nCalled by `show(io, c)` when [`isoverlong(c)`](@ref) or\n[`ismalformed(c)`](@ref) return `true`. Subclasses\nof `AbstractChar` should define `Base.show_invalid` methods\nif they support storing invalid character data.\n"}],"Base.hton":[{"Tuple{Any}":" hton(x)\n\nConvert the endianness of a value from that used by the Host to Network byte order (big-endian).\n"}],"Base.AbstractLock":[{"Union{}":" AbstractLock\n\nAbstract supertype describing types that\nimplement the synchronization primitives:\n[`lock`](@ref), [`trylock`](@ref), [`unlock`](@ref), and [`islocked`](@ref).\n"}],"Base.catch_backtrace":[{"Tuple{}":" catch_backtrace()\n\nGet the backtrace of the current exception, for use within `catch` blocks.\n"}],"Base.nameof":[{"Tuple{Module}":" nameof(m::Module) -> Symbol\n\nGet the name of a `Module` as a [`Symbol`](@ref).\n\n# Examples\n```jldoctest\njulia> nameof(Base.Broadcast)\n:Broadcast\n```\n"},{"Tuple{Function}":" nameof(f::Function) -> Symbol\n\nGet the name of a generic `Function` as a symbol. For anonymous functions,\nthis is a compiler-generated name. For explicitly-declared subtypes of\n`Function`, it is the name of the function's type.\n"},{"Tuple{DataType}":" nameof(t::DataType) -> Symbol\n\nGet the name of a (potentially `UnionAll`-wrapped) `DataType` (without its parent module)\nas a symbol.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct S{T}\n end\n end\nFoo\n\njulia> nameof(Foo.S{T} where T)\n:S\n```\n"}],"Base.IOContext":[{"Tuple{IO,Pair,Vararg{Pair,N} where N}":" IOContext(io::IO, KV::Pair...)\n\nCreate an `IOContext` that wraps a given stream, adding the specified `key=>value` pairs to\nthe properties of that stream (note that `io` can itself be an `IOContext`).\n\n - use `(key => value) in io` to see if this particular combination is in the properties set\n - use `get(io, key, default)` to retrieve the most recent value for a particular key\n\nThe following properties are in common use:\n\n - `:compact`: Boolean specifying that small values should be printed more compactly, e.g.\n that numbers should be printed with fewer digits. This is set when printing array\n elements.\n - `:limit`: Boolean specifying that containers should be truncated, e.g. showing `…` in\n place of most elements.\n - `:displaysize`: A `Tuple{Int,Int}` giving the size in rows and columns to use for text\n output. This can be used to override the display size for called functions, but to\n get the size of the screen use the `displaysize` function.\n - `:typeinfo`: a `Type` characterizing the information already printed\n concerning the type of the object about to be displayed. This is mainly useful when\n displaying a collection of objects of the same type, so that redundant type information\n can be avoided (e.g. `[Float16(0)]` can be shown as \"Float16[0.0]\" instead\n of \"Float16[Float16(0.0)]\" : while displaying the elements of the array, the `:typeinfo`\n property will be set to `Float16`).\n - `:color`: Boolean specifying whether ANSI color/escape codes are supported/expected.\n By default, this is determined by whether `io` is a compatible terminal and by any\n `--color` command-line flag when `julia` was launched.\n\n# Examples\n\n```jldoctest\njulia> io = IOBuffer();\n\njulia> printstyled(IOContext(io, :color => true), \"string\", color=:red)\n\njulia> String(take!(io))\n\"\\e[31mstring\\e[39m\"\n\njulia> printstyled(io, \"string\", color=:red)\n\njulia> String(take!(io))\n\"string\"\n```\n\n```jldoctest\njulia> print(IOContext(stdout, :compact => false), 1.12341234)\n1.12341234\njulia> print(IOContext(stdout, :compact => true), 1.12341234)\n1.12341\n```\n\n```jldoctest\njulia> function f(io::IO)\n if get(io, :short, false)\n print(io, \"short\")\n else\n print(io, \"loooooong\")\n end\n end\nf (generic function with 1 method)\n\njulia> f(stdout)\nloooooong\njulia> f(IOContext(stdout, :short => true))\nshort\n```\n"},{"Union{}":" IOContext\n\n`IOContext` provides a mechanism for passing output configuration settings among [`show`](@ref) methods.\n\nIn short, it is an immutable dictionary that is a subclass of `IO`. It supports standard\ndictionary operations such as [`getindex`](@ref), and can also be used as an I/O stream.\n"},{"Tuple{IO,IO}":" IOContext(io::IO, context::IOContext)\n\nCreate an `IOContext` that wraps an alternate `IO` but inherits the properties of `context`.\n"}],"Base.printstyled":[{"Tuple{IO,Vararg{Any,N} where N}":" printstyled([io], xs...; bold::Bool=false, color::Union{Symbol,Int}=:normal)\n\nPrint `xs` in a color specified as a symbol or integer, optionally in bold.\n\n`color` may take any of the values `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow`\nor an integer between 0 and 255 inclusive. Note that not all terminals support 256 colors.\nIf the keyword `bold` is given as `true`, the result will be printed in bold.\n"}],"Base.Inf":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.codepoint":[{"Union{}":" codepoint(c::AbstractChar) -> Integer\n\nReturn the Unicode codepoint (an unsigned integer) corresponding\nto the character `c` (or throw an exception if `c` does not represent\na valid character). For `Char`, this is a `UInt32` value, but\n`AbstractChar` types that represent only a subset of Unicode may\nreturn a different-sized integer (e.g. `UInt8`).\n"}],"Base.endswith":[{"Tuple{AbstractString,Regex}":" endswith(s::AbstractString, suffix::Regex)\n\nReturn `true` if `s` ends with the regex pattern, `suffix`.\n\n!!! note\n `endswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"...$\", s)` is faster than `endswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`startswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> endswith(\"JuliaLang\", r\"Lang|Roberts\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" endswith(s::AbstractString, suffix::AbstractString)\n\nReturn `true` if `s` ends with `suffix`. If `suffix` is a vector or set of\ncharacters, test whether the last character of `s` belongs to that set.\n\nSee also [`startswith`](@ref).\n\n# Examples\n```jldoctest\njulia> endswith(\"Sunday\", \"day\")\ntrue\n```\n"}],"Base.Some":[{"Union{}":" Some{T}\n\nA wrapper type used in `Union{Some{T}, Nothing}` to distinguish between the absence\nof a value ([`nothing`](@ref)) and the presence of a `nothing` value (i.e. `Some(nothing)`).\n\nUse [`something`](@ref) to access the value wrapped by a `Some` object.\n"}],"Base.OneTo":[{"Union{}":" Base.OneTo(n)\n\nDefine an `AbstractUnitRange` that behaves like `1:n`, with the added\ndistinction that the lower limit is guaranteed (by the type system) to\nbe 1.\n"}],"Base.tail":[{"Tuple{Tuple}":" tail(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the first component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.tail((1,2,3))\n(2, 3)\n\njulia> Base.tail(())\nERROR: ArgumentError: Cannot call tail on an empty tuple.\n```\n"}],"Base.ncodeunits":[{"Tuple{Char}":" ncodeunits(c::Char) -> Int\n\nReturn the number of code units required to encode a character as UTF-8.\nThis is the number of bytes which will be printed if the character is written\nto an output stream, or `ncodeunits(string(c))` but computed efficiently.\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 consider\n using `ncodeunits(string(c))`.\n"},{"Tuple{AbstractString}":" ncodeunits(s::AbstractString) -> Int\n\nReturn the number of code units in a string. Indices that are in bounds to\naccess this string must satisfy `1 ≤ i ≤ ncodeunits(s)`. Not all such indices\nare valid – they may not be the start of a character, but they will return a\ncode unit value when calling `codeunit(s,i)`.\n\nSee also: [`codeunit`](@ref), [`checkbounds`](@ref), [`sizeof`](@ref),\n[`length`](@ref), [`lastindex`](@ref)\n"}],"Base.datatype_alignment":[{"Tuple{DataType}":" Base.datatype_alignment(dt::DataType) -> Int\n\nMemory allocation minimum alignment for instances of this type.\nCan be called on any `isconcretetype`.\n"}],"Base.StepRangeLen":[{"Union{}":" StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}\n StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}\n\nA range `r` where `r[i]` produces values of type `T` (in the second\nform, `T` is deduced automatically), parameterized by a `ref`erence\nvalue, a `step`, and the `len`gth. By default `ref` is the starting\nvalue `r[1]`, but alternatively you can supply it as the value of\n`r[offset]` for some other index `1 <= offset <= len`. In conjunction\nwith `TwicePrecision` this can be used to implement ranges that are\nfree of roundoff error.\n"}],"Base.fdio":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Bool}}":" fdio([name::AbstractString, ]fd::Integer[, own::Bool=false]) -> IOStream\n\nCreate an [`IOStream`](@ref) object from an integer file descriptor. If `own` is `true`, closing\nthis object will close the underlying descriptor. By default, an `IOStream` is closed when\nit is garbage collected. `name` allows you to associate the descriptor with a named file.\n"}],"Base.isstructtype":[{"Tuple{Type}":" isstructtype(T) -> Bool\n\nDetermine whether type `T` was declared as a struct type\n(i.e. using the `struct` or `mutable struct` keyword).\n"}],"Base.@pure":[{"Tuple{Any}":" @pure ex\n @pure(ex)\n\n`@pure` gives the compiler a hint for the definition of a pure function,\nhelping for type inference.\n\nA pure function can only depend on immutable information.\nThis also means a `@pure` function cannot use any global mutable state, including\ngeneric functions. Calls to generic functions depend on method tables which are\nmutable global state.\nUse with caution, incorrect `@pure` annotation of a function may introduce\nhard to identify bugs. Double check for calls to generic functions.\nThis macro is intended for internal compiler use and may be subject to changes.\n"}],"Base.==":[{"Tuple{Any}":" ==(x)\n\nCreate a function that compares its argument to `x` using [`==`](@ref), i.e.\na function equivalent to `y -> y == x`.\n\nThe returned function is of type `Base.Fix2{typeof(==)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" ==(x, y)\n\nGeneric equality operator. Falls back to [`===`](@ref).\nShould be implemented for all types with a notion of equality, based on the abstract value\nthat an instance represents. For example, all numeric types are compared by numeric value,\nignoring type. Strings are compared as sequences of characters, ignoring encoding.\nFor collections, `==` is generally called recursively on all contents,\nthough other properties (like the shape for arrays) may also be taken into account.\n\nThis operator follows IEEE semantics for floating-point numbers: `0.0 == -0.0` and\n`NaN != NaN`.\n\nThe result is of type `Bool`, except when one of the operands is [`missing`](@ref),\nin which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic)).\nFor collections, `missing` is returned if at least one of the operands contains\na `missing` value and all non-missing values are equal.\nUse [`isequal`](@ref) or [`===`](@ref) to always get a `Bool` result.\n\n# Implementation\nNew numeric types should implement this function for two arguments of the new type, and\nhandle comparison to other types via promotion rules where possible.\n\n[`isequal`](@ref) falls back to `==`, so new methods of `==` will be used by the\n[`Dict`](@ref) type to compare keys. If your type will be used as a dictionary key, it\nshould therefore also implement [`hash`](@ref).\n"},{"Tuple{AbstractString,AbstractString}":" ==(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether two strings are equal character by character (technically, Unicode\ncode point by code point).\n\n# Examples\n```jldoctest\njulia> \"abc\" == \"abc\"\ntrue\n\njulia> \"abc\" == \"αβγ\"\nfalse\n```\n"}],"Base.@noinline":[{"Tuple{Any}":" @noinline\n\nGive a hint to the compiler that it should not inline a function.\n\nSmall functions are typically inlined automatically.\nBy using `@noinline` on small functions, auto-inlining can be\nprevented. This is shown in the following example:\n\n```julia\n@noinline function smallfunction(x)\n #=\n Function Definition\n =#\nend\n\nIf the function is trivial (for example returning a constant) it might get inlined anyway.\n```\n"}],"Base.fldmod":[{"Tuple{Any,Any}":" fldmod(x, y)\n\nThe floored quotient and modulus after division. A convenience wrapper for\n`divrem(x, y, RoundDown)`. Equivalent to `(fld(x,y), mod(x,y))`.\n"}],"Base.shell_escape":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape(args::Union{Cmd,AbstractString...}; special::AbstractString=\"\")\n\nThe unexported `shell_escape` function is the inverse of the unexported `shell_split` function:\nit takes a string or command object and escapes any special characters in such a way that calling\n`shell_split` on it would give back the array of words in the original command. The `special`\nkeyword argument controls what characters in addition to whitespace, backslashes, quotes and\ndollar signs are considered to be special (default: none).\n\n# Examples\n```jldoctest\njulia> Base.shell_escape(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' && echo done\"\n\njulia> Base.shell_escape(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this && that\"\n```\n"}],"Base.ndigits0z":[{"Tuple{Integer,Integer}":" ndigits0z(n::Integer, b::Integer=10)\n\nReturn 0 if `n == 0`, otherwise compute the number of digits in\ninteger `n` written in base `b` (i.e. equal to `ndigits(n, base=b)`\nin this case).\nThe base `b` must not be in `[-1, 0, 1]`.\n\n# Examples\n```jldoctest\njulia> Base.ndigits0z(0, 16)\n0\n\njulia> Base.ndigits(0, base=16)\n1\n\njulia> Base.ndigits0z(0)\n0\n\njulia> Base.ndigits0z(10, 2)\n4\n\njulia> Base.ndigits0z(10)\n2\n```\n\nSee also [`ndigits`](@ref).\n"}],"Base.Cuintmax_t":[{"Union{}":" Cuintmax_t\n\nEquivalent to the native `uintmax_t` c-type ([`UInt64`](@ref)).\n"}],"Base.cmp":[{"Tuple{Any,Any}":" cmp(x,y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. Uses the total order implemented by `isless`.\n\n# Examples\n```jldoctest\njulia> cmp(1, 2)\n-1\n\njulia> cmp(2, 1)\n1\n\njulia> cmp(2+im, 3-im)\nERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})\n[...]\n```\n"},{"Tuple{Any,Any,Any}":" cmp(<, x, y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. The first argument specifies a less-than comparison function to use.\n"},{"Tuple{AbstractString,AbstractString}":" cmp(a::AbstractString, b::AbstractString) -> Int\n\nCompare two strings. Return `0` if both strings have the same length and the character\nat each index is the same in both strings. Return `-1` if `a` is a prefix of `b`, or if\n`a` comes before `b` in alphabetical order. Return `1` if `b` is a prefix of `a`, or if\n`b` comes before `a` in alphabetical order (technically, lexicographical order by Unicode\ncode points).\n\n# Examples\n```jldoctest\njulia> cmp(\"abc\", \"abc\")\n0\n\njulia> cmp(\"ab\", \"abc\")\n-1\n\njulia> cmp(\"abc\", \"ab\")\n1\n\njulia> cmp(\"ab\", \"ac\")\n-1\n\njulia> cmp(\"ac\", \"ab\")\n1\n\njulia> cmp(\"α\", \"a\")\n1\n\njulia> cmp(\"b\", \"β\")\n-1\n```\n"}],"Base.nextind":[{"Tuple{AbstractString,Integer,Integer}":" nextind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts after index `i`. In other words, if `i` is the start of a\n character, return the start of the next character; if `i` is not the start\n of a character, move forward until the start of a character and return that index.\n If `i` is equal to `0` return `1`.\n If `i` is in bounds but greater or equal to `lastindex(str)` return `ncodeunits(str)+1`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `nextind` for `n==1`. The only difference\n is that if `n` is so large that applying `nextind` would reach `ncodeunits(str)+1` then\n each remaining iteration increases the returned value by `1`. This means that in this\n case `nextind` can return a value greater than `ncodeunits(str)+1`.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `s` or is equal to `0`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> nextind(\"α\", 0)\n1\n\njulia> nextind(\"α\", 1)\n3\n\njulia> nextind(\"α\", 3)\nERROR: BoundsError: attempt to access String\n at index [3]\n[...]\n\njulia> nextind(\"α\", 0, 2)\n3\n\njulia> nextind(\"α\", 1, 2)\n4\n```\n"}],"Base.powermod":[{"Union{Tuple{T}, Tuple{Integer,Integer,T}} where T<:Integer":" powermod(x::Integer, p::Integer, m)\n\nCompute ``x^p \\pmod m``.\n\n# Examples\n```jldoctest\njulia> powermod(2, 6, 5)\n4\n\njulia> mod(2^6, 5)\n4\n\njulia> powermod(5, 2, 20)\n5\n\njulia> powermod(5, 2, 19)\n6\n\njulia> powermod(5, 3, 19)\n11\n```\n"}],"Base.in":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"},{"Tuple{Any}":" in(x)\n\nCreate a function that checks whether its argument is [`in`](@ref) `x`, i.e.\na function equivalent to `y -> y in x`.\n\nThe returned function is of type `Base.Fix2{typeof(in)}`, which can be\nused to implement specialized methods.\n"}],"Base.bind":[{"Tuple{Channel,Task}":" bind(chnl::Channel, task::Task)\n\nAssociate the lifetime of `chnl` with a task.\n`Channel` `chnl` is automatically closed when the task terminates.\nAny uncaught exception in the task is propagated to all waiters on `chnl`.\n\nThe `chnl` object can be explicitly closed independent of task termination.\nTerminating tasks have no effect on already closed `Channel` objects.\n\nWhen a channel is bound to multiple tasks, the first task to terminate will\nclose the channel. When multiple channels are bound to the same task,\ntermination of the task will close all of the bound channels.\n\n# Examples\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async foreach(i->put!(c, i), 1:4);\n\njulia> bind(c,task);\n\njulia> for i in c\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n\njulia> isopen(c)\nfalse\n```\n\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async (put!(c,1);error(\"foo\"));\n\njulia> bind(c,task);\n\njulia> take!(c)\n1\n\njulia> put!(c,1);\nERROR: foo\nStacktrace:\n[...]\n```\n"}],"Base.AbstractChannel":[{"Union{}":" AbstractChannel{T}\n\nRepresentation of a channel passing objects of type `T`.\n"}],"Base.OrdinalRange":[{"Union{}":" OrdinalRange{T, S} <: AbstractRange{T}\n\nSupertype for ordinal ranges with elements of type `T` with\nspacing(s) of type `S`. The steps should be always-exact\nmultiples of [`oneunit`](@ref), and `T` should be a \"discrete\"\ntype, which cannot have values smaller than `oneunit`. For example,\n`Integer` or `Date` types would qualify, whereas `Float64` would not (since this\ntype can represent values smaller than `oneunit(Float64)`.\n[`UnitRange`](@ref), [`StepRange`](@ref), and other types are subtypes of this.\n"}],"Base.chomp":[{"Tuple{AbstractString}":" chomp(s::AbstractString) -> SubString\n\nRemove a single trailing newline from a string.\n\n# Examples\n```jldoctest\njulia> chomp(\"Hello\\n\")\n\"Hello\"\n```\n"}],"Base.BottomRF":[{"Union{}":" BottomRF(rf) -> rf′\n\n\"Bottom\" reducing function. This is a thin wrapper around the `op` argument\npassed to `foldl`-like functions for handling the initial invocation to call\n[`reduce_first`](@ref).\n"}],"Base.operator_precedence":[{"Tuple{Symbol}":" operator_precedence(s::Symbol)\n\nReturn an integer representing the precedence of operator `s`, relative to\nother operators. Higher-numbered operators take precedence over lower-numbered\noperators. Return `0` if `s` is not a valid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)\n(11, 12, 17)\n\njulia> Base.operator_precedence(:sin), Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens on `:(=)`)\n(0, 1, 1)\n```\n"}],"Base.delete_method":[{"Tuple{Method}":" delete_method(m::Method)\n\nMake method `m` uncallable and force recompilation of any methods that use(d) it.\n"}],"Base.merge!":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nSee also [`merge`](@ref).\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 4\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(combine, d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nValues with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(+, d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 6\n\njulia> merge!(-, d1, d1);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 0\n 3 => 0\n 1 => 0\n```\n"}],"Base.invokelatest":[{"Tuple{Any,Vararg{Any,N} where N}":" invokelatest(f, args...; kwargs...)\n\nCalls `f(args...; kwargs...)`, but guarantees that the most recent method of `f`\nwill be executed. This is useful in specialized circumstances,\ne.g. long-running event loops or callback functions that may\ncall obsolete versions of a function `f`.\n(The drawback is that `invokelatest` is somewhat slower than calling\n`f` directly, and the type of the result cannot be inferred by the compiler.)\n"}],"Base.catch_stack":[{"Union{Tuple{}, Tuple{Any}}":" catch_stack(task=current_task(); [inclue_bt=true])\n\nGet the stack of exceptions currently being handled. For nested catch blocks\nthere may be more than one current exception in which case the most recently\nthrown exception is last in the stack. The stack is returned as a Vector of\n`(exception,backtrace)` pairs, or a Vector of exceptions if `include_bt` is\nfalse.\n\nExplicitly passing `task` will return the current exception stack on an\narbitrary task. This is useful for inspecting tasks which have failed due to\nuncaught exceptions.\n\n!!! compat \"Julia 1.1\"\n This function is experimental in Julia 1.1 and will likely be renamed in a\n future release (see https://github.com/JuliaLang/julia/pull/29901).\n"}],"Base.setindex!":[{"Union{}":" setindex!(collection, value, key...)\n\nStore the given value at the given key or index within a collection. The syntax `a[i,j,...] =\nx` is converted by the compiler to `(setindex!(a, x, i, j, ...); x)`.\n"},{"Tuple{AbstractArray,Any,Vararg{Any,N} where N}":" setindex!(A, X, inds...)\n A[inds...] = X\n\nStore values from array `X` within some subset of `A` as specified by `inds`.\nThe syntax `A[inds...] = X` is equivalent to `setindex!(A, X, inds...)`.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,2);\n\njulia> setindex!(A, [10, 20], [1, 2]);\n\njulia> A[[3, 4]] = [30, 40];\n\njulia> A\n2×2 Array{Float64,2}:\n 10.0 30.0\n 20.0 40.0\n```\n"}],"Base.getpass":[{"Union{}":" Base.getpass(message::AbstractString) -> Base.SecretBuffer\n\nDisplay a message and wait for the user to input a secret, returning an `IO`\nobject containing the secret.\n\nNote that on Windows, the secret might be displayed as it is typed; see\n`Base.winprompt` for securely retrieving username/password pairs from a\ngraphical interface.\n"}],"Base.issetequal":[{"Tuple{AbstractSet,AbstractSet}":" issetequal(a, b) -> Bool\n\nDetermine whether `a` and `b` have the same elements. Equivalent\nto `a ⊆ b && b ⊆ a` but more efficient when possible.\n\n# Examples\n```jldoctest\njulia> issetequal([1, 2], [1, 2, 3])\nfalse\n\njulia> issetequal([1, 2], [2, 1])\ntrue\n```\n"}],"Base.abs":[{"Union{}":" abs(x)\n\nThe absolute value of `x`.\n\nWhen `abs` is applied to signed integers, overflow may occur,\nresulting in the return of a negative value. This overflow occurs only\nwhen `abs` is applied to the minimum representable value of a signed\ninteger. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,\nnot `-x` as might be expected.\n\n# Examples\n```jldoctest\njulia> abs(-3)\n3\n\njulia> abs(1 + im)\n1.4142135623730951\n\njulia> abs(typemin(Int64))\n-9223372036854775808\n```\n"}],"Base.Pair":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.has_offset_axes":[{"Tuple{Any}":" has_offset_axes(A)\n has_offset_axes(A, B, ...)\n\nReturn `true` if the indices of `A` start with something other than 1 along any axis.\nIf multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.\n"}],"Base.Cint":[{"Union{}":" Cint\n\nEquivalent to the native `signed int` c-type ([`Int32`](@ref)).\n"}],"Base.checkbounds_indices":[{"Tuple{Type{Bool},Tuple,Tuple}":" checkbounds_indices(Bool, IA, I)\n\nReturn `true` if the \"requested\" indices in the tuple `I` fall within\nthe bounds of the \"permitted\" indices specified by the tuple\n`IA`. This function recursively consumes elements of these tuples,\nusually in a 1-for-1 fashion,\n\n checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &\n checkbounds_indices(Bool, IA, I)\n\nNote that [`checkindex`](@ref) is being used to perform the actual\nbounds-check for a single dimension of the array.\n\nThere are two important exceptions to the 1-1 rule: linear indexing and\nCartesianIndex{N}, both of which may \"consume\" more than one element\nof `IA`.\n\nSee also [`checkbounds`](@ref).\n"}],"Base.isambiguous":[{"Tuple{Method,Method}":" Base.isambiguous(m1, m2; ambiguous_bottom=false) -> Bool\n\nDetermine whether two methods `m1` and `m2` (typically of the same\nfunction) are ambiguous. This test is performed in the context of\nother methods of the same function; in isolation, `m1` and `m2` might\nbe ambiguous, but if a third method resolving the ambiguity has been\ndefined, this returns `false`.\n\nFor parametric types, the `ambiguous_bottom` keyword argument controls whether\n`Union{}` counts as an ambiguous intersection of type parameters – when `true`,\nit is considered ambiguous, when `false` it is not.\n\n# Examples\n```jldoctest\njulia> foo(x::Complex{<:Integer}) = 1\nfoo (generic function with 1 method)\n\njulia> foo(x::Complex{<:Rational}) = 2\nfoo (generic function with 2 methods)\n\njulia> m1, m2 = collect(methods(foo));\n\njulia> typeintersect(m1.sig, m2.sig)\nTuple{typeof(foo),Complex{Union{}}}\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=true)\ntrue\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=false)\nfalse\n```\n"}],"Base.Colon":[{"Union{}":" Colon()\n\nColons (:) are used to signify indexing entire objects or dimensions at once.\n\nVery few operations are defined on Colons directly; instead they are converted\nby [`to_indices`](@ref) to an internal vector type (`Base.Slice`) to represent the\ncollection of indices they span before being used.\n\nThe singleton instance of `Colon` is also a function used to construct ranges;\nsee [`:`](@ref).\n"}],"Base.inv":[{"Tuple{Number}":" inv(x)\n\nReturn the multiplicative inverse of `x`, such that `x*inv(x)` or `inv(x)*x`\nyields [`one(x)`](@ref) (the multiplicative identity) up to roundoff errors.\n\nIf `x` is a number, this is essentially the same as `one(x)/x`, but for\nsome types `inv(x)` may be slightly more efficient.\n\n# Examples\n```jldoctest\njulia> inv(2)\n0.5\n\njulia> inv(1 + 2im)\n0.2 - 0.4im\n\njulia> inv(1 + 2im) * (1 + 2im)\n1.0 + 0.0im\n\njulia> inv(2//3)\n3//2\n```\n\n!!! compat \"Julia 1.2\"\n `inv(::Missing)` requires at least Julia 1.2.\n"}],"Base.SubArray":[{"Union{}":" SubArray{T,N,P,I,L} <: AbstractArray{T,N}\n\n`N`-dimensional view into a parent array (of type `P`) with an element type `T`, restricted by a tuple of indices (of type `I`). `L` is true for types that support fast linear indexing, and `false` otherwise.\n\nConstruct `SubArray`s using the [`view`](@ref) function.\n"}],"Base.prevpow":[{"Tuple{Real,Real}":" prevpow(a, x)\n\nThe largest `a^n` not greater than `x`, where `n` is a non-negative integer.\n`a` must be greater than 1, and `x` must not be less than 1.\n\n# Examples\n```jldoctest\njulia> prevpow(2, 7)\n4\n\njulia> prevpow(2, 9)\n8\n\njulia> prevpow(5, 20)\n5\n\njulia> prevpow(4, 16)\n16\n```\nSee also [`nextpow`](@ref).\n"}],"Base.AbstractVector":[{"Union{}":" AbstractVector{T}\n\nSupertype for one-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,1}`](@ref).\n"}],"Base.//":[{"Tuple{Integer,Integer}":" //(num, den)\n\nDivide two integers or rational numbers, giving a [`Rational`](@ref) result.\n\n# Examples\n```jldoctest\njulia> 3 // 5\n3//5\n\njulia> (3 // 5) // (2 // 1)\n3//10\n```\n"}],"Base.imag":[{"Tuple{Complex}":" imag(z)\n\nReturn the imaginary part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> imag(1 + 3im)\n3\n```\n"}],"Base._xfadjoint":[{"Tuple{Any,Any}":" _xfadjoint(op, itr) -> op′, itr′\n\nGiven a pair of reducing function `op` and an iterator `itr`, return a pair\n`(op′, itr′)` of similar types. If the iterator `itr` is transformed by an\niterator transform `ixf` whose adjoint transducer `xf` is known, `op′ = xf(op)`\nand `itr′ = ixf⁻¹(itr)` is returned. Otherwise, `op` and `itr` are returned\nas-is. For example, transducer `rf -> MappingRF(f, rf)` is the adjoint of\niterator transform `itr -> Generator(f, itr)`.\n\nNested iterator transforms are converted recursively. That is to say,\ngiven `op` and\n\n itr = (ixf₁ ∘ ixf₂ ∘ ... ∘ ixfₙ)(itr′)\n\nwhat is returned is `itr′` and\n\n op′ = (xfₙ ∘ ... ∘ xf₂ ∘ xf₁)(op)\n"}],"Base.objectid":[{"Tuple{Any}":" objectid(x)\n\nGet a hash value for `x` based on object identity. `objectid(x)==objectid(y)` if `x === y`.\n"}],"Base.>:":[{"Union{}":" >:(T1, T2)\n\nSupertype operator, equivalent to `T2 <: T1`.\n"}],"Base.getkey":[{"Union{Tuple{V}, Tuple{K}, Tuple{Dict{K,V},Any,Any}} where V where K":" getkey(collection, key, default)\n\nReturn the key matching argument `key` if one exists in `collection`, otherwise return `default`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> getkey(D, 'a', 1)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> getkey(D, 'd', 'a')\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n```\n"}],"Base.Cstring":[{"Union{}":" Cstring\n\nA C-style string composed of the native character type\n[`Cchar`](@ref)s. `Cstring`s are NUL-terminated. For\nC-style strings composed of the native wide character\ntype, see [`Cwstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n"}],"Base.rotr90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotr90(A, k)\n\nRight-rotate matrix `A` 90 degrees clockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a,1)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotr90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotr90(a,3)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotr90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotr90(A)\n\nRotate matrix `A` right 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n```\n"}],"Base.xor":[{"Tuple{Bool,Bool}":" xor(x, y)\n ⊻(x, y)\n\nBitwise exclusive or of `x` and `y`. Implements\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one of the arguments is `missing`.\n\nThe infix operation `a ⊻ b` is a synonym for `xor(a,b)`, and\n`⊻` can be typed by tab-completing `\\xor` or `\\veebar` in the Julia REPL.\n\n# Examples\n```jldoctest\njulia> xor(true, false)\ntrue\n\njulia> xor(true, true)\nfalse\n\njulia> xor(true, missing)\nmissing\n\njulia> false ⊻ false\nfalse\n\njulia> [true; true; false] .⊻ [true; false; false]\n3-element BitArray{1}:\n 0\n 1\n 0\n```\n"}],"Base.reverse":[{"Tuple{AbstractArray}":" reverse(A; dims::Integer)\n\nReverse `A` in dimension `dims`.\n\n# Examples\n```jldoctest\njulia> b = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> reverse(b, dims=2)\n2×2 Array{Int64,2}:\n 2 1\n 4 3\n```\n"},{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse(v [, start=1 [, stop=length(v) ]] )\n\nReturn a copy of `v` reversed from start to stop. See also [`Iterators.reverse`](@ref)\nfor reverse-order iteration without making a copy.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse(A)\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n\njulia> reverse(A, 1, 4)\n5-element Array{Int64,1}:\n 4\n 3\n 2\n 1\n 5\n\njulia> reverse(A, 3, 5)\n5-element Array{Int64,1}:\n 1\n 2\n 5\n 4\n 3\n```\n"},{"Tuple{Union{SubString{String}, String}}":" reverse(s::AbstractString) -> AbstractString\n\nReverses a string. Technically, this function reverses the codepoints in a string and its\nmain utility is for reversed-order string processing, especially for reversed\nregular-expression searches. See also [`reverseind`](@ref) to convert indices in `s` to\nindices in `reverse(s)` and vice-versa, and `graphemes` from module `Unicode` to\noperate on user-visible \"characters\" (graphemes) rather than codepoints.\nSee also [`Iterators.reverse`](@ref) for\nreverse-order iteration without making a copy. Custom string types must implement the\n`reverse` function themselves and should typically return a string with the same type\nand encoding. If they return a string with a different encoding, they must also override\n`reverseind` for that string type to satisfy `s[reverseind(s,i)] == reverse(s)[i]`.\n\n# Examples\n```jldoctest\njulia> reverse(\"JuliaLang\")\n\"gnaLailuJ\"\n\njulia> reverse(\"ax̂e\") # combining characters can lead to surprising results\n\"êxa\"\n\njulia> using Unicode\n\njulia> join(reverse(collect(graphemes(\"ax̂e\")))) # reverses graphemes\n\"ex̂a\"\n```\n"}],"Base.sortslices":[{"Tuple{AbstractArray}":" sortslices(A; dims, alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)\n\nSort slices of an array `A`. The required keyword argument `dims` must\nbe either an integer or a tuple of integers. It specifies the\ndimension(s) over which the slices are sorted.\n\nE.g., if `A` is a matrix, `dims=1` will sort rows, `dims=2` will sort columns.\nNote that the default comparison function on one dimensional slices sorts\nlexicographically.\n\nFor the remaining keyword arguments, see the documentation of [`sort!`](@ref).\n\n# Examples\n```jldoctest\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1) # Sort rows\n3×3 Array{Int64,2}:\n -1 6 4\n 7 3 5\n 9 -2 8\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, rev=true)\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2) # Sort columns\n3×3 Array{Int64,2}:\n 3 5 7\n -1 -4 6\n -2 8 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 5 3 7\n -4 -1 6\n 8 -2 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, rev=true)\n3×3 Array{Int64,2}:\n 7 5 3\n 6 -4 -1\n 9 8 -2\n```\n\n# Higher dimensions\n\n`sortslices` extends naturally to higher dimensions. E.g., if `A` is a\na 2x2x2 array, `sortslices(A, dims=3)` will sort slices within the 3rd dimension,\npassing the 2x2 slices `A[:, :, 1]` and `A[:, :, 2]` to the comparison function.\nNote that while there is no default order on higher-dimensional slices, you may\nuse the `by` or `lt` keyword argument to specify such an order.\n\nIf `dims` is a tuple, the order of the dimensions in `dims` is\nrelevant and specifies the linear order of the slices. E.g., if `A` is three\ndimensional and `dims` is `(1, 2)`, the orderings of the first two dimensions\nare re-arranged such such that the slices (of the remaining third dimension) are sorted.\nIf `dims` is `(2, 1)` instead, the same slices will be taken,\nbut the result order will be row-major instead.\n\n# Higher dimensional examples\n```\njulia> A = permutedims(reshape([4 3; 2 1; 'A' 'B'; 'C' 'D'], (2, 2, 2)), (1, 3, 2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 4 3\n 2 1\n\n[:, :, 2] =\n 'A' 'B'\n 'C' 'D'\n\njulia> sortslices(A, dims=(1,2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 3\n 2 4\n\n[:, :, 2] =\n 'D' 'B'\n 'C' 'A'\n\njulia> sortslices(A, dims=(2,1))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 2\n 3 4\n\n[:, :, 2] =\n 'D' 'C'\n 'B' 'A'\n\njulia> sortslices(reshape([5; 4; 3; 2; 1], (1,1,5)), dims=3, by=x->x[1,1])\n1×1×5 Array{Int64,3}:\n[:, :, 1] =\n 1\n\n[:, :, 2] =\n 2\n\n[:, :, 3] =\n 3\n\n[:, :, 4] =\n 4\n\n[:, :, 5] =\n 5\n```\n"}],"Base.Culong":[{"Union{}":" Culong\n\nEquivalent to the native `unsigned long` c-type.\n"}],"Base.pathof":[{"Tuple{Module}":" pathof(m::Module)\n\nReturn the path of the `m.jl` file that was used to `import` module `m`,\nor `nothing` if `m` was not imported from a package.\n\nUse [`dirname`](@ref) to get the directory part and [`basename`](@ref)\nto get the file name part of the path.\n"}],"Base.Dict":[{"Union{}":" Dict([itr])\n\n`Dict{K,V}()` constructs a hash table with keys of type `K` and values of type `V`.\nKeys are compared with [`isequal`](@ref) and hashed with [`hash`](@ref).\n\nGiven a single iterable argument, constructs a [`Dict`](@ref) whose key-value pairs\nare taken from 2-tuples `(key,value)` generated by the argument.\n\n# Examples\n```jldoctest\njulia> Dict([(\"A\", 1), (\"B\", 2)])\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n\nAlternatively, a sequence of pair arguments may be passed.\n\n```jldoctest\njulia> Dict(\"A\"=>1, \"B\"=>2)\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n"}],"Base.pushfirst!":[{"Union{Tuple{T}, Tuple{Array{T,1},Any}} where T":" pushfirst!(collection, items...) -> collection\n\nInsert one or more `items` at the beginning of `collection`.\n\n# Examples\n```jldoctest\njulia> pushfirst!([1, 2, 3, 4], 5, 6)\n6-element Array{Int64,1}:\n 5\n 6\n 1\n 2\n 3\n 4\n```\n"}],"Base.@macroexpand":[{"Tuple{Any}":" @macroexpand\n\nReturn equivalent expression with all macros removed (expanded).\n\nThere are differences between `@macroexpand` and [`macroexpand`](@ref).\n\n* While [`macroexpand`](@ref) takes a keyword argument `recursive`, `@macroexpand`\nis always recursive. For a non recursive macro version, see [`@macroexpand1`](@ref).\n\n* While [`macroexpand`](@ref) has an explicit `module` argument, `@macroexpand` always\nexpands with respect to the module in which it is called.\nThis is best seen in the following example:\n```julia-repl\njulia> module M\n macro m()\n 1\n end\n function f()\n (@macroexpand(@m),\n macroexpand(M, :(@m)),\n macroexpand(Main, :(@m))\n )\n end\n end\nM\n\njulia> macro m()\n 2\n end\n@m (macro with 1 method)\n\njulia> M.f()\n(1, 1, 2)\n```\nWith `@macroexpand` the expression expands where `@macroexpand` appears in the code (module `M` in the example).\nWith `macroexpand` the expression expands in the module given as the first argument.\n"}],"Base.sum!":[{"Tuple{Any,Any}":" sum!(r, A)\n\nSum elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum!([1; 1], A)\n2-element Array{Int64,1}:\n 3\n 7\n\njulia> sum!([1 1], A)\n1×2 Array{Int64,2}:\n 4 6\n```\n"}],"Base.abs2":[{"Tuple{Real}":" abs2(x)\n\nSquared absolute value of `x`.\n\n# Examples\n```jldoctest\njulia> abs2(-3)\n9\n```\n"}],"Base.__precompile__":[{"Union{Tuple{}, Tuple{Bool}}":" __precompile__(isprecompilable::Bool)\n\nSpecify whether the file calling this function is precompilable, defaulting to `true`.\nIf a module or file is *not* safely precompilable, it should call `__precompile__(false)` in\norder to throw an error if Julia attempts to precompile it.\n"}],"Base.similar":[{"Union{Tuple{T}, Tuple{Type{T},Vararg{Union{Integer, AbstractUnitRange},N} where N}} where T<:AbstractArray":" similar(storagetype, axes)\n\nCreate an uninitialized mutable array analogous to that specified by\n`storagetype`, but with `axes` specified by the last\nargument. `storagetype` might be a type or a function.\n\n**Examples**:\n\n similar(Array{Int}, axes(A))\n\ncreates an array that \"acts like\" an `Array{Int}` (and might indeed be\nbacked by one), but which is indexed identically to `A`. If `A` has\nconventional indexing, this will be identical to\n`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the\nindices of the result will match `A`.\n\n similar(BitArray, (axes(A, 2),))\n\nwould create a 1-dimensional logical array whose indices match those\nof the columns of `A`.\n"},{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" similar(array, [element_type=eltype(array)], [dims=size(array)])\n\nCreate an uninitialized mutable array with the given element type and size, based upon the\ngiven source array. The second and third arguments are both optional, defaulting to the\ngiven array's `eltype` and `size`. The dimensions may be specified either as a single tuple\nargument or as a series of integer arguments.\n\nCustom AbstractArray subtypes may choose which specific array type is best-suited to return\nfor the given element type and dimensionality. If they do not specialize this method, the\ndefault is an `Array{element_type}(undef, dims...)`.\n\nFor example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are\nneither mutable nor support 2 dimensions:\n\n```julia-repl\njulia> similar(1:10, 1, 4)\n1×4 Array{Int64,2}:\n 4419743872 4374413872 4419743888 0\n```\n\nConversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two\nelements since `BitArray`s are both mutable and can support 1-dimensional arrays:\n\n```julia-repl\njulia> similar(trues(10,10), 2)\n2-element BitArray{1}:\n 0\n 0\n```\n\nSince `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a\ndifferent element type it will create a regular `Array` instead:\n\n```julia-repl\njulia> similar(falses(10), Float64, 2, 4)\n2×4 Array{Float64,2}:\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n```\n\n"}],"Base.EnvDict":[{"Union{}":" EnvDict() -> EnvDict\n\nA singleton of this type provides a hash table interface to environment variables.\n"}],"Base.∘":[{"Tuple{Any,Any}":" f ∘ g\n\nCompose functions: i.e. `(f ∘ g)(args...)` means `f(g(args...))`. The `∘` symbol can be\nentered in the Julia REPL (and most editors, appropriately configured) by typing `\\circ`.\n\nFunction composition also works in prefix form: `∘(f, g)` is the same as `f ∘ g`.\nThe prefix form supports composition of multiple functions: `∘(f, g, h) = f ∘ g ∘ h`\nand splatting `∘(fs...)` for composing an iterable collection of functions.\n\n!!! compat \"Julia 1.4\"\n Multiple function composition requires at least Julia 1.4.\n\n# Examples\n```jldoctest\njulia> map(uppercase∘first, [\"apple\", \"banana\", \"carrot\"])\n3-element Array{Char,1}:\n 'A'\n 'B'\n 'C'\n\njulia> fs = [\n x -> 2x\n x -> x/2\n x -> x-1\n x -> x+1\n ];\n\njulia> ∘(fs...)(3)\n3.0\n```\n"}],"Base.NaN64":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.⊋":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.eachslice":[{"Tuple{AbstractArray}":" eachslice(A::AbstractArray; dims)\n\nCreate a generator that iterates over dimensions `dims` of `A`, returning views that select all\nthe data from the other dimensions in `A`.\n\nOnly a single dimension in `dims` is currently supported. Equivalent to `(view(A,:,:,...,i,:,:\n...)) for i in axes(A, dims))`, where `i` is in position `dims`.\n\nSee also [`eachrow`](@ref), [`eachcol`](@ref), and [`selectdim`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.CyclePadding":[{"Union{}":" CyclePadding(padding, total_size)\n\nCylces an iterator of `Padding` structs, restarting the padding at `total_size`.\nE.g. if `padding` is all the padding in a struct and `total_size` is the total\naligned size of that array, `CyclePadding` will correspond to the padding in an\ninfinite vector of such structs.\n"}],"Base.lcm":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" lcm(x,y)\n\nLeast common (non-negative) multiple.\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> lcm(2,3)\n6\n\njulia> lcm(-2,3)\n6\n```\n"}],"Base.isoperator":[{"Tuple{Union{AbstractString, Symbol}}":" isoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as an operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isoperator(:+), Base.isoperator(:f)\n(true, false)\n```\n"}],"Base.to_indices":[{"Tuple{Any,Tuple}":" to_indices(A, I::Tuple)\n\nConvert the tuple `I` to a tuple of indices for use in indexing into array `A`.\n\nThe returned tuple must only contain either `Int`s or `AbstractArray`s of\nscalar indices that are supported by array `A`. It will error upon encountering\na novel index type that it does not know how to process.\n\nFor simple index types, it defers to the unexported `Base.to_index(A, i)` to\nprocess each index `i`. While this internal function is not intended to be\ncalled directly, `Base.to_index` may be extended by custom array or index types\nto provide custom indexing behaviors.\n\nMore complicated index types may require more context about the dimension into\nwhich they index. To support those cases, `to_indices(A, I)` calls\n`to_indices(A, axes(A), I)`, which then recursively walks through both the\ngiven tuple of indices and the dimensional indices of `A` in tandem. As such,\nnot all index types are guaranteed to propagate to `Base.to_index`.\n"}],"Base.unmark":[{"Tuple{IO}":" unmark(s)\n\nRemove a mark from stream `s`. Return `true` if the stream was marked, `false` otherwise.\n\nSee also [`mark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.eof":[{"Tuple{Base.AbstractPipe}":" eof(stream) -> Bool\n\nTest whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this\nfunction will block to wait for more data if necessary, and then return `false`. Therefore\nit is always safe to read one byte after seeing `eof` return `false`. `eof` will return\n`false` as long as buffered data is still available, even if the remote end of a connection\nis closed.\n"}],"Base.mapreduce_first":[{"Tuple{Any,Any,Any}":" Base.mapreduce_first(f, op, x)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an iterator which contains a\nsingle element `x`. This value may also used to initialise the recursion, so that\n`mapreduce(f, op, [x, y])` may call `op(reduce_first(op, f, x), f(y))`.\n\nThe default is `reduce_first(op, f(x))`.\n"}],"Base.angle":[{"Tuple{Complex}":" angle(z)\n\nCompute the phase angle in radians of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> rad2deg(angle(1 + im))\n45.0\n\njulia> rad2deg(angle(1 - im))\n-45.0\n\njulia> rad2deg(angle(-1 - im))\n-135.0\n```\n"}],"Base.leading_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" leading_zeros(x::Integer) -> Integer\n\nNumber of zeros leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_zeros(Int32(1))\n31\n```\n"}],"Base.occursin":[{"Tuple{Union{AbstractChar, AbstractString},AbstractString}":" occursin(needle::Union{AbstractString,Regex,AbstractChar}, haystack::AbstractString)\n\nDetermine whether the first argument is a substring of the second. If `needle`\nis a regular expression, checks whether `haystack` contains a match.\n\n# Examples\n```jldoctest\njulia> occursin(\"Julia\", \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin('a', \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin(r\"a.a\", \"aba\")\ntrue\n\njulia> occursin(r\"a.a\", \"abba\")\nfalse\n```\n"}],"Base.isopen":[{"Union{}":" isopen(object) -> Bool\n\nDetermine whether an object - such as a stream or timer\n-- is not yet closed. Once an object is closed, it will never produce a new event.\nHowever, since a closed stream may still have data to read in its buffer,\nuse [`eof`](@ref) to check for the ability to read data.\nUse the `FileWatching` package to be notified when a stream might be writable or readable.\n\n# Examples\n```jldoctest\njulia> io = open(\"my_file.txt\", \"w+\");\n\njulia> isopen(io)\ntrue\n\njulia> close(io)\n\njulia> isopen(io)\nfalse\n```\n"}],"Base.Matrix":[{"Union{}":" Matrix{T} <: AbstractMatrix{T}\n\nTwo-dimensional dense array with elements of type `T`, often used to represent\na mathematical matrix. Alias for [`Array{T,2}`](@ref).\n"}],"Base.merge":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge(d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. If the same key is present in another collection, the\nvalue for that key will be the value it has in the last collection listed.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4711.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n\njulia> merge(b, a)\nDict{String,Float64} with 3 entries:\n \"bar\" => 42.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Tuple{NamedTuple,Any}":" merge(a::NamedTuple, iterable)\n\nInterpret an iterable of key-value pairs as a named tuple, and perform a merge.\n\n```jldoctest\njulia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])\n(a = 1, b = 4, c = 3, d = 5)\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge(combine, d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. Values with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(+, a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4753.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,NamedTuple{bn,T} where T<:Tuple}} where bn where an":" merge(a::NamedTuple, bs::NamedTuple...)\n\nConstruct a new named tuple by merging two or more existing ones, in a left-associative\nmanner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields\npresent in both the leftmost and rightmost named tuples take the same position as they are found in the\nleftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that\ncontains that field. Fields present in only the rightmost named tuple of a pair are appended at the end.\nA fallback is implemented for when only a single named tuple is supplied,\nwith signature `merge(a::NamedTuple)`.\n\n!!! compat \"Julia 1.1\"\n Merging 3 or more `NamedTuple` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> merge((a=1, b=2, c=3), (b=4, d=5))\n(a = 1, b = 4, c = 3, d = 5)\n```\n\n```jldoctest\njulia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))\n(a = 1, b = 3, c = (d = 2,))\n```\n"}],"Base.codeunit":[{"Tuple{AbstractString}":" codeunit(s::AbstractString) -> Type{<:Union{UInt8, UInt16, UInt32}}\n\nReturn the code unit type of the given string object. For ASCII, Latin-1, or\nUTF-8 encoded strings, this would be `UInt8`; for UCS-2 and UTF-16 it would be\n`UInt16`; for UTF-32 it would be `UInt32`. The unit code type need not be\nlimited to these three types, but it's hard to think of widely used string\nencodings that don't use one of these units. `codeunit(s)` is the same as\n`typeof(codeunit(s,1))` when `s` is a non-empty string.\n\nSee also: [`ncodeunits`](@ref)\n"},{"Tuple{AbstractString,Integer}":" codeunit(s::AbstractString, i::Integer) -> Union{UInt8, UInt16, UInt32}\n\nReturn the code unit value in the string `s` at index `i`. Note that\n\n codeunit(s, i) :: codeunit(s)\n\nI.e. the value returned by `codeunit(s, i)` is of the type returned by\n`codeunit(s)`.\n\nSee also: [`ncodeunits`](@ref), [`checkbounds`](@ref)\n"}],"Base.@raw_str":[{"Tuple{Any}":" @raw_str -> String\n\nCreate a raw string without interpolation and unescaping.\nThe exception is that quotation marks still must be escaped. Backslashes\nescape both quotation marks and other backslashes, but only when a sequence\nof backslashes precedes a quote character. Thus, 2n backslashes followed by\na quote encodes n backslashes and the end of the literal while 2n+1 backslashes\nfollowed by a quote encodes n backslashes followed by a quote character.\n\n# Examples\n```jldoctest\njulia> println(raw\"\\ $x\")\n\\ $x\n\njulia> println(raw\"\\\"\")\n\"\n\njulia> println(raw\"\\\\\\\"\")\n\\\"\n\njulia> println(raw\"\\\\x \\\\\\\"\")\n\\\\x \\\"\n```\n"}],"Base.firstindex":[{"Tuple{AbstractArray}":" firstindex(collection) -> Integer\n firstindex(collection, d) -> Integer\n\nReturn the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.\n\n# Examples\n```jldoctest\njulia> firstindex([1,2,4])\n1\n\njulia> firstindex(rand(3,4,5), 2)\n1\n```\n"}],"Base.@view":[{"Tuple{Any}":" @view A[inds...]\n\nCreates a `SubArray` from an indexing expression. This can only be applied directly to a\nreference expression (e.g. `@view A[1,2:end]`), and should *not* be used as the target of\nan assignment (e.g. `@view(A[1,2:end]) = ...`). See also [`@views`](@ref)\nto switch an entire block of code to use views for slicing.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = @view A[:, 1]\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.symdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the symmetric difference of the passed in sets, and overwrite `s` with the result.\nWhen `s` is an array, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n"}],"Base.<=":[{"Tuple{Any}":" <=(x)\n\nCreate a function that compares its argument to `x` using [`<=`](@ref), i.e.\na function equivalent to `y -> y <= x`.\nThe returned function is of type `Base.Fix2{typeof(<=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <=(x, y)\n ≤(x,y)\n\nLess-than-or-equals comparison operator. Falls back to `(x < y) | (x == y)`.\n\n# Examples\n```jldoctest\njulia> 'a' <= 'b'\ntrue\n\njulia> 7 ≤ 7 ≤ 9\ntrue\n\njulia> \"abc\" ≤ \"abc\"\ntrue\n\njulia> 5 <= 3\nfalse\n```\n"}],"Base.max":[{"Tuple{Any,Any}":" max(x, y, ...)\n\nReturn the maximum of the arguments. See also the [`maximum`](@ref) function\nto take the maximum element from a collection.\n\n# Examples\n```jldoctest\njulia> max(2, 5, 1)\n5\n```\n"}],"Base.promote_shape":[{"Tuple{Tuple{Vararg{Int64,N}} where N,Tuple{Vararg{Int64,N}} where N}":" promote_shape(s1, s2)\n\nCheck two array shapes for compatibility, allowing trailing singleton dimensions, and return\nwhichever shape has more dimensions.\n\n# Examples\n```jldoctest\njulia> a = fill(1, (3,4,1,1,1));\n\njulia> b = fill(1, (3,4));\n\njulia> promote_shape(a,b)\n(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))\n\njulia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))\n(2, 3, 1, 4, 1)\n```\n"}],"Base.cumprod":[{"Tuple{AbstractArray}":" cumprod(A; dims::Integer)\n\nCumulative product along the dimension `dim`. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumprod(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 10 18\n\njulia> cumprod(a, dims=2)\n2×3 Array{Int64,2}:\n 1 2 6\n 4 20 120\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumprod(x::AbstractVector)\n\nCumulative product of a vector. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumprod(fill(1//2, 3))\n3-element Array{Rational{Int64},1}:\n 1//2\n 1//4\n 1//8\n\njulia> cumprod([fill(1//3, 2, 2) for i in 1:3])\n3-element Array{Array{Rational{Int64},2},1}:\n [1//3 1//3; 1//3 1//3]\n [2//9 2//9; 2//9 2//9]\n [4//27 4//27; 4//27 4//27]\n```\n"}],"Base.minimum!":[{"Tuple{Any,Any}":" minimum!(r, A)\n\nCompute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> minimum!([1 1], A)\n1×2 Array{Int64,2}:\n 1 2\n```\n"}],"Base.complex":[{"Tuple{Complex}":" complex(r, [i])\n\nConvert real numbers or arrays to complex. `i` defaults to zero.\n\n# Examples\n```jldoctest\njulia> complex(7)\n7 + 0im\n\njulia> complex([1, 2, 3])\n3-element Array{Complex{Int64},1}:\n 1 + 0im\n 2 + 0im\n 3 + 0im\n```\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Real":" complex(T::Type)\n\nReturn an appropriate type which can represent a value of type `T` as a complex number.\nEquivalent to `typeof(complex(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> complex(Complex{Int})\nComplex{Int64}\n\njulia> complex(Int)\nComplex{Int64}\n```\n"}],"Base.splitprec":[{"Union{Tuple{F}, Tuple{Type{F},Integer}} where F<:AbstractFloat":" hi, lo = splitprec(F::Type{<:AbstractFloat}, i::Integer)\n\nRepresent an integer `i` as a pair of floating-point numbers `hi` and\n`lo` (of type `F`) such that:\n- `widen(hi) + widen(lo) ≈ i`. It is exact if 1.5 * (number of precision bits in `F`) is greater than the number of bits in `i`.\n- all bits in `hi` are more significant than any of the bits in `lo`\n- `hi` can be exactly multiplied by the `hi` component of another call to `splitprec`.\n\nIn particular, while `convert(Float64, i)` can be lossy since Float64\nhas only 53 bits of precision, `splitprec(Float64, i)` is exact for\nany Int64/UInt64.\n"}],"Base.unalias":[{"Tuple{Any,AbstractArray}":" Base.unalias(dest, A)\n\nReturn either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from\naffecting the returned object. No guarantees are provided.\n\nCustom arrays that wrap or use fields containing arrays that might alias against other\nexternal objects should provide a [`Base.dataids`](@ref) implementation.\n\nThis function must return an object of exactly the same type as `A` for performance and type\nstability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should\nprovide a [`Base.unaliascopy`](@ref) implementation.\n\nSee also [`Base.mightalias`](@ref).\n"}],"Base.rem":[{"Union{}":" rem(x, y)\n %(x, y)\n\nRemainder from Euclidean division, returning a value of the same sign as `x`, and smaller in\nmagnitude than `y`. This value is always exact.\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> x % y\n3\n\njulia> x == div(x, y) * y + rem(x, y)\ntrue\n```\n"},{"Tuple{Any,Any,RoundingMode}":" rem(x, y, r::RoundingMode=RoundToZero)\n\nCompute the remainder of `x` after integer division by `y`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - y*round(x/y,r)\n\nwithout any intermediate rounding.\n\n- if `r == RoundNearest`, then the result is exact, and in the interval\n ``[-|y|/2, |y|/2]``. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero` (default), then the result is exact, and in the interval\n ``[0, |y|)`` if `x` is positive, or ``(-|y|, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, y)`` if `y` is positive, or\n ``(y, 0]`` otherwise. The result may not be exact if `x` and `y` have different signs, and\n `abs(x) < abs(y)`. See also [`RoundDown`](@ref).\n\n- if `r == RoundUp`, then the result is in the interval `(-y,0]` if `y` is positive, or\n `[0,-y)` otherwise. The result may not be exact if `x` and `y` have the same sign, and\n `abs(x) < abs(y)`. See also [`RoundUp`](@ref).\n\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"}],"Base.@threadcall":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @threadcall((cfunc, clib), rettype, (argtypes...), argvals...)\n\nThe `@threadcall` macro is called in the same way as [`ccall`](@ref) but does the work\nin a different thread. This is useful when you want to call a blocking C\nfunction without causing the main `julia` thread to become blocked. Concurrency\nis limited by size of the libuv thread pool, which defaults to 4 threads but\ncan be increased by setting the `UV_THREADPOOL_SIZE` environment variable and\nrestarting the `julia` process.\n\nNote that the called function should never call back into Julia.\n"}],"Base.∌":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.instances":[{"Union{}":" instances(T::Type)\n\nReturn a collection of all instances of the given type, if applicable. Mostly used for\nenumerated types (see `@enum`).\n\n# Example\n```jldoctest\njulia> @enum Color red blue green\n\njulia> instances(Color)\n(red, blue, green)\n```\n"}],"Base.|>":[{"Tuple{Any,Any}":" |>(x, f)\n\nApplies a function to the preceding argument. This allows for easy function chaining.\n\n# Examples\n```jldoctest\njulia> [1:5;] |> x->x.^2 |> sum |> inv\n0.01818181818181818\n```\n"}],"Base.Cdouble":[{"Union{}":" Cdouble\n\nEquivalent to the native `double` c-type ([`Float64`](@ref)).\n"}],"Base.vec":[{"Tuple{AbstractArray}":" vec(a::AbstractArray) -> AbstractVector\n\nReshape the array `a` as a one-dimensional column vector. Return `a` if it is\nalready an `AbstractVector`. The resulting array\nshares the same underlying data as `a`, so it will only be mutable if `a` is\nmutable, in which case modifying one will also modify the other.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> vec(a)\n6-element Array{Int64,1}:\n 1\n 4\n 2\n 5\n 3\n 6\n\njulia> vec(1:3)\n1:3\n```\n\nSee also [`reshape`](@ref).\n"}],"Base.≉":[{"Tuple":" x ≉ y\n\nThis is equivalent to `!isapprox(x,y)` (see [`isapprox`](@ref)).\n"}],"Base.join":[{"Tuple{IO,Any,Any,Any}":" join([io::IO,] strings [, delim [, last]])\n\nJoin an array of `strings` into a single string, inserting the given delimiter (if any) between\nadjacent strings. If `last` is given, it will be used instead of `delim` between the last\ntwo strings. If `io` is given, the result is written to `io` rather than returned as\nas a `String`.\n\n`strings` can be any iterable over elements `x` which are convertible to strings\nvia `print(io::IOBuffer, x)`. `strings` will be printed to `io`.\n\n# Examples\n```jldoctest\njulia> join([\"apples\", \"bananas\", \"pineapples\"], \", \", \" and \")\n\"apples, bananas and pineapples\"\n\njulia> join([1,2,3,4,5])\n\"12345\"\n```\n"}],"Base.front":[{"Tuple{Tuple}":" front(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the last component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.front((1,2,3))\n(1, 2)\n\njulia> Base.front(())\nERROR: ArgumentError: Cannot call front on an empty tuple.\n```\n"}],"Base.UnitRange":[{"Union{}":" UnitRange{T<:Real}\n\nA range parameterized by a `start` and `stop` of type `T`, filled\nwith elements spaced by `1` from `start` until `stop` is exceeded.\nThe syntax `a:b` with `a` and `b` both `Integer`s creates a `UnitRange`.\n\n# Examples\n```jldoctest\njulia> collect(UnitRange(2.3, 5.2))\n3-element Array{Float64,1}:\n 2.3\n 3.3\n 4.3\n\njulia> typeof(1:10)\nUnitRange{Int64}\n```\n"}],"Base.typemin":[{"Union{}":" typemin(T)\n\nThe lowest value representable by the given (real) numeric DataType `T`.\n\n# Examples\n```jldoctest\njulia> typemin(Float16)\n-Inf16\n\njulia> typemin(Float32)\n-Inf32\n```\n"}],"Base.sign":[{"Tuple{Number}":" sign(x)\n\nReturn zero if `x==0` and ``x/|x|`` otherwise (i.e., ±1 for real `x`).\n"}],"Base.exit":[{"Tuple{Any}":" exit(code=0)\n\nStop the program with an exit code. The default exit code is zero, indicating that the\nprogram completed successfully. In an interactive session, `exit()` can be called with\nthe keyboard shortcut `^D`.\n"}],"Base.floor":[{"Union{}":" floor([T,] x)\n floor(x; digits::Integer= [, base = 10])\n floor(x; sigdigits::Integer= [, base = 10])\n\n`floor(x)` returns the nearest integral value of the same type as `x` that is less than or\nequal to `x`.\n\n`floor(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.C_NULL":[{"Union{}":" C_NULL\n\nThe C null pointer constant, sometimes used when calling external code.\n"}],"Base.ENV":[{"Union{}":" ENV\n\nReference to the singleton `EnvDict`, providing a dictionary interface to system environment\nvariables.\n\n(On Windows, system environment variables are case-insensitive, and `ENV` correspondingly converts\nall keys to uppercase for display, iteration, and copying. Portable code should not rely on the\nability to distinguish variables by case, and should beware that setting an ostensibly lowercase\nvariable may result in an uppercase `ENV` key.)\n"}],"Base.vcat":[{"Tuple":" vcat(A...)\n\nConcatenate along dimension 1.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3 4 5]\n1×5 Array{Int64,2}:\n 1 2 3 4 5\n\njulia> b = [6 7 8 9 10; 11 12 13 14 15]\n2×5 Array{Int64,2}:\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> vcat(a,b)\n3×5 Array{Int64,2}:\n 1 2 3 4 5\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> c = ([1 2 3], [4 5 6])\n([1 2 3], [4 5 6])\n\njulia> vcat(c...)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n```\n"}],"Base.typeintersect":[{"Tuple{Any,Any}":" typeintersect(T, S)\n\nCompute a type that contains the intersection of `T` and `S`. Usually this will be the\nsmallest such type or one close to it.\n"}],"Base.isfinite":[{"Tuple{AbstractFloat}":" isfinite(f) -> Bool\n\nTest whether a number is finite.\n\n# Examples\n```jldoctest\njulia> isfinite(5)\ntrue\n\njulia> isfinite(NaN32)\nfalse\n```\n"}],"Base.@macroexpand1":[{"Tuple{Any}":" @macroexpand1\n\nNon recursive version of [`@macroexpand`](@ref).\n"}],"Base.gcd":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcd(x,y)\n\nGreatest common (positive) divisor (or zero if `x` and `y` are both zero).\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcd(6,9)\n3\n\njulia> gcd(6,-9)\n3\n```\n"}],"Base.VersionNumber":[{"Union{}":" VersionNumber\n\nVersion number type which follow the specifications of\n[semantic versioning](https://semver.org/), composed of major, minor\nand patch numeric values, followed by pre-release and build\nalpha-numeric annotations. See also [`@v_str`](@ref).\n\n# Examples\n```jldoctest\njulia> VersionNumber(\"1.2.3\")\nv\"1.2.3\"\n\njulia> VersionNumber(\"2.0.1-rc1\")\nv\"2.0.1-rc1\"\n```\n"}],"Base.EOFError":[{"Union{}":" EOFError()\n\nNo more data was available to read from a file or stream.\n"}],"Base.findnext":[{"Tuple{Function,Any,Any}":" findnext(predicate::Function, A, i)\n\nFind the next index after or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2];\n\njulia> findnext(isodd, A, 1)\n1\n\njulia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL\n\njulia> A = [1 4; 2 2];\n\njulia> findnext(isodd, A, CartesianIndex(1, 1))\nCartesianIndex(1, 1)\n```\n"},{"Tuple{Any,Any}":" findnext(A, i)\n\nFind the next index after or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findnext(A, 1)\n3\n\njulia> findnext(A, 4) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findnext(A, CartesianIndex(1, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findnext(pattern::AbstractString, string::AbstractString, start::Integer)\n findnext(pattern::Regex, string::String, start::Integer)\n\nFind the next occurrence of `pattern` in `string` starting at position `start`.\n`pattern` can be either a string, or a regular expression, in which case `string`\nmust be of type `String`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findnext(x, s, i)] == x`:\n\n`findnext(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `i <= start`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findnext(\"z\", \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext(\"o\", \"Hello to the world\", 6)\n8:8\n\njulia> findnext(\"Lang\", \"JuliaLang\", 2)\n6:9\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findnext(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the next occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findnext('z', \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext('o', \"Hello to the world\", 6)\n8\n```\n"}],"Base.UUID":[{"Union{}":" Represents a Universally Unique Identifier (UUID).\n Can be built from one `UInt128` (all byte values), two `UInt64`, or four `UInt32`.\n Conversion from a string will check the UUID validity.\n"}],"Base.mark":[{"Tuple{IO}":" mark(s)\n\nAdd a mark at the current position of stream `s`. Return the marked position.\n\nSee also [`unmark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.read":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" read(filename::AbstractString, args...)\n\nOpen a file and read its contents. `args` is passed to `read`: this is equivalent to\n`open(io->read(io, args...), filename)`.\n\n read(filename::AbstractString, String)\n\nRead the entire contents of a file as a string.\n"},{"Tuple{Any,Any}":" read(io::IO, T)\n\nRead a single value of type `T` from `io`, in canonical binary representation.\n\n read(io::IO, String)\n\nRead the entirety of `io`, as a `String`.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization\"\n```\n"},{"Union{Tuple{IO}, Tuple{IO,Integer}}":" read(s::IO, nb=typemax(Int))\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n"},{"Tuple{Base.AbstractCmd,Type{String}}":" read(command::Cmd, String)\n\nRun `command` and return the resulting output as a `String`.\n"},{"Tuple{IOStream,Integer}":" read(s::IOStream, nb::Integer; all=true)\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"},{"Tuple{Base.AbstractCmd}":" read(command::Cmd)\n\nRun `command` and return the resulting output as an array of bytes.\n"}],"Base.Inf16":[{"Union{}":" Inf16\n\nPositive infinity of type [`Float16`](@ref).\n"}],"Base.gcdx":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcdx(x,y)\n\nComputes the greatest common (positive) divisor of `x` and `y` and their Bézout\ncoefficients, i.e. the integer coefficients `u` and `v` that satisfy\n``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``.\n\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcdx(12, 42)\n(6, -3, 1)\n\njulia> gcdx(240, 46)\n(2, -9, 47)\n```\n\n!!! note\n Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal\n Bézout coefficients that are computed by the extended Euclidean algorithm.\n (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)\n For signed integers, these coefficients `u` and `v` are minimal in\n the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore,\n the signs of `u` and `v` are chosen so that `d` is positive.\n For unsigned integers, the coefficients `u` and `v` might be near\n their `typemax`, and the identity then holds only via the unsigned\n integers' modulo arithmetic.\n"}],"Base.reduce":[{"Tuple{Any,AbstractArray}":" reduce(f, A; dims=:, [init])\n\nReduce 2-argument function `f` along dimensions of `A`. `dims` is a vector specifying the\ndimensions to reduce, and the keyword argument `init` is the initial value to use in the\nreductions. For `+`, `*`, `max` and `min` the `init` argument is optional.\n\nThe associativity of the reduction is implementation-dependent; if you need a particular\nassociativity, e.g. left-to-right, you should write your own loop or consider using\n[`foldl`](@ref) or [`foldr`](@ref). See documentation for [`reduce`](@ref).\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reduce(max, a, dims=2)\n4×1 Array{Int64,2}:\n 13\n 14\n 15\n 16\n\njulia> reduce(max, a, dims=1)\n1×4 Array{Int64,2}:\n 4 8 12 16\n```\n"},{"Tuple{Any,Any}":" reduce(op, itr; [init])\n\nReduce the given collection `itr` with the given binary operator `op`. If provided, the\ninitial value `init` must be a neutral element for `op` that will be returned for empty\ncollections. It is unspecified whether `init` is used for non-empty collections.\n\nFor empty collections, providing `init` will be necessary, except for some special cases\n(e.g. when `op` is one of `+`, `*`, `max`, `min`, `&`, `|`) when Julia can determine the\nneutral element of `op`.\n\nReductions for certain commonly-used operators may have special implementations, and\nshould be used instead: `maximum(itr)`, `minimum(itr)`, `sum(itr)`, `prod(itr)`,\n `any(itr)`, `all(itr)`.\n\nThe associativity of the reduction is implementation dependent. This means that you can't\nuse non-associative operations like `-` because it is undefined whether `reduce(-,[1,2,3])`\nshould be evaluated as `(1-2)-3` or `1-(2-3)`. Use [`foldl`](@ref) or\n[`foldr`](@ref) instead for guaranteed left or right associativity.\n\nSome operations accumulate error. Parallelism will be easier if the reduction can be\nexecuted in groups. Future versions of Julia might change the algorithm. Note that the\nelements are not reordered if you use an ordered collection.\n\n# Examples\n```jldoctest\njulia> reduce(*, [2; 3; 4])\n24\n\njulia> reduce(*, [2; 3; 4]; init=-1)\n-24\n```\n"}],"Base.Fix1":[{"Union{}":" Fix1(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the first argument fixed to the value \"x\". In other words,\n`Fix1(f, x)` behaves similarly to `y->f(x, y)`.\n"}],"Base.ntuple":[{"Union{Tuple{F}, Tuple{F,Integer}} where F":" ntuple(f::Function, n::Integer)\n\nCreate a tuple of length `n`, computing each element as `f(i)`,\nwhere `i` is the index of the element.\n\n# Examples\n```jldoctest\njulia> ntuple(i -> 2*i, 4)\n(2, 4, 6, 8)\n```\n"}],"Base.setindex":[{"Tuple{NamedTuple,Any,Symbol}":" setindex(nt::NamedTuple, val, key::Symbol)\n\nConstructs a new `NamedTuple` with the key `key` set to `val`.\nIf `key` is already in the keys of `nt`, `val` replaces the old value.\n\n```jldoctest\njulia> nt = (a = 3,)\n(a = 3,)\n\njulia> Base.setindex(nt, 33, :b)\n(a = 3, b = 33)\n\njulia> Base.setindex(nt, 4, :a)\n(a = 4,)\n\njulia> Base.setindex(nt, \"a\", :a)\n(a = \"a\",)\n```\n"},{"Tuple{Tuple,Any,Integer}":" setindex(c::Tuple, v, i::Integer)\n\nCreates a new tuple similar to `x` with the value at index `i` set to `v`.\nThrows a `BoundsError` when out of bounds.\n\n# Examples\n```jldoctest\njulia> Base.setindex((1, 2, 6), 2, 3) == (1, 2, 2)\ntrue\n```\n"}],"Base.parentmodule":[{"Tuple{Any,Any}":" parentmodule(f::Function, types) -> Module\n\nDetermine the module containing a given definition of a generic function.\n"},{"Tuple{Module}":" parentmodule(m::Module) -> Module\n\nGet a module's enclosing `Module`. `Main` is its own parent.\n\n# Examples\n```jldoctest\njulia> parentmodule(Main)\nMain\n\njulia> parentmodule(Base.Broadcast)\nBase\n```\n"},{"Tuple{Function}":" parentmodule(f::Function) -> Module\n\nDetermine the module containing the (first) definition of a generic\nfunction.\n"},{"Tuple{DataType}":" parentmodule(t::DataType) -> Module\n\nDetermine the module containing the definition of a (potentially `UnionAll`-wrapped) `DataType`.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct Int end\n end\nFoo\n\njulia> parentmodule(Int)\nCore\n\njulia> parentmodule(Foo.Int)\nFoo\n```\n"}],"Base.readchomp":[{"Tuple{Any}":" readchomp(x)\n\nRead the entirety of `x` as a string and remove a single trailing newline\nif there is one. Equivalent to `chomp(read(x, String))`.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end;\n\njulia> readchomp(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\\nIt has many members.\"\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.invmod":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" invmod(x,m)\n\nTake the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``,\nwith ``div(x,y) = 0``. This is undefined for ``m = 0``, or if\n``gcd(x,m) \\neq 1``.\n\n# Examples\n```jldoctest\njulia> invmod(2,5)\n3\n\njulia> invmod(2,3)\n2\n\njulia> invmod(5,6)\n5\n```\n"}],"Base.detach":[{"Tuple{Cmd}":" detach(command)\n\nMark a command object so that it will be run in a new process group, allowing it to outlive the julia process, and not have Ctrl-C interrupts passed to it.\n"}],"Base.ExponentialBackOff":[{"Tuple{}":" ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)\n\nA [`Float64`](@ref) iterator of length `n` whose elements exponentially increase at a\nrate in the interval `factor` * (1 ± `jitter`). The first element is\n`first_delay` and all elements are clamped to `max_delay`.\n"}],"Base.ceil":[{"Union{}":" ceil([T,] x)\n ceil(x; digits::Integer= [, base = 10])\n ceil(x; sigdigits::Integer= [, base = 10])\n\n`ceil(x)` returns the nearest integral value of the same type as `x` that is greater than or\nequal to `x`.\n\n`ceil(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not\nrepresentable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.@specialize":[{"Tuple":" @specialize\n\nReset the specialization hint for an argument back to the default.\nFor details, see [`@nospecialize`](@ref).\n"}],"Base.get!":[{"Tuple{Function,Any,Any}":" get!(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => f()`, and return `f()`.\n\nThis is intended to be called using `do` block syntax:\n```julia\nget!(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get!(collection, key, default)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => default`, and return `default`.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> get!(d, \"a\", 5)\n1\n\njulia> get!(d, \"d\", 4)\n4\n\njulia> d\nDict{String,Int64} with 4 entries:\n \"c\" => 3\n \"b\" => 2\n \"a\" => 1\n \"d\" => 4\n```\n"}],"Base.maximum":[{"Tuple{Any}":" maximum(itr)\n\nReturns the largest element in a collection.\n\n# Examples\n```jldoctest\njulia> maximum(-20.5:10)\n9.5\n\njulia> maximum([1,2,3])\n3\n```\n"},{"Tuple{AbstractArray}":" maximum(A::AbstractArray; dims)\n\nCompute the maximum value of an array over the given dimensions. See also the\n[`max(a,b)`](@ref) function to take the maximum of two or more arguments,\nwhich can be applied elementwise to arrays via `max.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum(A, dims=1)\n1×2 Array{Int64,2}:\n 3 4\n\njulia> maximum(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 4\n```\n"},{"Tuple{Any,Any}":" maximum(f, itr)\n\nReturns the largest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> maximum(length, [\"Julion\", \"Julia\", \"Jule\"])\n6\n```\n"}],"Base.:":[{"Union{Tuple{T}, Tuple{T,Any,T}} where T":" (:)(start, [step], stop)\n\nRange operator. `a:b` constructs a range from `a` to `b` with a step size of 1 (a [`UnitRange`](@ref))\n, and `a:s:b` is similar but uses a step size of `s` (a [`StepRange`](@ref)).\n\n`:` is also used in indexing to select whole dimensions\n and for [`Symbol`](@ref) literals, as in e.g. `:hello`.\n"}],"Base.unsafe_trunc":[{"Union{}":" unsafe_trunc(T, x)\n\nReturn the nearest integral value of type `T` whose absolute value is\nless than or equal to `x`. If the value is not representable by `T`, an arbitrary value will\nbe returned.\n"}],"Base.popfirst!":[{"Tuple{Array{T,1} where T}":" popfirst!(collection) -> item\n\nRemove the first `item` from `collection`.\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4, 5, 6]\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n\njulia> popfirst!(A)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 2\n 3\n 4\n 5\n 6\n```\n"}],"Base.isempty":[{"Tuple{Any}":" isempty(collection) -> Bool\n\nDetermine whether a collection is empty (has no elements).\n\n# Examples\n```jldoctest\njulia> isempty([])\ntrue\n\njulia> isempty([1 2 3])\nfalse\n```\n"},{"Tuple{Base.GenericCondition}":" isempty(condition)\n\nReturn `true` if no tasks are waiting on the condition, `false` otherwise.\n"}],"Base.delete!":[{"Tuple{Any,Any}":" delete!(collection, key)\n\nDelete the mapping for the given key in a collection, if any, and return the collection.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> delete!(d, \"b\")\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n\njulia> delete!(d, \"b\") # d is left unchanged\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n```\n"}],"Base.@r_str":[{"Tuple{Any,Vararg{Any,N} where N}":" @r_str -> Regex\n\nConstruct a regex, such as `r\"^[a-z]*$\"`, without interpolation and unescaping (except for\nquotation mark `\"` which still has to be escaped). The regex also accepts one or more flags,\nlisted after the ending quote, to change its behaviour:\n\n- `i` enables case-insensitive matching\n- `m` treats the `^` and `$` tokens as matching the start and end of individual lines, as\n opposed to the whole string.\n- `s` allows the `.` modifier to match newlines.\n- `x` enables \"comment mode\": whitespace is enabled except when escaped with `\\`, and `#`\n is treated as starting a comment.\n- `a` disables `UCP` mode (enables ASCII mode). By default `\\B`, `\\b`, `\\D`, `\\d`, `\\S`,\n `\\s`, `\\W`, `\\w`, etc. match based on Unicode character properties. With this option,\n these sequences only match ASCII characters.\n\nSee `Regex` if interpolation is needed.\n\n# Examples\n```jldoctest\njulia> match(r\"a+.*b+.*?d$\"ism, \"Goodbye,\\nOh, angry,\\nBad world\\n\")\nRegexMatch(\"angry,\\nBad world\")\n```\nThis regex has the first three flags enabled.\n"}],"Base.trunc":[{"Union{}":" trunc([T,] x)\n trunc(x; digits::Integer= [, base = 10])\n trunc(x; sigdigits::Integer= [, base = 10])\n\n`trunc(x)` returns the nearest integral value of the same type as `x` whose absolute value\nis less than or equal to `x`.\n\n`trunc(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.count_zeros":[{"Tuple{Integer}":" count_zeros(x::Integer) -> Integer\n\nNumber of zeros in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_zeros(Int32(2 ^ 16 - 1))\n16\n```\n"}],"Base.gc_live_bytes":[{"Tuple{}":" Base.gc_live_bytes()\n\nReturn the total size (in bytes) of objects currently in memory.\nThis is computed as the total size of live objects after\nthe last garbage collection, plus the number of bytes allocated\nsince then.\n"}],"Base.push!":[{"Union{}":" push!(collection, items...) -> collection\n\nInsert one or more `items` in `collection`. If `collection` is an ordered container,\nthe items are inserted at the end (in the given order).\n\n# Examples\n```jldoctest\njulia> push!([1, 2, 3], 4, 5, 6)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nIf `collection` is ordered, use [`append!`](@ref) to add all the elements of another\ncollection to it. The result of the preceding example is equivalent to `append!([1, 2, 3], [4,\n5, 6])`. For `AbstractSet` objects, [`union!`](@ref) can be used instead.\n"}],"Base.pointer":[{"Union{}":" pointer(array [, index])\n\nGet the native address of an array or string, optionally at a given location `index`.\n\nThis function is \"unsafe\". Be careful to ensure that a Julia reference to\n`array` exists as long as this pointer will be used. The [`GC.@preserve`](@ref)\nmacro should be used to protect the `array` argument from garbage collection\nwithin a given block of code.\n\nCalling [`Ref(array[, index])`](@ref Ref) is generally preferable to this function as it guarantees validity.\n"}],"Base.isassigned":[{"Union{}":" isassigned(array, i) -> Bool\n\nTest whether the given array has a value associated with index `i`. Return `false`\nif the index is out of bounds, or has an undefined reference.\n\n# Examples\n```jldoctest\njulia> isassigned(rand(3, 3), 5)\ntrue\n\njulia> isassigned(rand(3, 3), 3 * 3 + 1)\nfalse\n\njulia> mutable struct Foo end\n\njulia> v = similar(rand(3), Foo)\n3-element Array{Foo,1}:\n #undef\n #undef\n #undef\n\njulia> isassigned(v, 1)\nfalse\n```\n"}],"Base.Clonglong":[{"Union{}":" Clonglong\n\nEquivalent to the native `signed long long` c-type ([`Int64`](@ref)).\n"}],"Base.flush":[{"Tuple{IO}":" flush(stream)\n\nCommit all currently buffered writes to the given stream.\n"}],"Base.cumsum":[{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" cumsum(A; dims::Integer)\n\nCumulative sum along the dimension `dims`. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumsum(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 5 7 9\n\njulia> cumsum(a, dims=2)\n2×3 Array{Int64,2}:\n 1 3 6\n 4 9 15\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumsum(x::AbstractVector)\n\nCumulative sum a vector. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumsum([1, 1, 1])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> cumsum([fill(1, 2) for i in 1:3])\n3-element Array{Array{Int64,1},1}:\n [1, 1]\n [2, 2]\n [3, 3]\n```\n"}],"Base.splice!":[{"Union{Tuple{Array{T,1} where T,UnitRange{#s662} where #s662<:Integer}, Tuple{Array{T,1} where T,UnitRange{#s661} where #s661<:Integer,Any}}":" splice!(a::Vector, range, [replacement]) -> items\n\nRemove items in the specified index range, and return a collection containing\nthe removed items.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered collection will be spliced in\nplace of the removed items.\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n\n# Examples\n```jldoctest\njulia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)\n0-element Array{Int64,1}\n\njulia> A\n8-element Array{Int64,1}:\n -1\n -2\n -3\n 2\n 5\n 4\n 3\n -1\n```\n"},{"Union{Tuple{Array{T,1} where T,Integer}, Tuple{Array{T,1} where T,Integer,Any}}":" splice!(a::Vector, index::Integer, [replacement]) -> item\n\nRemove the item at the given index, and return the removed item.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered\ncollection will be spliced in place of the removed item.\n\n# Examples\n```jldoctest\njulia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)\n2\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 1\n\njulia> splice!(A, 5, -1)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n -1\n\njulia> splice!(A, 1, [-1, -2, -3])\n6\n\njulia> A\n7-element Array{Int64,1}:\n -1\n -2\n -3\n 5\n 4\n 3\n -1\n```\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n"}],"Base.findmin!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmin!(rval, rind, A) -> (minval, index)\n\nFind the minimum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as less than all other values.\n"}],"Base.moduleroot":[{"Tuple{Module}":" moduleroot(m::Module) -> Module\n\nFind the root module of a given module. This is the first module in the chain of\nparent modules of `m` which is either a registered root module or which is its\nown parent module.\n"}],"Base.@s_str":[{"Tuple{Any}":" @s_str -> SubstitutionString\n\nConstruct a substitution string, used for regular expression substitutions. Within the\nstring, sequences of the form `\\N` refer to the Nth capture group in the regex, and\n`\\g` refers to a named capture group with name `groupname`.\n\n```jldoctest\njulia> msg = \"#Hello# from Julia\";\n\njulia> replace(msg, r\"#(.+)# from (?\\w+)\" => s\"FROM: \\g; MESSAGE: \\1\")\n\"FROM: Julia; MESSAGE: Hello\"\n```\n"}],"Base.seekstart":[{"Tuple{IO}":" seekstart(s)\n\nSeek a stream to its beginning.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n\njulia> seekstart(io);\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n```\n"}],"Base.canonicalize2":[{"Tuple{Any,Any}":" hi, lo = canonicalize2(big, little)\n\nGenerate a representation where all the nonzero bits in `hi` are more\nsignificant than any of the nonzero bits in `lo`. `big` must be larger\nin absolute value than `little`.\n"}],"Base.unsafe_store!":[{"Union{Tuple{Ptr{Any},Any}, Tuple{Ptr{Any},Any,Integer}}":" unsafe_store!(p::Ptr{T}, x, i::Integer=1)\n\nStore a value of type `T` to the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1] = x`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may corrupt or segfault your\nprogram, in the same manner as C.\n"}],"Base.propertynames":[{"Tuple{Any}":" propertynames(x, private=false)\n\nGet a tuple or a vector of the properties (`x.property`) of an object `x`.\nThis is typically the same as [`fieldnames(typeof(x))`](@ref), but types\nthat overload [`getproperty`](@ref) should generally overload `propertynames`\nas well to get the properties of an instance of the type.\n\n`propertynames(x)` may return only \"public\" property names that are part\nof the documented interface of `x`. If you want it to also return \"private\"\nfieldnames intended for internal use, pass `true` for the optional second argument.\nREPL tab completion on `x.` shows only the `private=false` properties.\n"}],"Base.numerator":[{"Tuple{Integer}":" numerator(x)\n\nNumerator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> numerator(2//3)\n2\n\njulia> numerator(4)\n4\n```\n"}],"Base.Cshort":[{"Union{}":" Cshort\n\nEquivalent to the native `signed short` c-type ([`Int16`](@ref)).\n"}],"Base.ismissing":[{"Tuple{Any}":" ismissing(x)\n\nIndicate whether `x` is [`missing`](@ref).\n"}],"Base.⊉":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.process_running":[{"Tuple{Base.Process}":" process_running(p::Process)\n\nDetermine whether a process is currently running.\n"}],"Base.split":[{"Union{}":" split(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true)\n split(str::AbstractString; limit::Integer=0, keepempty::Bool=false)\n\nSplit `str` into an array of substrings on occurrences of the delimiter(s) `dlm`. `dlm`\ncan be any of the formats allowed by [`findnext`](@ref)'s first argument (i.e. as a\nstring, regular expression or a function), or as a single character or collection of\ncharacters.\n\nIf `dlm` is omitted, it defaults to [`isspace`](@ref).\n\nThe optional keyword arguments are:\n - `limit`: the maximum size of the result. `limit=0` implies no maximum (default)\n - `keepempty`: whether empty fields should be kept in the result. Default is `false` without\n a `dlm` argument, `true` with a `dlm` argument.\n\nSee also [`rsplit`](@ref).\n\n# Examples\n```jldoctest\njulia> a = \"Ma.rch\"\n\"Ma.rch\"\n\njulia> split(a,\".\")\n2-element Array{SubString{String},1}:\n \"Ma\"\n \"rch\"\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Cartesian_docstrings.json b/en/docstrings/Cartesian_docstrings.json new file mode 100644 index 00000000..309a059d --- /dev/null +++ b/en/docstrings/Cartesian_docstrings.json @@ -0,0 +1 @@ +{"Base.Cartesian.@nextract":[{"Tuple{Int64,Symbol,Symbol}":" @nextract N esym isym\n\nGenerate `N` variables `esym_1`, `esym_2`, ..., `esym_N` to extract values from `isym`.\n`isym` can be either a `Symbol` or anonymous-function expression.\n\n`@nextract 2 x y` would generate\n\n x_1 = y[1]\n x_2 = y[2]\n\nwhile `@nextract 3 x d->y[2d-1]` yields\n\n x_1 = y[1]\n x_2 = y[3]\n x_3 = y[5]\n\n"}],"Base.Cartesian.@nall":[{"Tuple{Int64,Expr}":" @nall N expr\n\nCheck whether all of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nall 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 && i_2 > 1 && i_3 > 1)`. This\ncan be convenient for bounds-checking.\n"}],"Base.Cartesian.@nif":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" @nif N conditionexpr expr\n @nif N conditionexpr expr elseexpr\n\nGenerates a sequence of `if ... elseif ... else ... end` statements. For example:\n\n @nif 3 d->(i_d >= size(A,d)) d->(error(\"Dimension \", d, \" too big\")) d->println(\"All OK\")\n\nwould generate:\n\n if i_1 > size(A, 1)\n error(\"Dimension \", 1, \" too big\")\n elseif i_2 > size(A, 2)\n error(\"Dimension \", 2, \" too big\")\n else\n println(\"All OK\")\n end\n"}],"Base.Cartesian.@ncall":[{"Tuple{Int64,Any,Vararg{Any,N} where N}":" @ncall N f sym...\n\nGenerate a function call expression. `sym` represents any number of function arguments, the\nlast of which may be an anonymous-function expression and is expanded into `N` arguments.\n\nFor example, `@ncall 3 func a` generates\n\n func(a_1, a_2, a_3)\n\nwhile `@ncall 2 func a b i->c[i]` yields\n\n func(a, b, c[1], c[2])\n\n"}],"Base.Cartesian.@nloops":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @nloops N itersym rangeexpr bodyexpr\n @nloops N itersym rangeexpr preexpr bodyexpr\n @nloops N itersym rangeexpr preexpr postexpr bodyexpr\n\nGenerate `N` nested loops, using `itersym` as the prefix for the iteration variables.\n`rangeexpr` may be an anonymous-function expression, or a simple symbol `var` in which case\nthe range is `axes(var, d)` for dimension `d`.\n\nOptionally, you can provide \"pre\" and \"post\" expressions. These get executed first and last,\nrespectively, in the body of each loop. For example:\n\n @nloops 2 i A d -> j_d = min(i_d, 5) begin\n s += @nref 2 A j\n end\n\nwould generate:\n\n for i_2 = axes(A, 2)\n j_2 = min(i_2, 5)\n for i_1 = axes(A, 1)\n j_1 = min(i_1, 5)\n s += A[j_1, j_2]\n end\n end\n\nIf you want just a post-expression, supply [`nothing`](@ref) for the pre-expression. Using\nparentheses and semicolons, you can supply multi-statement expressions.\n"}],"Base.Cartesian.@ntuple":[{"Tuple{Int64,Any}":" @ntuple N expr\n\nGenerates an `N`-tuple. `@ntuple 2 i` would generate `(i_1, i_2)`, and `@ntuple 2 k->k+1`\nwould generate `(2,3)`.\n"}],"Base.Cartesian.@nany":[{"Tuple{Int64,Expr}":" @nany N expr\n\nCheck whether any of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nany 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 || i_2 > 1 || i_3 > 1)`.\n"}],"Base.Cartesian.@nexprs":[{"Tuple{Int64,Expr}":" @nexprs N expr\n\nGenerate `N` expressions. `expr` should be an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]\nquote\n y[1] = A[1 + j]\n y[2] = A[2 + j]\n y[3] = A[3 + j]\n y[4] = A[4 + j]\nend\n```\n"}],"Base.Cartesian.@nref":[{"Tuple{Int64,Symbol,Any}":" @nref N A indexexpr\n\nGenerate expressions like `A[i_1, i_2, ...]`. `indexexpr` can either be an iteration-symbol\nprefix, or an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nref 3 A i\n:(A[i_1, i_2, i_3])\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Enums_docstrings.json b/en/docstrings/Enums_docstrings.json new file mode 100644 index 00000000..6d38adb5 --- /dev/null +++ b/en/docstrings/Enums_docstrings.json @@ -0,0 +1 @@ +{"Base.Enums.@enum":[{"Tuple{Any,Vararg{Any,N} where N}":" @enum EnumName[::BaseType] value1[=x] value2[=y]\n\nCreate an `Enum{BaseType}` subtype with name `EnumName` and enum member values of\n`value1` and `value2` with optional assigned values of `x` and `y`, respectively.\n`EnumName` can be used just like other types and enum member values as regular values, such as\n\n# Examples\n```jldoctest fruitenum\njulia> @enum Fruit apple=1 orange=2 kiwi=3\n\njulia> f(x::Fruit) = \"I'm a Fruit with value: $(Int(x))\"\nf (generic function with 1 method)\n\njulia> f(apple)\n\"I'm a Fruit with value: 1\"\n\njulia> Fruit(1)\napple::Fruit = 1\n```\n\nValues can also be specified inside a `begin` block, e.g.\n\n```julia\n@enum EnumName begin\n value1\n value2\nend\n```\n\n`BaseType`, which defaults to [`Int32`](@ref), must be a primitive subtype of `Integer`.\nMember values can be converted between the enum type and `BaseType`. `read` and `write`\nperform these conversions automatically.\n\nTo list all the instances of an enum use `instances`, e.g.\n\n```jldoctest fruitenum\njulia> instances(Fruit)\n(apple, orange, kiwi)\n```\n"}],"Base.Enums.Enum":[{"Union{}":" Enum{T<:Integer}\n\nThe abstract supertype of all enumerated types defined with [`@enum`](@ref).\n"}]} \ No newline at end of file diff --git a/en/docstrings/Experimental_docstrings.json b/en/docstrings/Experimental_docstrings.json new file mode 100644 index 00000000..2e72786c --- /dev/null +++ b/en/docstrings/Experimental_docstrings.json @@ -0,0 +1 @@ +{"Base.Experimental.Const":[{"Union{}":" Const(A::Array)\n\nMark an Array as constant/read-only. The invariant guaranteed is that you will not\nmodify an Array (through another reference) within an `@aliasscope` scope.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}],"Base.Experimental.@aliasscope":[{"Tuple{Any}":" @aliasscope expr\n\nAllows the compiler to assume that all `Const`s are not being modified through stores\nwithin this scope, even if the compiler can't prove this to be the case.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}]} \ No newline at end of file diff --git a/en/docstrings/FastMath_docstrings.json b/en/docstrings/FastMath_docstrings.json new file mode 100644 index 00000000..cfbc9b02 --- /dev/null +++ b/en/docstrings/FastMath_docstrings.json @@ -0,0 +1 @@ +{"Base.FastMath.@fastmath":[{"Tuple{Any}":" @fastmath expr\n\nExecute a transformed version of the expression, which calls functions that\nmay violate strict IEEE semantics. This allows the fastest possible operation,\nbut results are undefined -- be careful when doing this, as it may change numerical\nresults.\n\nThis sets the [LLVM Fast-Math flags](http://llvm.org/docs/LangRef.html#fast-math-flags),\nand corresponds to the `-ffast-math` option in clang. See [the notes on performance\nannotations](@ref man-performance-annotations) for more details.\n\n# Examples\n```jldoctest\njulia> @fastmath 1+2\n3\n\njulia> @fastmath(sin(3))\n0.1411200080598672\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Filesystem_docstrings.json b/en/docstrings/Filesystem_docstrings.json new file mode 100644 index 00000000..94feec98 --- /dev/null +++ b/en/docstrings/Filesystem_docstrings.json @@ -0,0 +1 @@ +{"Base.Filesystem.issocket":[{"Tuple{Base.Filesystem.StatStruct}":" issocket(path) -> Bool\n\nReturn `true` if `path` is a socket, `false` otherwise.\n"}],"Base.Filesystem.isblockdev":[{"Tuple{Base.Filesystem.StatStruct}":" isblockdev(path) -> Bool\n\nReturn `true` if `path` is a block device, `false` otherwise.\n"}],"Base.Filesystem.chown":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Integer}}":" chown(path::AbstractString, owner::Integer, group::Integer=-1)\n\nChange the owner and/or group of `path` to `owner` and/or `group`. If the value entered for `owner` or `group`\nis `-1` the corresponding ID will not change. Only integer `owner`s and `group`s are currently supported.\nReturn `path`.\n"}],"Base.Filesystem.ctime":[{"Tuple{Base.Filesystem.StatStruct}":" ctime(file)\n\nEquivalent to `stat(file).ctime`.\n"}],"Base.Filesystem.operm":[{"Tuple{Base.Filesystem.StatStruct}":" operm(file)\n\nLike [`uperm`](@ref) but gets the permissions for people who neither own the file nor are a member of\nthe group owning the file\n"}],"Base.Filesystem.issetuid":[{"Tuple{Base.Filesystem.StatStruct}":" issetuid(path) -> Bool\n\nReturn `true` if `path` has the setuid flag set, `false` otherwise.\n"}],"Base.Filesystem.gperm":[{"Tuple{Base.Filesystem.StatStruct}":" gperm(file)\n\nLike [`uperm`](@ref) but gets the permissions of the group owning the file.\n"}],"Base.Filesystem.splitdrive":[{"Tuple{AbstractString}":" splitdrive(path::AbstractString) -> (AbstractString, AbstractString)\n\nOn Windows, split a path into the drive letter part and the path part. On Unix systems, the\nfirst component is always the empty string.\n"}],"Base.Filesystem.touch":[{"Tuple{AbstractString}":" touch(path::AbstractString)\n\nUpdate the last-modified timestamp on a file to the current time.\n\nIf the file does not exist a new file is created.\n\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> write(\"my_little_file\", 2);\n\njulia> mtime(\"my_little_file\")\n1.5273815391135583e9\n\njulia> touch(\"my_little_file\");\n\njulia> mtime(\"my_little_file\")\n1.527381559163435e9\n```\n\nWe can see the [`mtime`](@ref) has been modified by `touch`.\n"}],"Base.Filesystem.mkpath":[{"Tuple{AbstractString}":" mkpath(path::AbstractString; mode::Unsigned = 0o777)\n\nCreate all directories in the given `path`, with permissions `mode`. `mode` defaults to\n`0o777`, modified by the current file creation mask.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n\njulia> mkpath(\"my/test/dir\")\n\"my/test/dir\"\n\njulia> readdir()\n1-element Array{String,1}:\n \"my\"\n\njulia> cd(\"my\")\n\njulia> readdir()\n1-element Array{String,1}:\n \"test\"\n\njulia> readdir(\"test\")\n1-element Array{String,1}:\n \"dir\"\n```\n"}],"Base.Filesystem.homedir":[{"Tuple{}":" homedir() -> String\n\nReturn the current user's home directory.\n\n!!! note\n `homedir` determines the home directory via `libuv`'s `uv_os_homedir`. For details\n (for example on how to specify the home directory via environment variables), see the\n [`uv_os_homedir` documentation](http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir).\n"}],"Base.Filesystem.filemode":[{"Tuple{Base.Filesystem.StatStruct}":" filemode(file)\n\nEquivalent to `stat(file).mode`.\n"}],"Base.Filesystem.dirname":[{"Tuple{AbstractString}":" dirname(path::AbstractString) -> AbstractString\n\nGet the directory part of a path. Trailing characters ('/' or '\\') in the path are\ncounted as part of the path.\n\n# Examples\n```jldoctest\njulia> dirname(\"/home/myuser\")\n\"/home\"\n\njulia> dirname(\"/home/myuser/\")\n\"/home/myuser\"\n```\n\nSee also: [`basename`](@ref)\n"}],"Base.Filesystem.relpath":[{"Union{Tuple{String}, Tuple{String,String}}":" relpath(path::AbstractString, startpath::AbstractString = \".\") -> AbstractString\n\nReturn a relative filepath to `path` either from the current directory or from an optional\nstart directory. This is a path computation: the filesystem is not accessed to confirm the\nexistence or nature of `path` or `startpath`.\n"}],"Base.Filesystem.uperm":[{"Tuple{Base.Filesystem.StatStruct}":" uperm(file)\n\nGet the permissions of the owner of the file as a bitfield of\n\n| Value | Description |\n|:------|:-------------------|\n| 01 | Execute Permission |\n| 02 | Write Permission |\n| 04 | Read Permission |\n\nFor allowed arguments, see [`stat`](@ref).\n"}],"Base.Filesystem.isabspath":[{"Tuple{AbstractString}":" isabspath(path::AbstractString) -> Bool\n\nDetermine whether a path is absolute (begins at the root directory).\n\n# Examples\n```jldoctest\njulia> isabspath(\"/home\")\ntrue\n\njulia> isabspath(\"home\")\nfalse\n```\n"}],"Base.Filesystem.isdir":[{"Tuple{Base.Filesystem.StatStruct}":" isdir(path) -> Bool\n\nReturn `true` if `path` is a directory, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isdir(homedir())\ntrue\n\njulia> isdir(\"not/a/directory\")\nfalse\n```\n\nSee also: [`isfile`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.realpath":[{"Tuple{AbstractString}":" realpath(path::AbstractString) -> String\n\nCanonicalize a path by expanding symbolic links and removing \".\" and \"..\" entries.\nOn case-insensitive case-preserving filesystems (typically Mac and Windows), the\nfilesystem's stored case for the path is returned.\n\n(This function throws an exception if `path` does not exist in the filesystem.)\n"}],"Base.Filesystem.filesize":[{"Tuple{Base.Filesystem.StatStruct}":" filesize(path...)\n\nEquivalent to `stat(file).size`.\n"}],"Base.Filesystem.issticky":[{"Tuple{Base.Filesystem.StatStruct}":" issticky(path) -> Bool\n\nReturn `true` if `path` has the sticky bit set, `false` otherwise.\n"}],"Base.Filesystem.isdirpath":[{"Tuple{String}":" isdirpath(path::AbstractString) -> Bool\n\nDetermine whether a path refers to a directory (for example, ends with a path separator).\n\n# Examples\n```jldoctest\njulia> isdirpath(\"/home\")\nfalse\n\njulia> isdirpath(\"/home/\")\ntrue\n```\n"}],"Base.Filesystem.isfile":[{"Tuple{Base.Filesystem.StatStruct}":" isfile(path) -> Bool\n\nReturn `true` if `path` is a regular file, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isfile(homedir())\nfalse\n\njulia> f = open(\"test_file.txt\", \"w\");\n\njulia> isfile(f)\ntrue\n\njulia> close(f); rm(\"test_file.txt\")\n```\n\nSee also: [`isdir`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.symlink":[{"Tuple{AbstractString,AbstractString}":" symlink(target::AbstractString, link::AbstractString)\n\nCreates a symbolic link to `target` with the name `link`.\n\n!!! note\n This function raises an error under operating systems that do not support\n soft symbolic links, such as Windows XP.\n"}],"Base.Filesystem.splitext":[{"Tuple{String}":" splitext(path::AbstractString) -> (AbstractString, AbstractString)\n\nIf the last component of a path contains a dot, split the path into everything before the\ndot and everything including and after the dot. Otherwise, return a tuple of the argument\nunmodified and the empty string.\n\n# Examples\n```jldoctest\njulia> splitext(\"/home/myuser/example.jl\")\n(\"/home/myuser/example\", \".jl\")\n\njulia> splitext(\"/home/myuser/example\")\n(\"/home/myuser/example\", \"\")\n```\n"}],"Base.Filesystem.lstat":[{"Tuple":" lstat(file)\n\nLike [`stat`](@ref), but for symbolic links gets the info for the link\nitself rather than the file it refers to.\nThis function must be called on a file path rather than a file object or a file\ndescriptor.\n"}],"Base.Filesystem.ispath":[{"Tuple{Base.Filesystem.StatStruct}":" ispath(path) -> Bool\n\nReturn `true` if a valid filesystem entity exists at `path`,\notherwise returns `false`.\nThis is the generalization of [`isfile`](@ref), [`isdir`](@ref) etc.\n"}],"Base.Filesystem.joinpath":[{"Union{}":" joinpath(parts::AbstractString...) -> String\n\nJoin path components into a full path. If some argument is an absolute path or\n(on Windows) has a drive specification that doesn't match the drive computed for\nthe join of the preceding paths, then prior components are dropped.\n\nNote on Windows since there is a current directory for each drive, `joinpath(\"c:\", \"foo\")`\nrepresents a path relative to the current directory on drive \"c:\" so this is equal to \"c:foo\",\nnot \"c:\\foo\". Furthermore, `joinpath` treats this as a non-absolute path and ignores the drive\nletter casing, hence `joinpath(\"C:\\A\",\"c:b\") = \"C:\\A\\b\"`.\n\n# Examples\n```jldoctest\njulia> joinpath(\"/home/myuser\", \"example.jl\")\n\"/home/myuser/example.jl\"\n```\n"}],"Base.Filesystem.tempdir":[{"Tuple{}":" tempdir()\n\nGets the path of the temporary directory. On Windows, `tempdir()` uses the first environment\nvariable found in the ordered list `TMP`, `TEMP`, `USERPROFILE`. On all other operating\nsystems, `tempdir()` uses the first environment variable found in the ordered list `TMPDIR`,\n`TMP`, `TEMP`, and `TEMPDIR`. If none of these are found, the path `\"/tmp\"` is used.\n"}],"Base.Filesystem.readdir":[{"Tuple{AbstractString}":" readdir(dir::AbstractString=pwd();\n join::Bool = false,\n sort::Bool = true,\n ) -> Vector{String}\n\nReturn the names in the directory `dir` or the current working directory if not\ngiven. When `join` is false, `readdir` returns just the names in the directory\nas is; when `join` is true, it returns `joinpath(dir, name)` for each `name` so\nthat the returned strings are full paths. If you want to get absolute paths\nback, call `readdir` with an absolute directory path and `join` set to true.\n\nBy default, `readdir` sorts the list of names it returns. If you want to skip\nsorting the names and get them in the order that the file system lists them,\nyou can use `readir(dir, sort=false)` to opt out of sorting.\n\n!!! compat \"Julia 1.4\"\n The `join` and `sort` keyword arguments require at least Julia 1.4.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/dev/julia\")\n\njulia> readdir()\n30-element Array{String,1}:\n \".appveyor.yml\"\n \".git\"\n \".gitattributes\"\n ⋮\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> readdir(join=true)\n30-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/.appveyor.yml\"\n \"/home/JuliaUser/dev/julia/.git\"\n \"/home/JuliaUser/dev/julia/.gitattributes\"\n ⋮\n \"/home/JuliaUser/dev/julia/ui\"\n \"/home/JuliaUser/dev/julia/usr\"\n \"/home/JuliaUser/dev/julia/usr-staging\"\n\njulia> readdir(\"base\")\n145-element Array{String,1}:\n \".gitignore\"\n \"Base.jl\"\n \"Enums.jl\"\n ⋮\n \"version_git.sh\"\n \"views.jl\"\n \"weakkeydict.jl\"\n\njulia> readdir(\"base\", join=true)\n145-element Array{String,1}:\n \"base/.gitignore\"\n \"base/Base.jl\"\n \"base/Enums.jl\"\n ⋮\n \"base/version_git.sh\"\n \"base/views.jl\"\n \"base/weakkeydict.jl\"```\n\njulia> readdir(abspath(\"base\"), join=true)\n145-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/base/.gitignore\"\n \"/home/JuliaUser/dev/julia/base/Base.jl\"\n \"/home/JuliaUser/dev/julia/base/Enums.jl\"\n ⋮\n \"/home/JuliaUser/dev/julia/base/version_git.sh\"\n \"/home/JuliaUser/dev/julia/base/views.jl\"\n \"/home/JuliaUser/dev/julia/base/weakkeydict.jl\"\n```\n"}],"Base.Filesystem.walkdir":[{"Tuple{Any}":" walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)\n\nReturn an iterator that walks the directory tree of a directory.\nThe iterator returns a tuple containing `(rootpath, dirs, files)`.\nThe directory tree can be traversed top-down or bottom-up.\nIf `walkdir` encounters a [`SystemError`](@ref)\nit will rethrow the error by default.\nA custom error handling function can be provided through `onerror` keyword argument.\n`onerror` is called with a `SystemError` as argument.\n\n# Examples\n```julia\nfor (root, dirs, files) in walkdir(\".\")\n println(\"Directories in $root\")\n for dir in dirs\n println(joinpath(root, dir)) # path to directories\n end\n println(\"Files in $root\")\n for file in files\n println(joinpath(root, file)) # path to files\n end\nend\n```\n\n```julia-repl\njulia> mkpath(\"my/test/dir\");\n\njulia> itr = walkdir(\"my\");\n\njulia> (root, dirs, files) = first(itr)\n(\"my\", [\"test\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test\", [\"dir\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test/dir\", String[], String[])\n```\n"}],"Base.Filesystem.chmod":[{"Tuple{AbstractString,Integer}":" chmod(path::AbstractString, mode::Integer; recursive::Bool=false)\n\nChange the permissions mode of `path` to `mode`. Only integer `mode`s (e.g. `0o777`) are\ncurrently supported. If `recursive=true` and the path is a directory all permissions in\nthat directory will be recursively changed.\nReturn `path`.\n"}],"Base.Filesystem.basename":[{"Tuple{AbstractString}":" basename(path::AbstractString) -> AbstractString\n\nGet the file name part of a path.\n\n# Examples\n```jldoctest\njulia> basename(\"/home/myuser/example.jl\")\n\"example.jl\"\n```\n\nSee also: [`dirname`](@ref)\n"}],"Base.Filesystem.mktemp":[{"Tuple{Any}":" mktemp(parent=tempdir(); cleanup=true) -> (path, io)\n\nReturn `(path, io)`, where `path` is the path of a new temporary file in `parent`\nand `io` is an open file object for this path. The `cleanup` option controls whether\nthe temporary file is automatically deleted when the process exits.\n"},{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktemp(f::Function, parent=tempdir())\n\nApply the function `f` to the result of [`mktemp(parent)`](@ref) and remove the\ntemporary file upon completion.\n"}],"Base.Filesystem.expanduser":[{"Tuple{AbstractString}":" expanduser(path::AbstractString) -> AbstractString\n\nOn Unix systems, replace a tilde character at the start of a path with the current user's home directory.\n"}],"Base.Filesystem.splitpath":[{"Tuple{AbstractString}":" splitpath(path::AbstractString) -> Vector{String}\n\nSplit a file path into all its path components. This is the opposite of\n`joinpath`. Returns an array of substrings, one for each directory or file in\nthe path, including the root directory if present.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> splitpath(\"/home/myuser/example.jl\")\n4-element Array{String,1}:\n \"/\"\n \"home\"\n \"myuser\"\n \"example.jl\"\n```\n"}],"Base.Filesystem.readlink":[{"Tuple{AbstractString}":" readlink(path::AbstractString) -> AbstractString\n\nReturn the target location a symbolic link `path` points to.\n"}],"Base.Filesystem.cd":[{"Tuple{AbstractString}":" cd(dir::AbstractString=homedir())\n\nSet the current working directory.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n\njulia> cd()\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"},{"Tuple{Function}":" cd(f::Function, dir::AbstractString=homedir())\n\nTemporarily change the current working directory to `dir`, apply function `f` and\nfinally return to the original directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(readdir, \"/home/JuliaUser/Projects/julia\")\n34-element Array{String,1}:\n \".circleci\"\n \".freebsdci.sh\"\n \".git\"\n \".gitattributes\"\n \".github\"\n ⋮\n \"test\"\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"}],"Base.Filesystem.mkdir":[{"Tuple{AbstractString}":" mkdir(path::AbstractString; mode::Unsigned = 0o777)\n\nMake a new directory with name `path` and permissions `mode`. `mode` defaults to `0o777`,\nmodified by the current file creation mask. This function never creates more than one\ndirectory. If the directory already exists, or some intermediate directories do not exist,\nthis function throws an error. See [`mkpath`](@ref) for a function which creates all\nrequired intermediate directories.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n```\n"}],"Base.Filesystem.issetgid":[{"Tuple{Base.Filesystem.StatStruct}":" issetgid(path) -> Bool\n\nReturn `true` if `path` has the setgid flag set, `false` otherwise.\n"}],"Base.Filesystem.mktempdir":[{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktempdir(f::Function, parent=tempdir(); prefix=\"jl_\")\n\nApply the function `f` to the result of [`mktempdir(parent; prefix)`](@ref) and remove the\ntemporary directory all of its contents upon completion.\n"},{"Union{Tuple{}, Tuple{AbstractString}}":" mktempdir(parent=tempdir(); prefix=\"jl_\", cleanup=true) -> path\n\nCreate a temporary directory in the `parent` directory with a name\nconstructed from the given prefix and a random suffix, and return its path.\nAdditionally, any trailing `X` characters may be replaced with random characters.\nIf `parent` does not exist, throw an error. The `cleanup` option controls whether\nthe temporary directory is automatically deleted when the process exits.\n"}],"Base.Filesystem.abspath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" abspath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to an absolute path by joining them together and adding the\ncurrent directory if necessary. Equivalent to `abspath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" abspath(path::AbstractString) -> String\n\nConvert a path to an absolute path by adding the current directory if necessary.\nAlso normalizes the path as in [`normpath`](@ref).\n"}],"Base.Filesystem.mv":[{"Tuple{AbstractString,AbstractString}":" mv(src::AbstractString, dst::AbstractString; force::Bool=false)\n\nMove the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\nReturn `dst`.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> write(\"hello.txt\", \"world\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\n\"goodbye.txt\"\n\njulia> \"hello.txt\" in readdir()\nfalse\n\njulia> readline(\"goodbye.txt\")\n\"world\"\n\njulia> write(\"hello.txt\", \"world2\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\nERROR: ArgumentError: 'goodbye.txt' exists. `force=true` is required to remove 'goodbye.txt' before moving.\nStacktrace:\n [1] #checkfor_mv_cp_cptree#10(::Bool, ::Function, ::String, ::String, ::String) at ./file.jl:293\n[...]\n\njulia> mv(\"hello.txt\", \"goodbye.txt\", force=true)\n\"goodbye.txt\"\n\njulia> rm(\"goodbye.txt\");\n\n```\n"}],"Base.Filesystem.mtime":[{"Tuple{Base.Filesystem.StatStruct}":" mtime(file)\n\nEquivalent to `stat(file).mtime`.\n"}],"Base.Filesystem.isfifo":[{"Tuple{Base.Filesystem.StatStruct}":" isfifo(path) -> Bool\n\nReturn `true` if `path` is a FIFO, `false` otherwise.\n"}],"Base.Filesystem.rm":[{"Tuple{AbstractString}":" rm(path::AbstractString; force::Bool=false, recursive::Bool=false)\n\nDelete the file, link, or empty directory at the given path. If `force=true` is passed, a\nnon-existing path is not treated as error. If `recursive=true` is passed and the path is a\ndirectory, then all contents are removed recursively.\n\n# Examples\n```jldoctest\njulia> mkpath(\"my/test/dir\");\n\njulia> rm(\"my\", recursive=true)\n\njulia> rm(\"this_file_does_not_exist\", force=true)\n\njulia> rm(\"this_file_does_not_exist\")\nERROR: IOError: unlink: no such file or directory (ENOENT)\nStacktrace:\n[...]\n```\n"}],"Base.Filesystem.ischardev":[{"Tuple{Base.Filesystem.StatStruct}":" ischardev(path) -> Bool\n\nReturn `true` if `path` is a character device, `false` otherwise.\n"}],"Base.Filesystem.splitdir":[{"Tuple{String}":" splitdir(path::AbstractString) -> (AbstractString, AbstractString)\n\nSplit a path into a tuple of the directory name and file name.\n\n# Examples\n```jldoctest\njulia> splitdir(\"/home/myuser\")\n(\"/home\", \"myuser\")\n```\n"}],"Base.Filesystem.cp":[{"Tuple{AbstractString,AbstractString}":" cp(src::AbstractString, dst::AbstractString; force::Bool=false, follow_symlinks::Bool=false)\n\nCopy the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\n\nIf `follow_symlinks=false`, and `src` is a symbolic link, `dst` will be created as a\nsymbolic link. If `follow_symlinks=true` and `src` is a symbolic link, `dst` will be a copy\nof the file or directory `src` refers to.\nReturn `dst`.\n"}],"Base.Filesystem.pwd":[{"Tuple{}":" pwd() -> AbstractString\n\nGet the current working directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n```\n"}],"Base.Filesystem.normpath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" normpath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to a normalized path by joining them together and removing\n\".\" and \"..\" entries. Equivalent to `normpath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" normpath(path::AbstractString) -> String\n\nNormalize a path, removing \".\" and \"..\" entries.\n\n# Examples\n```jldoctest\njulia> normpath(\"/home/myuser/../example.jl\")\n\"/home/example.jl\"\n```\n"}],"Base.Filesystem.contractuser":[{"Tuple{AbstractString}":" contractuser(path::AbstractString) -> AbstractString\n\nOn Unix systems, if the path starts with `homedir()`, replace it with a tilde character.\n"}],"Base.Filesystem.tempname":[{"Tuple{}":" tempname(parent=tempdir(); cleanup=true) -> String\n\nGenerate a temporary file path. This function only returns a path; no file is\ncreated. The path is likely to be unique, but this cannot be guaranteed due to\nthe very remote posibility of two simultaneous calls to `tempname` generating\nthe same file name. The name is guaranteed to differ from all files already\nexisting at the time of the call to `tempname`.\n\nWhen called with no arguments, the temporary name will be an absolute path to a\ntemporary name in the system temporary directory as given by `tempdir()`. If a\n`parent` directory argument is given, the temporary path will be in that\ndirectory instead.\n\nThe `cleanup` option controls whether the process attempts to delete the\nreturned path automatically when the process exits. Note that the `tempname`\nfunction does not create any file or directory at the returned location, so\nthere is nothing to cleanup unless you create a file or directory there. If\nyou do and `clean` is `true` it will be deleted upon process termination.\n\n!!! compat \"Julia 1.4\"\n The `parent` and `cleanup` arguments were added in 1.4. Prior to Julia 1.4\n the path `tempname` would never be cleaned up at process termination.\n\n!!! warning\n\n This can lead to security holes if another process obtains the same\n file name and creates the file before you are able to. Open the file with\n `JL_O_EXCL` if this is a concern. Using [`mktemp()`](@ref) is also\n recommended instead.\n"}],"Base.Filesystem.islink":[{"Tuple{Base.Filesystem.StatStruct}":" islink(path) -> Bool\n\nReturn `true` if `path` is a symbolic link, `false` otherwise.\n"}],"Base.Filesystem.ismount":[{"Tuple":" ismount(path) -> Bool\n\nReturn `true` if `path` is a mount point, `false` otherwise.\n"}]} \ No newline at end of file diff --git a/en/docstrings/GC_docstrings.json b/en/docstrings/GC_docstrings.json new file mode 100644 index 00000000..642c2f36 --- /dev/null +++ b/en/docstrings/GC_docstrings.json @@ -0,0 +1 @@ +{"Base.GC.enable":[{"Tuple{Bool}":" GC.enable(on::Bool)\n\nControl whether garbage collection is enabled using a boolean argument (`true` for enabled,\n`false` for disabled). Return previous GC state.\n\n!!! warning\n Disabling garbage collection should be used only with caution, as it can cause memory\n use to grow without bound.\n"}],"Base.GC.safepoint":[{"Tuple{}":" GC.safepoint()\n\nInserts a point in the program where garbage collection may run.\nThis can be useful in rare cases in multi-threaded programs where some threads\nare allocating memory (and hence may need to run GC) but other threads are doing\nonly simple operations (no allocation, task switches, or I/O).\nCalling this function periodically in non-allocating threads allows garbage\ncollection to run.\n\n!!! compat \"Julia 1.4\"\n This function is available as of Julia 1.4.\n"}],"Base.GC.gc":[{"Union{Tuple{}, Tuple{Bool}}":" GC.gc([full=true])\n\nPerform garbage collection. The argument `full` determines the kind of\ncollection: A full collection (default) sweeps all objects, which makes the\nnext GC scan much slower, while an incremental collection may only sweep\nso-called young objects.\n\n!!! warning\n Excessive use will likely lead to poor performance.\n"}],"Base.GC.@preserve":[{"Tuple":" GC.@preserve x1 x2 ... xn expr\n\nTemporarily protect the given objects from being garbage collected, even if they would\notherwise be unreferenced.\n\nThe last argument is the expression during which the object(s) will be preserved.\nThe previous arguments are the objects to preserve.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Grisu_docstrings.json b/en/docstrings/Grisu_docstrings.json new file mode 100644 index 00000000..801ab27a --- /dev/null +++ b/en/docstrings/Grisu_docstrings.json @@ -0,0 +1 @@ +{"Base.Grisu.grisu":[{"Union{Tuple{AbstractFloat,Any,Any}, Tuple{AbstractFloat,Any,Any,Any}, Tuple{AbstractFloat,Any,Any,Any,Any}}":" (len, point, neg) = Grisu.grisu(v::AbstractFloat, mode, requested_digits, [buffer], [bignums])\n\nConvert the number `v` to decimal using the Grisu algorithm.\n\n`mode` can be one of:\n - `Grisu.SHORTEST`: convert to the shortest decimal representation which can be \"round-tripped\" back to `v`.\n - `Grisu.FIXED`: round to `requested_digits` digits.\n - `Grisu.PRECISION`: round to `requested_digits` significant digits.\n\nThe characters are written as bytes to `buffer`, with a terminating NUL byte, and `bignums` are used internally as part of the correction step. You can call `Grisu.getbuf()` to obtain a suitable task-local buffer.\n\nThe returned tuple contains:\n\n - `len`: the number of digits written to `buffer` (excluding NUL)\n - `point`: the location of the radix point relative to the start of the array (e.g. if\n `point == 3`, then the radix point should be inserted between the 3rd and 4th\n digit). Note that this can be negative (for very small values), or greater than `len`\n (for very large values).\n - `neg`: the signbit of `v` (see [`signbit`](@ref)).\n"}],"Base.Grisu.print_shortest":[{"Tuple{IO,AbstractFloat,Bool}":" print_shortest(io::IO, x)\n\nPrint the shortest possible representation, with the minimum number of consecutive non-zero\ndigits, of number `x`, ensuring that it would parse to the exact same number.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Iterators_docstrings.json b/en/docstrings/Iterators_docstrings.json new file mode 100644 index 00000000..e95efd23 --- /dev/null +++ b/en/docstrings/Iterators_docstrings.json @@ -0,0 +1 @@ +{"Base.Iterators.dropwhile":[{"Tuple{Any,Any}":" dropwhile(pred, iter)\n\nAn iterator that drops element from `iter` as long as predicate `pred` is true,\nafterwards, returns every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.dropwhile(<(3),s))\n3-element Array{Int64,1}:\n 3\n 4\n 5\n```\n"}],"Base.Iterators.partition":[{"Tuple{Any,Integer}":" partition(collection, n)\n\nIterate over a collection `n` elements at a time.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.partition([1,2,3,4,5], 2))\n3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:\n [1, 2]\n [3, 4]\n [5]\n```\n"}],"Base.Iterators.only":[{"Tuple{Any}":" only(x)\n\nReturns the one and only element of collection `x`, and throws an `ArgumentError` if the\ncollection has zero or multiple elements.\n\nSee also: [`first`](@ref), [`last`](@ref).\n\n!!! compat \"Julia 1.4\"\n This method requires at least Julia 1.4.\n"}],"Base.Iterators.product":[{"Tuple":" product(iters...)\n\nReturn an iterator over the product of several iterators. Each generated element is\na tuple whose `i`th element comes from the `i`th argument iterator. The first iterator\nchanges the fastest.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.product(1:2, 3:5))\n2×3 Array{Tuple{Int64,Int64},2}:\n (1, 3) (1, 4) (1, 5)\n (2, 3) (2, 4) (2, 5)\n```\n"}],"Base.Iterators.enumerate":[{"Tuple{Any}":" enumerate(iter)\n\nAn iterator that yields `(i, x)` where `i` is a counter starting at 1,\nand `x` is the `i`th value from the given iterator. It's useful when\nyou need not only the values `x` over which you are iterating, but\nalso the number of iterations so far. Note that `i` may not be valid\nfor indexing `iter`; it's also possible that `x != iter[i]`, if `iter`\nhas indices that do not start at 1. See the `pairs(IndexLinear(),\niter)` method if you want to ensure that `i` is an index.\n\n# Examples\n```jldoctest\njulia> a = [\"a\", \"b\", \"c\"];\n\njulia> for (index, value) in enumerate(a)\n println(\"$index $value\")\n end\n1 a\n2 b\n3 c\n```\n"}],"Base.Iterators.countfrom":[{"Tuple{Number,Number}":" countfrom(start=1, step=1)\n\nAn iterator that counts forever, starting at `start` and incrementing by `step`.\n\n# Examples\n```jldoctest\njulia> for v in Iterators.countfrom(5, 2)\n v > 10 && break\n println(v)\n end\n5\n7\n9\n```\n"}],"Base.Iterators.take":[{"Tuple{Any,Integer}":" take(iter, n)\n\nAn iterator that generates at most the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.take(a,3))\n3-element Array{Int64,1}:\n 1\n 3\n 5\n```\n"}],"Base.Iterators.takewhile":[{"Tuple{Any,Any}":" takewhile(pred, iter)\n\nAn iterator that generates element from `iter` as long as predicate `pred` is true,\nafterwards, drops every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.takewhile(<(3),s))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.Iterators.accumulate":[{"Tuple{Any,Any}":" Iterators.accumulate(f, itr)\n\nGiven a 2-argument function `f` and an iterator `itr`, return a new\niterator that successively applies `f` to the previous value and the\nnext element of `itr`.\n\nThis is effectively a lazy version of [`Base.accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> f = Iterators.accumulate(+, [1,2,3,4])\nBase.Iterators.Accumulate{typeof(+),Array{Int64,1}}(+, [1, 2, 3, 4])\n\njulia> foreach(println, f)\n1\n3\n6\n10\n```\n"}],"Base.Iterators.cycle":[{"Tuple{Any}":" cycle(iter)\n\nAn iterator that cycles through `iter` forever.\nIf `iter` is empty, so is `cycle(iter)`.\n\n# Examples\n```jldoctest\njulia> for (i, v) in enumerate(Iterators.cycle(\"hello\"))\n print(v)\n i > 10 && break\n end\nhellohelloh\n```\n"}],"Base.Iterators.rest":[{"Tuple{Any,Any}":" rest(iter, state)\n\nAn iterator that yields the same elements as `iter`, but starting at the given `state`.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.rest([1,2,3,4], 2))\n3-element Array{Int64,1}:\n 2\n 3\n 4\n```\n"}],"Base.Iterators.zip":[{"Tuple":" zip(iters...)\n\nRun multiple iterators at the same time, until any of them is exhausted. The value type of\nthe `zip` iterator is a tuple of values of its subiterators.\n\n!!! note\n `zip` orders the calls to its subiterators in such a way that stateful iterators will\n not advance when another iterator finishes in the current iteration.\n\n# Examples\n```jldoctest\njulia> a = 1:5\n1:5\n\njulia> b = [\"e\",\"d\",\"b\",\"c\",\"a\"]\n5-element Array{String,1}:\n \"e\"\n \"d\"\n \"b\"\n \"c\"\n \"a\"\n\njulia> c = zip(a,b)\nBase.Iterators.Zip{Tuple{UnitRange{Int64},Array{String,1}}}((1:5, [\"e\", \"d\", \"b\", \"c\", \"a\"]))\n\njulia> length(c)\n5\n\njulia> first(c)\n(1, \"e\")\n```\n"}],"Base.Iterators.repeated":[{"Tuple{Any,Integer}":" repeated(x[, n::Int])\n\nAn iterator that generates the value `x` forever. If `n` is specified, generates `x` that\nmany times (equivalent to `take(repeated(x), n)`).\n\n# Examples\n```jldoctest\njulia> a = Iterators.repeated([1 2], 4);\n\njulia> collect(a)\n4-element Array{Array{Int64,2},1}:\n [1 2]\n [1 2]\n [1 2]\n [1 2]\n```\n"}],"Base.Iterators.peel":[{"Tuple{Any}":" peel(iter)\n\nReturns the first element and an iterator over the remaining elements.\n\n# Examples\n```jldoctest\njulia> (a, rest) = Iterators.peel(\"abc\");\n\njulia> a\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(rest)\n2-element Array{Char,1}:\n 'b'\n 'c'\n```\n"}],"Base.Iterators.Stateful":[{"Union{}":" Stateful(itr)\n\nThere are several different ways to think about this iterator wrapper:\n\n1. It provides a mutable wrapper around an iterator and\n its iteration state.\n2. It turns an iterator-like abstraction into a `Channel`-like\n abstraction.\n3. It's an iterator that mutates to become its own rest iterator\n whenever an item is produced.\n\n`Stateful` provides the regular iterator interface. Like other mutable iterators\n(e.g. [`Channel`](@ref)), if iteration is stopped early (e.g. by a [`break`](@ref) in a [`for`](@ref) loop),\niteration can be resumed from the same spot by continuing to iterate over the\nsame iterator object (in contrast, an immutable iterator would restart from the\nbeginning).\n\n# Examples\n```jldoctest\njulia> a = Iterators.Stateful(\"abcdef\");\n\njulia> isempty(a)\nfalse\n\njulia> popfirst!(a)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(Iterators.take(a, 3))\n3-element Array{Char,1}:\n 'b'\n 'c'\n 'd'\n\njulia> collect(a)\n2-element Array{Char,1}:\n 'e'\n 'f'\n```\n\n```jldoctest\njulia> a = Iterators.Stateful([1,1,1,2,3,4]);\n\njulia> for x in a; x == 1 || break; end\n\njulia> Base.peek(a)\n3\n\njulia> sum(a) # Sum the remaining elements\n7\n```\n"}],"Base.Iterators.drop":[{"Tuple{Any,Integer}":" drop(iter, n)\n\nAn iterator that generates all but the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.drop(a,4))\n2-element Array{Int64,1}:\n 9\n 11\n```\n"}],"Base.Iterators.reverse":[{"Tuple{Any}":" Iterators.reverse(itr)\n\nGiven an iterator `itr`, then `reverse(itr)` is an iterator over the\nsame collection but in the reverse order.\n\nThis iterator is \"lazy\" in that it does not make a copy of the collection in\norder to reverse it; see [`Base.reverse`](@ref) for an eager implementation.\n\nNot all iterator types `T` support reverse-order iteration. If `T`\ndoesn't, then iterating over `Iterators.reverse(itr::T)` will throw a [`MethodError`](@ref)\nbecause of the missing [`iterate`](@ref) methods for `Iterators.Reverse{T}`.\n(To implement these methods, the original iterator\n`itr::T` can be obtained from `r = Iterators.reverse(itr)` by `r.itr`.)\n\n# Examples\n```jldoctest\njulia> foreach(println, Iterators.reverse(1:5))\n5\n4\n3\n2\n1\n```\n"}],"Base.Iterators.flatten":[{"Tuple{Any}":" flatten(iter)\n\nGiven an iterator that yields iterators, return an iterator that yields the\nelements of those iterators.\nPut differently, the elements of the argument iterator are concatenated.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.flatten((1:2, 8:9)))\n4-element Array{Int64,1}:\n 1\n 2\n 8\n 9\n```\n"}],"Base.Iterators.Pairs":[{"Union{}":" Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}\n\nTransforms an indexable container into an Dictionary-view of the same data.\nModifying the key-space of the underlying data may invalidate this object.\n"}],"Base.Iterators.filter":[{"Tuple{Any,Any}":" Iterators.filter(flt, itr)\n\nGiven a predicate function `flt` and an iterable object `itr`, return an\niterable object which upon iteration yields the elements `x` of `itr` that\nsatisfy `flt(x)`. The order of the original iterator is preserved.\n\nThis function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time\nand use ``Θ(1)`` additional space, and `flt` will not be called by an\ninvocation of `filter`. Calls to `flt` will be made when iterating over the\nreturned iterable object. These calls are not cached and repeated calls will be\nmade when reiterating.\n\nSee [`Base.filter`](@ref) for an eager implementation of filtering for arrays.\n\n# Examples\n```jldoctest\njulia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])\nBase.Iterators.Filter{typeof(isodd),Array{Int64,1}}(isodd, [1, 2, 3, 4, 5])\n\njulia> foreach(println, f)\n1\n3\n5\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Libc_docstrings.json b/en/docstrings/Libc_docstrings.json new file mode 100644 index 00000000..11baabff --- /dev/null +++ b/en/docstrings/Libc_docstrings.json @@ -0,0 +1 @@ +{"Base.Libc.getpid":[{"Tuple{}":" getpid() -> Int32\n\nGet Julia's process ID.\n"}],"Base.Libc.time":[{"Tuple{}":" time()\n\nGet the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.\n"},{"Tuple{Base.Libc.TmStruct}":" time(t::TmStruct)\n\nConverts a `TmStruct` struct to a number of seconds since the epoch.\n"}],"Base.Libc.calloc":[{"Tuple{Integer,Integer}":" calloc(num::Integer, size::Integer) -> Ptr{Cvoid}\n\nCall `calloc` from the C standard library.\n"}],"Base.Libc.malloc":[{"Tuple{Integer}":" malloc(size::Integer) -> Ptr{Cvoid}\n\nCall `malloc` from the C standard library.\n"}],"Base.Libc.systemsleep":[{"Union{}":" systemsleep(s::Real)\n\nSuspends execution for `s` seconds.\nThis function does not yield to Julia's scheduler and therefore blocks\nthe Julia thread that it is running on for the duration of the sleep time.\n\nSee also: [`sleep`](@ref)\n"}],"Base.Libc.FormatMessage":[{"Union{}":" FormatMessage(n=GetLastError())\n\nConvert a Win32 system call error code to a descriptive string [only available on Windows].\n"}],"Base.Libc.realloc":[{"Tuple{Ptr,Integer}":" realloc(addr::Ptr, size::Integer) -> Ptr{Cvoid}\n\nCall `realloc` from the C standard library.\n\nSee warning in the documentation for [`free`](@ref) regarding only using this on memory originally\nobtained from [`malloc`](@ref).\n"}],"Base.Libc.rand":[{"Tuple{}":" rand([T::Type])\n\nInterface to the C `rand()` function. If `T` is provided, generate a value of type `T`\nby composing two calls to `rand()`. `T` can be `UInt32` or `Float64`.\n"}],"Base.Libc.gethostname":[{"Tuple{}":" gethostname() -> AbstractString\n\nGet the local machine's host name.\n"}],"Base.Libc.free":[{"Tuple{Ptr}":" free(addr::Ptr)\n\nCall `free` from the C standard library. Only use this on memory obtained from [`malloc`](@ref), not\non pointers retrieved from other C libraries. [`Ptr`](@ref) objects obtained from C libraries should\nbe freed by the free functions defined in that library, to avoid assertion failures if\nmultiple `libc` libraries exist on the system.\n"}],"Base.Libc.GetLastError":[{"Union{}":" GetLastError()\n\nCall the Win32 `GetLastError` function [only available on Windows].\n"}],"Base.Libc.strptime":[{"Tuple{AbstractString}":" strptime([format], timestr)\n\nParse a formatted time string into a `TmStruct` giving the seconds, minute, hour, date, etc.\nSupported formats are the same as those in the standard C library. On some platforms,\ntimezones will not be parsed correctly. If the result of this function will be passed to\n`time` to convert it to seconds since the epoch, the `isdst` field should be filled in\nmanually. Setting it to `-1` will tell the C library to use the current system settings to\ndetermine the timezone.\n"}],"Base.Libc.strerror":[{"Tuple{Integer}":" strerror(n=errno())\n\nConvert a system call error code to a descriptive string\n"}],"Base.Libc.srand":[{"Union{Tuple{}, Tuple{Any}}":" srand([seed])\n\nInterface to the C `srand(seed)` function.\n"}],"Base.Libc.TmStruct":[{"Union{}":" TmStruct([seconds])\n\nConvert a number of seconds since the epoch to broken-down format, with fields `sec`, `min`,\n`hour`, `mday`, `month`, `year`, `wday`, `yday`, and `isdst`.\n"}],"Base.Libc.errno":[{"Tuple{}":" errno([code])\n\nGet the value of the C library's `errno`. If an argument is specified, it is used to set the\nvalue of `errno`.\n\nThe value of `errno` is only valid immediately after a `ccall` to a C library routine that\nsets it. Specifically, you cannot call `errno` at the next prompt in a REPL, because lots of\ncode is executed between prompts.\n"}],"Base.Libc.strftime":[{"Tuple{Any}":" strftime([format], time)\n\nConvert time, given as a number of seconds since the epoch or a `TmStruct`, to a formatted\nstring using the given format. Supported formats are the same as those in the standard C\nlibrary.\n"}],"Base.Libc.flush_cstdio":[{"Tuple{}":" flush_cstdio()\n\nFlushes the C `stdout` and `stderr` streams (which may have been written to by external C code).\n"}],"Base.Libc.RawFD":[{"Union{}":" RawFD\n\nPrimitive type which wraps the native OS file descriptor.\n`RawFD`s can be passed to methods like [`stat`](@ref) to\ndiscover information about the underlying file, and can\nalso be used to open streams, with the `RawFD` describing\nthe OS file backing the stream.\n"}]} \ No newline at end of file diff --git a/en/docstrings/MPFR_docstrings.json b/en/docstrings/MPFR_docstrings.json new file mode 100644 index 00000000..e7e6de64 --- /dev/null +++ b/en/docstrings/MPFR_docstrings.json @@ -0,0 +1 @@ +{"Base.MPFR.unsafe_cast":[{"Tuple{Any,BigFloat,RoundingMode}":" MPFR.unsafe_cast(T, x::BigFloat, r::RoundingMode)\n\nConvert `x` to integer type `T`, rounding the direction of `r`. If the value is not\nrepresentable by T, an arbitrary value will be returned.\n"}],"Base.MPFR.MPFRRoundingMode":[{"Union{}":" MPFR.MPFRRoundingMode\n\nMatches the `mpfr_rnd_t` enum provided by MPFR, see\nhttps://www.mpfr.org/mpfr-current/mpfr.html#Rounding-Modes\n\nThis is for internal use, and ensures that `ROUNDING_MODE[]` is type-stable.\n"}],"Base.MPFR.setprecision":[{"Tuple{Type{BigFloat},Integer}":" setprecision([T=BigFloat,] precision::Int)\n\nSet the precision (in bits) to be used for `T` arithmetic.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},Integer}} where T":" setprecision(f::Function, [T=BigFloat,] precision::Integer)\n\nChange the `T` arithmetic precision (in bits) for the duration of `f`.\nIt is logically equivalent to:\n\n old = precision(BigFloat)\n setprecision(BigFloat, precision)\n f()\n setprecision(BigFloat, old)\n\nOften used as `setprecision(T, precision) do ... end`\n\nNote: `nextfloat()`, `prevfloat()` do not use the precision mentioned by\n`setprecision`\n"}],"Base.MPFR.BigFloat":[{"Union{}":" BigFloat <: AbstractFloat\n\nArbitrary precision floating point number type.\n"},{"Tuple{Any,RoundingMode}":" BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])\n\nCreate an arbitrary precision floating point number from `x`, with precision\n`precision`. The `rounding` argument specifies the direction in which the result should be\nrounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.\n\n`BigFloat(x::Real)` is the same as `convert(BigFloat,x)`, except if `x` itself is already\n`BigFloat`, in which case it will return a value with the precision set to the current\nglobal precision; `convert` will always return `x`.\n\n`BigFloat(x::AbstractString)` is identical to [`parse`](@ref). This is provided for\nconvenience since decimal literals are converted to `Float64` when parsed, so\n`BigFloat(2.1)` may not yield what you expect.\n\n!!! compat \"Julia 1.1\"\n `precision` as a keyword argument requires at least Julia 1.1.\n In Julia 1.0 `precision` is the second positional argument (`BigFloat(x, precision)`).\n\n# Examples\n```jldoctest\njulia> BigFloat(2.1) # 2.1 here is a Float64\n2.100000000000000088817841970012523233890533447265625\n\njulia> BigFloat(\"2.1\") # the closest BigFloat to 2.1\n2.099999999999999999999999999999999999999999999999999999999999999999999999999986\n\njulia> BigFloat(\"2.1\", RoundUp)\n2.100000000000000000000000000000000000000000000000000000000000000000000000000021\n\njulia> BigFloat(\"2.1\", RoundUp, precision=128)\n2.100000000000000000000000000000000000007\n```\n\n# See also\n- [`@big_str`](@ref)\n- [`rounding`](@ref) and [`setrounding`](@ref)\n- [`precision`](@ref) and [`setprecision`](@ref)\n"}]} \ No newline at end of file diff --git a/en/docstrings/MathConstants_docstrings.json b/en/docstrings/MathConstants_docstrings.json new file mode 100644 index 00000000..f935bdb4 --- /dev/null +++ b/en/docstrings/MathConstants_docstrings.json @@ -0,0 +1 @@ +{"Base.MathConstants.eulergamma":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.catalan":[{"Union{}":" catalan\n\nCatalan's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.catalan\ncatalan = 0.9159655941772...\n```\n"}],"Base.MathConstants.golden":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.ℯ":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}],"Base.MathConstants.pi":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.π":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.γ":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.φ":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.e":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Math_docstrings.json b/en/docstrings/Math_docstrings.json new file mode 100644 index 00000000..2a98f595 --- /dev/null +++ b/en/docstrings/Math_docstrings.json @@ -0,0 +1 @@ +{"Base.Math.sec":[{"Tuple{Number}":" sec(x)\n\nCompute the secant of `x`, where `x` is in radians.\n"}],"Base.Math.sincos":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" sincos(x)\n\nSimultaneously compute the sine and cosine of `x`, where the `x` is in radians.\n"}],"Base.Math.cosd":[{"Tuple{Any}":" cosd(x)\nCompute cosine of `x`, where `x` is in degrees. "}],"Base.Math.exponent":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" exponent(x) -> Int\n\nGet the exponent of a normalized floating-point number.\n"}],"Base.Math.sinpi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" sinpi(x)\n\nCompute ``\\sin(\\pi x)`` more accurately than `sin(pi*x)`, especially for large `x`.\n"}],"Base.Math.hypot":[{"Tuple{Number,Number}":" hypot(x, y)\n\nCompute the hypotenuse ``\\sqrt{|x|^2+|y|^2}`` avoiding overflow and underflow.\n\nThis code is an implementation of the algorithm described in:\nAn Improved Algorithm for `hypot(a,b)`\nby Carlos F. Borges\nThe article is available online at ArXiv at the link\n https://arxiv.org/abs/1904.09481\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> a = Int64(10)^10;\n\njulia> hypot(a, a)\n1.4142135623730951e10\n\njulia> √(a^2 + a^2) # a^2 overflows\nERROR: DomainError with -2.914184810805068e18:\nsqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).\nStacktrace:\n[...]\n\njulia> hypot(3, 4im)\n5.0\n```\n"},{"Tuple{Vararg{Number,N} where N}":" hypot(x...)\n\nCompute the hypotenuse ``\\sqrt{\\sum |x_i|^2}`` avoiding overflow and underflow.\n\n# Examples\n```jldoctest\njulia> hypot(-5.7)\n5.7\n\njulia> hypot(3, 4im, 12.0)\n13.0\n```\n"}],"Base.Math.asech":[{"Tuple{Number}":" asech(x)\nCompute the inverse hyperbolic secant of `x`. "}],"Base.Math.clamp":[{"Union{Tuple{H}, Tuple{L}, Tuple{X}, Tuple{X,L,H}} where H where L where X":" clamp(x, lo, hi)\n\nReturn `x` if `lo <= x <= hi`. If `x > hi`, return `hi`. If `x < lo`, return `lo`. Arguments\nare promoted to a common type.\n\n# Examples\n```jldoctest\njulia> clamp.([pi, 1.0, big(10.)], 2., 9.)\n3-element Array{BigFloat,1}:\n 3.141592653589793238462643383279502884197169399375105820974944592307816406286198\n 2.0\n 9.0\n\njulia> clamp.([11,8,5],10,6) # an example where lo > hi\n3-element Array{Int64,1}:\n 6\n 6\n 10\n```\n"}],"Base.Math.rem2pi":[{"Union{}":" rem2pi(x, r::RoundingMode)\n\nCompute the remainder of `x` after integer division by `2π`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - 2π*round(x/(2π),r)\n\nwithout any intermediate rounding. This internally uses a high precision approximation of\n2π, and so will give a more accurate result than `rem(x,2π,r)`\n\n- if `r == RoundNearest`, then the result is in the interval ``[-π, π]``. This will generally\n be the most accurate result. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero`, then the result is in the interval ``[0, 2π]`` if `x` is positive,.\n or ``[-2π, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, 2π]``.\n See also [`RoundDown`](@ref).\n- if `r == RoundUp`, then the result is in the interval ``[-2π, 0]``.\n See also [`RoundUp`](@ref).\n\n# Examples\n```jldoctest\njulia> rem2pi(7pi/4, RoundNearest)\n-0.7853981633974485\n\njulia> rem2pi(7pi/4, RoundDown)\n5.497787143782138\n```\n"}],"Base.Math.acscd":[{"Tuple{Any}":" acscd(x)\n\nCompute the inverse cosecant of `x`, where the output is in degrees. "}],"Base.Math.fromfraction":[{"Tuple{Int128}":" fromfraction(f::Int128)\n\nCompute a tuple of values `(z1,z2)` such that\n ``z1 + z2 == f / 2^128``\nand the significand of `z1` has 27 trailing zeros.\n"}],"Base.Math.cos_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" cos_kernel(y)\n\nCompute the cosine on the interval y∈[-π/4; π/4].\n"}],"Base.Math.deg2rad":[{"Tuple{AbstractFloat}":" deg2rad(x)\n\nConvert `x` from degrees to radians.\n\n# Examples\n```jldoctest\njulia> deg2rad(90)\n1.5707963267948966\n```\n"}],"Base.Math.sind":[{"Tuple{Any}":" sind(x)\nCompute sine of `x`, where `x` is in degrees. "}],"Base.Math.sincosd":[{"Tuple{Real}":" sincosd(x)\n\nSimultaneously compute the sine and cosine of `x`, where `x` is in degrees.\n\n!!! compat \"Julia 1.3\"\n This function requires at least Julia 1.3.\n"}],"Base.Math.rem_pio2_kernel":[{"Tuple{Float64}":" rem_pio2_kernel(x)\n\nReturn the remainder of `x` modulo π/2 as a double-double pair, along with a `k`\nsuch that ``k \\mod 3 == K \\mod 3`` where ``K*π/2 = x - rem``. Note, that it is\nonly meant for use when ``|x|>=π/4``, and that ``π/2`` is always subtracted or\nadded for ``π/4<|x|<=π/2`` instead of simply returning `x`.\n"}],"Base.Math.ldexp":[{"Union{Tuple{T}, Tuple{T,Integer}} where T<:Union{Float16, Float32, Float64}":" ldexp(x, n)\n\nCompute ``x \\times 2^n``.\n\n# Examples\n```jldoctest\njulia> ldexp(5., 2)\n20.0\n```\n"}],"Base.Math.asecd":[{"Tuple{Any}":" asecd(x)\n\nCompute the inverse secant of `x`, where the output is in degrees. "}],"Base.Math.evalpoly":[{"Tuple{Any,Tuple}":" evalpoly(x, p)\n\nEvaluate the polynomial ``\\sum_k p[k] x^{k-1}`` for the coefficients `p[1]`, `p[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `x`.\nLoops are unrolled at compile time if the number of coefficients is statically known, i.e.\nwhen `p` is a `Tuple`.\nThis function generates efficient code using Horner's method if `x` is real, or using\na Goertzel-like [^DK62] algorithm if `x` is complex.\n\n[^DK62]: Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.\n\n!!! compat \"Julia 1.4\"\n This function requires Julia 1.4 or later.\n\n# Example\n```jldoctest\njulia> evalpoly(2, (1, 2, 3))\n17\n```\n"}],"Base.Math.@evalpoly":[{"Tuple{Any,Vararg{Any,N} where N}":" @evalpoly(z, c...)\n\nEvaluate the polynomial ``\\sum_k c[k] z^{k-1}`` for the coefficients `c[1]`, `c[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `z`. This macro expands\nto efficient inline code that uses either Horner's method or, for complex `z`, a more\nefficient Goertzel-like algorithm.\n\n# Examples\n```jldoctest\njulia> @evalpoly(3, 1, 0, 1)\n10\n\njulia> @evalpoly(2, 1, 0, 1)\n5\n\njulia> @evalpoly(2, 1, 1, 1)\n7\n```\n"}],"Base.Math.rad2deg":[{"Tuple{AbstractFloat}":" rad2deg(x)\n\nConvert `x` from radians to degrees.\n\n# Examples\n```jldoctest\njulia> rad2deg(pi)\n180.0\n```\n"}],"Base.Math.coth":[{"Tuple{Number}":" coth(x)\n\nCompute the hyperbolic cotangent of `x`.\n"}],"Base.Math.sin_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" sin_kernel(yhi, ylo)\n\nComputes the sine on the interval [-π/4; π/4].\n"}],"Base.Math.tand":[{"Tuple{Any}":" tand(x)\nCompute tangent of `x`, where `x` is in degrees. "}],"Base.Math.significand":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" significand(x)\n\nExtract the `significand(s)` (a.k.a. mantissa), in binary representation, of a\nfloating-point number. If `x` is a non-zero finite number, then the result will be\na number of the same type on the interval ``[1,2)``. Otherwise `x` is returned.\n\n# Examples\n```jldoctest\njulia> significand(15.2)/15.2\n0.125\n\njulia> significand(15.2)*8\n15.2\n```\n"}],"Base.Math.clamp!":[{"Tuple{AbstractArray,Any,Any}":" clamp!(array::AbstractArray, lo, hi)\n\nRestrict values in `array` to the specified range, in-place.\nSee also [`clamp`](@ref).\n"}],"Base.Math._frexp_exp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" exp_x, k2 = _frexp_exp(x)\n\nCalculate exp(x) as exp_x*2^k2 and return exp_x = exp(x-kr*log(w))*2^ks where kr\nis a type dependant range reduction constant, ks scales exp_x towards the largest\nfinite number, and k2 is used to absorb the remaning scale to allow for exp(x)\nto be outside the normal floating point range.\n\nThis function is intended for use in our hyperbolic and exponential functions.\n"}],"Base.Math.csc":[{"Tuple{Number}":" csc(x)\n\nCompute the cosecant of `x`, where `x` is in radians.\n"}],"Base.Math.acsch":[{"Tuple{Number}":" acsch(x)\nCompute the inverse hyperbolic cosecant of `x`. "}],"Base.Math.cot":[{"Tuple{Number}":" cot(x)\n\nCompute the cotangent of `x`, where `x` is in radians.\n"}],"Base.Math.poshighword":[{"Tuple{Float64}":" poshighword(x)\n\nReturn positive part of the high word of `x` as a `UInt32`.\n"}],"Base.Math.cosc":[{"Tuple{Number}":" cosc(x)\n\nCompute ``\\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2)`` if ``x \\neq 0``, and ``0`` if\n``x = 0``. This is the derivative of `sinc(x)`.\n"}],"Base.Math.sinc":[{"Tuple{Number}":" sinc(x)\n\nCompute ``\\sin(\\pi x) / (\\pi x)`` if ``x \\neq 0``, and ``1`` if ``x = 0``.\n"}],"Base.Math.asec":[{"Tuple{Number}":" asec(x)\nCompute the inverse secant of `x`, where the output is in radians. "}],"Base.Math.atand":[{"Tuple{Any}":" atand(y)\n atand(y,x)\n\nCompute the inverse tangent of `y` or `y/x`, respectively, where the output is in degrees.\n"}],"Base.Math._ldexp_exp":[{"Union{Tuple{T}, Tuple{T,Any}} where T<:Union{Float32, Float64}":" _ldexp_exp(x, l2)\nReturns exp(x) * 2^l2. The function is intended for large arguments, x, where\nx >= ln(prevfloat(typemax(x)) and care is needed to avoid overflow.\n\nThe present implementation is narrowly tailored for our hyperbolic and\nexponential functions. We assume l2 is small (0 or -1), and the caller\nhas filtered out very large x, for which overflow would be inevitable.\n"}],"Base.Math.mod2pi":[{"Tuple{Any}":" mod2pi(x)\n\nModulus after division by `2π`, returning in the range ``[0,2π)``.\n\nThis function computes a floating point representation of the modulus after division by\nnumerically exact `2π`, and is therefore not exactly the same as `mod(x,2π)`, which would\ncompute the modulus of `x` relative to division by the floating-point number `2π`.\n\n!!! note\n Depending on the format of the input value, the closest representable value to 2π may\n be less than 2π. For example, the expression `mod2pi(2π)` will not return `0`, because\n the intermediate value of `2*π` is a `Float64` and `2*Float64(π) < 2*big(π)`. See\n [`rem2pi`](@ref) for more refined control of this behavior.\n\n# Examples\n```jldoctest\njulia> mod2pi(9*pi/4)\n0.7853981633974481\n```\n"}],"Base.Math.acsc":[{"Tuple{Number}":" acsc(x)\nCompute the inverse cosecant of `x`, where the output is in radians. "}],"Base.Math.secd":[{"Tuple{Number}":" secd(x)\n\nCompute the secant of `x`, where `x` is in degrees.\n"}],"Base.Math.highword":[{"Tuple{Float64}":" highword(x)\n\nReturn the high word of `x` as a `UInt32`.\n"}],"Base.Math.cotd":[{"Tuple{Number}":" cotd(x)\n\nCompute the cotangent of `x`, where `x` is in degrees.\n"}],"Base.Math.csch":[{"Tuple{Number}":" csch(x)\n\nCompute the hyperbolic cosecant of `x`.\n"}],"Base.Math.acotd":[{"Tuple{Any}":" acotd(x)\n\nCompute the inverse cotangent of `x`, where the output is in degrees. "}],"Base.Math.asind":[{"Tuple{Any}":" asind(x)\n\nCompute the inverse sine of `x`, where the output is in degrees. "}],"Base.Math.modf":[{"Tuple{Any}":" modf(x)\n\nReturn a tuple `(fpart, ipart)` of the fractional and integral parts of a number. Both parts\nhave the same sign as the argument.\n\n# Examples\n```jldoctest\njulia> modf(3.5)\n(0.5, 3.0)\n\njulia> modf(-3.5)\n(-0.5, -3.0)\n```\n"}],"Base.Math.frexp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" frexp(val)\n\nReturn `(x,exp)` such that `x` has a magnitude in the interval ``[1/2, 1)`` or 0,\nand `val` is equal to ``x \\times 2^{exp}``.\n"}],"Base.Math._approx_cbrt":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" _approx_cbrt(x)\n\nApproximate `cbrt` to 5 bits precision\n\n cbrt(2^e * (1+m)) ≈ 2^(e÷3) * (1 + (e%3+m)÷3)\n\nwhere:\n - `e` is integral and >= 0\n - `m` is real and in [0, 1),\n - `÷` is integer division\n - `%` is integer remainder\n\nThe RHS is always >= the LHS and has a maximum relative error of about 1 in 16.\nAdding a bias of -0.03306235651 to the `(e%3+m)÷3` term reduces the error to about 1 in\n32.\n\nWith the IEEE floating point representation, for finite positive normal values, ordinary\ninteger division of the value in bits magically gives almost exactly the RHS of the above\nprovided we first subtract the exponent bias and later add it back. We do the\nsubtraction virtually to keep e >= 0 so that ordinary integer division rounds towards\nminus infinity; this is also efficient. All operations can be done in 32-bit.\n\nThese implementations assume that NaNs, infinities and zeros have already been filtered.\n"}],"Base.Math.acoth":[{"Tuple{Number}":" acoth(x)\nCompute the inverse hyperbolic cotangent of `x`. "}],"Base.Math.sech":[{"Tuple{Number}":" sech(x)\n\nCompute the hyperbolic secant of `x`.\n"}],"Base.Math.cospi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" cospi(x)\n\nCompute ``\\cos(\\pi x)`` more accurately than `cos(pi*x)`, especially for large `x`.\n"}],"Base.Math.cbrt":[{"Tuple{Real}":" cbrt(x::Real)\n\nReturn the cube root of `x`, i.e. ``x^{1/3}``. Negative values are accepted\n(returning the negative real root when ``x < 0``).\n\nThe prefix operator `∛` is equivalent to `cbrt`.\n\n# Examples\n```jldoctest\njulia> cbrt(big(27))\n3.0\n\njulia> cbrt(big(-27))\n-3.0\n```\n"}],"Base.Math.acosd":[{"Tuple{Any}":" acosd(x)\n\nCompute the inverse cosine of `x`, where the output is in degrees. "}],"Base.Math.cscd":[{"Tuple{Number}":" cscd(x)\n\nCompute the cosecant of `x`, where `x` is in degrees.\n"}],"Base.Math.@horner":[{"Tuple{Any,Vararg{Any,N} where N}":" @horner(x, p...)\n\nEvaluate `p[1] + x * (p[2] + x * (....))`, i.e. a polynomial via Horner's rule.\n"}],"Base.Math.acot":[{"Tuple{Number}":" acot(x)\nCompute the inverse cotangent of `x`, where the output is in radians. "}]} \ No newline at end of file diff --git a/en/docstrings/Meta_docstrings.json b/en/docstrings/Meta_docstrings.json new file mode 100644 index 00000000..7b8c55d0 --- /dev/null +++ b/en/docstrings/Meta_docstrings.json @@ -0,0 +1 @@ +{"Base.Meta.isexpr":[{"Tuple{Any,Symbol}":" Meta.isexpr(ex, head[, n])::Bool\n\nCheck if `ex` is an expression with head `head` and `n` arguments.\n\n# Examples\n```jldoctest\njulia> ex = :(f(x))\n:(f(x))\n\njulia> Meta.isexpr(ex, :block)\nfalse\n\njulia> Meta.isexpr(ex, :call)\ntrue\n\njulia> Meta.isexpr(ex, [:block, :call]) # multiple possible heads\ntrue\n\njulia> Meta.isexpr(ex, :call, 1)\nfalse\n\njulia> Meta.isexpr(ex, :call, 2)\ntrue\n```\n"}],"Base.Meta.@dump":[{"Tuple{Any}":" @dump expr\n\nShow every part of the representation of the given expression. Equivalent to\n[`dump(:(expr))`](@ref dump).\n"}],"Base.Meta.@lower":[{"Tuple{Any}":" @lower [m] x\n\nReturn lowered form of the expression `x` in module `m`.\nBy default `m` is the module in which the macro is called.\nSee also [`lower`](@ref).\n"}],"Base.Meta.show_sexpr":[{"Tuple{Any}":" Meta.show_sexpr([io::IO,], ex)\n\nShow expression `ex` as a lisp style S-expression.\n\n# Examples\n```jldoctest\njulia> Meta.show_sexpr(:(f(x, g(y,z))))\n(:call, :f, :x, (:call, :g, :y, :z))\n```\n"}],"Base.Meta.lower":[{"Tuple{Module,Any}":" lower(m, x)\n\nTakes the expression `x` and returns an equivalent expression in lowered form\nfor executing in module `m`.\nSee also [`code_lowered`](@ref).\n"}],"Base.Meta.ParseError":[{"Union{}":" ParseError(msg)\n\nThe expression passed to the [`parse`](@ref) function could not be interpreted as a valid Julia\nexpression.\n"}],"Base.Meta.quot":[{"Tuple{Any}":" Meta.quot(ex)::Expr\n\nQuote expression `ex` to produce an expression with head `quote`. This can for instance be used to represent objects of type `Expr` in the AST.\nSee also the manual section about [QuoteNode](@ref man-quote-node).\n\n# Examples\n```jldoctest\njulia> eval(Meta.quot(:x))\n:x\n\njulia> dump(Meta.quot(:x))\nExpr\n head: Symbol quote\n args: Array{Any}((1,))\n 1: Symbol x\n\njulia> eval(Meta.quot(:(1+2)))\n:(1 + 2)\n```\n"}],"Base.Meta.parse":[{"Tuple{AbstractString}":" parse(str; raise=true, depwarn=true)\n\nParse the expression string greedily, returning a single expression. An error is thrown if\nthere are additional characters after the first expression. If `raise` is `true` (default),\nsyntax errors will raise an error; otherwise, `parse` will return an expression that will\nraise an error upon evaluation. If `depwarn` is `false`, deprecation warnings will be\nsuppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3\")\n:(x = 3)\n\njulia> Meta.parse(\"x = \")\n:($(Expr(:incomplete, \"incomplete: premature end of input\")))\n\njulia> Meta.parse(\"1.0.2\")\nERROR: Base.Meta.ParseError(\"invalid numeric constant \\\"1.0.\\\"\")\nStacktrace:\n[...]\n\njulia> Meta.parse(\"1.0.2\"; raise = false)\n:($(Expr(:error, \"invalid numeric constant \\\"1.0.\\\"\")))\n```\n"},{"Tuple{AbstractString,Integer}":" parse(str, start; greedy=true, raise=true, depwarn=true)\n\nParse the expression string and return an expression (which could later be passed to eval\nfor execution). `start` is the index of the first character to start parsing. If `greedy` is\n`true` (default), `parse` will try to consume as much input as it can; otherwise, it will\nstop as soon as it has parsed a valid expression. Incomplete but otherwise syntactically\nvalid expressions will return `Expr(:incomplete, \"(error message)\")`. If `raise` is `true`\n(default), syntax errors other than incomplete expressions will raise an error. If `raise`\nis `false`, `parse` will return an expression that will raise an error upon evaluation. If\n`depwarn` is `false`, deprecation warnings will be suppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3, y = 5\", 7)\n(:(y = 5), 13)\n\njulia> Meta.parse(\"x = 3, y = 5\", 5)\n(:((3, y) = 5), 13)\n```\n"}],"Base.Meta.partially_inline!":[{"Tuple{Array{Any,1},Array{Any,1},Any,Array{Any,1},Int64,Int64,Symbol}":" partially_inline!(code::Vector{Any}, slot_replacements::Vector{Any},\n type_signature::Type{<:Tuple}, static_param_values::Vector{Any},\n slot_offset::Int, statement_offset::Int,\n boundscheck::Symbol)\n\nReturn `code` after performing an in-place partial inlining pass on the Julia IR stored\nwithin it.\n\nThe kind of inlining transformations performed by this function are those that are generally\npossible given only a runtime type signature for a method invocation and the corresponding\nmethod's lowered IR. Thus, this function is mainly useful when preparing Julia IR to be\nemitted from a `@generated` function.\n\nThe performed transformations are:\n\n- replace slot numbers in the range `1:length(slot_replacements)` with the corresponding items in `slot_replacements`\n- increment other slot numbers by `slot_offset`\n- substitute static parameter placeholders (e.g. `Expr(:static_parameter, 1)`) with the corresponding\nvalues in `static_param_values`\n- increment any statement indices present in the IR (`GotoNode`s, `SSAValue`s, etc.) by `statement_offset`\n(useful when the caller plans to prepend new statements to the IR)\n- turn off boundschecking (if `boundscheck === :off`) or propagate boundschecking (if `boundscheck === :propagate`)\n\nThis function is similar to `Core.Compiler.ssa_substitute!`, but works on pre-type-inference\nIR instead of the optimizer's IR.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Multimedia_docstrings.json b/en/docstrings/Multimedia_docstrings.json new file mode 100644 index 00000000..915485ac --- /dev/null +++ b/en/docstrings/Multimedia_docstrings.json @@ -0,0 +1 @@ +{"Base.Multimedia.showable":[{"Union{Tuple{mime}, Tuple{MIME{mime},Any}} where mime":" showable(mime, x)\n\nReturns a boolean value indicating whether or not the object `x` can be written\nas the given `mime` type.\n\n(By default, this is determined automatically by the existence of the\ncorresponding [`show`](@ref) method for `typeof(x)`. Some types provide custom `showable`\nmethods; for example, if the available MIME formats depend on the *value* of `x`.)\n\n# Examples\n```jldoctest\njulia> showable(MIME(\"text/plain\"), rand(5))\ntrue\n\njulia> showable(\"img/png\", rand(5))\nfalse\n```\n"}],"Base.Multimedia.redisplay":[{"Tuple{Any}":" redisplay(x)\n redisplay(d::AbstractDisplay, x)\n redisplay(mime, x)\n redisplay(d::AbstractDisplay, mime, x)\n\nBy default, the `redisplay` functions simply call [`display`](@ref).\nHowever, some display backends may override `redisplay` to modify an existing\ndisplay of `x` (if any).\nUsing `redisplay` is also a hint to the backend that `x` may be redisplayed\nseveral times, and the backend may choose to defer the display until\n(for example) the next interactive prompt.\n"}],"Base.Multimedia.istextmime":[{"Tuple{MIME}":" istextmime(m::MIME)\n\nDetermine whether a MIME type is text data. MIME types are assumed to be binary\ndata except for a set of types known to be text data (possibly Unicode).\n\n# Examples\n```jldoctest\njulia> istextmime(MIME(\"text/plain\"))\ntrue\n\njulia> istextmime(MIME(\"img/png\"))\nfalse\n```\n"}],"Base.Multimedia.MIME":[{"Union{}":" MIME\n\nA type representing a standard internet data format. \"MIME\" stands for\n\"Multipurpose Internet Mail Extensions\", since the standard was originally\nused to describe multimedia attachments to email messages.\n\nA `MIME` object can be passed as the second argument to [`show`](@ref) to\nrequest output in that format.\n\n# Examples\n```jldoctest\njulia> show(stdout, MIME(\"text/plain\"), \"hi\")\n\"hi\"\n```\n"}],"Base.Multimedia.displayable":[{"Tuple{AbstractDisplay,AbstractString}":" displayable(mime) -> Bool\n displayable(d::AbstractDisplay, mime) -> Bool\n\nReturns a boolean value indicating whether the given `mime` type (string) is displayable by\nany of the displays in the current display stack, or specifically by the display `d` in the\nsecond variant.\n"}],"Base.Multimedia.display":[{"Tuple{Any}":" display(x)\n display(d::AbstractDisplay, x)\n display(mime, x)\n display(d::AbstractDisplay, mime, x)\n\nAbstractDisplay `x` using the topmost applicable display in the display stack, typically using the\nrichest supported multimedia output for `x`, with plain-text [`stdout`](@ref) output as a fallback.\nThe `display(d, x)` variant attempts to display `x` on the given display `d` only, throwing\na [`MethodError`](@ref) if `d` cannot display objects of this type.\n\nIn general, you cannot assume that `display` output goes to `stdout` (unlike [`print(x)`](@ref) or\n[`show(x)`](@ref)). For example, `display(x)` may open up a separate window with an image.\n`display(x)` means \"show `x` in the best way you can for the current output device(s).\"\nIf you want REPL-like text output that is guaranteed to go to `stdout`, use\n[`show(stdout, \"text/plain\", x)`](@ref) instead.\n\nThere are also two variants with a `mime` argument (a MIME type string, such as\n`\"image/png\"`), which attempt to display `x` using the requested MIME type *only*, throwing\na `MethodError` if this type is not supported by either the display(s) or by `x`. With these\nvariants, one can also supply the \"raw\" data in the requested MIME type by passing\n`x::AbstractString` (for MIME types with text-based storage, such as text/html or\napplication/postscript) or `x::Vector{UInt8}` (for binary MIME types).\n"}],"Base.Multimedia.pushdisplay":[{"Tuple{AbstractDisplay}":" pushdisplay(d::AbstractDisplay)\n\nPushes a new display `d` on top of the global display-backend stack. Calling `display(x)` or\n`display(mime, x)` will display `x` on the topmost compatible backend in the stack (i.e.,\nthe topmost backend that does not throw a [`MethodError`](@ref)).\n"}],"Base.Multimedia.@MIME_str":[{"Tuple{Any}":" @MIME_str\n\nA convenience macro for writing [`MIME`](@ref) types, typically used when\nadding methods to [`show`](@ref).\nFor example the syntax `show(io::IO, ::MIME\"text/html\", x::MyType) = ...`\ncould be used to define how to write an HTML representation of `MyType`.\n"}],"Base.Multimedia.popdisplay":[{"Tuple{}":" popdisplay()\n popdisplay(d::AbstractDisplay)\n\nPop the topmost backend off of the display-backend stack, or the topmost copy of `d` in the\nsecond variant.\n"}],"Base.Multimedia.TextDisplay":[{"Union{}":" TextDisplay(io::IO)\n\nReturns a `TextDisplay <: AbstractDisplay`, which displays any object as the text/plain MIME type\n(by default), writing the text representation to the given I/O stream. (This is how\nobjects are printed in the Julia REPL.)\n"}],"Base.Multimedia.AbstractDisplay":[{"Union{}":" AbstractDisplay\n\nAbstract supertype for rich display output devices. [`TextDisplay`](@ref) is a subtype\nof this.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Rounding_docstrings.json b/en/docstrings/Rounding_docstrings.json new file mode 100644 index 00000000..6f8bcbef --- /dev/null +++ b/en/docstrings/Rounding_docstrings.json @@ -0,0 +1 @@ +{"Base.Rounding.get_zero_subnormals":[{"Tuple{}":" get_zero_subnormals() -> Bool\n\nReturn `false` if operations on subnormal floating-point values (\"denormals\") obey rules\nfor IEEE arithmetic, and `true` if they might be converted to zeros.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.RoundNearestTiesUp":[{"Union{}":" RoundNearestTiesUp\n\nRounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.RoundUp":[{"Union{}":" RoundUp\n\n[`round`](@ref) using this rounding mode is an alias for [`ceil`](@ref).\n"}],"Base.Rounding.setrounding":[{"Tuple{Type,Any}":" setrounding(T, mode)\n\nSet the rounding mode of floating point type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref),\n[`/`](@ref) and [`sqrt`](@ref)) and type conversion. Other numerical\nfunctions may give incorrect or invalid values when using rounding modes other than the\ndefault [`RoundNearest`](@ref).\n\nNote that this is currently only supported for `T == BigFloat`.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},RoundingMode}} where T":" setrounding(f::Function, T, mode)\n\nChange the rounding mode of floating point type `T` for the duration of `f`. It is logically\nequivalent to:\n\n old = rounding(T)\n setrounding(T, mode)\n f()\n setrounding(T, old)\n\nSee [`RoundingMode`](@ref) for available rounding modes.\n"}],"Base.Rounding.RoundDown":[{"Union{}":" RoundDown\n\n[`round`](@ref) using this rounding mode is an alias for [`floor`](@ref).\n"}],"Base.Rounding.RoundFromZero":[{"Union{}":" RoundFromZero\n\nRounds away from zero.\nThis rounding mode may only be used with `T == BigFloat` inputs to [`round`](@ref).\n\n# Examples\n```jldoctest\njulia> BigFloat(\"1.0000000000000001\", 5, RoundFromZero)\n1.06\n```\n"}],"Base.Rounding.set_zero_subnormals":[{"Tuple{Bool}":" set_zero_subnormals(yes::Bool) -> Bool\n\nIf `yes` is `false`, subsequent floating-point operations follow rules for IEEE arithmetic\non subnormal values (\"denormals\"). Otherwise, floating-point operations are permitted (but\nnot required) to convert subnormal inputs or outputs to zero. Returns `true` unless\n`yes==true` but the hardware does not support zeroing of subnormal numbers.\n\n`set_zero_subnormals(true)` can speed up some computations on some hardware. However, it can\nbreak identities such as `(x-y==0) == (x==y)`.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.rounding":[{"Union{}":" rounding(T)\n\nGet the current floating point rounding mode for type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref), [`/`](@ref)\nand [`sqrt`](@ref)) and type conversion.\n\nSee [`RoundingMode`](@ref) for available modes.\n"}],"Base.Rounding.RoundNearest":[{"Union{}":" RoundNearest\n\nThe default rounding mode. Rounds to the nearest integer, with ties (fractional values of\n0.5) being rounded to the nearest even integer.\n"}],"Base.Rounding.RoundToZero":[{"Union{}":" RoundToZero\n\n[`round`](@ref) using this rounding mode is an alias for [`trunc`](@ref).\n"}],"Base.Rounding.RoundNearestTiesAway":[{"Union{}":" RoundNearestTiesAway\n\nRounds to nearest integer, with ties rounded away from zero (C/C++\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.RoundingMode":[{"Union{}":" RoundingMode\n\nA type used for controlling the rounding mode of floating point operations (via\n[`rounding`](@ref)/[`setrounding`](@ref) functions), or as\noptional arguments for rounding to the nearest integer (via the [`round`](@ref)\nfunction).\n\nCurrently supported rounding modes are:\n\n- [`RoundNearest`](@ref) (default)\n- [`RoundNearestTiesAway`](@ref)\n- [`RoundNearestTiesUp`](@ref)\n- [`RoundToZero`](@ref)\n- [`RoundFromZero`](@ref) ([`BigFloat`](@ref) only)\n- [`RoundUp`](@ref)\n- [`RoundDown`](@ref)\n"}]} \ No newline at end of file diff --git a/en/docstrings/SimdLoop_docstrings.json b/en/docstrings/SimdLoop_docstrings.json new file mode 100644 index 00000000..f4c76059 --- /dev/null +++ b/en/docstrings/SimdLoop_docstrings.json @@ -0,0 +1 @@ +{"Base.SimdLoop.@simd":[{"Tuple{Any}":" @simd\n\nAnnotate a `for` loop to allow the compiler to take extra liberties to allow loop re-ordering\n\n!!! warning\n This feature is experimental and could change or disappear in future versions of Julia.\n Incorrect use of the `@simd` macro may cause unexpected results.\n\nThe object iterated over in a `@simd for` loop should be a one-dimensional range.\nBy using `@simd`, you are asserting several properties of the loop:\n\n* It is safe to execute iterations in arbitrary or overlapping order, with special consideration for reduction variables.\n* Floating-point operations on reduction variables can be reordered, possibly causing different results than without `@simd`.\n\nIn many cases, Julia is able to automatically vectorize inner for loops without the use of `@simd`.\nUsing `@simd` gives the compiler a little extra leeway to make it possible in more situations. In\neither case, your inner loop should have the following properties to allow vectorization:\n\n* The loop must be an innermost loop\n* The loop body must be straight-line code. Therefore, [`@inbounds`](@ref) is\n currently needed for all array accesses. The compiler can sometimes turn\n short `&&`, `||`, and `?:` expressions into straight-line code if it is safe\n to evaluate all operands unconditionally. Consider using the [`ifelse`](@ref)\n function instead of `?:` in the loop if it is safe to do so.\n* Accesses must have a stride pattern and cannot be \"gathers\" (random-index\n reads) or \"scatters\" (random-index writes).\n* The stride should be unit stride.\n\n!!! note\n The `@simd` does not assert by default that the loop is completely free of loop-carried\n memory dependencies, which is an assumption that can easily be violated in generic code.\n If you are writing non-generic code, you can use `@simd ivdep for ... end` to also assert that:\n\n* There exists no loop-carried memory dependencies\n* No iteration ever waits on a previous iteration to make forward progress.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Sys_docstrings.json b/en/docstrings/Sys_docstrings.json new file mode 100644 index 00000000..b600f389 --- /dev/null +++ b/en/docstrings/Sys_docstrings.json @@ -0,0 +1 @@ +{"Base.Sys.islinux":[{"Tuple{Symbol}":" Sys.islinux([os])\n\nPredicate for testing if the OS is a derivative of Linux.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isnetbsd":[{"Tuple{Symbol}":" Sys.isnetbsd([os])\n\nPredicate for testing if the OS is a derivative of NetBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on NetBSD but also on\n other BSD-based systems. `Sys.isnetbsd()` refers only to NetBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.isjsvm":[{"Tuple{Symbol}":" Sys.isjsvm([os])\n\nPredicate for testing if Julia is running in a JavaScript VM (JSVM),\nincluding e.g. a WebAssembly JavaScript embedding in a web browser.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.Sys.STDLIB":[{"Union{}":" Sys.STDLIB\n\nA string containing the full path to the directory containing the `stdlib` packages.\n"}],"Base.Sys.set_process_title":[{"Tuple{AbstractString}":" Sys.set_process_title(title::AbstractString)\n\nSet the process title. No-op on some operating systems.\n"}],"Base.Sys.isopenbsd":[{"Tuple{Symbol}":" Sys.isopenbsd([os])\n\nPredicate for testing if the OS is a derivative of OpenBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on OpenBSD but also on\n other BSD-based systems. `Sys.isopenbsd()` refers only to OpenBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.free_memory":[{"Tuple{}":" Sys.free_memory()\n\nGet the total free memory in RAM in kilobytes.\n"}],"Base.Sys.windows_version":[{"Union{}":" Sys.windows_version()\n\nReturn the version number for the Windows NT Kernel as a `VersionNumber`,\ni.e. `v\"major.minor.build\"`, or `v\"0.0.0\"` if this is not running on Windows.\n"}],"Base.Sys.BINDIR":[{"Union{}":" Sys.BINDIR\n\nA string containing the full path to the directory containing the `julia` executable.\n"}],"Base.Sys.WORD_SIZE":[{"Union{}":" Sys.WORD_SIZE\n\nStandard word size on the current machine, in bits.\n"}],"Base.Sys.isapple":[{"Tuple{Symbol}":" Sys.isapple([os])\n\nPredicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.maxrss":[{"Tuple{}":" Sys.maxrss()\n\nGet the maximum resident set size utilized in bytes.\nSee also:\n - man page of getrusage(2) on Linux and FreeBSD.\n - windows api `GetProcessMemoryInfo`\n"}],"Base.Sys.MACHINE":[{"Union{}":" Sys.MACHINE\n\nA string containing the build triple.\n"}],"Base.Sys.CPU_THREADS":[{"Union{}":" Sys.CPU_THREADS\n\nThe number of logical CPU cores available in the system, i.e. the number of threads\nthat the CPU can run concurrently. Note that this is not necessarily the number of\nCPU cores, for example, in the presence of\n[hyper-threading](https://en.wikipedia.org/wiki/Hyper-threading).\n\nSee Hwloc.jl or CpuId.jl for extended information, including number of physical cores.\n"}],"Base.Sys.isexecutable":[{"Tuple{String}":" Sys.isexecutable(path::String)\n\nReturn `true` if the given `path` has executable permissions.\n"}],"Base.Sys.isbsd":[{"Tuple{Symbol}":" Sys.isbsd([os])\n\nPredicate for testing if the OS is a derivative of BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n The Darwin kernel descends from BSD, which means that `Sys.isbsd()` is\n `true` on macOS systems. To exclude macOS from a predicate, use\n `Sys.isbsd() && !Sys.isapple()`.\n"}],"Base.Sys.KERNEL":[{"Union{}":" Sys.KERNEL\n\nA symbol representing the name of the operating system, as returned by `uname` of the build configuration.\n"}],"Base.Sys.which":[{"Tuple{String}":" Sys.which(program_name::String)\n\nGiven a program name, search the current `PATH` to find the first binary with\nthe proper executable permissions that can be run and return an absolute path\nto it, or return `nothing` if no such program is available. If a path with\na directory in it is passed in for `program_name`, tests that exact path\nfor executable permissions only (with `.exe` and `.com` extensions added on\nWindows platforms); no searching of `PATH` is performed.\n"}],"Base.Sys.loadavg":[{"Tuple{}":" Sys.loadavg()\n\nGet the load average. See: https://en.wikipedia.org/wiki/Load_(computing).\n"}],"Base.Sys.isunix":[{"Tuple{Symbol}":" Sys.isunix([os])\n\nPredicate for testing if the OS provides a Unix-like interface.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isfreebsd":[{"Tuple{Symbol}":" Sys.isfreebsd([os])\n\nPredicate for testing if the OS is a derivative of FreeBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on FreeBSD but also on\n other BSD-based systems. `Sys.isfreebsd()` refers only to FreeBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.get_process_title":[{"Tuple{}":" Sys.get_process_title()\n\nGet the process title. On some systems, will always return an empty string.\n"}],"Base.Sys.total_memory":[{"Tuple{}":" Sys.total_memory()\n\nGet the total memory in RAM (including that which is currently used) in kilobytes.\n"}],"Base.Sys.ARCH":[{"Union{}":" Sys.ARCH\n\nA symbol representing the architecture of the build configuration.\n"}],"Base.Sys.uptime":[{"Tuple{}":" Sys.uptime()\n\nGets the current system uptime in seconds.\n"}],"Base.Sys.isdragonfly":[{"Tuple{Symbol}":" Sys.isdragonfly([os])\n\nPredicate for testing if the OS is a derivative of DragonFly BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on DragonFly but also on\n other BSD-based systems. `Sys.isdragonfly()` refers only to DragonFly.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.iswindows":[{"Tuple{Symbol}":" Sys.iswindows([os])\n\nPredicate for testing if the OS is a derivative of Microsoft Windows NT.\nSee documentation in [Handling Operating System Variation](@ref).\n"}]} \ No newline at end of file diff --git a/en/docstrings/Threads_docstrings.json b/en/docstrings/Threads_docstrings.json new file mode 100644 index 00000000..f2c21a82 --- /dev/null +++ b/en/docstrings/Threads_docstrings.json @@ -0,0 +1 @@ +{"Base.Threads.atomic_max!":[{"Union{}":" Threads.atomic_max!(x::Atomic{T}, val::T) where T\n\nAtomically store the maximum of `x` and `val` in `x`\n\nPerforms `x[] = max(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw max` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_max!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.resize_nthreads!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}}":" resize_nthreads!(A, copyvalue=A[1])\n\nResize the array `A` to length [`nthreads()`](@ref). Any new\nelements that are allocated are initialized to `deepcopy(copyvalue)`,\nwhere `copyvalue` defaults to `A[1]`.\n\nThis is typically used to allocate per-thread variables, and\nshould be called in `__init__` if `A` is a global constant.\n"}],"Base.Threads.atomic_fence":[{"Tuple{}":" Threads.atomic_fence()\n\nInsert a sequential-consistency memory fence\n\nInserts a memory fence with sequentially-consistent ordering\nsemantics. There are algorithms where this is needed, i.e. where an\nacquire/release ordering is insufficient.\n\nThis is likely a very expensive operation. Given that all other atomic\noperations in Julia already have acquire/release semantics, explicit\nfences should not be necessary in most cases.\n\nFor further details, see LLVM's `fence` instruction.\n"}],"Base.Threads.Atomic":[{"Union{}":" Threads.Atomic{T}\n\nHolds a reference to an object of type `T`, ensuring that it is only\naccessed atomically, i.e. in a thread-safe manner.\n\nOnly certain \"simple\" types can be used atomically, namely the\nprimitive boolean, integer, and float-point types. These are `Bool`,\n`Int8`...`Int128`, `UInt8`...`UInt128`, and `Float16`...`Float64`.\n\nNew atomic objects can be created from a non-atomic values; if none is\nspecified, the atomic object is initialized with zero.\n\nAtomic objects can be accessed using the `[]` notation:\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> x[] = 1\n1\n\njulia> x[]\n1\n```\n\nAtomic operations use an `atomic_` prefix, such as [`atomic_add!`](@ref),\n[`atomic_xchg!`](@ref), etc.\n"}],"Base.Threads.atomic_nand!":[{"Union{}":" Threads.atomic_nand!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-nand (not-and) `x` with `val`\n\nPerforms `x[] = ~(x[] & val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw nand` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_nand!(x, 2)\n3\n\njulia> x[]\n-3\n```\n"}],"Base.Threads.atomic_min!":[{"Union{}":" Threads.atomic_min!(x::Atomic{T}, val::T) where T\n\nAtomically store the minimum of `x` and `val` in `x`\n\nPerforms `x[] = min(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw min` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(7)\nBase.Threads.Atomic{Int64}(7)\n\njulia> Threads.atomic_min!(x, 5)\n7\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@spawn":[{"Tuple{Any}":" Threads.@spawn expr\n\nCreate and run a [`Task`](@ref) on any available thread. To wait for the task to\nfinish, call [`wait`](@ref) on the result of this macro, or call [`fetch`](@ref)\nto wait and then obtain its return value.\n\nValues can be interpolated into `@spawn` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! note\n This feature is currently considered experimental.\n\n!!! compat \"Julia 1.3\"\n This macro is available as of Julia 1.3.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.Threads.Condition":[{"Union{}":" Threads.Condition([lock])\n\nA thread-safe version of [`Base.Condition`](@ref).\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"}],"Base.Threads.atomic_sub!":[{"Union{}":" Threads.atomic_sub!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically subtract `val` from `x`\n\nPerforms `x[] -= val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw sub` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_sub!(x, 2)\n3\n\njulia> x[]\n1\n```\n"}],"Base.Threads.threadid":[{"Tuple{}":" Threads.threadid()\n\nGet the ID number of the current thread of execution. The master thread has ID `1`.\n"}],"Base.Threads.atomic_cas!":[{"Union{}":" Threads.atomic_cas!(x::Atomic{T}, cmp::T, newval::T) where T\n\nAtomically compare-and-set `x`\n\nAtomically compares the value in `x` with `cmp`. If equal, write\n`newval` to `x`. Otherwise, leaves `x` unmodified. Returns the old\nvalue in `x`. By comparing the returned value to `cmp` (via `===`) one\nknows whether `x` was modified and now holds the new value `newval`.\n\nFor further details, see LLVM's `cmpxchg` instruction.\n\nThis function can be used to implement transactional semantics. Before\nthe transaction, one records the value in `x`. After the transaction,\nthe new value is stored only if `x` has not been modified in the mean\ntime.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 4, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 3, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(2)\n```\n"}],"Base.Threads.atomic_xor!":[{"Union{}":" Threads.atomic_xor!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-xor (exclusive-or) `x` with `val`\n\nPerforms `x[] $= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw xor` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_xor!(x, 7)\n5\n\njulia> x[]\n2\n```\n"}],"Base.Threads.atomic_and!":[{"Union{}":" Threads.atomic_and!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-and `x` with `val`\n\nPerforms `x[] &= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw and` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_and!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}],"Base.Threads.nthreads":[{"Tuple{}":" Threads.nthreads()\n\nGet the number of threads available to the Julia process. This is the inclusive upper bound\non `threadid()`.\n"}],"Base.Threads.atomic_add!":[{"Union{}":" Threads.atomic_add!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically add `val` to `x`\n\nPerforms `x[] += val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw add` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_add!(x, 2)\n3\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@threads":[{"Tuple":" Threads.@threads\n\nA macro to parallelize a for-loop to run with multiple threads. This spawns `nthreads()`\nnumber of threads, splits the iteration space amongst them, and iterates in parallel.\nA barrier is placed at the end of the loop which waits for all the threads to finish\nexecution, and the loop returns.\n"}],"Base.Threads.atomic_or!":[{"Union{}":" Threads.atomic_or!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-or `x` with `val`\n\nPerforms `x[] |= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw or` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_or!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.SpinLock":[{"Union{}":" SpinLock()\n\nCreate a non-reentrant, test-and-test-and-set spin lock.\nRecursive use will result in a deadlock.\nThis kind of lock should only be used around code that takes little time\nto execute and does not block (e.g. perform I/O).\nIn general, [`ReentrantLock`](@ref) should be used instead.\n\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n\nTest-and-test-and-set spin locks are quickest up to about 30ish\ncontending threads. If you have more contention than that, different\nsynchronization approaches should be considered.\n"}],"Base.Threads.atomic_xchg!":[{"Union{}":" Threads.atomic_xchg!(x::Atomic{T}, newval::T) where T\n\nAtomically exchange the value in `x`\n\nAtomically exchanges the value in `x` with `newval`. Returns the **old**\nvalue.\n\nFor further details, see LLVM's `atomicrmw xchg` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_xchg!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Unicode_docstrings.json b/en/docstrings/Unicode_docstrings.json new file mode 100644 index 00000000..2a3de9a5 --- /dev/null +++ b/en/docstrings/Unicode_docstrings.json @@ -0,0 +1 @@ +{"Base.Unicode.lowercasefirst":[{"Tuple{AbstractString}":" lowercasefirst(s::AbstractString)\n\nReturn `s` with the first character converted to lowercase.\n\nSee also: [`uppercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> lowercasefirst(\"Julia\")\n\"julia\"\n```\n"}],"Base.Unicode.titlecase":[{"Tuple{AbstractString}":" titlecase(s::AbstractString; [wordsep::Function], strict::Bool=true) -> String\n\nCapitalize the first character of each word in `s`;\nif `strict` is true, every other character is\nconverted to lowercase, otherwise they are left unchanged.\nBy default, all non-letters are considered as word separators;\na predicate can be passed as the `wordsep` keyword to determine\nwhich characters should be considered as word separators.\nSee also [`uppercasefirst`](@ref) to capitalize only the first\ncharacter in `s`.\n\n# Examples\n```jldoctest\njulia> titlecase(\"the JULIA programming language\")\n\"The Julia Programming Language\"\n\njulia> titlecase(\"ISS - international space station\", strict=false)\n\"ISS - International Space Station\"\n\njulia> titlecase(\"a-a b-b\", wordsep = c->c==' ')\n\"A-a B-b\"\n```\n"}],"Base.Unicode.textwidth":[{"Tuple{AbstractChar}":" textwidth(c)\n\nGive the number of columns needed to print a character.\n\n# Examples\n```jldoctest\njulia> textwidth('α')\n1\n\njulia> textwidth('⛵')\n2\n```\n"},{"Tuple{AbstractString}":" textwidth(s::AbstractString)\n\nGive the number of columns needed to print a string.\n\n# Examples\n```jldoctest\njulia> textwidth(\"March\")\n5\n```\n"}],"Base.Unicode.isletter":[{"Tuple{AbstractChar}":" isletter(c::AbstractChar) -> Bool\n\nTest whether a character is a letter.\nA character is classified as a letter if it belongs to the Unicode general\ncategory Letter, i.e. a character whose category code begins with 'L'.\n\n# Examples\n```jldoctest\njulia> isletter('❤')\nfalse\n\njulia> isletter('α')\ntrue\n\njulia> isletter('9')\nfalse\n```\n"}],"Base.Unicode.lowercase":[{"Tuple{AbstractString}":" lowercase(s::AbstractString)\n\nReturn `s` with all characters converted to lowercase.\n\n# Examples\n```jldoctest\njulia> lowercase(\"STRINGS AND THINGS\")\n\"strings and things\"\n```\n"}],"Base.Unicode.iscased":[{"Tuple{AbstractChar}":" iscased(c::AbstractChar) -> Bool\n\nTests whether a character is cased, i.e. is lower-, upper- or title-cased.\n"}],"Base.Unicode.iscntrl":[{"Tuple{AbstractChar}":" iscntrl(c::AbstractChar) -> Bool\n\nTests whether a character is a control character.\nControl characters are the non-printing characters of the Latin-1 subset of Unicode.\n\n# Examples\n```jldoctest\njulia> iscntrl('\\x01')\ntrue\n\njulia> iscntrl('a')\nfalse\n```\n"}],"Base.Unicode.uppercasefirst":[{"Tuple{AbstractString}":" uppercasefirst(s::AbstractString) -> String\n\nReturn `s` with the first character converted to uppercase (technically \"title\ncase\" for Unicode). See also [`titlecase`](@ref) to capitalize the first\ncharacter of every word in `s`.\n\nSee also: [`lowercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> uppercasefirst(\"python\")\n\"Python\"\n```\n"}],"Base.Unicode.isuppercase":[{"Tuple{AbstractChar}":" isuppercase(c::AbstractChar) -> Bool\n\nTests whether a character is an uppercase letter.\nA character is classified as uppercase if it belongs to Unicode category Lu,\nLetter: Uppercase, or Lt, Letter: Titlecase.\n\n# Examples\n```jldoctest\njulia> isuppercase('γ')\nfalse\n\njulia> isuppercase('Γ')\ntrue\n\njulia> isuppercase('❤')\nfalse\n```\n"}],"Base.Unicode.ispunct":[{"Tuple{AbstractChar}":" ispunct(c::AbstractChar) -> Bool\n\nTests whether a character belongs to the Unicode general category Punctuation, i.e. a\ncharacter whose category code begins with 'P'.\n\n# Examples\n```jldoctest\njulia> ispunct('α')\nfalse\n\njulia> ispunct('/')\ntrue\n\njulia> ispunct(';')\ntrue\n```\n"}],"Base.Unicode.isnumeric":[{"Tuple{AbstractChar}":" isnumeric(c::AbstractChar) -> Bool\n\nTests whether a character is numeric.\nA character is classified as numeric if it belongs to the Unicode general category Number,\ni.e. a character whose category code begins with 'N'.\n\nNote that this broad category includes characters such as ¾ and ௰.\nUse [`isdigit`](@ref) to check whether a character a decimal digit between 0 and 9.\n\n# Examples\n```jldoctest\njulia> isnumeric('௰')\ntrue\n\njulia> isnumeric('9')\ntrue\n\njulia> isnumeric('α')\nfalse\n\njulia> isnumeric('❤')\nfalse\n```\n"}],"Base.Unicode.isxdigit":[{"Tuple{AbstractChar}":" isxdigit(c::AbstractChar) -> Bool\n\nTest whether a character is a valid hexadecimal digit. Note that this does not\ninclude `x` (as in the standard `0x` prefix).\n\n# Examples\n```jldoctest\njulia> isxdigit('a')\ntrue\n\njulia> isxdigit('x')\nfalse\n```\n"}],"Base.Unicode.islowercase":[{"Tuple{AbstractChar}":" islowercase(c::AbstractChar) -> Bool\n\nTests whether a character is a lowercase letter.\nA character is classified as lowercase if it belongs to Unicode category Ll,\nLetter: Lowercase.\n\n# Examples\n```jldoctest\njulia> islowercase('α')\ntrue\n\njulia> islowercase('Γ')\nfalse\n\njulia> islowercase('❤')\nfalse\n```\n"}],"Base.Unicode.isdigit":[{"Tuple{AbstractChar}":" isdigit(c::AbstractChar) -> Bool\n\nTests whether a character is a decimal digit (0-9).\n\n# Examples\n```jldoctest\njulia> isdigit('❤')\nfalse\n\njulia> isdigit('9')\ntrue\n\njulia> isdigit('α')\nfalse\n```\n"}],"Base.Unicode.isspace":[{"Tuple{AbstractChar}":" isspace(c::AbstractChar) -> Bool\n\nTests whether a character is any whitespace character. Includes ASCII characters '\\t',\n'\\n', '\\v', '\\f', '\\r', and ' ', Latin-1 character U+0085, and characters in Unicode\ncategory Zs.\n\n# Examples\n```jldoctest\njulia> isspace('\\n')\ntrue\n\njulia> isspace('\\r')\ntrue\n\njulia> isspace(' ')\ntrue\n\njulia> isspace('\\x20')\ntrue\n```\n"}],"Base.Unicode.isprint":[{"Tuple{AbstractChar}":" isprint(c::AbstractChar) -> Bool\n\nTests whether a character is printable, including spaces, but not a control character.\n\n# Examples\n```jldoctest\njulia> isprint('\\x01')\nfalse\n\njulia> isprint('A')\ntrue\n```\n"}],"Base.Unicode.uppercase":[{"Tuple{AbstractString}":" uppercase(s::AbstractString)\n\nReturn `s` with all characters converted to uppercase.\n\n# Examples\n```jldoctest\njulia> uppercase(\"Julia\")\n\"JULIA\"\n```\n"}]} \ No newline at end of file From 30d9380da8fb542786613ab6ee6e3d99547f2555 Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 16:05:14 +0800 Subject: [PATCH 3/8] Update config --- .tx/config | 132 ++++++++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 120 insertions(+), 12 deletions(-) diff --git a/.tx/config b/.tx/config index dd227182..df3f2d45 100644 --- a/.tx/config +++ b/.tx/config @@ -568,12 +568,6 @@ minimum_perc = 0 source_lang = en type = GITHUBMARKDOWN -[stdlib-zh_cn.pkgmd] -file_filter = /stdlib/Pkg/docs/src/index.md -minimum_perc = 0 -source_lang = en -type = GITHUBMARKDOWN - [stdlib-zh_cn.printfmd] file_filter = /stdlib/Printf/docs/src/index.md minimum_perc = 0 @@ -628,12 +622,6 @@ minimum_perc = 0 source_lang = en type = GITHUBMARKDOWN -[stdlib-zh_cn.statisticsmd] -file_filter = /stdlib/Statistics/docs/src/index.md -minimum_perc = 0 -source_lang = en -type = GITHUBMARKDOWN - [stdlib-zh_cn.testmd] file_filter = /stdlib/Test/docs/src/index.md minimum_perc = 0 @@ -651,3 +639,123 @@ file_filter = /stdlib/UUIDs/docs/src/index.md minimum_perc = 0 source_lang = en type = GITHUBMARKDOWN + +[docstrings-zh_cn.base_docstringsjson] +file_filter = /docstrings/Base_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.cartesian_docstringsjson] +file_filter = /docstrings/Cartesian_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.enums_docstringsjson] +file_filter = /docstrings/Enums_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.experimental_docstringsjson] +file_filter = /docstrings/Experimental_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.fastmath_docstringsjson] +file_filter = /docstrings/FastMath_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.filesystem_docstringsjson] +file_filter = /docstrings/Filesystem_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.gc_docstringsjson] +file_filter = /docstrings/GC_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.grisu_docstringsjson] +file_filter = /docstrings/Grisu_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.iterators_docstringsjson] +file_filter = /docstrings/Iterators_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.libc_docstringsjson] +file_filter = /docstrings/Libc_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.math_docstringsjson] +file_filter = /docstrings/Math_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.mathconstants_docstringsjson] +file_filter = /docstrings/MathConstants_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.meta_docstringsjson] +file_filter = /docstrings/Meta_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.mpfr_docstringsjson] +file_filter = /docstrings/MPFR_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.multimedia_docstringsjson] +file_filter = /docstrings/Multimedia_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.rounding_docstringsjson] +file_filter = /docstrings/Rounding_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.simdloop_docstringsjson] +file_filter = /docstrings/SimdLoop_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.sys_docstringsjson] +file_filter = /docstrings/Sys_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.threads_docstringsjson] +file_filter = /docstrings/Threads_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON + +[docstrings-zh_cn.unicode_docstringsjson] +file_filter = /docstrings/Unicode_docstrings.json +minimum_perc = 0 +source_lang = en +type = KEYVALUEJSON From 3e7d7c8c8bd940c48de4df174e73fa8661215ba0 Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 16:05:36 +0800 Subject: [PATCH 4/8] Pull docstrings --- zh_CN/docstrings/Base_docstrings.json | 1 + zh_CN/docstrings/Cartesian_docstrings.json | 1 + zh_CN/docstrings/Enums_docstrings.json | 1 + zh_CN/docstrings/Experimental_docstrings.json | 1 + zh_CN/docstrings/FastMath_docstrings.json | 1 + zh_CN/docstrings/Filesystem_docstrings.json | 1 + zh_CN/docstrings/GC_docstrings.json | 1 + zh_CN/docstrings/Grisu_docstrings.json | 1 + zh_CN/docstrings/Iterators_docstrings.json | 1 + zh_CN/docstrings/Libc_docstrings.json | 1 + zh_CN/docstrings/MPFR_docstrings.json | 1 + zh_CN/docstrings/MathConstants_docstrings.json | 1 + zh_CN/docstrings/Math_docstrings.json | 1 + zh_CN/docstrings/Meta_docstrings.json | 1 + zh_CN/docstrings/Multimedia_docstrings.json | 1 + zh_CN/docstrings/Rounding_docstrings.json | 1 + zh_CN/docstrings/SimdLoop_docstrings.json | 1 + zh_CN/docstrings/Sys_docstrings.json | 1 + zh_CN/docstrings/Threads_docstrings.json | 1 + zh_CN/docstrings/Unicode_docstrings.json | 1 + 20 files changed, 20 insertions(+) create mode 100644 zh_CN/docstrings/Base_docstrings.json create mode 100644 zh_CN/docstrings/Cartesian_docstrings.json create mode 100644 zh_CN/docstrings/Enums_docstrings.json create mode 100644 zh_CN/docstrings/Experimental_docstrings.json create mode 100644 zh_CN/docstrings/FastMath_docstrings.json create mode 100644 zh_CN/docstrings/Filesystem_docstrings.json create mode 100644 zh_CN/docstrings/GC_docstrings.json create mode 100644 zh_CN/docstrings/Grisu_docstrings.json create mode 100644 zh_CN/docstrings/Iterators_docstrings.json create mode 100644 zh_CN/docstrings/Libc_docstrings.json create mode 100644 zh_CN/docstrings/MPFR_docstrings.json create mode 100644 zh_CN/docstrings/MathConstants_docstrings.json create mode 100644 zh_CN/docstrings/Math_docstrings.json create mode 100644 zh_CN/docstrings/Meta_docstrings.json create mode 100644 zh_CN/docstrings/Multimedia_docstrings.json create mode 100644 zh_CN/docstrings/Rounding_docstrings.json create mode 100644 zh_CN/docstrings/SimdLoop_docstrings.json create mode 100644 zh_CN/docstrings/Sys_docstrings.json create mode 100644 zh_CN/docstrings/Threads_docstrings.json create mode 100644 zh_CN/docstrings/Unicode_docstrings.json diff --git a/zh_CN/docstrings/Base_docstrings.json b/zh_CN/docstrings/Base_docstrings.json new file mode 100644 index 00000000..1bbfd181 --- /dev/null +++ b/zh_CN/docstrings/Base_docstrings.json @@ -0,0 +1 @@ +{"Base.htol":[{"Tuple{Any}":" htol(x)\n\nConvert the endianness of a value from that used by the Host to Little-endian.\n"}],"Base.zeros":[{"Union{}":" zeros([T=Float64,] dims::Tuple)\n zeros([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all zeros with size specified by `dims`.\nSee also [`fill`](@ref), [`ones`](@ref).\n\n# Examples\n```jldoctest\njulia> zeros(1)\n1-element Array{Float64,1}:\n 0.0\n\njulia> zeros(Int8, 2, 3)\n2×3 Array{Int8,2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.div12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = div12(x, y)\n\nA high-precision representation of `x / y` for floating-point\nnumbers. Mathematically, `zhi + zlo ≈ x / y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x, y = Float32(π), 3.1f0\n(3.1415927f0, 3.1f0)\n\njulia> x / y\n1.013417f0\n\njulia> Float64(x) / Float64(y)\n1.0134170444063078\n\njulia> hi, lo = Base.div12(x, y)\n(1.013417f0, 3.8867366f-8)\n\njulia> Float64(hi) + Float64(lo)\n1.0134170444063066\n"}],"Base.iseven":[{"Tuple{Integer}":" iseven(x::Integer) -> Bool\n\nReturn `true` is `x` is even (that is, divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> iseven(9)\nfalse\n\njulia> iseven(10)\ntrue\n```\n"}],"Base.foldr":[{"Tuple{Any,Any}":" foldr(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed right associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldr(=>, 1:4)\n1 => (2 => (3 => 4))\n\njulia> foldr(=>, 1:4; init=0)\n1 => (2 => (3 => (4 => 0)))\n```\n"}],"Base.lastindex":[{"Tuple{AbstractArray}":" lastindex(collection) -> Integer\n lastindex(collection, d) -> Integer\n\nReturn the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.\n\nThe syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and\n`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.\n\n# Examples\n```jldoctest\njulia> lastindex([1,2,4])\n3\n\njulia> lastindex(rand(3,4,5), 2)\n4\n```\n"}],"Base.FlatteningRF":[{"Union{}":" FlatteningRF(rf) -> rf′\n\nCreate a flattening reducing function that is roughly equivalent to\n`rf′(acc, x) = foldl(rf, x; init=acc)`.\n"}],"Base.istaskstarted":[{"Tuple{Task}":" istaskstarted(t::Task) -> Bool\n\nDetermine whether a task has started executing.\n\n# Examples\n```jldoctest\njulia> a3() = sum(i for i in 1:1000);\n\njulia> b = Task(a3);\n\njulia> istaskstarted(b)\nfalse\n```\n"}],"Base.Csize_t":[{"Union{}":" Csize_t\n\nEquivalent to the native `size_t` c-type (`UInt`).\n"}],"Base.&":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" &(x, y)\n\nBitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `true`.\n\n# Examples\n```jldoctest\njulia> 4 & 10\n0\n\njulia> 4 & 12\n4\n\njulia> true & missing\nmissing\n\njulia> false & missing\nfalse\n```\n"}],"Base.Timer":[{"Union{}":" Timer(delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object).\n\nWaiting tasks are woken after an initial delay of `delay` seconds, and then repeating with the given\n`interval` in seconds. If `interval` is equal to `0`, the timer is only triggered once. When\nthe timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n"},{"Tuple{Function,Real}":" Timer(callback::Function, delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object) and\ncalls the function `callback`.\n\nWaiting tasks are woken and the function `callback` is called after an initial delay of `delay` seconds,\nand then repeating with the given `interval` in seconds. If `interval` is equal to `0`, the timer\nis only triggered once. The function `callback` is called with a single argument, the timer itself.\nWhen the timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n\n# Examples\n\nHere the first number is printed after a delay of two seconds, then the following numbers are printed quickly.\n\n```julia-repl\njulia> begin\n i = 0\n cb(timer) = (global i += 1; println(i))\n t = Timer(cb, 2, interval=0.2)\n wait(t)\n sleep(0.5)\n close(t)\n end\n1\n2\n3\n```\n"}],"Base.Cssize_t":[{"Union{}":" Cssize_t\n\nEquivalent to the native `ssize_t` c-type.\n"}],"Base.unsafe_write":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_write(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from `ref` (converted to a pointer) into the `IO` object.\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.open":[{"Union{Tuple{Base.AbstractCmd}, Tuple{Base.AbstractCmd,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, stdio=devnull; write::Bool = false, read::Bool = !write)\n\nStart running `command` asynchronously, and return a `process::IO` object. If `read` is\ntrue, then reads from the process come from the process's standard output and `stdio` optionally\nspecifies the process's standard input stream. If `write` is true, then writes go to\nthe process's standard input and `stdio` optionally specifies the process's standard output\nstream.\nThe process's standard error stream is connected to the current global `stderr`.\n"},{"Tuple{Function,Vararg{Any,N} where N}":" open(f::Function, args...; kwargs....)\n\nApply the function `f` to the result of `open(args...; kwargs...)` and close the resulting file\ndescriptor upon completion.\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n write(io, \"Hello world!\")\n end;\n\njulia> open(f->read(f, String), \"myfile.txt\")\n\"Hello world!\"\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Union{Tuple{Base.AbstractCmd,AbstractString}, Tuple{Base.AbstractCmd,AbstractString,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, mode::AbstractString, stdio=devnull)\n\nRun `command` asynchronously. Like `open(command, stdio; read, write)` except specifying\nthe read and write flags via a mode string instead of keyword arguments.\nPossible mode strings are:\n\n| Mode | Description | Keywords |\n|:-----|:------------|:---------------------------------|\n| `r` | read | none |\n| `w` | write | `write = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write | `read = true, write = true` |\n"},{"Tuple{Function,Base.AbstractCmd,Vararg{Any,N} where N}":" open(f::Function, command, args...; kwargs...)\n\nSimilar to `open(command, args...; kwargs...)`, but calls `f(stream)` on the resulting process\nstream, then closes the input stream and waits for the process to complete.\nReturns the value returned by `f`.\n"},{"Tuple{AbstractString}":" open(filename::AbstractString; keywords...) -> IOStream\n\nOpen a file in a mode specified by five boolean keyword arguments:\n\n| Keyword | Description | Default |\n|:-----------|:-----------------------|:----------------------------------------|\n| `read` | open for reading | `!write` |\n| `write` | open for writing | `truncate \\| append` |\n| `create` | create if non-existent | `!read & write \\| truncate \\| append` |\n| `truncate` | truncate to zero size | `!read & write` |\n| `append` | seek to end | `false` |\n\nThe default when no keywords are passed is to open files for reading only.\nReturns a stream for accessing the opened file.\n"},{"Tuple{AbstractString,AbstractString}":" open(filename::AbstractString, [mode::AbstractString]) -> IOStream\n\nAlternate syntax for open, where a string-based mode specifier is used instead of the five\nbooleans. The values of `mode` correspond to those from `fopen(3)` or Perl `open`, and are\nequivalent to setting the following boolean groups:\n\n| Mode | Description | Keywords |\n|:-----|:------------------------------|:------------------------------------|\n| `r` | read | none |\n| `w` | write, create, truncate | `write = true` |\n| `a` | write, create, append | `append = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write, create, truncate | `truncate = true, read = true` |\n| `a+` | read, write, create, append | `append = true, read = true` |\n\n# Examples\n```jldoctest\njulia> io = open(\"myfile.txt\", \"w\");\n\njulia> write(io, \"Hello world!\");\n\njulia> close(io);\n\njulia> io = open(\"myfile.txt\", \"r\");\n\njulia> read(io, String)\n\"Hello world!\"\n\njulia> write(io, \"This file is read only\")\nERROR: ArgumentError: write failed, IOStream is not writeable\n[...]\n\njulia> close(io)\n\njulia> io = open(\"myfile.txt\", \"a\");\n\njulia> write(io, \"This stream is not read only\")\n28\n\njulia> close(io)\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Tuple{RawFD}":" open(fd::OS_HANDLE) -> IO\n\nTake a raw file descriptor wrap it in a Julia-aware IO type,\nand take ownership of the fd handle.\nCall `open(Libc.dup(fd))` to avoid the ownership capture\nof the original handle.\n\n!!! warn\n Do not call this on a handle that's already owned by some\n other part of the system.\n"}],"Base.hash":[{"Tuple{Any}":" hash(x[, h::UInt])\n\nCompute an integer hash code such that `isequal(x,y)` implies `hash(x)==hash(y)`. The\noptional second argument `h` is a hash code to be mixed with the result.\n\nNew types should implement the 2-argument form, typically by calling the 2-argument `hash`\nmethod recursively in order to mix hashes of the contents with each other (and with `h`).\nTypically, any type that implements `hash` should also implement its own `==` (hence\n`isequal`) to guarantee the property mentioned above. Types supporting subtraction\n(operator `-`) should also implement [`widen`](@ref), which is required to hash\nvalues inside heterogeneous arrays.\n"}],"Base.ismalformed":[{"Tuple{AbstractChar}":" ismalformed(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents malformed (non-Unicode) data according to the\nencoding used by `c`. Defaults to `false` for non-`Char` types. See also\n[`show_invalid`](@ref).\n"}],"Base.ntoh":[{"Tuple{Any}":" ntoh(x)\n\nConvert the endianness of a value from Network byte order (big-endian) to that used by the Host.\n"}],"Base.length":[{"Union{}":" length(collection) -> Integer\n\nReturn the number of elements in the collection.\n\nUse [`lastindex`](@ref) to get the last valid index of an indexable collection.\n\n# Examples\n```jldoctest\njulia> length(1:5)\n5\n\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractArray}":" length(A::AbstractArray)\n\nReturn the number of elements in the array, defaults to `prod(size(A))`.\n\n# Examples\n```jldoctest\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractString}":" length(s::AbstractString) -> Int\n length(s::AbstractString, i::Integer, j::Integer) -> Int\n\nThe number of characters in string `s` from indices `i` through `j`. This is\ncomputed as the number of code unit indices from `i` to `j` which are valid\ncharacter indices. With only a single string argument, this computes the\nnumber of characters in the entire string. With `i` and `j` arguments it\ncomputes the number of indices between `i` and `j` inclusive that are valid\nindices in the string `s`. In addition to in-bounds values, `i` may take the\nout-of-bounds value `ncodeunits(s) + 1` and `j` may take the out-of-bounds\nvalue `0`.\n\nSee also: [`isvalid`](@ref), [`ncodeunits`](@ref), [`lastindex`](@ref),\n[`thisind`](@ref), [`nextind`](@ref), [`prevind`](@ref)\n\n# Examples\n```jldoctest\njulia> length(\"jμΛIα\")\n5\n```\n"}],"Base.copymutable":[{"Tuple{AbstractArray}":" copymutable(a)\n\nMake a mutable copy of an array or iterable `a`. For `a::Array`,\nthis is equivalent to `copy(a)`, but for other array types it may\ndiffer depending on the type of `similar(a)`. For generic iterables\nthis is equivalent to `collect(a)`.\n\n# Examples\n```jldoctest\njulia> tup = (1, 2, 3)\n(1, 2, 3)\n\njulia> Base.copymutable(tup)\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.Inf64":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.Pipe":[{"Tuple{}":"Construct an uninitialized Pipe object.\n\nThe appropriate end of the pipe will be automatically initialized if\nthe object is used in process spawning. This can be useful to easily\nobtain references in process pipelines, e.g.:\n\n```\njulia> err = Pipe()\n\n# After this `err` will be initialized and you may read `foo`'s\n# stderr from the `err` pipe.\njulia> run(pipeline(pipeline(`foo`, stderr=err), `cat`), wait=false)\n```\n"}],"Base.Condition":[{"Union{}":" Condition()\n\nCreate an edge-triggered event source that tasks can wait for. Tasks that call [`wait`](@ref) on a\n`Condition` are suspended and queued. Tasks are woken up when [`notify`](@ref) is later called on\nthe `Condition`. Edge triggering means that only tasks waiting at the time [`notify`](@ref) is\ncalled can be woken up. For level-triggered notifications, you must keep extra state to keep\ntrack of whether a notification has happened. The [`Channel`](@ref) and [`Threads.Event`](@ref) types do\nthis, and can be used for level-triggered events.\n\nThis object is NOT thread-safe. See [`Threads.Condition`](@ref) for a thread-safe version.\n"}],"Base.collect":[{"Tuple{Any}":" collect(collection)\n\nReturn an `Array` of all items in a collection or iterator. For dictionaries, returns\n`Pair{KeyType, ValType}`. If the argument is array-like or is an iterator with the\n[`HasShape`](@ref IteratorSize) trait, the result will have the same shape\nand number of dimensions as the argument.\n\n# Examples\n```jldoctest\njulia> collect(1:2:13)\n7-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n 13\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" collect(element_type, collection)\n\nReturn an `Array` with the given element type of all items in a collection or iterable.\nThe result has the same shape and number of dimensions as `collection`.\n\n# Examples\n```jldoctest\njulia> collect(Float64, 1:2:5)\n3-element Array{Float64,1}:\n 1.0\n 3.0\n 5.0\n```\n"}],"Base.include":[{"Union{}":" Base.include([m::Module,] path::AbstractString)\n\nEvaluate the contents of the input source file in the global scope of module `m`.\nEvery module (except those defined with [`baremodule`](@ref)) has its own 1-argument\ndefinition of `include`, which evaluates the file in that module.\nReturns the result of the last evaluated expression of the input file. During including,\na task-local include path is set to the directory containing the file. Nested calls to\n`include` will search relative to that path. This function is typically used to load source\ninteractively, or to combine files in packages that are broken into multiple source files.\n"}],"Base.success":[{"Tuple{Base.AbstractCmd}":" success(command)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual), and tell whether it was successful (exited with a code of 0).\nAn exception is raised if the process cannot be started.\n"}],"Base.skip":[{"Tuple{IOStream,Integer}":" skip(s, offset)\n\nSeek a stream relative to the current position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> skip(io, 10);\n\njulia> read(io, Char)\n'G': ASCII/Unicode U+0047 (category Lu: Letter, uppercase)\n```\n"}],"Base.chop":[{"Tuple{AbstractString}":" chop(s::AbstractString; head::Integer = 0, tail::Integer = 1)\n\nRemove the first `head` and the last `tail` characters from `s`.\nThe call `chop(s)` removes the last character from `s`.\nIf it is requested to remove more characters than `length(s)`\nthen an empty string is returned.\n\n# Examples\n```jldoctest\njulia> a = \"March\"\n\"March\"\n\njulia> chop(a)\n\"Marc\"\n\njulia> chop(a, head = 1, tail = 2)\n\"ar\"\n\njulia> chop(a, head = 5, tail = 5)\n\"\"\n```\n"}],"Base.factorial":[{"Tuple{Integer}":" factorial(n::Integer)\n\nFactorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an\ninteger (promoted to at least 64 bits). Note that this may overflow if `n` is not small,\nbut you can use `factorial(big(n))` to compute the result exactly in arbitrary precision.\n\n# Examples\n```jldoctest\njulia> factorial(6)\n720\n\njulia> factorial(21)\nERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead\nStacktrace:\n[...]\n\njulia> factorial(big(21))\n51090942171709440000\n```\n\n# See also\n* [`binomial`](@ref)\n\n# External links\n* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia.\n"}],"Base.isascii":[{"Tuple{Char}":" isascii(c::Union{AbstractChar,AbstractString}) -> Bool\n\nTest whether a character belongs to the ASCII character set, or whether this is true for\nall elements of a string.\n\n# Examples\n```jldoctest\njulia> isascii('a')\ntrue\n\njulia> isascii('α')\nfalse\n\njulia> isascii(\"abc\")\ntrue\n\njulia> isascii(\"αβγ\")\nfalse\n```\n"}],"Base.windowserror":[{"Tuple{Any,Bool}":" windowserror(sysfunc[, code::UInt32=Libc.GetLastError()])\n windowserror(sysfunc, iftrue::Bool)\n\nLike [`systemerror`](@ref), but for Windows API functions that use [`GetLastError`](@ref Base.Libc.GetLastError) to\nreturn an error code instead of setting [`errno`](@ref Base.Libc.errno).\n"}],"Base.setenv":[{"Tuple{Cmd,Any}":" setenv(command::Cmd, env; dir=\"\")\n\nSet environment variables to use when running the given `command`. `env` is either a\ndictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, or zero\nor more `\"var\"=>val` pair arguments. In order to modify (rather than replace) the existing\nenvironment, create `env` by `copy(ENV)` and then setting `env[\"var\"]=val` as desired, or\nuse `withenv`.\n\nThe `dir` keyword argument can be used to specify a working directory for the command.\n"}],"Base.asyncmap!":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)\n\nLike [`asyncmap`](@ref), but stores output in `results` rather than\nreturning a collection.\n"}],"Base.cconvert":[{"Union{}":" cconvert(T,x)\n\nConvert `x` to a value to be passed to C code as type `T`, typically by calling `convert(T, x)`.\n\nIn cases where `x` cannot be safely converted to `T`, unlike [`convert`](@ref), `cconvert` may\nreturn an object of a type different from `T`, which however is suitable for\n[`unsafe_convert`](@ref) to handle. The result of this function should be kept valid (for the GC)\nuntil the result of [`unsafe_convert`](@ref) is not needed anymore.\nThis can be used to allocate memory that will be accessed by the `ccall`.\nIf multiple objects need to be allocated, a tuple of the objects can be used as return value.\n\nNeither `convert` nor `cconvert` should take a Julia object and turn it into a `Ptr`.\n"}],"Base.@nospecialize":[{"Tuple":" @nospecialize\n\nApplied to a function argument name, hints to the compiler that the method\nshould not be specialized for different types of that argument,\nbut instead to use precisely the declared type for each argument.\nThis is only a hint for avoiding excess code generation.\nCan be applied to an argument within a formal argument list,\nor in the function body.\nWhen applied to an argument, the macro must wrap the entire argument expression.\nWhen used in a function body, the macro must occur in statement position and\nbefore any code.\n\nWhen used without arguments, it applies to all arguments of the parent scope.\nIn local scope, this means all arguments of the containing function.\nIn global (top-level) scope, this means all methods subsequently defined in the current module.\n\nSpecialization can reset back to the default by using [`@specialize`](@ref).\n\n```julia\nfunction example_function(@nospecialize x)\n ...\nend\n\nfunction example_function(@nospecialize(x = 1), y)\n ...\nend\n\nfunction example_function(x, y, z)\n @nospecialize x y\n ...\nend\n\n@nospecialize\nf(y) = [x for x in y]\n@specialize\n```\n"}],"Base.rationalize":[{"Union{Tuple{T}, Tuple{Type{T},AbstractFloat,Real}} where T<:Integer":" rationalize([T<:Integer=Int,] x; tol::Real=eps(x))\n\nApproximate floating point number `x` as a [`Rational`](@ref) number with components\nof the given integer type. The result will differ from `x` by no more than `tol`.\n\n# Examples\n```jldoctest\njulia> rationalize(5.6)\n28//5\n\njulia> a = rationalize(BigInt, 10.3)\n103//10\n\njulia> typeof(numerator(a))\nBigInt\n```\n"}],"Base.floatmax":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmax(T)\n\nThe highest finite value representable by the given floating-point DataType `T`.\n\n# Examples\n```jldoctest\njulia> floatmax(Float16)\nFloat16(6.55e4)\n\njulia> floatmax(Float32)\n3.4028235f38\n```\n"}],"Base.isconst":[{"Tuple{Module,Symbol}":" isconst(m::Module, s::Symbol) -> Bool\n\nDetermine whether a global is declared `const` in a given `Module`.\n"}],"Base.unsafe_string":[{"Tuple{Union{Ptr{Int8}, Ptr{UInt8}},Integer}":" unsafe_string(p::Ptr{UInt8}, [length::Integer])\n\nCopy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8.\n(The pointer can be safely freed afterwards.) If `length` is specified\n(the length of the data in bytes), the string does not have to be NUL-terminated.\n\nThis function is labeled \"unsafe\" because it will crash if `p` is not\na valid memory address to data of the requested length.\n"}],"Base.VecOrMat":[{"Union{}":" VecOrMat{T}\n\nUnion type of [`Vector{T}`](@ref) and [`Matrix{T}`](@ref).\n"}],"Base.mul12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = mul12(x, y)\n\nA high-precision representation of `x * y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x * y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x = Float32(π)\n3.1415927f0\n\njulia> x * x\n9.869605f0\n\njulia> Float64(x) * Float64(x)\n9.869604950382893\n\njulia> hi, lo = Base.mul12(x, x)\n(9.869605f0, -1.140092f-7)\n\njulia> Float64(hi) + Float64(lo)\n9.869604950382893\n```\n"}],"Base.issubset":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.Generator":[{"Union{}":" Generator(f, iter)\n\nGiven a function `f` and an iterator `iter`, construct an iterator that yields\nthe values of `f` applied to the elements of `iter`.\nThe syntax `f(x) for x in iter [if cond(x)::Bool]` is syntax for constructing an instance of this\ntype. The `[if cond(x)::Bool]` expression is optional and acts as a \"guard\", effectively\nfiltering out values where the condition is false.\n\n```jldoctest\njulia> g = (abs2(x) for x in 1:5 if x != 3);\n\njulia> for x in g\n println(x)\n end\n1\n4\n16\n25\n\njulia> collect(g)\n4-element Array{Int64,1}:\n 1\n 4\n 16\n 25\n```\n"}],"Base.unsigned":[{"Tuple{Any}":" unsigned(x) -> Unsigned\n\nConvert a number to an unsigned integer. If the argument is signed, it is reinterpreted as\nunsigned without checking for negative values.\n\n# Examples\n```jldoctest\njulia> unsigned(-2)\n0xfffffffffffffffe\n\njulia> unsigned(2)\n0x0000000000000002\n\njulia> signed(unsigned(-2))\n-2\n```\n"}],"Base.big":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" big(T::Type)\n\nCompute the type that represents the numeric type `T` with arbitrary precision.\nEquivalent to `typeof(big(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> big(Rational)\nRational{BigInt}\n\njulia> big(Float64)\nBigFloat\n\njulia> big(Complex{Int})\nComplex{BigInt}\n```\n"}],"Base.=>":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.copy!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" copy!(dst, src) -> dst\n\nIn-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing\nelements in `dst`.\nIf `dst` and `src` are of the same type, `dst == src` should hold after\nthe call. If `dst` and `src` are multidimensional arrays, they must have\nequal [`axes`](@ref).\nSee also [`copyto!`](@ref).\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 this method\n is available from the `Future` standard library as `Future.copy!`.\n"}],"Base.seek":[{"Tuple{IOStream,Integer}":" seek(s, pos)\n\nSeek a stream to the given position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n```\n"}],"Base.evalfile":[{"Union{Tuple{AbstractString}, Tuple{AbstractString,Array{String,1}}}":" evalfile(path::AbstractString, args::Vector{String}=String[])\n\nLoad the file using [`include`](@ref), evaluate all expressions,\nand return the value of the last one.\n"}],"Base.decode_overlong":[{"Union{}":" decode_overlong(c::AbstractChar) -> Integer\n\nWhen [`isoverlong(c)`](@ref) is `true`, `decode_overlong(c)` returns\nthe Unicode codepoint value of `c`. `AbstractChar` implementations\nthat support overlong encodings should implement `Base.decode_overlong`.\n"}],"Base.eachline":[{"Union{Tuple{}, Tuple{IO}}":" eachline(io::IO=stdin; keep::Bool=false)\n eachline(filename::AbstractString; keep::Bool=false)\n\nCreate an iterable `EachLine` object that will yield each line from an I/O stream\nor a file. Iteration calls [`readline`](@ref) on the stream argument repeatedly with\n`keep` passed through, determining whether trailing end-of-line characters are\nretained. When called with a file name, the file is opened once at the beginning of\niteration and closed at the end. If iteration is interrupted, the file will be\nclosed when the `EachLine` object is garbage collected.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\n It has many members.\\n\");\n end;\n\njulia> for line in eachline(\"my_file.txt\")\n print(line)\n end\nJuliaLang is a GitHub organization. It has many members.\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.divrem":[{"Tuple{Any,Any}":" divrem(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient and remainder from Euclidean division.\nEquivalent to `(div(x,y,r), rem(x,y,r))`. Equivalently, with the the default\nvalue of `r`, this call is equivalent to `(x÷y, x%y)`.\n\n# Examples\n```jldoctest\njulia> divrem(3,7)\n(0, 3)\n\njulia> divrem(7,3)\n(2, 1)\n```\n"}],"Base.cis":[{"Tuple{Complex}":" cis(z)\n\nReturn ``\\exp(iz)``.\n\n# Examples\n```jldoctest\njulia> cis(π) ≈ -1\ntrue\n```\n"}],"Base.cumprod!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" cumprod!(y::AbstractVector, x::AbstractVector)\n\nCumulative product of a vector `x`, storing the result in `y`.\nSee also [`cumprod`](@ref).\n"},{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumprod!(B, A; dims::Integer)\n\nCumulative product of `A` along the dimension `dims`, storing the result in `B`.\nSee also [`cumprod`](@ref).\n"}],"Base.isoverlong":[{"Tuple{AbstractChar}":" isoverlong(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents an overlong UTF-8 sequence. Defaults\nto `false` for non-`Char` types. See also [`decode_overlong`](@ref)\nand [`show_invalid`](@ref).\n"}],"Base.unsafe_convert":[{"Union{}":" unsafe_convert(T, x)\n\nConvert `x` to a C argument of type `T`\nwhere the input `x` must be the return value of `cconvert(T, ...)`.\n\nIn cases where [`convert`](@ref) would need to take a Julia object\nand turn it into a `Ptr`, this function should be used to define and perform\nthat conversion.\n\nBe careful to ensure that a Julia reference to `x` exists as long as the result of this\nfunction will be used. Accordingly, the argument `x` to this function should never be an\nexpression, only a variable name or field reference. For example, `x=a.b.c` is acceptable,\nbut `x=[a,b,c]` is not.\n\nThe `unsafe` prefix on this function indicates that using the result of this function after\nthe `x` argument to this function is no longer accessible to the program may cause undefined\nbehavior, including program corruption or segfaults, at any later time.\n\nSee also [`cconvert`](@ref)\n"}],"Base.Cuint":[{"Union{}":" Cuint\n\nEquivalent to the native `unsigned int` c-type ([`UInt32`](@ref)).\n"}],"Base.MissingException":[{"Union{}":" MissingException(msg)\n\nException thrown when a [`missing`](@ref) value is encountered in a situation\nwhere it is not supported. The error message, in the `msg` field\nmay provide more specific details.\n"}],"Base.structdiff":[{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,Union{Type{NamedTuple{bn,T} where T<:Tuple}, NamedTuple{bn,T} where T<:Tuple}}} where bn where an":" structdiff(a::NamedTuple{an}, b::Union{NamedTuple{bn},Type{NamedTuple{bn}}}) where {an,bn}\n\nConstruct a copy of named tuple `a`, except with fields that exist in `b` removed.\n`b` can be a named tuple, or a type of the form `NamedTuple{field_names}`.\n"}],"Base.put!":[{"Union{Tuple{T}, Tuple{Channel{T},Any}} where T":" put!(c::Channel, v)\n\nAppend an item `v` to the channel `c`. Blocks if the channel is full.\n\nFor unbuffered channels, blocks until a [`take!`](@ref) is performed by a different\ntask.\n\n!!! compat \"Julia 1.1\"\n `v` now gets converted to the channel's type with [`convert`](@ref) as `put!` is called.\n"}],"Base.Culonglong":[{"Union{}":" Culonglong\n\nEquivalent to the native `unsigned long long` c-type ([`UInt64`](@ref)).\n"}],"Base.cumsum!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumsum!(B, A; dims::Integer)\n\nCumulative sum of `A` along the dimension `dims`, storing the result in `B`. See also [`cumsum`](@ref).\n"}],"Base.>":[{"Tuple{Any}":" >(x)\n\nCreate a function that compares its argument to `x` using [`>`](@ref), i.e.\na function equivalent to `y -> y > x`.\nThe returned function is of type `Base.Fix2{typeof(>)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >(x, y)\n\nGreater-than comparison operator. Falls back to `y < x`.\n\n# Implementation\nGenerally, new types should implement [`<`](@ref) instead of this function,\nand rely on the fallback definition `>(x, y) = y < x`.\n\n# Examples\n```jldoctest\njulia> 'a' > 'b'\nfalse\n\njulia> 7 > 3 > 1\ntrue\n\njulia> \"abc\" > \"abd\"\nfalse\n\njulia> 5 > 3\ntrue\n```\n"}],"Base.SecretBuffer":[{"Union{}":" Base.SecretBuffer()\n\nAn [`IOBuffer`](@ref)-like object where the contents will be securely wiped when garbage collected.\n\nIt is considered best practice to wipe the buffer using `Base.shred!(::SecretBuffer)` as\nsoon as the secure data are no longer required. When initializing with existing data, the\n`SecretBuffer!` method is highly recommended to securely zero the passed argument. Avoid\ninitializing with and converting to `String`s as they are unable to be securely zeroed.\n\n# Examples\n```jldoctest\njulia> s = Base.SecretBuffer()\nSecretBuffer(\"*******\")\n\njulia> write(s, 's', 'e', 'c', 'r', 'e', 't')\n6\n\njulia> seek(s, 0); Char(read(s, UInt8))\n's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)\n\njulia> Base.shred!(s)\nSecretBuffer(\"*******\")\n\njulia> eof(s)\ntrue\n```\n"},{"Tuple{AbstractString}":" SecretBuffer(str::AbstractString)\n\nA convenience constructor to initialize a `SecretBuffer` from a non-secret string.\n\nStrings are bad at keeping secrets because they are unable to be securely\nzeroed or destroyed. Therefore, avoid using this constructor with secret data.\nInstead of starting with a string, either construct the `SecretBuffer`\nincrementally with `SecretBuffer()` and [`write`](@ref), or use a `Vector{UInt8}` with\nthe `Base.SecretBuffer!(::Vector{UInt8})` constructor.\n"}],"Base.ImmutableDict":[{"Union{}":" ImmutableDict\n\nImmutableDict is a Dictionary implemented as an immutable linked list,\nwhich is optimal for small dictionaries that are constructed over many individual insertions\nNote that it is not possible to remove a value, although it can be partially overridden and hidden\nby inserting a new value with the same key\n\n ImmutableDict(KV::Pair)\n\nCreate a new entry in the Immutable Dictionary for the key => value pair\n\n - use `(key => value) in dict` to see if this particular combination is in the properties set\n - use `get(dict, key, default)` to retrieve the most recent value for a particular key\n\n"}],"Base.@inline":[{"Tuple{Any}":" @inline\n\nGive a hint to the compiler that this function is worth inlining.\n\nSmall functions typically do not need the `@inline` annotation,\nas the compiler does it automatically. By using `@inline` on bigger functions,\nan extra nudge can be given to the compiler to inline it.\nThis is shown in the following example:\n\n```julia\n@inline function bigfunction(x)\n #=\n Function Definition\n =#\nend\n```\n"}],"Base.step":[{"Tuple{StepRange}":" step(r)\n\nGet the step size of an [`AbstractRange`](@ref) object.\n\n# Examples\n```jldoctest\njulia> step(1:10)\n1\n\njulia> step(1:2:10)\n2\n\njulia> step(2.5:0.3:10.9)\n0.3\n\njulia> step(range(2.5, stop=10.9, length=85))\n0.1\n```\n"}],"Base.conj":[{"Tuple{Complex}":" conj(z)\n\nCompute the complex conjugate of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> conj(1 + 3im)\n1 - 3im\n```\n"}],"Base.last":[{"Tuple{Any}":" last(coll)\n\nGet the last element of an ordered collection, if it can be computed in O(1) time. This is\naccomplished by calling [`lastindex`](@ref) to get the last index. Return the end\npoint of an [`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> last(1:2:10)\n9\n\njulia> last([1; 2; 3; 4])\n4\n```\n"},{"Tuple{AbstractString,Integer}":" last(s::AbstractString, n::Integer)\n\nGet a string consisting of the last `n` characters of `s`.\n\n```jldoctest\njulia> last(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 1)\n\"0\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 3)\n\"²>0\"\n```\n"}],"Base.fetch":[{"Tuple{Task}":" fetch(t::Task)\n\nWait for a Task to finish, then return its result value.\nIf the task fails with an exception, a `TaskFailedException` (which wraps the failed task)\nis thrown.\n"},{"Tuple{Channel}":" fetch(c::Channel)\n\nWait for and get the first available item from the channel. Does not\nremove the item. `fetch` is unsupported on an unbuffered (0-size) channel.\n"}],"Base.DenseVecOrMat":[{"Union{}":" DenseVecOrMat{T}\n\nUnion type of [`DenseVector{T}`](@ref) and [`DenseMatrix{T}`](@ref).\n"}],"Base.isreadable":[{"Union{}":" isreadable(io) -> Bool\n\nReturn `true` if the specified IO object is readable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n isreadable(io)\n end\nfalse\n\njulia> open(\"myfile.txt\", \"r\") do io\n isreadable(io)\n end\ntrue\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.Set":[{"Tuple{Any}":" Set([itr])\n\nConstruct a [`Set`](@ref) of the values generated by the given iterable object, or an\nempty set. Should be used instead of [`BitSet`](@ref) for sparse integer sets, or\nfor sets of arbitrary objects.\n"}],"Base.minmax":[{"Tuple{Any,Any}":" minmax(x, y)\n\nReturn `(min(x,y), max(x,y))`. See also: [`extrema`](@ref) that returns `(minimum(x), maximum(x))`.\n\n# Examples\n```jldoctest\njulia> minmax('c','b')\n('b', 'c')\n```\n"}],"Base.rotl90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotl90(A, k)\n\nLeft-rotate matrix `A` 90 degrees counterclockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a,1)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotl90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotl90(a,3)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotl90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotl90(A)\n\nRotate matrix `A` left 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n```\n"}],"Base.⊆":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.oftype":[{"Tuple{Any,Any}":" oftype(x, y)\n\nConvert `y` to the type of `x` (`convert(typeof(x), y)`).\n\n# Examples\n```jldoctest\njulia> x = 4;\n\njulia> y = 3.;\n\njulia> oftype(x, y)\n3\n\njulia> oftype(y, x)\n4.0\n```\n"}],"Base.isequal":[{"Tuple{Any}":" isequal(x)\n\nCreate a function that compares its argument to `x` using [`isequal`](@ref), i.e.\na function equivalent to `y -> isequal(y, x)`.\n\nThe returned function is of type `Base.Fix2{typeof(isequal)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" isequal(x, y)\n\nSimilar to [`==`](@ref), except for the treatment of floating point numbers\nand of missing values. `isequal` treats all floating-point `NaN` values as equal\nto each other, treats `-0.0` as unequal to `0.0`, and [`missing`](@ref) as equal\nto `missing`. Always returns a `Bool` value.\n\n# Implementation\nThe default implementation of `isequal` calls `==`, so a type that does not involve\nfloating-point values generally only needs to define `==`.\n\n`isequal` is the comparison function used by hash tables (`Dict`). `isequal(x,y)` must imply\nthat `hash(x) == hash(y)`.\n\nThis typically means that types for which a custom `==` or `isequal` method exists must\nimplement a corresponding `hash` method (and vice versa). Collections typically implement\n`isequal` by calling `isequal` recursively on all contents.\n\nScalar types generally do not need to implement `isequal` separate from `==`, unless they\nrepresent floating-point numbers amenable to a more efficient implementation than that\nprovided as a generic fallback (based on `isnan`, `signbit`, and `==`).\n\n# Examples\n```jldoctest\njulia> isequal([1., NaN], [1., NaN])\ntrue\n\njulia> [1., NaN] == [1., NaN]\nfalse\n\njulia> 0.0 == -0.0\ntrue\n\njulia> isequal(0.0, -0.0)\nfalse\n```\n"}],"Base.^":[{"Tuple{Number,Number}":" ^(x, y)\n\nExponentiation operator. If `x` is a matrix, computes matrix exponentiation.\n\nIf `y` is an `Int` literal (e.g. `2` in `x^2` or `-3` in `x^-3`), the Julia code\n`x^y` is transformed by the compiler to `Base.literal_pow(^, x, Val(y))`, to\nenable compile-time specialization on the value of the exponent.\n(As a default fallback we have `Base.literal_pow(^, x, Val(y)) = ^(x,y)`,\nwhere usually `^ == Base.^` unless `^` has been defined in the calling\nnamespace.)\n\n```jldoctest\njulia> 3^5\n243\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> A^3\n2×2 Array{Int64,2}:\n 37 54\n 81 118\n```\n"},{"Tuple{Regex,Integer}":" ^(s::Regex, n::Integer)\n\nRepeat a regex `n` times.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> r\"Test \"^2\nr\"(?:Test ){2}\"\n\njulia> match(r\"Test \"^2, \"Test Test \")\nRegexMatch(\"Test Test \")\n```\n"},{"Tuple{Union{AbstractChar, AbstractString},Integer}":" ^(s::Union{AbstractString,AbstractChar}, n::Integer)\n\nRepeat a string or character `n` times. This can also be written as `repeat(s, n)`.\n\nSee also: [`repeat`](@ref)\n\n# Examples\n```jldoctest\njulia> \"Test \"^3\n\"Test Test Test \"\n```\n"}],"Base.print_matrix_vdots":[{"Union{Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer}, Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer,Bool}}":"`print_matrix_vdots` is used to show a series of vertical ellipsis instead\nof a bunch of rows for long matrices. Not only is the string vdots shown\nbut it also repeated every M elements if desired.\n"}],"Base.redirect_stdout":[{"Union{}":" redirect_stdout([stream]) -> (rd, wr)\n\nCreate a pipe to which all C and Julia level [`stdout`](@ref) output\nwill be redirected.\nReturns a tuple `(rd, wr)` representing the pipe ends.\nData written to [`stdout`](@ref) may now be read from the `rd` end of\nthe pipe. The `wr` end is given for convenience in case the old\n[`stdout`](@ref) object was cached by the user and needs to be replaced\nelsewhere.\n\nIf called with the optional `stream` argument, then returns `stream` itself.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdout(f::Function, stream)\n\nRun the function `f` while redirecting [`stdout`](@ref) to `stream`.\nUpon completion, [`stdout`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.fldmod1":[{"Tuple{Any,Any}":" fldmod1(x, y)\n\nReturn `(fld1(x,y), mod1(x,y))`.\n\nSee also: [`fld1`](@ref), [`mod1`](@ref).\n"}],"Base.@__MODULE__":[{"Tuple{}":" @__MODULE__ -> Module\n\nGet the `Module` of the toplevel eval,\nwhich is the `Module` code is currently being read from.\n"}],"Base.accumulate!":[{"Tuple{Any,Any,Any}":" accumulate!(op, B, A; [dims], [init])\n\nCumulative operation `op` on `A` along the dimension `dims`, storing the result in `B`.\nProviding `dims` is optional for vectors. If the keyword argument `init` is given, its\nvalue is used to instantiate the accumulation. See also [`accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 0, 2, 0, 3];\n\njulia> y = [0, 0, 0, 0, 0];\n\njulia> accumulate!(+, y, x);\n\njulia> y\n5-element Array{Int64,1}:\n 1\n 1\n 3\n 3\n 6\n\njulia> A = [1 2; 3 4];\n\njulia> B = [0 0; 0 0];\n\njulia> accumulate!(-, B, A, dims=1);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 2\n -2 -2\n\njulia> accumulate!(-, B, A, dims=2);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 -1\n 3 -1\n```\n"}],"Base.redirect_stdin":[{"Union{}":" redirect_stdin([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stdin`](@ref).\nNote that the order of the return tuple is still `(rd, wr)`,\ni.e. data to be read from [`stdin`](@ref) may be written to `wr`.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdin(f::Function, stream)\n\nRun the function `f` while redirecting [`stdin`](@ref) to `stream`.\nUpon completion, [`stdin`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.Cptrdiff_t":[{"Union{}":" Cptrdiff_t\n\nEquivalent to the native `ptrdiff_t` c-type (`Int`).\n"}],"Base.findfirst":[{"Tuple{Any}":" findfirst(A)\n\nReturn the index or key of the first `true` value in `A`.\nReturn `nothing` if no such value is found.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findfirst(A)\n3\n\njulia> findfirst(falses(3)) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findfirst(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findfirst(predicate::Function, A)\n\nReturn the index or key of the first element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2]\n4-element Array{Int64,1}:\n 1\n 4\n 2\n 2\n\njulia> findfirst(iseven, A)\n2\n\njulia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL\n\njulia> findfirst(isequal(4), A)\n2\n\njulia> A = [1 4; 2 2]\n2×2 Array{Int64,2}:\n 1 4\n 2 2\n\njulia> findfirst(iseven, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findfirst(pattern::AbstractString, string::AbstractString)\n findfirst(pattern::Regex, string::String)\n\nFind the first occurrence of `pattern` in `string`. Equivalent to\n[`findnext(pattern, string, firstindex(s))`](@ref).\n\n# Examples\n```jldoctest\njulia> findfirst(\"z\", \"Hello to the world\") # returns nothing, but not printed in the REPL\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findfirst(ch::AbstractChar, string::AbstractString)\n\nFind the first occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findfirst('a', \"happy\")\n2\n\njulia> findfirst('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.notnothing":[{"Tuple{Any}":" notnothing(x)\n\nThrow an error if `x === nothing`, and return `x` if not.\n"}],"Base.Cwchar_t":[{"Union{}":" Cwchar_t\n\nEquivalent to the native `wchar_t` c-type ([`Int32`](@ref)).\n"}],"Base.fieldname":[{"Tuple{DataType,Integer}":" fieldname(x::DataType, i::Integer)\n\nGet the name of field `i` of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldname(Rational, 1)\n:num\n\njulia> fieldname(Rational, 2)\n:den\n```\n"}],"Base.nextfloat":[{"Tuple{Union{Float16, Float32, Float64},Integer}":" nextfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `nextfloat` to `x` if `n >= 0`, or `-n`\napplications of `prevfloat` if `n < 0`.\n"},{"Tuple{AbstractFloat}":" nextfloat(x::AbstractFloat)\n\nReturn the smallest floating point number `y` of the same type as `x` such `x < y`. If no\nsuch `y` exists (e.g. if `x` is `Inf` or `NaN`), then return `x`.\n"}],"Base.prevind":[{"Tuple{AbstractString,Integer,Integer}":" prevind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts before index `i`. In other words, if `i` is the start of a\n character, return the start of the previous character; if `i` is not the start\n of a character, rewind until the start of a character and return that index.\n If `i` is equal to `1` return `0`.\n If `i` is equal to `ncodeunits(str)+1` return `lastindex(str)`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `prevind` for `n==1`. The only difference\n is that if `n` is so large that applying `prevind` would reach `0` then each remaining\n iteration decreases the returned value by `1`.\n This means that in this case `prevind` can return a negative value.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `str` or is equal to `ncodeunits(str)+1`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> prevind(\"α\", 3)\n1\n\njulia> prevind(\"α\", 1)\n0\n\njulia> prevind(\"α\", 0)\nERROR: BoundsError: attempt to access String\n at index [0]\n[...]\n\njulia> prevind(\"α\", 2, 2)\n0\n\njulia> prevind(\"α\", 2, 3)\n-1\n```\n"}],"Base.<<":[{"Tuple{BitArray{1},Int64}":" <<(B::BitVector, n) -> BitVector\n\nLeft bit shift operator, `B << n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions backwards, filling with `false`\nvalues. If `n < 0`, elements are shifted forwards. Equivalent to\n`B >> -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B << 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n\njulia> B << -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n```\n"},{"Tuple{Integer,Integer}":" <<(x, n)\n\nLeft bit shift operator, `x << n`. For `n >= 0`, the result is `x` shifted left\nby `n` bits, filling with `0`s. This is equivalent to `x * 2^n`. For `n < 0`,\nthis is equivalent to `x >> -n`.\n\n# Examples\n```jldoctest\njulia> Int8(3) << 2\n12\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> bitstring(Int8(12))\n\"00001100\"\n```\nSee also [`>>`](@ref), [`>>>`](@ref).\n"}],"Base.fill":[{"Union{}":" fill(x, dims::Tuple)\n fill(x, dims...)\n\nCreate an array filled with the value `x`. For example, `fill(1.0, (5,5))` returns a 5×5\narray of floats, with each element initialized to `1.0`.\n\n`dims` may be specified as either a tuple or a sequence of arguments. For example,\nthe common idiom `fill(x)` creates a zero-dimensional array containing the single value `x`.\n\n# Examples\n```jldoctest\njulia> fill(1.0, (5,5))\n5×5 Array{Float64,2}:\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n\njulia> fill(0.5, 1, 2)\n1×2 Array{Float64,2}:\n 0.5 0.5\n\njulia> fill(42)\n0-dimensional Array{Int64,0}:\n42\n```\n\nIf `x` is an object reference, all elements will refer to the same object. `fill(Foo(),\ndims)` will return an array filled with the result of evaluating `Foo()` once.\n"}],"Base.BitSet":[{"Tuple{Any}":" BitSet([itr])\n\nConstruct a sorted set of `Int`s generated by the given iterable object, or an\nempty set. Implemented as a bit string, and therefore designed for dense integer sets.\nIf the set will be sparse (for example, holding a few\nvery large integers), use [`Set`](@ref) instead.\n"}],"Base.LinRange":[{"Union{}":" LinRange{T}\n\nA range with `len` linearly spaced elements between its `start` and `stop`.\nThe size of the spacing is controlled by `len`, which must\nbe an `Int`.\n\n# Examples\n```jldoctest\njulia> LinRange(1.5, 5.5, 9)\n9-element LinRange{Float64}:\n 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5\n```\n"}],"Base.signbit":[{"Tuple{Real}":" signbit(x)\n\nReturns `true` if the value of the sign of `x` is negative, otherwise `false`.\n\n# Examples\n```jldoctest\njulia> signbit(-4)\ntrue\n\njulia> signbit(5)\nfalse\n\njulia> signbit(5.5)\nfalse\n\njulia> signbit(-4.1)\ntrue\n```\n"}],"Base.empty":[{"Tuple{AbstractDict}":" empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])\n\nCreate an empty `AbstractDict` container which can accept indices of type `index_type` and\nvalues of type `value_type`. The second and third arguments are optional and default to the\ninput's `keytype` and `valtype`, respectively. (If only one of the two types is specified,\nit is assumed to be the `value_type`, and the `index_type` we default to `keytype(a)`).\n\nCustom `AbstractDict` subtypes may choose which specific dictionary type is best suited to\nreturn for the given index and value types, by specializing on the three-argument signature.\nThe default is to return an empty `Dict`.\n"},{"Tuple{Tuple}":" empty(x::Tuple)\n\nReturns an empty tuple, `()`.\n"},{"Union{Tuple{AbstractArray{T,1}}, Tuple{U}, Tuple{T}, Tuple{AbstractArray{T,1},Type{U}}} where U where T":" empty(v::AbstractVector, [eltype])\n\nCreate an empty vector similar to `v`, optionally changing the `eltype`.\n\n# Examples\n\n```jldoctest\njulia> empty([1.0, 2.0, 3.0])\n0-element Array{Float64,1}\n\njulia> empty([1.0, 2.0, 3.0], String)\n0-element Array{String,1}\n```\n"}],"Base.symdiff":[{"Tuple{Any,Vararg{Any,N} where N}":" symdiff(s, itrs...)\n\nConstruct the symmetric difference of elements in the passed in sets.\nWhen `s` is not an `AbstractSet`, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n\n# Examples\n```jldoctest\njulia> symdiff([1,2,3], [3,4,5], [4,5,6])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> symdiff([1,2,1], [2, 1, 2])\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> symdiff(unique([1,2,1]), unique([2, 1, 2]))\n0-element Array{Int64,1}\n```\n"}],"Base.may_invoke_generator":[{"Tuple{Core.MethodInstance}":" may_invoke_generator(method, atypes, sparams)\n\nComputes whether or not we may invoke the generator for the given `method` on\nthe given atypes and sparams. For correctness, all generated function are\nrequired to return monotonic answers. However, since we don't expect users to\nbe able to successfully implement this criterion, we only call generated\nfunctions on concrete types. The one exception to this is that we allow calling\ngenerators with abstract types if the generator does not use said abstract type\n(and thus cannot incorrectly use it to break monotonicity). This function\ncomputes whether we are in either of these cases.\n\nUnlike normal functions, the compilation heuristics still can't generate good dispatch\nin some cases, but this may still allow inference not to fall over in some limited cases.\n"}],"Base.@locals":[{"Tuple{}":" @locals()\n\nConstruct a dictionary of the names (as symbols) and values of all local\nvariables defined as of the call site.\n\n!!! compat \"Julia 1.1\"\n This macro requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> let x = 1, y = 2\n Base.@locals\n end\nDict{Symbol,Any} with 2 entries:\n :y => 2\n :x => 1\n\njulia> function f(x)\n local y\n show(Base.@locals); println()\n for i = 1:1\n show(Base.@locals); println()\n end\n y = 2\n show(Base.@locals); println()\n nothing\n end;\n\njulia> f(42)\nDict{Symbol,Any}(:x => 42)\nDict{Symbol,Any}(:i => 1,:x => 42)\nDict{Symbol,Any}(:y => 2,:x => 42)\n```\n"}],"Base.!":[{"Tuple{Bool}":" !(x)\n\nBoolean not. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if `x` is `missing`.\n\n# Examples\n```jldoctest\njulia> !true\nfalse\n\njulia> !false\ntrue\n\njulia> !missing\nmissing\n\njulia> .![true false true]\n1×3 BitArray{2}:\n 0 1 0\n```\n"},{"Tuple{Function}":" !f::Function\n\nPredicate function negation: when the argument of `!` is a function, it returns a\nfunction which computes the boolean negation of `f`.\n\n# Examples\n```jldoctest\njulia> str = \"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\njulia> filter(isletter, str)\n\"εδxyδfxfyε\"\n\njulia> filter(!isletter, str)\n\"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < \"\n```\n"}],"Base.stride":[{"Tuple{AbstractArray,Integer}":" stride(A, k::Integer)\n\nReturn the distance in memory (in number of elements) between adjacent elements in dimension `k`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> stride(A,2)\n3\n\njulia> stride(A,3)\n12\n```\n"}],"Base.IdentityUnitRange":[{"Union{}":" IdentityUnitRange(range::AbstractUnitRange)\n\nRepresent an AbstractUnitRange `range` as an offset vector such that `range[i] == i`.\n\n`IdentityUnitRange`s are frequently used as axes for offset arrays.\n"}],"Base.ARGS":[{"Union{}":" ARGS\n\nAn array of the command line arguments passed to Julia, as strings.\n"}],"Base.disable_sigint":[{"Tuple{Function}":" disable_sigint(f::Function)\n\nDisable Ctrl-C handler during execution of a function on the current task,\nfor calling external code that may call julia code that is not interrupt safe.\nIntended to be called using `do` block syntax as follows:\n\n disable_sigint() do\n # interrupt-unsafe code\n ...\n end\n\nThis is not needed on worker threads (`Threads.threadid() != 1`) since the\n`InterruptException` will only be delivered to the master thread.\nExternal functions that do not call julia code or julia runtime\nautomatically disable sigint during their execution.\n"}],"Base.LogicalIndex":[{"Union{}":" LogicalIndex(mask)\n\nThe `LogicalIndex` type is a special vector that simply contains all indices I\nwhere `mask[I]` is true. This specialized type does not support indexing\ndirectly as doing so would require O(n) lookup time. `AbstractArray{Bool}` are\nwrapped with `LogicalIndex` upon calling [`to_indices`](@ref).\n"}],"Base.shell_escape_posixly":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape_posixly(args::Union{Cmd,AbstractString...})\n\nThe unexported `shell_escape_posixly` function\ntakes a string or command object and escapes any special characters in such a way that\nit is safe to pass it as an argument to a posix shell.\n\n# Examples\n```jldoctest\njulia> Base.shell_escape_posixly(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' '&&' echo done\"\n\njulia> Base.shell_escape_posixly(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this '&&' that\"\n```\n"}],"Base.IndexStyle":[{"Tuple{AbstractArray}":" IndexStyle(A)\n IndexStyle(typeof(A))\n\n`IndexStyle` specifies the \"native indexing style\" for array `A`. When\nyou define a new [`AbstractArray`](@ref) type, you can choose to implement\neither linear indexing (with [`IndexLinear`](@ref)) or cartesian indexing.\nIf you decide to only implement linear indexing, then you must set this trait for your array\ntype:\n\n Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()\n\nThe default is [`IndexCartesian()`](@ref).\n\nJulia's internal indexing machinery will automatically (and invisibly)\nrecompute all indexing operations into the preferred style. This allows users\nto access elements of your array using any indexing style, even when explicit\nmethods have not been provided.\n\nIf you define both styles of indexing for your `AbstractArray`, this\ntrait can be used to select the most performant indexing style. Some\nmethods check this trait on their inputs, and dispatch to different\nalgorithms depending on the most efficient access pattern. In\nparticular, [`eachindex`](@ref) creates an iterator whose type depends\non the setting of this trait.\n"}],"Base.iszero":[{"Tuple{Any}":" iszero(x)\n\nReturn `true` if `x == zero(x)`; if `x` is an array, this checks whether\nall of the elements of `x` are zero.\n\n# Examples\n```jldoctest\njulia> iszero(0.0)\ntrue\n\njulia> iszero([1, 9, 0])\nfalse\n\njulia> iszero([false, 0, 0])\ntrue\n```\n"}],"Base.promote":[{"Union{}":" promote(xs...)\n\nConvert all arguments to a common type, and return them all (as a tuple).\nIf no arguments can be converted, an error is raised.\n\n# Examples\n```jldoctest\njulia> promote(Int8(1), Float16(4.5), Float32(4.1))\n(1.0f0, 4.5f0, 4.1f0)\n```\n"}],"Base.findprev":[{"Tuple{Function,Any,Any}":" findprev(predicate::Function, A, i)\n\nFind the previous index before or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [4, 6, 1, 2]\n4-element Array{Int64,1}:\n 4\n 6\n 1\n 2\n\njulia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL\n\njulia> findprev(isodd, A, 3)\n3\n\njulia> A = [4 6; 1 2]\n2×2 Array{Int64,2}:\n 4 6\n 1 2\n\njulia> findprev(isodd, A, CartesianIndex(1, 2))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Any,Any}":" findprev(A, i)\n\nFind the previous index before or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, true]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 1\n\njulia> findprev(A, 3)\n3\n\njulia> findprev(A, 1) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true true]\n2×2 Array{Bool,2}:\n 0 0\n 1 1\n\njulia> findprev(A, CartesianIndex(2, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findprev(pattern::AbstractString, string::AbstractString, start::Integer)\n\nFind the previous occurrence of `pattern` in `string` starting at position `start`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findprev(x, s, i)] == x`:\n\n`findprev(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `stop <= i`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findprev(\"z\", \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev(\"o\", \"Hello to the world\", 18)\n15:15\n\njulia> findprev(\"Julia\", \"JuliaLang\", 6)\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findprev(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the previous occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findprev('z', \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev('o', \"Hello to the world\", 18)\n15\n```\n"}],"Base.findmin":[{"Tuple{Any}":" findmin(itr) -> (x, index)\n\nReturn the minimum element of the collection `itr` and its index. If there are multiple\nminimal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `min`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmin([8,0.1,-9,pi])\n(-9.0, 3)\n\njulia> findmin([7,1,1,6])\n(1, 2)\n\njulia> findmin([7,1,1,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmin(A; dims) -> (minval, index)\n\nFor an array input, returns the value and index of the minimum over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmin(A, dims=1)\n([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])\n\njulia> findmin(A, dims=2)\n([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])\n```\n"}],"Base.LOAD_PATH":[{"Union{}":" LOAD_PATH\n\nAn array of paths for `using` and `import` statements to consider as project\nenvironments or package directories when loading code. It is populated based on\nthe [`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH) environment variable if set;\notherwise it defaults to `[\"@\", \"@v#.#\", \"@stdlib\"]`. Entries starting with `@`\nhave special meanings:\n\n- `@` refers to the \"current active environment\", the initial value of which is\n initially determined by the [`JULIA_PROJECT`](@ref JULIA_PROJECT) environment\n variable or the `--project` command-line option.\n\n- `@stdlib` expands to the absolute path of the current Julia installation's\n standard library directory.\n\n- `@name` refers to a named environment, which are stored in depots (see\n [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)) under the `environments`\n subdirectory. The user's named environments are stored in\n `~/.julia/environments` so `@name` would refer to the environment in\n `~/.julia/environments/name` if it exists and contains a `Project.toml` file.\n If `name` contains `#` characters, then they are replaced with the major, minor\n and patch components of the Julia version number. For example, if you are\n running Julia 1.2 then `@v#.#` expands to `@v1.2` and will look for an\n environment by that name, typically at `~/.julia/environments/v1.2`.\n\nThe fully expanded value of `LOAD_PATH` that is searched for projects and packages\ncan be seen by calling the `Base.load_path()` function.\n\nSee also:\n[`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH),\n[`JULIA_PROJECT`](@ref JULIA_PROJECT),\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.match":[{"Union{}":" match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])\n\nSearch for the first match of the regular expression `r` in `s` and return a `RegexMatch`\nobject containing the match, or nothing if the match failed. The matching substring can be\nretrieved by accessing `m.match` and the captured sequences can be retrieved by accessing\n`m.captures` The optional `idx` argument specifies an index at which to start the search.\n\n# Examples\n```jldoctest\njulia> rx = r\"a(.)a\"\nr\"a(.)a\"\n\njulia> m = match(rx, \"cabac\")\nRegexMatch(\"aba\", 1=\"b\")\n\njulia> m.captures\n1-element Array{Union{Nothing, SubString{String}},1}:\n \"b\"\n\njulia> m.match\n\"aba\"\n\njulia> match(rx, \"cabac\", 3) === nothing\ntrue\n```\n"}],"Base.rsplit":[{"Union{}":" rsplit(s::AbstractString; limit::Integer=0, keepempty::Bool=false)\n rsplit(s::AbstractString, chars; limit::Integer=0, keepempty::Bool=true)\n\nSimilar to [`split`](@ref), but starting from the end of the string.\n\n# Examples\n```jldoctest\njulia> a = \"M.a.r.c.h\"\n\"M.a.r.c.h\"\n\njulia> rsplit(a,\".\")\n5-element Array{SubString{String},1}:\n \"M\"\n \"a\"\n \"r\"\n \"c\"\n \"h\"\n\njulia> rsplit(a,\".\";limit=1)\n1-element Array{SubString{String},1}:\n \"M.a.r.c.h\"\n\njulia> rsplit(a,\".\";limit=2)\n2-element Array{SubString{String},1}:\n \"M.a.r.c\"\n \"h\"\n```\n"}],"Base.isodd":[{"Tuple{Integer}":" isodd(x::Integer) -> Bool\n\nReturn `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isodd(9)\ntrue\n\njulia> isodd(10)\nfalse\n```\n"}],"Base.operator_associativity":[{"Tuple{Symbol}":" operator_associativity(s::Symbol)\n\nReturn a symbol representing the associativity of operator `s`. Left- and right-associative\noperators return `:left` and `:right`, respectively. Return `:none` if `s` is non-associative\nor an invalid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_associativity(:-), Base.operator_associativity(:+), Base.operator_associativity(:^)\n(:left, :none, :right)\n\njulia> Base.operator_associativity(:⊗), Base.operator_associativity(:sin), Base.operator_associativity(:→)\n(:left, :none, :right)\n```\n"}],"Base.setdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff!(s, itrs...)\n\nRemove from set `s` (in-place) each element of each iterable from `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> setdiff!(a, 1:2:6);\n\njulia> a\nSet{Int64} with 1 element:\n 4\n```\n"}],"Base.ispow2":[{"Tuple{Integer}":" ispow2(n::Integer) -> Bool\n\nTest whether `n` is a power of two.\n\n# Examples\n```jldoctest\njulia> ispow2(4)\ntrue\n\njulia> ispow2(5)\nfalse\n```\n"}],"Base.hcat":[{"Tuple":" hcat(A...)\n\nConcatenate along dimension 2.\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3; 4; 5]\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> b = [6 7; 8 9; 10 11; 12 13; 14 15]\n5×2 Array{Int64,2}:\n 6 7\n 8 9\n 10 11\n 12 13\n 14 15\n\njulia> hcat(a,b)\n5×3 Array{Int64,2}:\n 1 6 7\n 2 8 9\n 3 10 11\n 4 12 13\n 5 14 15\n\njulia> c = ([1; 2; 3], [4; 5; 6])\n([1, 2, 3], [4, 5, 6])\n\njulia> hcat(c...)\n3×2 Array{Int64,2}:\n 1 4\n 2 5\n 3 6\n```\n"}],"Base.showarg":[{"Union{Tuple{T}, Tuple{IO,Type{T},Any}} where T":" showarg(io::IO, x, toplevel)\n\nShow `x` as if it were an argument to a function. This function is\nused by [`summary`](@ref) to display type information in terms of sequences of\nfunction calls on objects. `toplevel` is `true` if this is\nthe direct call from `summary` and `false` for nested (recursive) calls.\n\nThe fallback definition is to print `x` as \"::\\$(typeof(x))\",\nrepresenting argument `x` in terms of its type. (The double-colon is\nomitted if `toplevel=true`.) However, you can\nspecialize this function for specific types to customize printing.\n\n# Example\n\nA SubArray created as `view(a, :, 3, 2:5)`, where `a` is a\n3-dimensional Float64 array, has type\n\n SubArray{Float64,2,Array{Float64,3},Tuple{Colon,Int64,UnitRange{Int64}},false}\n\nThe default `show` printing would display this full type.\nHowever, the summary for SubArrays actually prints as\n\n 2×4 view(::Array{Float64,3}, :, 3, 2:5) with eltype Float64\n\nbecause of a definition similar to\n\n function Base.showarg(io::IO, v::SubArray, toplevel)\n print(io, \"view(\")\n showarg(io, parent(v), false)\n print(io, \", \", join(v.indices, \", \"))\n print(io, ')')\n toplevel && print(io, \" with eltype \", eltype(v))\n end\n\nNote that we're calling `showarg` recursively for the parent array\ntype, indicating that any recursed calls are not at the top level.\nPrinting the parent as `::Array{Float64,3}` is the fallback (non-toplevel)\nbehavior, because no specialized method for `Array` has been defined.\n"}],"Base.isapprox":[{"Tuple{Number,Number}":" isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)\n\nInexact equality comparison: `true` if `norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))`. The\ndefault `atol` is zero and the default `rtol` depends on the types of `x` and `y`. The keyword\nargument `nans` determines whether or not NaN values are considered equal (defaults to false).\n\nFor real or complex floating-point values, if an `atol > 0` is not specified, `rtol` defaults to\nthe square root of [`eps`](@ref) of the type of `x` or `y`, whichever is bigger (least precise).\nThis corresponds to requiring equality of about half of the significand digits. Otherwise,\ne.g. for integer arguments or if an `atol > 0` is supplied, `rtol` defaults to zero.\n\n`x` and `y` may also be arrays of numbers, in which case `norm` defaults to the usual\n`norm` function in LinearAlgebra, but\nmay be changed by passing a `norm::Function` keyword argument. (For numbers, `norm` is the\nsame thing as `abs`.) When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`\nor `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are\napproximately equal component-wise.\n\nThe binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`\nis equivalent to `!isapprox(x,y)`.\n\nNote that `x ≈ 0` (i.e., comparing to zero with the default tolerances) is\nequivalent to `x == 0` since the default `atol` is `0`. In such cases, you should either\nsupply an appropriate `atol` (or use `norm(x) ≤ atol`) or rearrange your code (e.g.\nuse `x ≈ y` rather than `x - y ≈ 0`). It is not possible to pick a nonzero `atol`\nautomatically because it depends on the overall scaling (the \"units\") of your problem:\nfor example, in `x - y ≈ 0`, `atol=1e-9` is an absurdly small tolerance if `x` is the\n[radius of the Earth](https://en.wikipedia.org/wiki/Earth_radius) in meters,\nbut an absurdly large tolerance if `x` is the\n[radius of a Hydrogen atom](https://en.wikipedia.org/wiki/Bohr_radius) in meters.\n\n\n# Examples\n```jldoctest\njulia> 0.1 ≈ (0.1 - 1e-10)\ntrue\n\njulia> isapprox(10, 11; atol = 2)\ntrue\n\njulia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])\ntrue\n\njulia> 1e-10 ≈ 0\nfalse\n\njulia> isapprox(1e-10, 0, atol=1e-8)\ntrue\n```\n"}],"Base.summary":[{"Tuple{IO,Any}":" summary(io::IO, x)\n str = summary(x)\n\nPrint to a stream `io`, or return a string `str`, giving a brief description of\na value. By default returns `string(typeof(x))`, e.g. [`Int64`](@ref).\n\nFor arrays, returns a string of size and type info,\ne.g. `10-element Array{Int64,1}`.\n\n# Examples\n```jldoctest\njulia> summary(1)\n\"Int64\"\n\njulia> summary(zeros(2))\n\"2-element Array{Float64,1}\"\n```\n"}],"Base.keytype":[{"Tuple{AbstractArray}":" keytype(T::Type{<:AbstractArray})\n keytype(A::AbstractArray)\n\nReturn the key type of an array. This is equal to the\n`eltype` of the result of `keys(...)`, and is provided\nmainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> keytype([1, 2, 3]) == Int\ntrue\n\njulia> keytype([1 2; 3 4])\nCartesianIndex{2}\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"},{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" keytype(type)\n\nGet the key type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> keytype(Dict(Int32(1) => \"foo\"))\nInt32\n```\n"}],"Base.intersect!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nIntersect all passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n"}],"Base.unaliascopy":[{"Tuple{Array}":" Base.unaliascopy(A)\n\nMake a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against\nanother array in order to preserve consistent semantics as that other array is mutated.\n\nThis must return an object of the same type as `A` to preserve optimal performance in the\nmuch more common case where aliasing does not occur. By default,\n`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where\n`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of\n`Base.unaliascopy(A)`.\n"}],"Base.bitstring":[{"Union{}":" bitstring(n)\n\nA string giving the literal bit representation of a number.\n\n# Examples\n```jldoctest\njulia> bitstring(4)\n\"0000000000000000000000000000000000000000000000000000000000000100\"\n\njulia> bitstring(2.2)\n\"0100000000000001100110011001100110011001100110011001100110011010\"\n```\n"}],"Base.to_index":[{"Tuple{Any,Any}":" to_index(A, i)\n\nConvert index `i` to an `Int` or array of indices to be used as an index into array `A`.\n\nCustom array types may specialize `to_index(::CustomArray, i)` to provide\nspecial indexing behaviors. Note that some index types (like `Colon`) require\nmore context in order to transform them into an array of indices; those get\nconverted in the more complicated `to_indices` function. By default, this\nsimply calls the generic `to_index(i)`. This must return either an `Int` or an\n`AbstractArray` of scalar indices that are supported by `A`.\n"},{"Tuple{Integer}":" to_index(i)\n\nConvert index `i` to an `Int` or array of `Int`s to be used as an index for all arrays.\n\nCustom index types may specialize `to_index(::CustomIndex)` to provide special\nindexing behaviors. This must return either an `Int` or an `AbstractArray` of\n`Int`s.\n"}],"Base.floatmin":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmin(T)\n\nThe smallest in absolute value non-subnormal value representable by the given\nfloating-point DataType `T`.\n"}],"Base.@static":[{"Tuple{Any}":" @static\n\nPartially evaluate an expression at parse time.\n\nFor example, `@static Sys.iswindows() ? foo : bar` will evaluate `Sys.iswindows()` and insert\neither `foo` or `bar` into the expression.\nThis is useful in cases where a construct would be invalid on other platforms,\nsuch as a `ccall` to a non-existent function.\n`@static if Sys.isapple() foo end` and `@static foo <&&,||> bar` are also valid syntax.\n"}],"Base.notify":[{"Tuple{Base.GenericCondition,Any}":" notify(condition, val=nothing; all=true, error=false)\n\nWake up tasks waiting for a condition, passing them `val`. If `all` is `true` (the default),\nall waiting tasks are woken, otherwise only one is. If `error` is `true`, the passed value\nis raised as an exception in the woken tasks.\n\nReturn the count of tasks woken up. Return 0 if no tasks are waiting on `condition`.\n"}],"Base.schedule":[{"Tuple{Task,Any}":" schedule(t::Task, [val]; error=false)\n\nAdd a [`Task`](@ref) to the scheduler's queue. This causes the task to run constantly when the system\nis otherwise idle, unless the task performs a blocking operation such as [`wait`](@ref).\n\nIf a second argument `val` is provided, it will be passed to the task (via the return value of\n[`yieldto`](@ref)) when it runs again. If `error` is `true`, the value is raised as an exception in\nthe woken task.\n\n# Examples\n```jldoctest\njulia> a5() = sum(i for i in 1:1000);\n\njulia> b = Task(a5);\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskstarted(b)\ntrue\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.channeled_tasks":[{"Tuple{Int64,Vararg{Any,N} where N}":" channeled_tasks(n::Int, funcs...; ctypes=fill(Any,n), csizes=fill(0,n))\n\nA convenience method to create `n` channels and bind them to tasks started\nfrom the provided functions in a single call. Each `func` must accept `n` arguments\nwhich are the created channels. Channel types and sizes may be specified via\nkeyword arguments `ctypes` and `csizes` respectively. If unspecified, all channels are\nof type `Channel{Any}(0)`.\n\nReturns a tuple, `(Array{Channel}, Array{Task})`, of the created channels and tasks.\n"}],"Base.startswith":[{"Tuple{AbstractString,Regex}":" startswith(s::AbstractString, prefix::Regex)\n\nReturn `true` if `s` starts with the regex pattern, `prefix`.\n\n!!! note\n `startswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"^...\", s)` is faster than `startswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`endswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", r\"Julia|Romeo\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" startswith(s::AbstractString, prefix::AbstractString)\n\nReturn `true` if `s` starts with `prefix`. If `prefix` is a vector or set\nof characters, test whether the first character of `s` belongs to that set.\n\nSee also [`endswith`](@ref).\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", \"Julia\")\ntrue\n```\n"}],"Base.WeakKeyDict":[{"Union{}":" WeakKeyDict([itr])\n\n`WeakKeyDict()` constructs a hash table where the keys are weak\nreferences to objects which may be garbage collected even when\nreferenced in a hash table.\n\nSee [`Dict`](@ref) for further help. Note, unlike [`Dict`](@ref),\n`WeakKeyDict` does not convert keys on insertion.\n"}],"Base.setdiff":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff(s, itrs...)\n\nConstruct the set of elements in `s` but not in any of the iterables in `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> setdiff([1,2,3], [3,4,5])\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.lock":[{"Tuple{Any,Base.AbstractLock}":" lock(f::Function, lock)\n\nAcquire the `lock`, execute `f` with the `lock` held, and release the `lock` when `f`\nreturns. If the lock is already locked by a different task/thread, wait for it to become\navailable.\n\nWhen this function returns, the `lock` has been released, so the caller should\nnot attempt to `unlock` it.\n"},{"Tuple{ReentrantLock}":" lock(lock)\n\nAcquire the `lock` when it becomes available.\nIf the lock is already locked by a different task/thread,\nwait for it to become available.\n\nEach `lock` must be matched by an [`unlock`](@ref).\n"}],"Base.Vector":[{"Union{}":" Vector{T} <: AbstractVector{T}\n\nOne-dimensional dense array with elements of type `T`, often used to represent\na mathematical vector. Alias for [`Array{T,1}`](@ref).\n"}],"Base.lpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" lpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the left with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> lpad(\"March\", 10)\n\" March\"\n```\n"}],"Base.invperm":[{"Tuple{AbstractArray{T,1} where T}":" invperm(v)\n\nReturn the inverse permutation of `v`.\nIf `B = A[v]`, then `A == B[invperm(v)]`.\n\n# Examples\n```jldoctest\njulia> v = [2; 4; 3; 1];\n\njulia> invperm(v)\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 2\n\njulia> A = ['a','b','c','d'];\n\njulia> B = A[v]\n4-element Array{Char,1}:\n 'b'\n 'd'\n 'c'\n 'a'\n\njulia> B[invperm(v)]\n4-element Array{Char,1}:\n 'a'\n 'b'\n 'c'\n 'd'\n```\n"}],"Base.unsafe_pointer_to_objref":[{"Tuple{Ptr}":" unsafe_pointer_to_objref(p::Ptr)\n\nConvert a `Ptr` to an object reference. Assumes the pointer refers to a valid heap-allocated\nJulia object. If this is not the case, undefined behavior results, hence this function is\nconsidered \"unsafe\" and should be used with care.\n\nSee also: [`pointer_from_objref`](@ref).\n"}],"Base.readlines":[{"Tuple{AbstractString}":" readlines(io::IO=stdin; keep::Bool=false)\n readlines(filename::AbstractString; keep::Bool=false)\n\nRead all lines of an I/O stream or a file as a vector of strings. Behavior is\nequivalent to saving the result of reading [`readline`](@ref) repeatedly with the same\narguments and saving the resulting lines as a vector of strings.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readlines(\"my_file.txt\")\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\"\n \"It has many members.\"\n\njulia> readlines(\"my_file.txt\", keep=true)\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\\n\"\n \"It has many members.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.promote_type":[{"Union{}":" promote_type(type1, type2)\n\nPromotion refers to converting values of mixed types to a single common type.\n`promote_type` represents the default promotion behavior in Julia when\noperators (usually mathematical) are given arguments of differing types.\n`promote_type` generally tries to return a type which can at least approximate\nmost values of either input type without excessively widening. Some loss is\ntolerated; for example, `promote_type(Int64, Float64)` returns\n[`Float64`](@ref) even though strictly, not all [`Int64`](@ref) values can be\nrepresented exactly as `Float64` values.\n\n```jldoctest\njulia> promote_type(Int64, Float64)\nFloat64\n\njulia> promote_type(Int32, Int64)\nInt64\n\njulia> promote_type(Float32, BigInt)\nBigFloat\n\njulia> promote_type(Int16, Float16)\nFloat16\n\njulia> promote_type(Int64, Float16)\nFloat16\n\njulia> promote_type(Int8, UInt16)\nUInt16\n```\n"}],"Base.@polly":[{"Tuple{Any}":" @polly\n\nTells the compiler to apply the polyhedral optimizer Polly to a function.\n"}],"Base.ReinterpretArray":[{"Union{}":"Gives a reinterpreted view (of element type T) of the underlying array (of element type S).\nIf the size of `T` differs from the size of `S`, the array will be compressed/expanded in\nthe first dimension.\n"}],"Base.binomial":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" binomial(n::Integer, k::Integer)\n\nThe _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in\nthe polynomial expansion of ``(1+x)^n``.\n\nIf ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items:\n```math\n\\binom{n}{k} = \\frac{n!}{k! (n-k)!}\n```\nwhere ``n!`` is the [`factorial`](@ref) function.\n\nIf ``n`` is negative, then it is defined in terms of the identity\n```math\n\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k}\n```\n\n# Examples\n```jldoctest\njulia> binomial(5, 3)\n10\n\njulia> factorial(5) ÷ (factorial(5-3) * factorial(3))\n10\n\njulia> binomial(-5, 3)\n-35\n```\n\n# See also\n* [`factorial`](@ref)\n\n# External links\n* [Binomial coeffient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia.\n"}],"Base.TwicePrecision":[{"Union{}":" TwicePrecision{T}(hi::T, lo::T)\n TwicePrecision{T}((num, denom))\n\nA number with twice the precision of `T`, e.g., quad-precision if `T =\nFloat64`. `hi` represents the high bits (most significant bits) and\n`lo` the low bits (least significant bits). Rational values\n`num//denom` can be approximated conveniently using the syntax\n`TwicePrecision{T}((num, denom))`.\n\nWhen used with `T<:Union{Float16,Float32,Float64}` to construct an \"exact\"\n`StepRangeLen`, `ref` should be the range element with smallest\nmagnitude and `offset` set to the corresponding index. For\nefficiency, multiplication of `step` by the index is not performed at\ntwice precision: `step.hi` should have enough trailing zeros in its\n`bits` representation that `(0:len-1)*step.hi` is exact (has no\nroundoff error). If `step` has an exact rational representation\n`num//denom`, then you can construct `step` using\n\n step = TwicePrecision{T}((num, denom), nb)\n\nwhere `nb` is the number of trailing zero bits of `step.hi`. For\nranges, you can set `nb = ceil(Int, log2(len-1))`.\n"}],"Base.copysign":[{"Tuple{Real,Real}":" copysign(x, y) -> z\n\nReturn `z` which has the magnitude of `x` and the same sign as `y`.\n\n# Examples\n```jldoctest\njulia> copysign(1, -2)\n-1\n\njulia> copysign(-1, 2)\n1\n```\n"}],"Base.permute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" permute!(v, p)\n\nPermute vector `v` in-place, according to permutation `p`. No checking is done\nto verify that `p` is a permutation.\n\nTo return a new permutation, use `v[p]`. Note that this is generally faster than\n`permute!(v,p)` for large vectors.\n\nSee also [`invpermute!`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> permute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 1\n 4\n 3\n 1\n```\n"}],"Base._show_nonempty":[{"Tuple{IO,AbstractArray{T,2} where T,String}":"`_show_nonempty(io, X::AbstractMatrix, prefix)` prints matrix X with opening and closing square brackets,\npreceded by `prefix`, supposed to encode the type of the elements.\n"}],"Base.lstrip":[{"Tuple{Any,AbstractString}":" lstrip([pred=isspace,] str::AbstractString) -> SubString\n lstrip(str::AbstractString, chars) -> SubString\n\nRemove leading characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = lpad(\"March\", 20)\n\" March\"\n\njulia> lstrip(a)\n\"March\"\n```\n"}],"Base.filter":[{"Tuple{Any,AbstractDict}":" filter(f, d::AbstractDict)\n\nReturn a copy of `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Examples\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\")\nDict{Int64,String} with 2 entries:\n 2 => \"b\"\n 1 => \"a\"\n\njulia> filter(p->isodd(p.first), d)\nDict{Int64,String} with 1 entry:\n 1 => \"a\"\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{Any,Array{T,N}}} where N where T":" filter(f, a::AbstractArray)\n\nReturn a copy of `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> a = 1:10\n1:10\n\njulia> filter(isodd, a)\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"},{"Tuple{Any,Base.SkipMissing{#s662} where #s662<:AbstractArray}":" filter(f, itr::SkipMissing{<:AbstractArray})\n\nReturn a vector similar to the array wrapped by the given `SkipMissing` iterator\nbut with all missing elements and those for which `f` returns `false` removed.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> x = [1 2; missing 4]\n2×2 Array{Union{Missing, Int64},2}:\n 1 2\n missing 4\n\njulia> filter(isodd, skipmissing(x))\n1-element Array{Int64,1}:\n 1\n```\n"}],"Base.Semaphore":[{"Union{}":" Semaphore(sem_size)\n\nCreate a counting semaphore that allows at most `sem_size`\nacquires to be in use at any time.\nEach acquire must be matched with a release.\n"}],"Base.SubstitutionString":[{"Union{}":" SubstitutionString(substr)\n\nStores the given string `substr` as a `SubstitutionString`, for use in regular expression\nsubstitutions. Most commonly constructed using the [`@s_str`](@ref) macro.\n\n```jldoctest\njulia> SubstitutionString(\"Hello \\\\g, it's \\\\1\")\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> subst = s\"Hello \\g, it's \\1\"\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> typeof(subst)\nSubstitutionString{String}\n\n```\n\n"}],"Base.CodeUnits":[{"Union{}":" CodeUnits(s::AbstractString)\n\nWrap a string (without copying) in an immutable vector-like object that accesses the code units\nof the string's representation.\n"}],"Base.isready":[{"Tuple{Channel}":" isready(c::Channel)\n\nDetermine whether a [`Channel`](@ref) has a value stored to it. Returns\nimmediately, does not block.\n\nFor unbuffered channels returns `true` if there are tasks waiting\non a [`put!`](@ref).\n"}],"Base.count_ones":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" count_ones(x::Integer) -> Integer\n\nNumber of ones in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_ones(7)\n3\n```\n"}],"Base.@elapsed":[{"Tuple{Any}":" @elapsed\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\nnumber of seconds it took to execute as a floating-point number.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@allocated`](@ref).\n\n```julia-repl\njulia> @elapsed sleep(0.3)\n0.301391426\n```\n"}],"Base.bytes2hex":[{"Union{}":" bytes2hex(a::AbstractArray{UInt8}) -> String\n bytes2hex(io::IO, a::AbstractArray{UInt8})\n\nConvert an array `a` of bytes to its hexadecimal string representation, either\nreturning a `String` via `bytes2hex(a)` or writing the string to an `io` stream\nvia `bytes2hex(io, a)`. The hexadecimal characters are all lowercase.\n\n# Examples\n```jldoctest\njulia> a = string(12345, base = 16)\n\"3039\"\n\njulia> b = hex2bytes(a)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> bytes2hex(b)\n\"3039\"\n```\n"}],"Base.isbinaryoperator":[{"Tuple{Symbol}":" isbinaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a binary (infix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isbinaryoperator(:-), Base.isbinaryoperator(:√), Base.isbinaryoperator(:f)\n(true, false, false)\n```\n"}],"Base.KeyError":[{"Union{}":" KeyError(key)\n\nAn indexing operation into an `AbstractDict` (`Dict`) or `Set` like object tried to access or\ndelete a non-existent element.\n"}],"Base.isless":[{"Union{}":" isless(x, y)\n\nTest whether `x` is less than `y`, according to a fixed total order.\n`isless` is not defined on all pairs of values `(x, y)`. However, if it\nis defined, it is expected to satisfy the following:\n- If `isless(x, y)` is defined, then so is `isless(y, x)` and `isequal(x, y)`,\n and exactly one of those three yields `true`.\n- The relation defined by `isless` is transitive, i.e.,\n `isless(x, y) && isless(y, z)` implies `isless(x, z)`.\n\nValues that are normally unordered, such as `NaN`,\nare ordered in an arbitrary but consistent fashion.\n[`missing`](@ref) values are ordered last.\n\nThis is the default comparison used by [`sort`](@ref).\n\n# Implementation\nNon-numeric types with a total order should implement this function.\nNumeric types only need to implement it if they have special values such as `NaN`.\nTypes with a partial order should implement [`<`](@ref).\n"},{"Tuple{Tuple,Tuple}":" isless(t1::Tuple, t2::Tuple)\n\nReturns true when t1 is less than t2 in lexicographic order.\n"},{"Tuple{AbstractString,AbstractString}":" isless(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether string `a` comes before string `b` in alphabetical order\n(technically, in lexicographical order by Unicode code points).\n\n# Examples\n```jldoctest\njulia> isless(\"a\", \"b\")\ntrue\n\njulia> isless(\"β\", \"α\")\nfalse\n\njulia> isless(\"a\", \"a\")\nfalse\n```\n"}],"Base.IdDict":[{"Union{}":" IdDict([itr])\n\n`IdDict{K,V}()` constructs a hash table using object-id as hash and\n`===` as equality with keys of type `K` and values of type `V`.\n\nSee [`Dict`](@ref) for further help.\n"}],"Base.@b_str":[{"Tuple{Any}":" @b_str\n\nCreate an immutable byte (`UInt8`) vector using string syntax.\n\n# Examples\n```jldoctest\njulia> v = b\"12\\x01\\x02\"\n4-element Base.CodeUnits{UInt8,String}:\n 0x31\n 0x32\n 0x01\n 0x02\n\njulia> v[2]\n0x32\n```\n"}],"Base.strip":[{"Tuple{AbstractString}":" strip([pred=isspace,] str::AbstractString) -> SubString\n strip(str::AbstractString, chars) -> SubString\n\nRemove leading and trailing characters from `str`, either those specified by `chars` or\nthose for which the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, vector or set of characters.\n\n!!! compat \"Julia 1.2\"\n The method which accepts a predicate function requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> strip(\"{3, 5}\\n\", ['{', '}', '\\n'])\n\"3, 5\"\n```\n"}],"Base.promote_typejoin":[{"Tuple{Any,Any}":" promote_typejoin(T, S)\n\nCompute a type that contains both `T` and `S`, which could be\neither a parent of both types, or a `Union` if appropriate.\nFalls back to [`typejoin`](@ref).\n"}],"Base.DimensionMismatch":[{"Union{}":" DimensionMismatch([msg])\n\nThe objects called do not have matching dimensionality. Optional argument `msg` is a\ndescriptive error string.\n"}],"Base.AbstractRange":[{"Union{}":" AbstractRange{T}\n\nSupertype for ranges with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.IndexLinear":[{"Union{}":" IndexLinear()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by one linear index.\n\nA linear indexing style uses one integer index to describe the position in the array\n(even if it's a multidimensional array) and column-major\nordering is used to efficiently access the elements. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexLinear` will return\na simple one-dimensional range, even if it is multidimensional.\n\nA custom array that reports its `IndexStyle` as `IndexLinear` only needs\nto implement indexing (and indexed assignment) with a single `Int` index;\nall other indexing expressions — including multidimensional accesses — will\nbe recomputed to the linear index. For example, if `A` were a `2×3` custom\nmatrix with linear indexing, and we referenced `A[1, 3]`, this would be\nrecomputed to the equivalent linear index and call `A[5]` since `2*1 + 3 = 5`.\n\nSee also [`IndexCartesian`](@ref).\n"}],"Base.append!":[{"Tuple{Array{T,1} where T,AbstractArray{T,1} where T}":" append!(collection, collection2) -> collection.\n\nFor an ordered container `collection`, add the elements of `collection2` to the end of it.\n\n# Examples\n```jldoctest\njulia> append!([1],[2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> append!([1, 2, 3], [4, 5, 6])\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nUse [`push!`](@ref) to add individual items to `collection` which are not already\nthemselves in another collection. The result of the preceding example is equivalent to\n`push!([1, 2, 3], 4, 5, 6)`.\n"}],"Base.countlines":[{"Tuple{IO}":" countlines(io::IO; eol::AbstractChar = '\\n')\n\nRead `io` until the end of the stream/file and count the number of lines. To specify a file\npass the filename as the first argument. EOL markers other than `'\\n'` are supported by\npassing them as the second argument. The last non-empty line of `io` is counted even if it does not\nend with the EOL, matching the length returned by [`eachline`](@ref) and [`readlines`](@ref).\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\\n\");\n\njulia> countlines(io)\n1\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> countlines(io)\n1\n\njulia> countlines(io, eol = '.')\n0\n```\n"}],"Base.shell_escape_winsomely":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escaped_winsomely(args::Union{Cmd,AbstractString...})::String\n\nConvert the collection of strings `args` into single string suitable for passing as the argument\nstring for a Windows command line. Windows passes the entire command line as a single string to\nthe application (unlike POSIX systems, where the list of arguments are passed separately).\nMany Windows API applications (including julia.exe), use the conventions of the [Microsoft C\nruntime](https://docs.microsoft.com/en-us/cpp/c-language/parsing-c-command-line-arguments) to\nsplit that command line into a list of strings. This function implements the inverse of such a\nC runtime command-line parser. It joins command-line arguments to be passed to a Windows console\napplication into a command line, escaping or quoting meta characters such as space,\ndouble quotes and backslash where needed. This may be useful in concert with the `windows_verbatim`\nflag to [`Cmd`](@ref) when constructing process pipelines.\n\n# Example\n```jldoctest\njulia> println(shell_escaped_winsomely(\"A B\\\", \"C\"))\n\"A B\\\" C\n"}],"Base.CFunction":[{"Union{}":" CFunction struct\n\nGarbage-collection handle for the return value from `@cfunction`\nwhen the first argument is annotated with '\\$'.\nLike all `cfunction` handles, it should be passed to `ccall` as a `Ptr{Cvoid}`,\nand will be converted automatically at the call site to the appropriate type.\n\nSee [`@cfunction`](@ref).\n"}],"Base.fieldindex":[{"Union{Tuple{DataType,Symbol}, Tuple{DataType,Symbol,Bool}}":" Base.fieldindex(T, name::Symbol, err:Bool=true)\n\nGet the index of a named field, throwing an error if the field does not exist (when err==true)\nor returning 0 (when err==false).\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> Base.fieldindex(Foo, :z)\nERROR: type Foo has no field z\nStacktrace:\n[...]\n\njulia> Base.fieldindex(Foo, :z, false)\n0\n```\n"}],"Base.methods":[{"Tuple{Any,Any,Union{Nothing, Module, AbstractArray{Module,N} where N}}":" methods(f, [types], [module])\n\nReturn the method table for `f`.\n\nIf `types` is specified, return an array of methods whose types match.\nIf `module` is specified, return an array of methods defined in that module.\nA list of modules can also be specified as an array.\n\n!!! compat \"Julia 1.4\"\n At least Julia 1.4 is required for specifying a module.\n"}],"Base.PipeBuffer":[{"Union{Tuple{}, Tuple{Array{UInt8,1}}}":" PipeBuffer(data::Vector{UInt8}=UInt8[]; maxsize::Integer = typemax(Int))\n\nAn [`IOBuffer`](@ref) that allows reading and performs writes by appending.\nSeeking and truncating are not supported.\nSee [`IOBuffer`](@ref) for the available constructors.\nIf `data` is given, creates a `PipeBuffer` to operate on a data vector,\noptionally specifying a size beyond which the underlying `Array` may not be grown.\n"}],"Base.Cuchar":[{"Union{}":" Cuchar\n\nEquivalent to the native `unsigned char` c-type ([`UInt8`](@ref)).\n"}],"Base.count":[{"Tuple{Union{Regex, AbstractString},AbstractString}":" count(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn the number of matches for `pattern` in `string`. This is equivalent to\ncalling `length(findall(pattern, string))` but more efficient.\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Any,Any}":" count(p, itr) -> Integer\n count(itr) -> Integer\n\nCount the number of elements in `itr` for which predicate `p` returns `true`.\nIf `p` is omitted, counts the number of `true` elements in `itr` (which\nshould be a collection of boolean values).\n\n# Examples\n```jldoctest\njulia> count(i->(4<=i<=6), [2,3,4,5,6])\n3\n\njulia> count([true, false, true, true])\n3\n```\n"}],"Base.@assert":[{"Tuple{Any,Vararg{Any,N} where N}":" @assert cond [text]\n\nThrow an [`AssertionError`](@ref) if `cond` is `false`. Preferred syntax for writing assertions.\nMessage `text` is optionally displayed upon assertion failure.\n\n!!! warning\n An assert might be disabled at various optimization levels.\n Assert should therefore only be used as a debugging tool\n and not used for authentication verification (e.g., verifying passwords),\n nor should side effects needed for the function to work correctly\n be used inside of asserts.\n\n# Examples\n```jldoctest\njulia> @assert iseven(3) \"3 is an odd number!\"\nERROR: AssertionError: 3 is an odd number!\n\njulia> @assert isodd(3) \"What even are numbers?\"\n```\n"}],"Base.@show":[{"Tuple":" @show\n\nShow an expression and result, returning the result. See also [`show`](@ref).\n"}],"Base.readuntil":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" readuntil(stream::IO, delim; keep::Bool = false)\n readuntil(filename::AbstractString, delim; keep::Bool = false)\n\nRead a string from an I/O stream or a file, up to the given delimiter.\nThe delimiter can be a `UInt8`, `AbstractChar`, string, or vector.\nKeyword argument `keep` controls whether the delimiter is included in the result.\nThe text is assumed to be encoded in UTF-8.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readuntil(\"my_file.txt\", 'L')\n\"Julia\"\n\njulia> readuntil(\"my_file.txt\", '.', keep = true)\n\"JuliaLang is a GitHub organization.\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.reduce_empty":[{"Tuple{Any,Any}":" Base.reduce_empty(op, T)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref) or [`foldr`](@ref)\nwith reduction `op` over an empty array with element type of `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.ndims":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" ndims(A::AbstractArray) -> Integer\n\nReturn the number of dimensions of `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> ndims(A)\n3\n```\n"}],"Base.yield":[{"Tuple{Task,Any}":" yield(t::Task, arg = nothing)\n\nA fast, unfair-scheduling version of `schedule(t, arg); yield()` which\nimmediately yields to `t` before calling the scheduler.\n"},{"Tuple{}":" yield()\n\nSwitch to the scheduler to allow another scheduled task to run. A task that calls this\nfunction is still runnable, and will be restarted immediately if there are no other runnable\ntasks.\n"}],"Base.download":[{"Tuple{Any,Any}":" download(url::AbstractString, [localfile::AbstractString])\n\nDownload a file from the given url, optionally renaming it to the given local file name. If\nno filename is given this will download into a randomly-named file in your temp directory.\nNote that this function relies on the availability of external tools such as `curl`, `wget`\nor `fetch` to download the file and is provided for convenience. For production use or\nsituations in which more options are needed, please use a package that provides the desired\nfunctionality instead.\n\nReturns the filename of the downloaded file.\n"}],"Base.isqrt":[{"Tuple{Integer}":" isqrt(n::Integer)\n\nInteger square root: the largest integer `m` such that `m*m <= n`.\n\n```jldoctest\njulia> isqrt(5)\n2\n```\n"}],"Base.parse":[{"Tuple{Type,Any}":" parse(type, str; base)\n\nParse a string as a number. For `Integer` types, a base can be specified\n(the default is 10). For floating-point types, the string is parsed as a decimal\nfloating-point number. `Complex` types are parsed from decimal strings\nof the form `\"R±Iim\"` as a `Complex(R,I)` of the requested type; `\"i\"` or `\"j\"` can also be\nused instead of `\"im\"`, and `\"R\"` or `\"Iim\"` are also permitted.\nIf the string does not contain a valid number, an error is raised.\n\n!!! compat \"Julia 1.1\"\n `parse(Bool, str)` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> parse(Int, \"1234\")\n1234\n\njulia> parse(Int, \"1234\", base = 5)\n194\n\njulia> parse(Int, \"afc\", base = 16)\n2812\n\njulia> parse(Float64, \"1.2e-3\")\n0.0012\n\njulia> parse(Complex{Float64}, \"3.2e-1 + 4.5im\")\n0.32 + 4.5im\n```\n"}],"Base.esc":[{"Tuple{Any}":" esc(e)\n\nOnly valid in the context of an [`Expr`](@ref) returned from a macro. Prevents the macro hygiene\npass from turning embedded variables into gensym variables. See the [Macros](@ref man-macros)\nsection of the Metaprogramming chapter of the manual for more details and examples.\n"}],"Base.prod!":[{"Tuple{Any,Any}":" prod!(r, A)\n\nMultiply elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 12\n\njulia> prod!([1 1], A)\n1×2 Array{Int64,2}:\n 3 8\n```\n"}],"Base.\\":[{"Tuple{Any,Any}":" \\(x, y)\n\nLeft division operator: multiplication of `y` by the inverse of `x` on the left. Gives\nfloating-point results for integer arguments.\n\n# Examples\n```jldoctest\njulia> 3 \\ 6\n2.0\n\njulia> inv(3) * 6\n2.0\n\njulia> A = [4 3; 2 1]; x = [5, 6];\n\njulia> A \\ x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n\njulia> inv(A) * x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n```\n"}],"Base.SubString":[{"Union{}":" SubString(s::AbstractString, i::Integer, j::Integer=lastindex(s))\n SubString(s::AbstractString, r::UnitRange{<:Integer})\n\nLike [`getindex`](@ref), but returns a view into the parent string `s`\nwithin range `i:j` or `r` respectively instead of making a copy.\n\n# Examples\n```jldoctest\njulia> SubString(\"abc\", 1, 2)\n\"ab\"\n\njulia> SubString(\"abc\", 1:2)\n\"ab\"\n\njulia> SubString(\"abc\", 2)\n\"bc\"\n```\n"}],"Base.eachmatch":[{"Tuple{Regex,AbstractString}":" eachmatch(r::Regex, s::AbstractString; overlap::Bool=false)\n\nSearch for all matches of a the regular expression `r` in `s` and return a iterator over the\nmatches. If overlap is `true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from distinct character ranges.\n\n# Examples\n```jldoctest\njulia> rx = r\"a.a\"\nr\"a.a\"\n\njulia> m = eachmatch(rx, \"a1a2a3a\")\nBase.RegexMatchIterator(r\"a.a\", \"a1a2a3a\", false)\n\njulia> collect(m)\n2-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a3a\")\n\njulia> collect(eachmatch(rx, \"a1a2a3a\", overlap = true))\n3-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a2a\")\n RegexMatch(\"a3a\")\n```\n"}],"Base.print_matrix":[{"Union{Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer,Integer}}":" print_matrix(io::IO, mat, pre, sep, post, hdots, vdots, ddots, hmod, vmod)\n\nPrints a matrix with limited output size. If `io` sets `:limit` to true,\nthen only the corners of the matrix are printed, separated with vertical,\nhorizontal, and diagonal ellipses as appropriate.\nOptional arguments are string pre (printed before the matrix, e.g. an opening bracket)\nwhich will cause a corresponding same-size indent on following rows, and\nstring post (printed at the end of the last row of the matrix).\nAlso options to use different ellipsis characters hdots, vdots, ddots.\nThese are repeated every hmod or vmod elements.\n"}],"Base.pkgdir":[{"Tuple{Module}":" pkgdir(m::Module)\n\nReturn the root directory of the package that imported module `m`,\nor `nothing` if `m` was not imported from a package.\n"}],"Base.union":[{"Union{}":" union(s, itrs...)\n ∪(s, itrs...)\n\nConstruct the union of sets. Maintain order with arrays.\n\n# Examples\n```jldoctest\njulia> union([1, 2], [3, 4])\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> union([1, 2], [2, 4])\n3-element Array{Int64,1}:\n 1\n 2\n 4\n\njulia> union([4, 2], 1:2)\n3-element Array{Int64,1}:\n 4\n 2\n 1\n\njulia> union(Set([1, 2]), 2:3)\nSet{Int64} with 3 elements:\n 2\n 3\n 1\n```\n"}],"Base.falses":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" falses(dims)\n\nCreate a `BitArray` with all values set to `false`.\n\n# Examples\n```jldoctest\njulia> falses(2,3)\n2×3 BitArray{2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.skipchars":[{"Tuple{Any,IO}":" skipchars(predicate, io::IO; linecomment=nothing)\n\nAdvance the stream `io` such that the next-read character will be the first remaining for\nwhich `predicate` returns `false`. If the keyword argument `linecomment` is specified, all\ncharacters from that character until the start of the next line are ignored.\n\n# Examples\n```jldoctest\njulia> buf = IOBuffer(\" text\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=1, mark=-1)\n\njulia> skipchars(isspace, buf)\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=5, mark=-1)\n\njulia> String(readavailable(buf))\n\"text\"\n```\n"}],"Base.checkindex":[{"Tuple{Type{Bool},AbstractUnitRange,Any}":" checkindex(Bool, inds::AbstractUnitRange, index)\n\nReturn `true` if the given `index` is within the bounds of\n`inds`. Custom types that would like to behave as indices for all\narrays can extend this method in order to provide a specialized bounds\nchecking implementation.\n\n# Examples\n```jldoctest\njulia> checkindex(Bool, 1:20, 8)\ntrue\n\njulia> checkindex(Bool, 1:20, 21)\nfalse\n```\n"}],"Base.fld":[{"Tuple{Any,Any}":" fld(x, y)\n\nLargest integer less than or equal to `x/y`. Equivalent to `div(x, y, RoundDown)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> fld(7.3,5.5)\n1.0\n```\n"}],"Base.dump":[{"Tuple{Any}":" dump(x; maxdepth=8)\n\nShow every part of the representation of a value.\nThe depth of the output is truncated at `maxdepth`.\n\n# Examples\n```jldoctest\njulia> struct MyStruct\n x\n y\n end\n\njulia> x = MyStruct(1, (2,3));\n\njulia> dump(x)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n 1: Int64 2\n 2: Int64 3\n\njulia> dump(x; maxdepth = 1)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n```\n"}],"Base.reenable_sigint":[{"Tuple{Function}":" reenable_sigint(f::Function)\n\nRe-enable Ctrl-C handler during execution of a function.\nTemporarily reverses the effect of [`disable_sigint`](@ref).\n"}],"Base.real":[{"Tuple{Complex}":" real(z)\n\nReturn the real part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> real(1 + 3im)\n1\n```\n"},{"Tuple{Type}":" real(T::Type)\n\nReturn the type that represents the real part of a value of type `T`.\ne.g: for `T == Complex{R}`, returns `R`.\nEquivalent to `typeof(real(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> real(Complex{Int})\nInt64\n\njulia> real(Float64)\nFloat64\n```\n"}],"Base.string":[{"Tuple":" string(xs...)\n\nCreate a string from any values, except `nothing`, using the [`print`](@ref) function.\n\n`string` should usually not be defined directly. Instead, define a method\n`print(io::IO, x::MyType)`. If `string(x)` for a certain type needs to be\nhighly efficient, then it may make sense to add a method to `string` and\ndefine `print(io::IO, x::MyType) = print(io, string(x))` to ensure the\nfunctions are consistent.\n\n# Examples\n```jldoctest\njulia> string(\"a\", 1, true)\n\"a1true\"\n```\n"},{"Tuple{Integer}":" string(n::Integer; base::Integer = 10, pad::Integer = 1)\n\nConvert an integer `n` to a string in the given `base`,\noptionally specifying a number of digits to pad to.\n\n```jldoctest\njulia> string(5, base = 13, pad = 4)\n\"0005\"\n\njulia> string(13, base = 5, pad = 4)\n\"0023\"\n```\n"}],"Base.indentation":[{"Tuple{AbstractString}":" indentation(str::AbstractString; tabwidth=8) -> (Int, Bool)\n\nCalculate the width of leading white space. Return the width and a flag to indicate\nif the string is empty.\n\n# Examples\n```jldoctest\njulia> Base.indentation(\"\")\n(0, true)\n\njulia> Base.indentation(\" a\")\n(2, false)\n\njulia> Base.indentation(\"\\ta\"; tabwidth=3)\n(3, false)\n```\n"}],"Base.@timev":[{"Tuple{Any}":" @timev\n\nThis is a verbose version of the `@time` macro. It first prints the same information as\n`@time`, then any non-zero memory allocation counters, and then returns the value of the\nexpression.\n\nSee also [`@time`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> @timev rand(10^6);\n 0.001006 seconds (7 allocations: 7.630 MiB)\nelapsed time (ns): 1005567\nbytes allocated: 8000256\npool allocs: 6\nmalloc() calls: 1\n```\n"}],"Base.⊊":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.sprint":[{"Tuple{Function,Vararg{Any,N} where N}":" sprint(f::Function, args...; context=nothing, sizehint=0)\n\nCall the given function with an I/O stream and the supplied extra arguments.\nEverything written to this I/O stream is returned as a string.\n`context` can be either an [`IOContext`](@ref) whose properties will be used,\nor a `Pair` specifying a property and its value. `sizehint` suggests the capacity\nof the buffer (in bytes).\n\nThe optional keyword argument `context` can be set to `:key=>value` pair\nor an `IO` or [`IOContext`](@ref) object whose attributes are used for the I/O\nstream passed to `f`. The optional `sizehint` is a suggested size (in bytes)\nto allocate for the buffer used to write the string.\n\n# Examples\n```jldoctest\njulia> sprint(show, 66.66666; context=:compact => true)\n\"66.6667\"\n\njulia> sprint(showerror, BoundsError([1], 100))\n\"BoundsError: attempt to access 1-element Array{Int64,1} at index [100]\"\n```\n"}],"Base.something":[{"Union{}":" something(x, y...)\n\nReturn the first value in the arguments which is not equal to [`nothing`](@ref),\nif any. Otherwise throw an error.\nArguments of type [`Some`](@ref) are unwrapped.\n\nSee also [`coalesce`](@ref).\n\n# Examples\n```jldoctest\njulia> something(nothing, 1)\n1\n\njulia> something(Some(1), nothing)\n1\n\njulia> something(missing, nothing)\nmissing\n\njulia> something(nothing, nothing)\nERROR: ArgumentError: No value arguments present\n```\n"}],"Base.@__LINE__":[{"Tuple{}":" @__LINE__ -> Int\n\nExpand to the line number of the location of the macrocall.\nReturn `0` if the line number could not be determined.\n"}],"Base.fieldtypes":[{"Tuple{Type}":" fieldtypes(T::Type)\n\nThe declared types of all fields in a composite DataType `T` as a tuple.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> fieldtypes(Foo)\n(Int64, String)\n```\n"}],"Base.AbstractDict":[{"Union{}":" AbstractDict{K, V}\n\nSupertype for dictionary-like types with keys of type `K` and values of type `V`.\n[`Dict`](@ref), [`IdDict`](@ref) and other types are subtypes of this.\nAn `AbstractDict{K, V}` should be an iterator of `Pair{K, V}`.\n"}],"Base.div":[{"Union{}":" div(x, y)\n ÷(x, y)\n\nThe quotient from Euclidean division. Computes `x/y`, truncated to an integer.\n\n# Examples\n```jldoctest\njulia> 9 ÷ 4\n2\n\njulia> -5 ÷ 3\n-1\n\njulia> 5.0 ÷ 2\n2.0\n```\n"},{"Tuple{Any,Any,RoundingMode}":" div(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient from Euclidean division. Computes x/y, rounded to an integer according\nto the rounding mode `r`. In other words, the quantity\n\n round(x/y,r)\n\nwithout any intermediate rounding.\n\nSee also: [`fld`](@ref), [`cld`](@ref) which are special cases of this function\n\n# Examples:\n```jldoctest\njulia> div(4, 3, RoundDown) # Matches fld(4, 3)\n1\njulia> div(4, 3, RoundUp) # Matches cld(4, 3)\n2\njulia> div(5, 2, RoundNearest)\n2\njulia> div(5, 2, RoundNearestTiesAway)\n3\njulia> div(-5, 2, RoundNearest)\n-2\njulia> div(-5, 2, RoundNearestTiesAway)\n-3\njulia> div(-5, 2, RoundNearestTiesUp)\n-2\n```\n"}],"Base.copyto!":[{"Tuple{AbstractArray,CartesianIndices,AbstractArray,CartesianIndices}":" copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest\n\nCopy the block of `src` in the range of `Rsrc` to the block of `dest`\nin the range of `Rdest`. The sizes of the two regions must match.\n"},{"Tuple{Any,Any}":" copyto!(dest::AbstractArray, src) -> dest\n\n\nCopy all elements from collection `src` to array `dest`, whose length must be greater than\nor equal to the length `n` of `src`. The first `n` elements of `dest` are overwritten,\nthe other elements are left untouched.\n\n# Examples\n```jldoctest\njulia> x = [1., 0., 3., 0., 5.];\n\njulia> y = zeros(7);\n\njulia> copyto!(y, x);\n\njulia> y\n7-element Array{Float64,1}:\n 1.0\n 0.0\n 3.0\n 0.0\n 5.0\n 0.0\n 0.0\n```\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Integer,Array{T,N} where N,Integer,Integer}} where T":" copyto!(dest, do, src, so, N)\n\nCopy `N` elements from collection `src` starting at offset `so`, to array `dest` starting at\noffset `do`. Return `dest`.\n"}],"Base.isbitstype":[{"Tuple{Type}":" isbitstype(T)\n\nReturn `true` if type `T` is a \"plain data\" type,\nmeaning it is immutable and contains no references to other values,\nonly `primitive` types and other `isbitstype` types.\nTypical examples are numeric types such as [`UInt8`](@ref),\n[`Float64`](@ref), and [`Complex{Float64}`](@ref).\nThis category of types is significant since they are valid as type parameters,\nmay not track [`isdefined`](@ref) / [`isassigned`](@ref) status,\nand have a defined layout that is compatible with C.\n\n# Examples\n```jldoctest\njulia> isbitstype(Complex{Float64})\ntrue\n\njulia> isbitstype(Complex)\nfalse\n```\n"}],"Base.repr":[{"Tuple{Any}":" repr(x; context=nothing)\n\nCreate a string from any value using the [`show`](@ref) function.\nYou should not add methods to `repr`; define a `show` method instead.\n\nThe optional keyword argument `context` can be set to an `IO` or [`IOContext`](@ref)\nobject whose attributes are used for the I/O stream passed to `show`.\n\nNote that `repr(x)` is usually similar to how the value of `x` would\nbe entered in Julia. See also [`repr(MIME(\"text/plain\"), x)`](@ref) to instead\nreturn a \"pretty-printed\" version of `x` designed more for human consumption,\nequivalent to the REPL display of `x`.\n\n# Examples\n```jldoctest\njulia> repr(1)\n\"1\"\n\njulia> repr(zeros(3))\n\"[0.0, 0.0, 0.0]\"\n\njulia> repr(big(1/3))\n\"0.333333333333333314829616256247390992939472198486328125\"\n\njulia> repr(big(1/3), context=:compact => true)\n\"0.333333\"\n\n```\n"}],"Base.promote_rule":[{"Union{}":" promote_rule(type1, type2)\n\nSpecifies what type should be used by [`promote`](@ref) when given values of types `type1` and\n`type2`. This function should not be called directly, but should have definitions added to\nit for new types as appropriate.\n"}],"Base.print_matrix_row":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,Array{T,1} where T,Integer,AbstractArray{T,1} where T,AbstractString}":"`print_matrix_row(io, X, A, i, cols, sep)` produces the aligned output for\na single matrix row X[i, cols] where the desired list of columns is given.\nThe corresponding alignment A is used, and the separation between elements\nis specified as string sep.\n`print_matrix_row` will also respect compact output for elements.\n"}],"Base.unsafe_load":[{"Union{Tuple{Ptr}, Tuple{Ptr,Integer}}":" unsafe_load(p::Ptr{T}, i::Integer=1)\n\nLoad a value of type `T` from the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1]`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may segfault your program or return\ngarbage answers, in the same manner as C.\n"}],"Base.LinearIndices":[{"Union{}":" LinearIndices(A::AbstractArray)\n\nReturn a `LinearIndices` array with the same shape and [`axes`](@ref) as `A`,\nholding the linear index of each entry in `A`. Indexing this array with\ncartesian indices allows mapping them to linear indices.\n\nFor arrays with conventional indexing (indices start at 1), or any multidimensional\narray, linear indices range from 1 to `length(A)`. However, for `AbstractVector`s\nlinear indices are `axes(A, 1)`, and therefore do not start at 1 for vectors with\nunconventional indexing.\n\nCalling this function is the \"safe\" way to write algorithms that\nexploit linear indexing.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> b = LinearIndices(A);\n\njulia> extrema(b)\n(1, 210)\n```\n\n LinearIndices(inds::CartesianIndices) -> R\n LinearIndices(sz::Dims) -> R\n LinearIndices((istart:istop, jstart:jstop, ...)) -> R\n\nReturn a `LinearIndices` array with the specified shape or [`axes`](@ref).\n\n# Example\n\nThe main purpose of this constructor is intuitive conversion\nfrom cartesian to linear indexing:\n\n```jldoctest\njulia> linear = LinearIndices((1:3, 1:2))\n3×2 LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}:\n 1 4\n 2 5\n 3 6\n\njulia> linear[1,2]\n4\n```\n"}],"Base.min":[{"Tuple{Any,Any}":" min(x, y, ...)\n\nReturn the minimum of the arguments. See also the [`minimum`](@ref) function\nto take the minimum element from a collection.\n\n# Examples\n```jldoctest\njulia> min(2, 5, 1)\n1\n```\n"}],"Base.SystemError":[{"Union{}":" SystemError(prefix::AbstractString, [errno::Int32])\n\nA system call failed with an error code (in the `errno` global variable).\n"}],"Base.julia_cmd":[{"Union{Tuple{}, Tuple{Any}}":" Base.julia_cmd(juliapath=joinpath(Sys.BINDIR::String, julia_exename()))\n\nReturn a julia command similar to the one of the running process.\nPropagates any of the `--cpu-target`, `--sysimage`, `--compile`, `--sysimage-native-code`,\n`--compiled-modules`, `--inline`, `--check-bounds`, `--optimize`, `-g`,\n`--code-coverage`, and `--depwarn`\ncommand line arguments that are not at their default values.\n\nAmong others, `--math-mode`, `--warn-overwrite`, and `--trace-compile` are notably not propagated currently.\n\n!!! compat \"Julia 1.1\"\n Only the `--cpu-target`, `--sysimage`, `--depwarn`, `--compile` and `--check-bounds` flags were propagated before Julia 1.1.\n"}],"Base.isconcretetype":[{"Tuple{Any}":" isconcretetype(T)\n\nDetermine whether type `T` is a concrete type, meaning it could have direct instances\n(values `x` such that `typeof(x) === T`).\n\n# Examples\n```jldoctest\njulia> isconcretetype(Complex)\nfalse\n\njulia> isconcretetype(Complex{Float32})\ntrue\n\njulia> isconcretetype(Vector{Complex})\ntrue\n\njulia> isconcretetype(Vector{Complex{Float32}})\ntrue\n\njulia> isconcretetype(Union{})\nfalse\n\njulia> isconcretetype(Union{Int,String})\nfalse\n```\n"}],"Base.trailing_ones":[{"Tuple{Integer}":" trailing_ones(x::Integer) -> Integer\n\nNumber of ones trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_ones(3)\n2\n```\n"}],"Base.*":[{"Tuple{Union{AbstractChar, AbstractString},Vararg{Union{AbstractChar, AbstractString},N} where N}":" *(s::Union{AbstractString, AbstractChar}, t::Union{AbstractString, AbstractChar}...) -> AbstractString\n\nConcatenate strings and/or characters, producing a [`String`](@ref). This is equivalent\nto calling the [`string`](@ref) function on the arguments. Concatenation of built-in\nstring types always produces a value of type `String` but other string types may choose\nto return a string of a different type as appropriate.\n\n# Examples\n```jldoctest\njulia> \"Hello \" * \"world\"\n\"Hello world\"\n\njulia> 'j' * \"ulia\"\n\"julia\"\n```\n"},{"Tuple{Union{Regex, AbstractChar, AbstractString},Vararg{Union{Regex, AbstractChar, AbstractString},N} where N}":" *(s::Regex, t::Union{Regex,AbstractString,AbstractChar}) -> Regex\n *(s::Union{Regex,AbstractString,AbstractChar}, t::Regex) -> Regex\n\nConcatenate regexes, strings and/or characters, producing a [`Regex`](@ref).\nString and character arguments must be matched exactly in the resulting regex,\nmeaning that the contained characters are devoid of any special meaning\n(they are quoted with \"\\Q\" and \"\\E\").\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> match(r\"Hello|Good bye\" * ' ' * \"world\", \"Hello world\")\nRegexMatch(\"Hello world\")\n\njulia> r = r\"a|b\" * \"c|d\"\nr\"(?:a|b)\\Qc|d\\E\"\n\njulia> match(r, \"ac\") == nothing\ntrue\n\njulia> match(r, \"ac|d\")\nRegexMatch(\"ac|d\")\n```\n"}],"Base.pairs":[{"Tuple{Any}":" pairs(collection)\n\nReturn an iterator over `key => value` pairs for any\ncollection that maps a set of keys to a set of values.\nThis includes arrays, where the keys are the array indices.\n"}],"Base.pipeline":[{"Tuple{Base.AbstractCmd}":" pipeline(command; stdin, stdout, stderr, append=false)\n\nRedirect I/O to or from the given `command`. Keyword arguments specify which of the\ncommand's streams should be redirected. `append` controls whether file output appends to the\nfile. This is a more general version of the 2-argument `pipeline` function.\n`pipeline(from, to)` is equivalent to `pipeline(from, stdout=to)` when `from` is a command,\nand to `pipeline(to, stdin=from)` when `from` is another kind of data source.\n\n**Examples**:\n\n```julia\nrun(pipeline(`dothings`, stdout=\"out.txt\", stderr=\"errs.txt\"))\nrun(pipeline(`update`, stdout=\"log.txt\", append=true))\n```\n"},{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" pipeline(from, to, ...)\n\nCreate a pipeline from a data source to a destination. The source and destination can be\ncommands, I/O streams, strings, or results of other `pipeline` calls. At least one argument\nmust be a command. Strings refer to filenames. When called with more than two arguments,\nthey are chained together from left to right. For example, `pipeline(a,b,c)` is equivalent to\n`pipeline(pipeline(a,b),c)`. This provides a more concise way to specify multi-stage\npipelines.\n\n**Examples**:\n\n```julia\nrun(pipeline(`ls`, `grep xyz`))\nrun(pipeline(`ls`, \"out.txt\"))\nrun(pipeline(\"out.txt\", `grep xyz`))\n```\n"}],"Base.reverse!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse!(v [, start=1 [, stop=length(v) ]]) -> v\n\nIn-place version of [`reverse`](@ref).\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse!(A);\n\njulia> A\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.error":[{"Tuple{AbstractString}":" error(message::AbstractString)\n\nRaise an `ErrorException` with the given message.\n"},{"Union{Tuple{Vararg{Any,N}}, Tuple{N}} where N":" error(msg...)\n\nRaise an `ErrorException` with the given message.\n"}],"Base.runtests":[{"Union{Tuple{}, Tuple{Any}}":" Base.runtests(tests=[\"all\"]; ncores=ceil(Int, Sys.CPU_THREADS / 2),\n exit_on_error=false, [seed])\n\nRun the Julia unit tests listed in `tests`, which can be either a string or an array of\nstrings, using `ncores` processors. If `exit_on_error` is `false`, when one test\nfails, all remaining tests in other files will still be run; they are otherwise discarded,\nwhen `exit_on_error == true`.\nIf a seed is provided via the keyword argument, it is used to seed the\nglobal RNG in the context where the tests are run; otherwise the seed is chosen randomly.\n"}],"Base.isone":[{"Tuple{Any}":" isone(x)\n\nReturn `true` if `x == one(x)`; if `x` is an array, this checks whether\n`x` is an identity matrix.\n\n# Examples\n```jldoctest\njulia> isone(1.0)\ntrue\n\njulia> isone([1 0; 0 2])\nfalse\n\njulia> isone([1 0; 0 true])\ntrue\n```\n"}],"Base.deepcopy":[{"Tuple{Any}":" deepcopy(x)\n\nCreate a deep copy of `x`: everything is copied recursively, resulting in a fully\nindependent object. For example, deep-copying an array produces a new array whose elements\nare deep copies of the original elements. Calling `deepcopy` on an object should generally\nhave the same effect as serializing and then deserializing it.\n\nAs a special case, functions can only be actually deep-copied if they are anonymous,\notherwise they are just copied. The difference is only relevant in the case of closures,\ni.e. functions which may contain hidden internal references.\n\nWhile it isn't normally necessary, user-defined types can override the default `deepcopy`\nbehavior by defining a specialized version of the function\n`deepcopy_internal(x::T, dict::IdDict)` (which shouldn't otherwise be used),\nwhere `T` is the type to be specialized for, and `dict` keeps track of objects copied\nso far within the recursion. Within the definition, `deepcopy_internal` should be used\nin place of `deepcopy`, and the `dict` variable should be\nupdated as appropriate before returning.\n"}],"Base.@__FILE__":[{"Tuple{}":" @__FILE__ -> AbstractString\n\nExpand to a string with the path to the file containing the\nmacrocall, or an empty string if evaluated by `julia -e `.\nReturn `nothing` if the macro was missing parser source information.\nAlternatively see [`PROGRAM_FILE`](@ref).\n"}],"Base.precision":[{"Union{}":" precision(num::AbstractFloat)\n\nGet the precision of a floating point number, as defined by the effective number of bits in\nthe mantissa.\n"}],"Base.isnothing":[{"Tuple{Any}":" isnothing(x)\n\nReturn `true` if `x === nothing`, and return `false` if not.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.eps":[{"Tuple{Type{#s662} where #s662<:AbstractFloat}":" eps(::Type{T}) where T<:AbstractFloat\n eps()\n\nReturn the *machine epsilon* of the floating point type `T` (`T = Float64` by\ndefault). This is defined as the gap between 1 and the next largest value representable by\n`typeof(one(T))`, and is equivalent to `eps(one(T))`. (Since `eps(T)` is a\nbound on the *relative error* of `T`, it is a \"dimensionless\" quantity like [`one`](@ref).)\n\n# Examples\n```jldoctest\njulia> eps()\n2.220446049250313e-16\n\njulia> eps(Float32)\n1.1920929f-7\n\njulia> 1.0 + eps()\n1.0000000000000002\n\njulia> 1.0 + eps()/2\n1.0\n```\n"},{"Tuple{AbstractFloat}":" eps(x::AbstractFloat)\n\nReturn the *unit in last place* (ulp) of `x`. This is the distance between consecutive\nrepresentable floating point values at `x`. In most cases, if the distance on either side\nof `x` is different, then the larger of the two is taken, that is\n\n eps(x) == max(x-prevfloat(x), nextfloat(x)-x)\n\nThe exceptions to this rule are the smallest and largest finite values\n(e.g. `nextfloat(-Inf)` and `prevfloat(Inf)` for [`Float64`](@ref)), which round to the\nsmaller of the values.\n\nThe rationale for this behavior is that `eps` bounds the floating point rounding\nerror. Under the default `RoundNearest` rounding mode, if ``y`` is a real number and ``x``\nis the nearest floating point number to ``y``, then\n\n```math\n|y-x| \\leq \\operatorname{eps}(x)/2.\n```\n\n# Examples\n```jldoctest\njulia> eps(1.0)\n2.220446049250313e-16\n\njulia> eps(prevfloat(2.0))\n2.220446049250313e-16\n\njulia> eps(2.0)\n4.440892098500626e-16\n\njulia> x = prevfloat(Inf) # largest finite Float64\n1.7976931348623157e308\n\njulia> x + eps(x)/2 # rounds up\nInf\n\njulia> x + prevfloat(eps(x)/2) # rounds down\n1.7976931348623157e308\n```\n"}],"Base.get":[{"Tuple{Function,Any,Any}":" get(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, return\n`f()`. Use [`get!`](@ref) to also store the default value in the dictionary.\n\nThis is intended to be called using `do` block syntax\n\n```julia\nget(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get(collection, key, default)\n\nReturn the value stored for the given key, or the given default value if no mapping for the\nkey is present.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> get(d, \"a\", 3)\n1\n\njulia> get(d, \"c\", 3)\n3\n```\n"}],"Base.identity":[{"Tuple{Any}":" identity(x)\n\nThe identity function. Returns its argument.\n\n# Examples\n```jldoctest\njulia> identity(\"Well, what did you expect?\")\n\"Well, what did you expect?\"\n```\n"}],"Base.IOStream":[{"Union{}":" IOStream\n\nA buffered IO stream wrapping an OS file descriptor.\nMostly used to represent files returned by [`open`](@ref).\n"}],"Base.im":[{"Union{}":" im\n\nThe imaginary unit.\n\n# Examples\n```jldoctest\njulia> im * im\n-1 + 0im\n```\n"}],"Base.typemax":[{"Union{}":" typemax(T)\n\nThe highest value representable by the given (real) numeric `DataType`.\n\n# Examples\n```jldoctest\njulia> typemax(Int8)\n127\n\njulia> typemax(UInt32)\n0xffffffff\n```\n"}],"Base.atreplinit":[{"Tuple{Function}":" atreplinit(f)\n\nRegister a one-argument function to be called before the REPL interface is initialized in\ninteractive sessions; this is useful to customize the interface. The argument of `f` is the\nREPL object. This function should be called from within the `.julia/config/startup.jl`\ninitialization file.\n"}],"Base.size":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" size(A::AbstractArray, [dim])\n\nReturn a tuple containing the dimensions of `A`. Optionally you can specify a\ndimension to just get the length of that dimension.\n\nNote that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)\nmay be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (2,3,4));\n\njulia> size(A)\n(2, 3, 4)\n\njulia> size(A, 2)\n3\n```\n"}],"Base.backtrace":[{"Tuple{}":" backtrace()\n\nGet a backtrace object for the current program point.\n"}],"Base.filter!":[{"Tuple{Any,AbstractDict}":" filter!(f, d::AbstractDict)\n\nUpdate `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Example\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\", 3=>\"c\")\nDict{Int64,String} with 3 entries:\n 2 => \"b\"\n 3 => \"c\"\n 1 => \"a\"\n\njulia> filter!(p->isodd(p.first), d)\nDict{Int64,String} with 2 entries:\n 3 => \"c\"\n 1 => \"a\"\n```\n"},{"Tuple{Any,AbstractArray{T,1} where T}":" filter!(f, a::AbstractVector)\n\nUpdate `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> filter!(isodd, Vector(1:10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"}],"Base.codeunits":[{"Tuple{AbstractString}":" codeunits(s::AbstractString)\n\nObtain a vector-like object containing the code units of a string.\nReturns a `CodeUnits` wrapper by default, but `codeunits` may optionally be defined\nfor new string types if necessary.\n"}],"Base.<":[{"Tuple{Any}":" <(x)\n\nCreate a function that compares its argument to `x` using [`<`](@ref), i.e.\na function equivalent to `y -> y < x`.\nThe returned function is of type `Base.Fix2{typeof(<)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <(x, y)\n\nLess-than comparison operator. Falls back to [`isless`](@ref).\nBecause of the behavior of floating-point NaN values, this operator implements\na partial order.\n\n# Implementation\nNew numeric types with a canonical partial order should implement this function for\ntwo arguments of the new type.\nTypes with a canonical total order should implement [`isless`](@ref) instead.\n(x < y) | (x == y)\n\n# Examples\n```jldoctest\njulia> 'a' < 'b'\ntrue\n\njulia> \"abc\" < \"abd\"\ntrue\n\njulia> 5 < 3\nfalse\n```\n"}],"Base.haskey":[{"Tuple{Dict,Any}":" haskey(collection, key) -> Bool\n\nDetermine whether a collection has a mapping for a given `key`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> haskey(D, 'a')\ntrue\n\njulia> haskey(D, 'c')\nfalse\n```\n"}],"Base.circshift":[{"Tuple{AbstractArray,Any}":" circshift(A, shifts)\n\nCircularly shift, i.e. rotate, the data in an array. The second argument is a tuple or\nvector giving the amount to shift in each dimension, or an integer to shift only in the\nfirst dimension.\n\n# Examples\n```jldoctest\njulia> b = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> circshift(b, (0,2))\n4×4 Array{Int64,2}:\n 9 13 1 5\n 10 14 2 6\n 11 15 3 7\n 12 16 4 8\n\njulia> circshift(b, (-1,0))\n4×4 Array{Int64,2}:\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n 1 5 9 13\n\njulia> a = BitArray([true, true, false, false, true])\n5-element BitArray{1}:\n 1\n 1\n 0\n 0\n 1\n\njulia> circshift(a, 1)\n5-element BitArray{1}:\n 1\n 1\n 1\n 0\n 0\n\njulia> circshift(a, -1)\n5-element BitArray{1}:\n 1\n 0\n 0\n 1\n 1\n```\n\nSee also [`circshift!`](@ref).\n"}],"Base.acquire":[{"Tuple{Base.Semaphore}":" acquire(s::Semaphore)\n\nWait for one of the `sem_size` permits to be available,\nblocking until one can be acquired.\n"}],"Base.mod":[{"Tuple{Integer,Base.OneTo}":" mod(x::Integer, r::AbstractUnitRange)\n\nFind `y` in the range `r` such that ``x ≡ y (mod n)``, where `n = length(r)`,\ni.e. `y = mod(x - first(r), n) + first(r)`.\n\nSee also: [`mod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod(0, Base.OneTo(3))\n3\n\njulia> mod(3, 0:2)\n0\n```\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"},{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" mod(x, y)\n rem(x, y, RoundDown)\n\nThe reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored\ndivision by `y`, i.e. `x - y*fld(x,y)` if computed without intermediate rounding.\n\nThe result will have the same sign as `y`, and magnitude less than `abs(y)` (with some\nexceptions, see note below).\n\n!!! note\n\n When used with floating point values, the exact result may not be representable by the\n type, and so rounding error may occur. In particular, if the exact result is very\n close to `y`, then it may be rounded to `y`.\n\n```jldoctest\njulia> mod(8, 3)\n2\n\njulia> mod(9, 3)\n0\n\njulia> mod(8.9, 3)\n2.9000000000000004\n\njulia> mod(eps(), 3)\n2.220446049250313e-16\n\njulia> mod(-eps(), 3)\n3.0\n```\n"}],"Base.mapfoldl":[{"Tuple{Any,Any,Any}":" mapfoldl(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed left associativity, as in [`foldl`](@ref).\nIf provided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.MappingRF":[{"Union{}":" MappingRF(f, rf) -> rf′\n\nCreate a mapping reducing function `rf′(acc, x) = rf(acc, f(x))`.\n"}],"Base.float":[{"Tuple{Any}":" float(x)\n\nConvert a number or array to a floating point data type.\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" float(T::Type)\n\nReturn an appropriate type to represent a value of type `T` as a floating point value.\nEquivalent to `typeof(float(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> float(Complex{Int})\nComplex{Float64}\n\njulia> float(Int)\nFloat64\n```\n"}],"Base.asyncmap":[{"Tuple{Any,Vararg{Any,N} where N}":" asyncmap(f, c...; ntasks=0, batch_size=nothing)\n\nUses multiple concurrent tasks to map `f` over a collection (or multiple\nequal length collections). For multiple collection arguments, `f` is\napplied elementwise.\n\n`ntasks` specifies the number of tasks to run concurrently.\nDepending on the length of the collections, if `ntasks` is unspecified,\nup to 100 tasks will be used for concurrent mapping.\n\n`ntasks` can also be specified as a zero-arg function. In this case, the\nnumber of tasks to run in parallel is checked before processing every element and a new\ntask started if the value of `ntasks_func` is less than the current number\nof tasks.\n\nIf `batch_size` is specified, the collection is processed in batch mode. `f` must\nthen be a function that must accept a `Vector` of argument tuples and must\nreturn a vector of results. The input vector will have a length of `batch_size` or less.\n\nThe following examples highlight execution in different tasks by returning\nthe `objectid` of the tasks in which the mapping function is executed.\n\nFirst, with `ntasks` undefined, each element is processed in a different task.\n```\njulia> tskoid() = objectid(current_task());\n\njulia> asyncmap(x->tskoid(), 1:5)\n5-element Array{UInt64,1}:\n 0x6e15e66c75c75853\n 0x440f8819a1baa682\n 0x9fb3eeadd0c83985\n 0xebd3e35fe90d4050\n 0x29efc93edce2b961\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5)))\n5\n```\n\nWith `ntasks=2` all elements are processed in 2 tasks.\n```\njulia> asyncmap(x->tskoid(), 1:5; ntasks=2)\n5-element Array{UInt64,1}:\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))\n2\n```\n\nWith `batch_size` defined, the mapping function needs to be changed to accept an array\nof argument tuples and return an array of results. `map` is used in the modified mapping\nfunction to achieve this.\n```\njulia> batch_func(input) = map(x->string(\"args_tuple: \", x, \", element_val: \", x[1], \", task: \", tskoid()), input)\nbatch_func (generic function with 1 method)\n\njulia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)\n5-element Array{String,1}:\n \"args_tuple: (1,), element_val: 1, task: 9118321258196414413\"\n \"args_tuple: (2,), element_val: 2, task: 4904288162898683522\"\n \"args_tuple: (3,), element_val: 3, task: 9118321258196414413\"\n \"args_tuple: (4,), element_val: 4, task: 4904288162898683522\"\n \"args_tuple: (5,), element_val: 5, task: 9118321258196414413\"\n```\n\n!!! note\n Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently,\n `asyncmap` is beneficial only when the mapping function involves any I/O - disk, network, remote\n worker invocation, etc.\n\n"}],"Base.fullname":[{"Tuple{Module}":" fullname(m::Module)\n\nGet the fully-qualified name of a module as a tuple of symbols. For example,\n\n# Examples\n```jldoctest\njulia> fullname(Base.Iterators)\n(:Base, :Iterators)\n\njulia> fullname(Main)\n(:Main,)\n```\n"}],"Base.stderr":[{"Union{}":" stderr\n\nGlobal variable referring to the standard error stream.\n"}],"Base.sizehint!":[{"Union{}":" sizehint!(s, n)\n\nSuggest that collection `s` reserve capacity for at least `n` elements. This can improve performance.\n"}],"Base.reshape":[{"Union{}":" reshape(A, dims...) -> AbstractArray\n reshape(A, dims) -> AbstractArray\n\nReturn an array with the same data as `A`, but with different\ndimension sizes or number of dimensions. The two arrays share the same\nunderlying data, so that the result is mutable if and only if `A` is\nmutable, and setting elements of one alters the values of the other.\n\nThe new dimensions may be specified either as a list of arguments or\nas a shape tuple. At most one dimension may be specified with a `:`,\nin which case its length is computed such that its product with all\nthe specified dimensions is equal to the length of the original array\n`A`. The total number of elements must not change.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:16)\n16-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n 7\n 8\n 9\n 10\n 11\n 12\n 13\n 14\n 15\n 16\n\njulia> reshape(A, (4, 4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reshape(A, 2, :)\n2×8 Array{Int64,2}:\n 1 3 5 7 9 11 13 15\n 2 4 6 8 10 12 14 16\n\njulia> reshape(1:6, 2, 3)\n2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:\n 1 3 5\n 2 4 6\n```\n"}],"Base.wait":[{"Tuple{Base.GenericCondition}":" wait([x])\n\nBlock the current task until some event occurs, depending on the type of the argument:\n\n* [`Channel`](@ref): Wait for a value to be appended to the channel.\n* [`Condition`](@ref): Wait for [`notify`](@ref) on a condition.\n* `Process`: Wait for a process or process chain to exit. The `exitcode` field of a process\n can be used to determine success or failure.\n* [`Task`](@ref): Wait for a `Task` to finish. If the task fails with an exception, a\n `TaskFailedException` (which wraps the failed task) is thrown.\n* [`RawFD`](@ref): Wait for changes on a file descriptor (see the `FileWatching` package).\n\nIf no argument is passed, the task blocks for an undefined period. A task can only be\nrestarted by an explicit call to [`schedule`](@ref) or [`yieldto`](@ref).\n\nOften `wait` is called within a `while` loop to ensure a waited-for condition is met before\nproceeding.\n"}],"Base.run":[{"Tuple{Base.AbstractCmd,Vararg{Any,N} where N}":" run(command, args...; wait::Bool = true)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual). Throws an error if anything goes wrong, including the process\nexiting with a non-zero status (when `wait` is true).\n\nIf `wait` is false, the process runs asynchronously. You can later wait for it and check\nits exit status by calling `success` on the returned process object.\n\nWhen `wait` is false, the process' I/O streams are directed to `devnull`.\nWhen `wait` is true, I/O streams are shared with the parent process.\nUse [`pipeline`](@ref) to control I/O redirection.\n"}],"Base.isnan":[{"Tuple{AbstractFloat}":" isnan(f) -> Bool\n\nTest whether a number value is a NaN, an indeterminate value which is neither an infinity\nnor a finite number (\"not a number\").\n"}],"Base.hasproperty":[{"Tuple{Any,Symbol}":" hasproperty(x, s::Symbol)\n\nReturn a boolean indicating whether the object `x` has `s` as one of its own properties.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.isbits":[{"Tuple{Any}":" isbits(x)\n\nReturn `true` if `x` is an instance of an `isbitstype` type.\n"}],"Base.eltype":[{"Tuple{Type}":" eltype(type)\n\nDetermine the type of the elements generated by iterating a collection of the given `type`.\nFor dictionary types, this will be a `Pair{KeyType,ValType}`. The definition\n`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed\ninstead of types. However the form that accepts a type argument should be defined for new\ntypes.\n\n# Examples\n```jldoctest\njulia> eltype(fill(1f0, (2,2)))\nFloat32\n\njulia> eltype(fill(0x1, (2,2)))\nUInt8\n```\n"}],"Base.retry":[{"Tuple{Any}":" retry(f; delays=ExponentialBackOff(), check=nothing) -> Function\n\nReturn an anonymous function that calls function `f`. If an exception arises,\n`f` is repeatedly called again, each time `check` returns `true`, after waiting the\nnumber of seconds specified in `delays`. `check` should input `delays`'s\ncurrent state and the `Exception`.\n\n!!! compat \"Julia 1.2\"\n Before Julia 1.2 this signature was restricted to `f::Function`.\n\n# Examples\n```julia\nretry(f, delays=fill(5.0, 3))\nretry(f, delays=rand(5:10, 2))\nretry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))\nretry(http_get, check=(s,e)->e.status == \"503\")(url)\nretry(read, check=(s,e)->isa(e, IOError))(io, 128; all=false)\n```\n"}],"Base.reinterpret":[{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" reinterpret(type, A)\n\nChange the type-interpretation of a block of memory.\nFor arrays, this constructs a view of the array with the same binary data as the given\narray, but with the specified element type.\nFor example,\n`reinterpret(Float32, UInt32(7))` interprets the 4 bytes corresponding to `UInt32(7)` as a\n[`Float32`](@ref).\n\n# Examples\n```jldoctest\njulia> reinterpret(Float32, UInt32(7))\n1.0f-44\n\njulia> reinterpret(Float32, UInt32[1 2 3 4 5])\n1×5 reinterpret(Float32, ::Array{UInt32,2}):\n 1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45\n```\n"}],"Base.@irrational":[{"Tuple{Any,Any,Any}":"\t@irrational sym val def\n\t@irrational(sym, val, def)\n\nDefine a new `Irrational` value, `sym`, with pre-computed `Float64` value `val`,\nand arbitrary-precision definition in terms of `BigFloat`s given be the expression `def`.\n"}],"Base.NaN32":[{"Union{}":" NaN32\n\nA not-a-number value of type [`Float32`](@ref).\n"}],"Base.deleteat!":[{"Tuple{Array{T,1} where T,Integer}":" deleteat!(a::Vector, i::Integer)\n\nRemove the item at the given `i` and return the modified `a`. Subsequent items\nare shifted to fill the resulting gap.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 2)\n5-element Array{Int64,1}:\n 6\n 4\n 3\n 2\n 1\n```\n"},{"Tuple{Array{T,1} where T,Any}":" deleteat!(a::Vector, inds)\n\nRemove the items at the indices given by `inds`, and return the modified `a`.\nSubsequent items are shifted to fill the resulting gap.\n\n`inds` can be either an iterator or a collection of sorted and unique integer indices,\nor a boolean vector of the same length as `a` with `true` indicating entries to delete.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))\nERROR: ArgumentError: indices must be unique and sorted\nStacktrace:\n[...]\n```\n"}],"Base.selectdim":[{"Tuple{AbstractArray,Integer,Any}":" selectdim(A, d::Integer, i)\n\nReturn a view of all the data of `A` where the index for dimension `d` equals `i`.\n\nEquivalent to `view(A,:,:,...,i,:,:,...)` where `i` is in position `d`.\n\n# Examples\n```jldoctest\njulia> A = [1 2 3 4; 5 6 7 8]\n2×4 Array{Int64,2}:\n 1 2 3 4\n 5 6 7 8\n\njulia> selectdim(A, 2, 3)\n2-element view(::Array{Int64,2}, :, 3) with eltype Int64:\n 3\n 7\n```\n"}],"Base.hasfield":[{"Union{Tuple{T}, Tuple{Type{T},Symbol}} where T":" hasfield(T::Type, name::Symbol)\n\nReturn a boolean indicating whether `T` has `name` as one of its own fields.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.pop!":[{"Tuple{Array{T,1} where T}":" pop!(collection) -> item\n\nRemove an item in `collection` and return it. If `collection` is an\nordered container, the last item is returned.\n\n# Examples\n```jldoctest\njulia> A=[1, 2, 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> pop!(A)\n3\n\njulia> A\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> S = Set([1, 2])\nSet{Int64} with 2 elements:\n 2\n 1\n\njulia> pop!(S)\n2\n\njulia> S\nSet{Int64} with 1 element:\n 1\n\njulia> pop!(Dict(1=>2))\n1 => 2\n```\n"},{"Tuple{Any,Any,Any}":" pop!(collection, key[, default])\n\nDelete and return the mapping for `key` if it exists in `collection`, otherwise return\n`default`, or throw an error if `default` is not specified.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> pop!(d, \"a\")\n1\n\njulia> pop!(d, \"d\")\nERROR: KeyError: key \"d\" not found\nStacktrace:\n[...]\n\njulia> pop!(d, \"e\", 4)\n4\n```\n"}],"Base.intersect":[{"Tuple{AbstractSet,Any,Vararg{Any,N} where N}":" intersect(s, itrs...)\n ∩(s, itrs...)\n\nConstruct the intersection of sets.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> intersect([1, 2, 3], [3, 4, 5])\n1-element Array{Int64,1}:\n 3\n\njulia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])\n2-element Array{Int64,1}:\n 4\n 6\n\njulia> intersect(Set([1, 2]), BitSet([2, 3]))\nSet{Int64} with 1 element:\n 2\n```\n"}],"Base.isimmutable":[{"Tuple{Any}":" isimmutable(v) -> Bool\n\nReturn `true` iff value `v` is immutable. See [Mutable Composite Types](@ref)\nfor a discussion of immutability. Note that this function works on values, so if you give it\na type, it will tell you that a value of `DataType` is mutable.\n\n# Examples\n```jldoctest\njulia> isimmutable(1)\ntrue\n\njulia> isimmutable([1,2])\nfalse\n```\n"}],"Base.denominator":[{"Tuple{Integer}":" denominator(x)\n\nDenominator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> denominator(2//3)\n3\n\njulia> denominator(4)\n1\n```\n"}],"Base.@goto":[{"Tuple{Symbol}":" @goto name\n\n`@goto name` unconditionally jumps to the statement at the location [`@label name`](@ref).\n\n`@label` and `@goto` cannot create jumps to different top-level statements. Attempts cause an\nerror. To still use `@goto`, enclose the `@label` and `@goto` in a block.\n"}],"Base.bitsunionsize":[{"Tuple{Union}":" Base.bitsunionsize(U::Union)\n\nFor a `Union` of [`isbitstype`](@ref) types, return the size of the largest type; assumes `Base.isbitsunion(U) == true`.\n\n# Examples\n```jldoctest\njulia> Base.bitsunionsize(Union{Float64, UInt8})\n0x0000000000000008\n\njulia> Base.bitsunionsize(Union{Float64, UInt8, Int128})\n0x0000000000000010\n```\n"}],"Base.unsafe_wrap":[{"Union{Tuple{N}, Tuple{T}, Tuple{Union{Type{Array}, Type{Array{T,N} where N}, Type{Array{T,N}}},Ptr{T},Tuple{Vararg{Int64,N}}}} where N where T":" unsafe_wrap(Array, pointer::Ptr{T}, dims; own = false)\n\nWrap a Julia `Array` object around the data at the address given by `pointer`,\nwithout making a copy. The pointer element type `T` determines the array\nelement type. `dims` is either an integer (for a 1d array) or a tuple of the array dimensions.\n`own` optionally specifies whether Julia should take ownership of the memory,\ncalling `free` on the pointer when the array is no longer referenced.\n\nThis function is labeled \"unsafe\" because it will crash if `pointer` is not\na valid memory address to data of the requested length.\n"}],"Base.nextpow":[{"Tuple{Real,Real}":" nextpow(a, x)\n\nThe smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be\ngreater than 1, and `x` must be greater than 0.\n\n# Examples\n```jldoctest\njulia> nextpow(2, 7)\n8\n\njulia> nextpow(2, 9)\n16\n\njulia> nextpow(5, 20)\n25\n\njulia> nextpow(4, 16)\n16\n```\n\nSee also [`prevpow`](@ref).\n"}],"Base.all!":[{"Tuple{Any,Any}":" all!(r, A)\n\nTest whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> all!([1; 1], A)\n2-element Array{Int64,1}:\n 0\n 0\n\njulia> all!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.map":[{"Tuple{Any,Any}":" map(f, c...) -> collection\n\nTransform collection `c` by applying `f` to each element. For multiple collection arguments,\napply `f` elementwise.\n\nSee also: [`mapslices`](@ref)\n\n# Examples\n```jldoctest\njulia> map(x -> x * 2, [1, 2, 3])\n3-element Array{Int64,1}:\n 2\n 4\n 6\n\njulia> map(+, [1, 2, 3], [10, 20, 30])\n3-element Array{Int64,1}:\n 11\n 22\n 33\n```\n"}],"Base.∋":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"}],"Base.datatype_haspadding":[{"Tuple{DataType}":" Base.datatype_haspadding(dt::DataType) -> Bool\n\nReturn whether the fields of instances of this type are packed in memory,\nwith no intervening padding bytes.\nCan be called on any `isconcretetype`.\n"}],"Base.hex2bytes":[{"Union{}":" hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})\n\nGiven a string or array `s` of ASCII codes for a sequence of hexadecimal digits, returns a\n`Vector{UInt8}` of bytes corresponding to the binary representation: each successive pair\nof hexadecimal digits in `s` gives the value of one byte in the return vector.\n\nThe length of `s` must be even, and the returned array has half of the length of `s`.\nSee also [`hex2bytes!`](@ref) for an in-place version, and [`bytes2hex`](@ref) for the inverse.\n\n# Examples\n```jldoctest\njulia> s = string(12345, base = 16)\n\"3039\"\n\njulia> hex2bytes(s)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> a = b\"01abEF\"\n6-element Base.CodeUnits{UInt8,String}:\n 0x30\n 0x31\n 0x61\n 0x62\n 0x45\n 0x46\n\njulia> hex2bytes(a)\n3-element Array{UInt8,1}:\n 0x01\n 0xab\n 0xef\n```\n"}],"Base.ENDIAN_BOM":[{"Union{}":" ENDIAN_BOM\n\nThe 32-bit byte-order-mark indicates the native byte order of the host machine.\nLittle-endian machines will contain the value `0x04030201`. Big-endian machines will contain\nthe value `0x01020304`.\n"}],"Base.replace":[{"Tuple{AbstractString,Pair}":" replace(s::AbstractString, pat=>r; [count::Integer])\n\nSearch for the given pattern `pat` in `s`, and replace each occurrence with `r`.\nIf `count` is provided, replace at most `count` occurrences.\n`pat` may be a single character, a vector or a set of characters, a string,\nor a regular expression.\nIf `r` is a function, each occurrence is replaced with `r(s)`\nwhere `s` is the matched substring (when `pat` is a `Regex` or `AbstractString`) or\ncharacter (when `pat` is an `AbstractChar` or a collection of `AbstractChar`).\nIf `pat` is a regular expression and `r` is a [`SubstitutionString`](@ref), then capture group\nreferences in `r` are replaced with the corresponding matched text.\nTo remove instances of `pat` from `string`, set `r` to the empty `String` (`\"\"`).\n\n# Examples\n```jldoctest\njulia> replace(\"Python is a programming language.\", \"Python\" => \"Julia\")\n\"Julia is a programming language.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"slow\", count=1)\n\"The slow foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"\", count=1)\n\"The foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", r\"fox(es)?\" => s\"bus\\1\")\n\"The quick buses run quickly.\"\n```\n"},{"Tuple{Union{Function, Type},Any}":" replace(new::Function, A; [count::Integer])\n\nReturn a copy of `A` where each value `x` in `A` is replaced by `new(x)`\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace(A, old_new::Pair...; [count::Integer])\n\nReturn a copy of collection `A` where, for each pair `old=>new` in `old_new`,\nall occurrences of `old` are replaced by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\n\nThe element type of the result is chosen using promotion (see [`promote_type`](@ref))\nbased on the element type of `A` and on the types of the `new` values in pairs.\nIf `count` is omitted and the element type of `A` is a `Union`, the element type\nof the result will not include singleton types which are replaced with values of\na different type: for example, `Union{T,Missing}` will become `T` if `missing` is\nreplaced.\n\nSee also [`replace!`](@ref).\n\n# Examples\n```jldoctest\njulia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace([1, missing], missing=>0)\n2-element Array{Int64,1}:\n 1\n 0\n```\n"}],"Base.|":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" |(x, y)\n\nBitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `false`.\n\n# Examples\n```jldoctest\njulia> 4 | 10\n14\n\njulia> 4 | 1\n5\n\njulia> true | missing\ntrue\n\njulia> false | missing\nmissing\n```\n"}],"Base.fld1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" fld1(x, y)\n\nFlooring division, returning a value consistent with `mod1(x,y)`\n\nSee also: [`mod1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> fld1(x, y)\n4\n\njulia> x == fld(x, y) * y + mod(x, y)\ntrue\n\njulia> x == (fld1(x, y) - 1) * y + mod1(x, y)\ntrue\n```\n"}],"Base.ismarked":[{"Tuple{IO}":" ismarked(s)\n\nReturn `true` if stream `s` is marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`reset`](@ref).\n"}],"Base.trylock":[{"Tuple{ReentrantLock}":" trylock(lock) -> Success (Boolean)\n\nAcquire the lock if it is available,\nand return `true` if successful.\nIf the lock is already locked by a different task/thread,\nreturn `false`.\n\nEach successful `trylock` must be matched by an [`unlock`](@ref).\n"}],"Base.release":[{"Tuple{Base.Semaphore}":" release(s::Semaphore)\n\nReturn one permit to the pool,\npossibly allowing another task to acquire it\nand resume execution.\n"}],"Base.Cmd":[{"Union{}":" Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)\n\nConstruct a new `Cmd` object, representing an external program and arguments, from `cmd`,\nwhile changing the settings of the optional keyword arguments:\n\n* `ignorestatus::Bool`: If `true` (defaults to `false`), then the `Cmd` will not throw an\n error if the return code is nonzero.\n* `detach::Bool`: If `true` (defaults to `false`), then the `Cmd` will be run in a new\n process group, allowing it to outlive the `julia` process and not have Ctrl-C passed to\n it.\n* `windows_verbatim::Bool`: If `true` (defaults to `false`), then on Windows the `Cmd` will\n send a command-line string to the process with no quoting or escaping of arguments, even\n arguments containing spaces. (On Windows, arguments are sent to a program as a single\n \"command-line\" string, and programs are responsible for parsing it into arguments. By\n default, empty arguments and arguments with spaces or tabs are quoted with double quotes\n `\"` in the command line, and `\\` or `\"` are preceded by backslashes.\n `windows_verbatim=true` is useful for launching programs that parse their command line in\n nonstandard ways.) Has no effect on non-Windows systems.\n* `windows_hide::Bool`: If `true` (defaults to `false`), then on Windows no new console\n window is displayed when the `Cmd` is executed. This has no effect if a console is\n already open or on non-Windows systems.\n* `env`: Set environment variables to use when running the `Cmd`. `env` is either a\n dictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, an\n array or tuple of `\"var\"=>val` pairs, or `nothing`. In order to modify (rather than\n replace) the existing environment, create `env` by `copy(ENV)` and then set\n `env[\"var\"]=val` as desired.\n* `dir::AbstractString`: Specify a working directory for the command (instead\n of the current directory).\n\nFor any keywords that are not specified, the current settings from `cmd` are used. Normally,\nto create a `Cmd` object in the first place, one uses backticks, e.g.\n\n Cmd(`echo \"Hello world\"`, ignorestatus=true, detach=false)\n"}],"Base.FilteringRF":[{"Union{}":" FilteringRF(f, rf) -> rf′\n\nCreate a filtering reducing function `rf′(acc, x) = f(x) ? rf(acc, x) : acc`.\n"}],"Base.typejoin":[{"Tuple{}":" typejoin(T, S)\n\n\nReturn the closest common ancestor of `T` and `S`, i.e. the narrowest type from which\nthey both inherit.\n"}],"Base.IOBuffer":[{"Tuple{String}":" IOBuffer(string::String)\n\nCreate a read-only `IOBuffer` on the data underlying the given string.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"Haho\");\n\njulia> String(take!(io))\n\"Haho\"\n\njulia> String(take!(io))\n\"Haho\"\n```\n"},{"Tuple{AbstractArray{UInt8,1}}":" IOBuffer([data::AbstractVector{UInt8}]; keywords...) -> IOBuffer\n\nCreate an in-memory I/O stream, which may optionally operate on a pre-existing array.\n\nIt may take optional keyword arguments:\n- `read`, `write`, `append`: restricts operations to the buffer; see `open` for details.\n- `truncate`: truncates the buffer size to zero length.\n- `maxsize`: specifies a size beyond which the buffer may not be grown.\n- `sizehint`: suggests a capacity of the buffer (`data` must implement `sizehint!(data, size)`).\n\nWhen `data` is not given, the buffer will be both readable and writable by default.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> io = IOBuffer(b\"JuliaLang is a GitHub organization.\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=35, maxsize=Inf, ptr=1, mark=-1)\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization.\"\n\njulia> write(io, \"This isn't writable.\")\nERROR: ArgumentError: ensureroom failed, IOBuffer is not writeable\n\njulia> io = IOBuffer(UInt8[], read=true, write=true, maxsize=34)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=34, ptr=1, mark=-1)\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n34\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization\"\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=false)))\n4\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=true)))\n0\n```\n"}],"Base.argmax":[{"Tuple{Any}":" argmax(itr) -> Integer\n\nReturn the index of the maximum element in a collection. If there are multiple maximal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmax([8,0.1,-9,pi])\n1\n\njulia> argmax([1,7,7,6])\n2\n\njulia> argmax([1,7,7,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmax(A; dims) -> indices\n\nFor an array input, return the indices of the maximum elements over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmax(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(2, 1) CartesianIndex(2, 2)\n\njulia> argmax(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n```\n"}],"Base.isperm":[{"Tuple{Any}":" isperm(v) -> Bool\n\nReturn `true` if `v` is a valid permutation.\n\n# Examples\n```jldoctest\njulia> isperm([1; 2])\ntrue\n\njulia> isperm([1; 3])\nfalse\n```\n"}],"Base.Cushort":[{"Union{}":" Cushort\n\nEquivalent to the native `unsigned short` c-type ([`UInt16`](@ref)).\n"}],"Base.allunique":[{"Tuple{Any}":" allunique(itr) -> Bool\n\nReturn `true` if all values from `itr` are distinct when compared with [`isequal`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> allunique([a, a])\nfalse\n```\n"}],"Base.AlwaysLockedST":[{"Union{}":" AlwaysLockedST\n\nThis struct does not implement a real lock, but instead\npretends to be always locked on the original thread it was allocated on,\nand simply ignores all other interactions.\nIt also does not synchronize tasks; for that use a real lock such as [`RecursiveLock`](@ref).\nThis can be used in the place of a real lock to, instead, simply and cheaply assert\nthat the operation is only occurring on a single cooperatively-scheduled thread.\nIt is thus functionally equivalent to allocating a real, recursive, task-unaware lock\nimmediately calling `lock` on it, and then never calling a matching `unlock`,\nexcept that calling `lock` from another thread will throw a concurrency violation exception.\n"}],"Base.circcopy!":[{"Tuple{Any,Any}":" circcopy!(dest, src)\n\nCopy `src` to `dest`, indexing each dimension modulo its length.\n`src` and `dest` must have the same size, but can be offset in\ntheir indices; any offset results in a (circular) wraparound. If the\narrays have overlapping indices, then on the domain of the overlap\n`dest` agrees with `src`.\n\n# Examples\n```julia-repl\njulia> src = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> dest = OffsetArray{Int}(undef, (0:3,2:5))\n\njulia> circcopy!(dest, src)\nOffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:\n 8 12 16 4\n 5 9 13 1\n 6 10 14 2\n 7 11 15 3\n\njulia> dest[1:3,2:4] == src[1:3,2:4]\ntrue\n```\n"}],"Base.@propagate_inbounds":[{"Tuple{Any}":" @propagate_inbounds\n\nTells the compiler to inline a function while retaining the caller's inbounds context.\n"}],"Base.splat":[{"Tuple{Any}":" splat(f)\n\nDefined as\n```julia\n splat(f) = args->f(args...)\n```\ni.e. given a function returns a new function that takes one argument and splats\nits argument into the original function. This is useful as an adaptor to pass\na multi-argument function in a context that expects a single argument, but\npasses a tuple as that single argument.\n\n# Example usage:\n```jldoctest\njulia> map(Base.splat(+), zip(1:3,4:6))\n3-element Array{Int64,1}:\n 5\n 7\n 9\n```\n"}],"Base.truncate":[{"Tuple{IOStream,Integer}":" truncate(file, n)\n\nResize the file or buffer given by the first argument to exactly `n` bytes, filling\npreviously unallocated space with '\\0' if the file or buffer is grown.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n35\n\njulia> truncate(io, 15)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=15, maxsize=Inf, ptr=16, mark=-1)\n\njulia> String(take!(io))\n\"JuliaLang is a \"\n\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\");\n\njulia> truncate(io, 40);\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization.\\0\\0\\0\\0\\0\"\n```\n"}],"Base.ascii":[{"Tuple{AbstractString}":" ascii(s::AbstractString)\n\nConvert a string to `String` type and check that it contains only ASCII data, otherwise\nthrowing an `ArgumentError` indicating the position of the first non-ASCII byte.\n\n# Examples\n```jldoctest\njulia> ascii(\"abcdeγfgh\")\nERROR: ArgumentError: invalid ASCII at index 6 in \"abcdeγfgh\"\nStacktrace:\n[...]\n\njulia> ascii(\"abcdefgh\")\n\"abcdefgh\"\n```\n"}],"Base.hvcat":[{"Tuple{Tuple{Vararg{Int64,N} where N},Vararg{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,N} where N}":" hvcat(rows::Tuple{Vararg{Int}}, values...)\n\nHorizontal and vertical concatenation in one call. This function is called for block matrix\nsyntax. The first argument specifies the number of arguments to concatenate in each block\nrow.\n\n# Examples\n```jldoctest\njulia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6\n(1, 2, 3, 4, 5, 6)\n\njulia> [a b c; d e f]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> hvcat((3,3), a,b,c,d,e,f)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> [a b;c d; e f]\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n\njulia> hvcat((2,2,2), a,b,c,d,e,f)\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n```\n\nIf the first argument is a single integer `n`, then all block rows are assumed to have `n`\nblock columns.\n"}],"Base.fd":[{"Tuple{IOStream}":" fd(stream)\n\nReturn the file descriptor backing the stream or file. Note that this function only applies\nto synchronous `File`'s and `IOStream`'s not to any of the asynchronous streams.\n"}],"Base.accumulate":[{"Tuple{Any,Any}":" accumulate(op, A; dims::Integer, [init])\n\nCumulative operation `op` along the dimension `dims` of `A` (providing `dims` is optional\nfor vectors). An initial value `init` may optionally be provided by a keyword argument. See\nalso [`accumulate!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow). For common operations\nthere are specialized variants of `accumulate`, see: [`cumsum`](@ref), [`cumprod`](@ref)\n\n# Examples\n```jldoctest\njulia> accumulate(+, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 3\n 6\n\njulia> accumulate(*, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> accumulate(+, [1,2,3]; init=100)\n3-element Array{Int64,1}:\n 101\n 103\n 106\n\njulia> accumulate(min, [1,2,-1]; init=0)\n3-element Array{Int64,1}:\n 0\n 0\n -1\n\njulia> accumulate(+, fill(1, 3, 3), dims=1)\n3×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n\njulia> accumulate(+, fill(1, 3, 3), dims=2)\n3×3 Array{Int64,2}:\n 1 2 3\n 1 2 3\n 1 2 3\n```\n"}],"Base.TaskFailedException":[{"Union{}":" TaskFailedException\n\nThis exception is thrown by a `wait(t)` call when task `t` fails.\n`TaskFailedException` wraps the failed task `t`.\n"}],"Base.print":[{"Tuple{IO,Any}":" print([io::IO], xs...)\n\nWrite to `io` (or to the default output stream [`stdout`](@ref)\nif `io` is not given) a canonical (un-decorated) text representation.\nThe representation used by `print` includes minimal formatting and tries to\navoid Julia-specific details.\n\n`print` falls back to calling `show`, so most types should just define\n`show`. Define `print` if your type has a separate \"plain\" representation.\nFor example, `show` displays strings with quotes, and `print` displays strings\nwithout quotes.\n\n[`string`](@ref) returns the output of `print` as a string.\n\n# Examples\n```jldoctest\njulia> print(\"Hello World!\")\nHello World!\njulia> io = IOBuffer();\n\njulia> print(io, \"Hello\", ' ', :World!)\n\njulia> String(take!(io))\n\"Hello World!\"\n```\n"}],"Base.atexit":[{"Tuple{Function}":" atexit(f)\n\nRegister a zero-argument function `f()` to be called at process exit. `atexit()` hooks are\ncalled in last in first out (LIFO) order and run before object finalizers.\n\nExit hooks are allowed to call `exit(n)`, in which case Julia will exit with\nexit code `n` (instead of the original exit code). If more than one exit hook\ncalls `exit(n)`, then Julia will exit with the exit code corresponding to the\nlast called exit hook that calls `exit(n)`. (Because exit hooks are called in\nLIFO order, \"last called\" is equivalent to \"first registered\".)\n"}],"Base.BitVector":[{"Tuple{Tuple{Vararg{Bool,N} where N}}":" BitVector(nt::Tuple{Vararg{Bool}})\n\nConstruct a `BitVector` from a tuple of `Bool`.\n# Examples\n```julia-repl\njulia> nt = (true, false, true, false)\n(true, false, true, false)\n\njulia> BitVector(nt)\n4-element BitArray{1}:\n 1\n 0\n 1\n 0\n```\n"}],"Base.replace_with_centered_mark":[{"Tuple{AbstractString}":"Unexported convenience function used in body of `replace_in_print_matrix`\nmethods. By default returns a string of the same width as original with a\ncentered cdot, used in printing of structural zeros of structured matrices.\nAccept keyword args `c` for alternate single character marker.\n"}],"Base.all":[{"Tuple{Any}":" all(itr) -> Bool\n\nTest whether all elements of a boolean collection are `true`, returning `false` as\nsoon as the first `false` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> all(a)\nfalse\n\njulia> all((println(i); v) for (i, v) in enumerate(a))\n1\n2\nfalse\n\njulia> all([missing, false])\nfalse\n\njulia> all([true, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" all(A; dims)\n\nTest whether all values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true true]\n2×2 Array{Bool,2}:\n 1 0\n 1 1\n\njulia> all(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> all(A, dims=2)\n2×1 Array{Bool,2}:\n 0\n 1\n```\n"},{"Tuple{Any,Any}":" all(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for all elements of `itr`, returning\n`false` as soon as the first item in `itr` for which `p` returns `false` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> all(i->(4<=i<=6), [4,5,6])\ntrue\n\njulia> all(i -> (println(i); i < 3), 1:10)\n1\n2\n3\nfalse\n\njulia> all(i -> i > 0, [1, missing])\nmissing\n\njulia> all(i -> i > 0, [-1, missing])\nfalse\n\njulia> all(i -> i > 0, [1, 2])\ntrue\n```\n"}],"Base.rot180":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rot180(A, k)\n\nRotate matrix `A` 180 degrees an integer `k` number of times.\nIf `k` is even, this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a,1)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rot180(a,2)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rot180(A)\n\nRotate matrix `A` 180 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n```\n"}],"Base.compilecache":[{"Tuple{Base.PkgId}":" Base.compilecache(module::PkgId)\n\nCreates a precompiled cache file for a module and all of its dependencies.\nThis can be used to reduce package load times. Cache files are stored in\n`DEPOT_PATH[1]/compiled`. See [Module initialization and precompilation](@ref)\nfor important notes.\n"}],"Base.zero":[{"Tuple{Number}":" zero(x)\n\nGet the additive identity element for the type of `x` (`x` can also specify the type itself).\n\n# Examples\n```jldoctest\njulia> zero(1)\n0\n\njulia> zero(big\"2.0\")\n0.0\n\njulia> zero(rand(2,2))\n2×2 Array{Float64,2}:\n 0.0 0.0\n 0.0 0.0\n```\n"}],"Base.bswap":[{"Tuple{Union{Int8, UInt8}}":" bswap(n)\n\nReverse the byte order of `n`.\n\n(See also [`ntoh`](@ref) and [`hton`](@ref) to convert between the current native byte order and big-endian order.)\n\n# Examples\n```jldoctest\njulia> a = bswap(0x10203040)\n0x40302010\n\njulia> bswap(a)\n0x10203040\n\njulia> string(1, base = 2)\n\"1\"\n\njulia> string(bswap(1), base = 2)\n\"100000000000000000000000000000000000000000000000000000000\"\n```\n"}],"Base.timedwait":[{"Tuple{Function,Float64}":" timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)\n\nWaits until `testcb` returns `true` or for `secs` seconds, whichever is earlier.\n`testcb` is polled every `pollint` seconds.\n\nReturns :ok, :timed_out, or :error\n"}],"Base.issubnormal":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" issubnormal(f) -> Bool\n\nTest whether a floating point number is subnormal.\n"}],"Base.eachrow":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachrow(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the first dimension of vector or matrix `A`,\nreturning the rows as views.\n\nSee also [`eachcol`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.view":[{"Union{Tuple{N}, Tuple{AbstractArray,Vararg{Any,N}}} where N":" view(A, inds...)\n\nLike [`getindex`](@ref), but returns a view into the parent array `A` with the\ngiven indices instead of making a copy. Calling [`getindex`](@ref) or\n[`setindex!`](@ref) on the returned `SubArray` computes the\nindices to the parent array on the fly without checking bounds.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = view(A, :, 1)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A # Note A has changed even though we modified b\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.strides":[{"Union{}":" strides(A)\n\nReturn a tuple of the memory strides in each dimension.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> strides(A)\n(1, 3, 12)\n```\n"}],"Base.supertype":[{"Tuple{DataType}":" supertype(T::DataType)\n\nReturn the supertype of DataType `T`.\n\n# Examples\n```jldoctest\njulia> supertype(Int32)\nSigned\n```\n"}],"Base.current_task":[{"Tuple{}":" current_task()\n\nGet the currently running [`Task`](@ref).\n"}],"Base.dropdims":[{"Tuple{Any}":" dropdims(A; dims)\n\nRemove the dimensions specified by `dims` from array `A`.\nElements of `dims` must be unique and within the range `1:ndims(A)`.\n`size(A,i)` must equal 1 for all `i` in `dims`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:4),(2,2,1,1))\n2×2×1×1 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\njulia> dropdims(a; dims=3)\n2×2×1 Array{Int64,3}:\n[:, :, 1] =\n 1 3\n 2 4\n```\n"}],"Base.replace!":[{"Tuple{Union{Function, Type},Any}":" replace!(new::Function, A; [count::Integer])\n\nReplace each element `x` in collection `A` by `new(x)`.\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace!(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n\njulia> replace!(x->2x, Set([3, 6]))\nSet{Int64} with 2 elements:\n 6\n 12\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace!(A, old_new::Pair...; [count::Integer])\n\nFor each pair `old=>new` in `old_new`, replace all occurrences\nof `old` in collection `A` by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\nSee also [`replace`](@ref replace(A, old_new::Pair...)).\n\n# Examples\n```jldoctest\njulia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace!(Set([1, 2, 3]), 1=>0)\nSet{Int64} with 3 elements:\n 0\n 2\n 3\n```\n"}],"Base.@cfunction":[{"Tuple{Any,Any,Any}":" @cfunction(callable, ReturnType, (ArgumentTypes...,)) -> Ptr{Cvoid}\n @cfunction($callable, ReturnType, (ArgumentTypes...,)) -> CFunction\n\nGenerate a C-callable function pointer from the Julia function `callable`\nfor the given type signature.\nTo pass the return value to a `ccall`, use the argument type `Ptr{Cvoid}` in the signature.\n\nNote that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression\n(although it can include a splat expression). And that these arguments will be evaluated in global scope\nduring compile-time (not deferred until runtime).\nAdding a '\\$' in front of the function argument changes this to instead create a runtime closure\nover the local variable `callable` (this is not supported on all architectures).\n\nSee [manual section on ccall and cfunction usage](@ref Calling-C-and-Fortran-Code).\n\n# Examples\n```julia-repl\njulia> function foo(x::Int, y::Int)\n return x + y\n end\n\njulia> @cfunction(foo, Int, (Int, Int))\nPtr{Cvoid} @0x000000001b82fcd0\n```\n"}],"Base.code_typed":[{"Tuple{Any,Any}":" code_typed(f, types; optimize=true, debuginfo=:default)\n\nReturns an array of type-inferred lowered form (IR) for the methods matching the given\ngeneric function and type signature. The keyword argument `optimize` controls whether\nadditional optimizations, such as inlining, are also applied.\nThe keyword `debuginfo` controls the amount of code metadata present in the output,\npossible options are `:source` or `:none`.\n"}],"Base.@timed":[{"Tuple{Any}":" @timed\n\nA macro to execute an expression, and return the value of the expression, elapsed time,\ntotal bytes allocated, garbage collection time, and an object with various memory allocation\ncounters.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> val, t, bytes, gctime, memallocs = @timed rand(10^6);\n\njulia> t\n0.006634834\n\njulia> bytes\n8000256\n\njulia> gctime\n0.0055765\n\njulia> fieldnames(typeof(memallocs))\n(:allocd, :malloc, :realloc, :poolalloc, :bigalloc, :freecall, :total_time, :pause, :full_sweep)\n\njulia> memallocs.total_time\n5576500\n```\n"}],"Base.issingletontype":[{"Tuple{Any}":" Base.issingletontype(T)\n\nDetermine whether type `T` has exactly one possible instance; for example, a\nstruct type with no fields.\n"}],"Base.Complex":[{"Union{}":" Complex{T<:Real} <: Number\n\nComplex number type with real and imaginary part of type `T`.\n\n`ComplexF16`, `ComplexF32` and `ComplexF64` are aliases for\n`Complex{Float16}`, `Complex{Float32}` and `Complex{Float64}` respectively.\n"}],"Base.AbstractMatrix":[{"Union{}":" AbstractMatrix{T}\n\nSupertype for two-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,2}`](@ref).\n"}],"Base.widen":[{"Union{Tuple{T}, Tuple{T}} where T":" widen(x)\n\nIf `x` is a type, return a \"larger\" type, defined so that arithmetic operations\n`+` and `-` are guaranteed not to overflow nor lose precision for any combination\nof values that type `x` can hold.\n\nFor fixed-size integer types less than 128 bits, `widen` will return a type with\ntwice the number of bits.\n\nIf `x` is a value, it is converted to `widen(typeof(x))`.\n\n# Examples\n```jldoctest\njulia> widen(Int32)\nInt64\n\njulia> widen(1.5f0)\n1.5\n```\n"}],"Base.@eval":[{"Tuple{Any}":" @eval [mod,] ex\n\nEvaluate an expression with values interpolated into it using `eval`.\nIf two arguments are provided, the first is the module to evaluate in.\n"}],"Base.seekend":[{"Tuple{IOStream}":" seekend(s)\n\nSeek a stream to its end.\n"}],"Base.pointer_from_objref":[{"Tuple{Any}":" pointer_from_objref(x)\n\nGet the memory address of a Julia object as a `Ptr`. The existence of the resulting `Ptr`\nwill not protect the object from garbage collection, so you must ensure that the object\nremains referenced for the whole time that the `Ptr` will be used.\n\nThis function may not be called on immutable objects, since they do not have\nstable memory addresses.\n\nSee also: [`unsafe_pointer_to_objref`](@ref).\n"}],"Base.mapslices":[{"Tuple{Any,AbstractArray}":" mapslices(f, A; dims)\n\nTransform the given dimensions of array `A` using function `f`. `f` is called on each slice\nof `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the\ncolons go in this expression. The results are concatenated along the remaining dimensions.\nFor example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]`\nfor all `i` and `j`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16),(2,2,2,2))\n2×2×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\n[:, :, 2, 1] =\n 5 7\n 6 8\n\n[:, :, 1, 2] =\n 9 11\n 10 12\n\n[:, :, 2, 2] =\n 13 15\n 14 16\n\njulia> mapslices(sum, a, dims = [1,2])\n1×1×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 10\n\n[:, :, 2, 1] =\n 26\n\n[:, :, 1, 2] =\n 42\n\n[:, :, 2, 2] =\n 58\n```\n"}],"Base.text_colors":[{"Union{}":"Dictionary of color codes for the terminal.\n\nAvailable colors are: `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow` as well as the integers 0 to 255 inclusive.\n\nThe color `:default` will print text in the default color while the color `:normal`\nwill print text with all text properties (like boldness) reset.\nPrinting with the color `:nothing` will print the string without modifications.\n"}],"Base.thisind":[{"Tuple{AbstractString,Integer}":" thisind(s::AbstractString, i::Integer) -> Int\n\nIf `i` is in bounds in `s` return the index of the start of the character whose\nencoding code unit `i` is part of. In other words, if `i` is the start of a\ncharacter, return `i`; if `i` is not the start of a character, rewind until the\nstart of a character and return that index. If `i` is equal to 0 or `ncodeunits(s)+1`\nreturn `i`. In all other cases throw `BoundsError`.\n\n# Examples\n```jldoctest\njulia> thisind(\"α\", 0)\n0\n\njulia> thisind(\"α\", 1)\n1\n\njulia> thisind(\"α\", 2)\n1\n\njulia> thisind(\"α\", 3)\n3\n\njulia> thisind(\"α\", 4)\nERROR: BoundsError: attempt to access String\n at index [4]\n[...]\n\njulia> thisind(\"α\", -1)\nERROR: BoundsError: attempt to access String\n at index [-1]\n[...]\n```\n"}],"Base.yieldto":[{"Tuple{Task,Any}":" yieldto(t::Task, arg = nothing)\n\nSwitch to the given task. The first time a task is switched to, the task's function is\ncalled with no arguments. On subsequent switches, `arg` is returned from the task's last\ncall to `yieldto`. This is a low-level call that only switches tasks, not considering states\nor scheduling in any way. Its use is discouraged.\n"}],"Base.NaN":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.Fix2":[{"Union{}":" Fix2(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the second argument fixed to the value \"x\". In other words,\n`Fix2(f, x)` behaves similarly to `y->f(y, x)`.\n"}],"Base.foreach":[{"Tuple{Any}":" foreach(f, c...) -> Nothing\n\nCall function `f` on each element of iterable `c`.\nFor multiple iterable arguments, `f` is called elementwise.\n`foreach` should be used instead of `map` when the results of `f` are not\nneeded, for example in `foreach(println, array)`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:7;\n\njulia> foreach(x -> println(x^2), a)\n1\n16\n49\n```\n"}],"Base.@gensym":[{"Tuple":" @gensym\n\nGenerates a gensym symbol for a variable. For example, `@gensym x y` is transformed into\n`x = gensym(\"x\"); y = gensym(\"y\")`.\n"}],"Base.StepRange":[{"Union{}":" StepRange{T, S} <: OrdinalRange{T, S}\n\nRanges with elements of type `T` with spacing of type `S`. The step\nbetween each element is constant, and the range is defined in terms\nof a `start` and `stop` of type `T` and a `step` of type `S`. Neither\n`T` nor `S` should be floating point types. The syntax `a:b:c` with `b > 1`\nand `a`, `b`, and `c` all integers creates a `StepRange`.\n\n# Examples\n```jldoctest\njulia> collect(StepRange(1, Int8(2), 10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n\njulia> typeof(StepRange(1, Int8(2), 10))\nStepRange{Int64,Int8}\n\njulia> typeof(1:3:6)\nStepRange{Int64,Int64}\n```\n"}],"Base.print_range":[{"Union{Tuple{IO,AbstractRange}, Tuple{IO,AbstractRange,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString,AbstractString}}":"`print_range(io, r)` prints out a nice looking range r in terms of its elements\nas if it were `collect(r)`, dependent on the size of the\nterminal, and taking into account whether compact numbers should be shown.\nIt figures out the width in characters of each element, and if they\nend up too wide, it shows the first and last elements separated by a\nhorizontal ellipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`.\n\n`print_range(io, r, pre, sep, post, hdots)` uses optional\nparameters `pre` and `post` characters for each printed row,\n`sep` separator string between printed elements,\n`hdots` string for the horizontal ellipsis.\n"}],"Base.repeat":[{"Tuple{AbstractString,Integer}":" repeat(s::AbstractString, r::Integer)\n\nRepeat a string `r` times. This can be written as `s^r`.\n\nSee also: [`^`](@ref)\n\n# Examples\n```jldoctest\njulia> repeat(\"ha\", 3)\n\"hahaha\"\n```\n"},{"Tuple{AbstractArray}":" repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))\n\nConstruct an array by repeating the entries of `A`. The i-th element of `inner` specifies\nthe number of times that the individual entries of the i-th dimension of `A` should be\nrepeated. The i-th element of `outer` specifies the number of times that a slice along the\ni-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition\nis performed.\n\n# Examples\n```jldoctest\njulia> repeat(1:2, inner=2)\n4-element Array{Int64,1}:\n 1\n 1\n 2\n 2\n\njulia> repeat(1:2, outer=2)\n4-element Array{Int64,1}:\n 1\n 2\n 1\n 2\n\njulia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))\n4×6 Array{Int64,2}:\n 1 2 1 2 1 2\n 1 2 1 2 1 2\n 3 4 3 4 3 4\n 3 4 3 4 3 4\n```\n"},{"Tuple{AbstractChar,Integer}":" repeat(c::AbstractChar, r::Integer) -> String\n\nRepeat a character `r` times. This can equivalently be accomplished by calling [`c^r`](@ref ^).\n\n# Examples\n```jldoctest\njulia> repeat('A', 3)\n\"AAA\"\n```\n"},{"Tuple{AbstractArray,Vararg{Integer,N} where N}":" repeat(A::AbstractArray, counts::Integer...)\n\nConstruct an array by repeating array `A` a given number of times in each dimension, specified by `counts`.\n\n# Examples\n```jldoctest\njulia> repeat([1, 2, 3], 2)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 1\n 2\n 3\n\njulia> repeat([1, 2, 3], 2, 3)\n6×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n 1 1 1\n 2 2 2\n 3 3 3\n```\n"}],"Base.foldl":[{"Tuple{Any,Any}":" foldl(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed left associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldl(=>, 1:4)\n((1 => 2) => 3) => 4\n\njulia> foldl(=>, 1:4; init=0)\n(((0 => 1) => 2) => 3) => 4\n```\n"}],"Base.mapreduce":[{"Tuple{Any,Any,Any}":" mapreduce(f, op, itrs...; [init])\n\nApply function `f` to each element(s) in `itrs`, and then reduce the result using the binary\nfunction `op`. If provided, `init` must be a neutral element for `op` that will be returned\nfor empty collections. It is unspecified whether `init` is used for non-empty collections.\nIn general, it will be necessary to provide `init` to work with empty collections.\n\n[`mapreduce`](@ref) is functionally equivalent to calling\n`reduce(op, map(f, itr); init=init)`, but will in general execute faster since no\nintermediate collection needs to be created. See documentation for [`reduce`](@ref) and\n[`map`](@ref).\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9\n14\n```\n\nThe associativity of the reduction is implementation-dependent. Additionally, some\nimplementations may reuse the return value of `f` for elements that appear multiple times in\n`itr`. Use [`mapfoldl`](@ref) or [`mapfoldr`](@ref) instead for\nguaranteed left or right associativity and invocation of `f` for every value.\n"},{"Tuple{Any,Any,AbstractArray}":" mapreduce(f, op, A::AbstractArray...; dims=:, [init])\n\nEvaluates to the same as `reduce(op, map(f, A); dims=dims, init=init)`, but is generally\nfaster because the intermediate array is avoided.\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> mapreduce(isodd, *, a, dims=1)\n1×4 Array{Bool,2}:\n 0 0 0 0\n\njulia> mapreduce(isodd, |, a, dims=1)\n1×4 Array{Bool,2}:\n 1 1 1 1\n```\n"}],"Base.diff":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" diff(A::AbstractVector)\n diff(A::AbstractArray; dims::Integer)\n\nFinite difference operator on a vector or a multidimensional array `A`. In the\nlatter case the dimension to operate on needs to be specified with the `dims`\nkeyword argument.\n\n!!! compat \"Julia 1.1\"\n `diff` for arrays with dimension higher than 2 requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> a = [2 4; 6 16]\n2×2 Array{Int64,2}:\n 2 4\n 6 16\n\njulia> diff(a, dims=2)\n2×1 Array{Int64,2}:\n 2\n 10\n\njulia> diff(vec(a))\n3-element Array{Int64,1}:\n 4\n -2\n 12\n```\n"}],"Base.alignment":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractArray{T,1} where T,AbstractArray{T,1} where T,Integer,Integer,Integer}":"`alignment(X, rows, cols, cols_if_complete, cols_otherwise, sep)` returns the\nalignment for specified parts of array `X`, returning the (left,right) info.\nIt will look in X's `rows`, `cols` (both lists of indices)\nand figure out what's needed to be fully aligned, for example looking all\nthe way down a column and finding out the maximum size of each element.\nParameter `sep::Integer` is number of spaces to put between elements.\n`cols_if_complete` and `cols_otherwise` indicate screen width to use.\nAlignment is reported as a vector of (left,right) tuples, one for each\ncolumn going across the screen.\n"},{"Tuple{IO,Integer}":"`alignment(42)` yields (2,0)"},{"Tuple{IO,Any}":"`alignment(X)` returns a tuple (left,right) showing how many characters are\nneeded on either side of an alignment feature such as a decimal point.\n"},{"Tuple{IO,Real}":"`alignment(4.23)` yields (1,3) for `4` and `.23`"},{"Tuple{IO,Complex}":"`alignment(1 + 10im)` yields (3,5) for `1 +` and `_10im` (plus sign on left, space on right)"}],"Base.AbstractIrrational":[{"Union{}":" AbstractIrrational <: Real\n\nNumber type representing an exact irrational value.\n"}],"Base.isdone":[{"Tuple{Any,Vararg{Any,N} where N}":" isdone(itr, state...) -> Union{Bool, Missing}\n\nThis function provides a fast-path hint for iterator completion.\nThis is useful for mutable iterators that want to avoid having elements\nconsumed, if they are not going to be exposed to the user (e.g. to check\nfor done-ness in `isempty` or `zip`). Mutable iterators that want to\nopt into this feature should define an isdone method that returns\ntrue/false depending on whether the iterator is done or not. Stateless\niterators need not implement this function. If the result is `missing`,\ncallers may go ahead and compute `iterate(x, state...) === nothing` to\ncompute a definite answer.\n"}],"Base.sum":[{"Tuple{Any}":" sum(itr)\n\nReturns the sum of all elements in a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(1:20)\n210\n```\n"},{"Tuple{AbstractArray}":" sum(A::AbstractArray; dims)\n\nSum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum(A, dims=1)\n1×2 Array{Int64,2}:\n 4 6\n\njulia> sum(A, dims=2)\n2×1 Array{Int64,2}:\n 3\n 7\n```\n"},{"Tuple{Any,Any}":" sum(f, itr)\n\nSum the results of calling function `f` on each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(abs2, [2; 3; 4])\n29\n```\n\nNote the important difference between `sum(A)` and `reduce(+, A)` for arrays\nwith small integer eltype:\n\n```jldoctest\njulia> sum(Int8[100, 28])\n128\n\njulia> reduce(+, Int8[100, 28])\n-128\n```\n\nIn the former case, the integers are widened to system word size and therefore\nthe result is 128. In the latter case, no such widening happens and integer\noverflow results in -128.\n"}],"Base.unsafe_copyto!":[{"Union{Tuple{T}, Tuple{Ptr{T},Ptr{T},Any}} where T":" unsafe_copyto!(dest::Ptr{T}, src::Ptr{T}, N)\n\nCopy `N` elements from a source pointer to a destination, with no checking. The size of an\nelement is determined by the type of the pointers.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointers `dest` and `src` to ensure that they are valid. Incorrect usage may corrupt or\nsegfault your program, in the same manner as C.\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Any,Array{T,N} where N,Any,Any}} where T":" unsafe_copyto!(dest::Array, do, src::Array, so, N)\n\nCopy `N` elements from a source array to a destination, starting at offset `so` in the\nsource and `do` in the destination (1-indexed).\n\nThe `unsafe` prefix on this function indicates that no validation is performed to ensure\nthat N is inbounds on either array. Incorrect usage may corrupt or segfault your program, in\nthe same manner as C.\n"}],"Base.functionloc":[{"Tuple{Method}":" functionloc(m::Method)\n\nReturns a tuple `(filename,line)` giving the location of a `Method` definition.\n"},{"Tuple{Any,Any}":" functionloc(f::Function, types)\n\nReturns a tuple `(filename,line)` giving the location of a generic `Function` definition.\n"}],"Base.@isdefined":[{"Tuple{Symbol}":" @isdefined s -> Bool\n\nTests whether variable `s` is defined in the current scope.\n\nSee also [`isdefined`](@ref).\n\n# Examples\n```jldoctest\njulia> function f()\n println(@isdefined x)\n x = 3\n println(@isdefined x)\n end\nf (generic function with 1 method)\n\njulia> f()\nfalse\ntrue\n```\n"}],"Base.isunaryoperator":[{"Tuple{Symbol}":" isunaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a unary (prefix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isunaryoperator(:-), Base.isunaryoperator(:√), Base.isunaryoperator(:f)\n(true, true, false)\n```\n"}],"Base.Irrational":[{"Union{}":" Irrational{sym} <: AbstractIrrational\n\nNumber type representing an exact irrational value denoted by the\nsymbol `sym`.\n"}],"Base.unescape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" unescape_string(str::AbstractString, keep = ())::AbstractString\n unescape_string(io, s::AbstractString, keep = ())::Nothing\n\nGeneral unescaping of traditional C and Unicode escape sequences. The first form returns\nthe escaped string, the second prints the result to `io`.\nThe argument `keep` specifies a collection of characters which (along with backlashes) are\nto be kept as they are.\n\nThe following escape sequences are recognised:\n - Escaped backslash (`\\\\`)\n - Escaped double-quote (`\\\"`)\n - Standard C escape sequences (`\\a`, `\\b`, `\\t`, `\\n`, `\\v`, `\\f`, `\\r`, `\\e`)\n - Unicode BMP code points (`\\u` with 1-4 trailing hex digits)\n - All Unicode code points (`\\U` with 1-8 trailing hex digits; max value = 0010ffff)\n - Hex bytes (`\\x` with 1-2 trailing hex digits)\n - Octal bytes (`\\` with 1-3 trailing octal digits)\n\n# Examples\n```jldoctest\njulia> unescape_string(\"aaa\\\\nbbb\") # C escape sequence\n\"aaa\\nbbb\"\n\njulia> unescape_string(\"\\\\u03c0\") # unicode\n\"π\"\n\njulia> unescape_string(\"\\\\101\") # octal\n\"A\"\n\njulia> unescape_string(\"aaa \\\\g \\\\n\", ['g']) # using `keep` argument\n\"aaa \\\\g \\n\"\n```\n\n## See also\n[`escape_string`](@ref).\n"}],"Base.show":[{"Tuple{Any}":" show(x)\n\nWrite an informative text representation of a value to the current output stream. New types\nshould overload `show(io::IO, x)` where the first argument is a stream. The representation used\nby `show` generally includes Julia-specific formatting and type information.\n\n[`repr`](@ref) returns the output of `show` as a string.\n\nSee also [`print`](@ref), which writes un-decorated representations.\n\n# Examples\n```jldoctest\njulia> show(\"Hello World!\")\n\"Hello World!\"\njulia> print(\"Hello World!\")\nHello World!\n```\n"}],"Base.iswritable":[{"Union{}":" iswritable(io) -> Bool\n\nReturn `true` if the specified IO object is writable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n iswritable(io)\n end\ntrue\n\njulia> open(\"myfile.txt\", \"r\") do io\n iswritable(io)\n end\nfalse\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.maxintfloat":[{"Union{Tuple{T}, Tuple{S}, Tuple{Type{S},Type{T}}} where T<:Integer where S<:AbstractFloat":" maxintfloat(T, S)\n\nThe largest consecutive integer representable in the given floating-point type `T` that\nalso does not exceed the maximum integer representable by the integer type `S`. Equivalently,\nit is the minimum of `maxintfloat(T)` and [`typemax(S)`](@ref).\n"},{"Tuple{Type{Float64}}":" maxintfloat(T=Float64)\n\nThe largest consecutive integer-valued floating-point number that is exactly represented in\nthe given floating-point type `T` (which defaults to `Float64`).\n\nThat is, `maxintfloat` returns the smallest positive integer-valued floating-point number\n`n` such that `n+1` is *not* exactly representable in the type `T`.\n\nWhen an `Integer`-type value is needed, use `Integer(maxintfloat(T))`.\n"}],"Base.checkbounds":[{"Tuple{Type{Bool},AbstractArray,Vararg{Any,N} where N}":" checkbounds(Bool, A, I...)\n\nReturn `true` if the specified indices `I` are in bounds for the given\narray `A`. Subtypes of `AbstractArray` should specialize this method\nif they need to provide custom bounds checking behaviors; however, in\nmany cases one can rely on `A`'s indices and [`checkindex`](@ref).\n\nSee also [`checkindex`](@ref).\n\n# Examples\n```jldoctest\njulia> A = rand(3, 3);\n\njulia> checkbounds(Bool, A, 2)\ntrue\n\njulia> checkbounds(Bool, A, 3, 4)\nfalse\n\njulia> checkbounds(Bool, A, 1:3)\ntrue\n\njulia> checkbounds(Bool, A, 1:3, 2:4)\nfalse\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" checkbounds(A, I...)\n\nThrow an error if the specified indices `I` are not in bounds for the given array `A`.\n"}],"Base.skipmissing":[{"Tuple{Any}":" skipmissing(itr)\n\nReturn an iterator over the elements in `itr` skipping [`missing`](@ref) values.\nThe returned object can be indexed using indices of `itr` if the latter is indexable.\nIndices corresponding to missing values are not valid: they are skipped by [`keys`](@ref)\nand [`eachindex`](@ref), and a `MissingException` is thrown when trying to use them.\n\nUse [`collect`](@ref) to obtain an `Array` containing the non-`missing` values in\n`itr`. Note that even if `itr` is a multidimensional array, the result will always\nbe a `Vector` since it is not possible to remove missings while preserving dimensions\nof the input.\n\n# Examples\n```jldoctest\njulia> x = skipmissing([1, missing, 2])\nBase.SkipMissing{Array{Union{Missing, Int64},1}}(Union{Missing, Int64}[1, missing, 2])\n\njulia> sum(x)\n3\n\njulia> x[1]\n1\n\njulia> x[2]\nERROR: MissingException: the value at index (2,) is missing\n[...]\n\njulia> argmax(x)\n3\n\njulia> collect(keys(x))\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> collect(skipmissing([1, missing, 2]))\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> collect(skipmissing([1 missing; 2 missing]))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.BitArray":[{"Union{}":" BitArray{N} <: AbstractArray{Bool, N}\n\nSpace-efficient `N`-dimensional boolean array, using just one bit for each boolean value.\n\n`BitArray`s pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency\nover `Array{Bool, N}` and allowing some operations to work on 64 values at once.\n\nBy default, Julia returns `BitArrays` from [broadcasting](@ref Broadcasting) operations\nthat generate boolean elements (including dotted-comparisons like `.==`) as well as from\nthe functions [`trues`](@ref) and [`falses`](@ref).\n"},{"Tuple{Any}":" BitArray(itr)\n\nConstruct a [`BitArray`](@ref) generated by the given iterable object.\nThe shape is inferred from the `itr` object.\n\n# Examples\n```jldoctest\njulia> BitArray([1 0; 0 1])\n2×2 BitArray{2}:\n 1 0\n 0 1\n\njulia> BitArray(x+y == 3 for x = 1:2, y = 1:3)\n2×3 BitArray{2}:\n 0 1 0\n 1 0 0\n\njulia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)\n6-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"},{"Tuple{UndefInitializer,Vararg{Integer,N} where N}":" BitArray(undef, dims::Integer...)\n BitArray{N}(undef, dims::NTuple{N,Int})\n\nConstruct an undef [`BitArray`](@ref) with the given dimensions.\nBehaves identically to the [`Array`](@ref) constructor. See [`undef`](@ref).\n\n# Examples\n```julia-repl\njulia> BitArray(undef, 2, 2)\n2×2 BitArray{2}:\n 0 0\n 0 0\n\njulia> BitArray(undef, (3, 1))\n3×1 BitArray{2}:\n 0\n 0\n 0\n```\n"}],"Base.mul_prod":[{"Tuple{Any,Any}":" Base.mul_prod(x, y)\n\nThe reduction operator used in `prod`. The main difference from [`*`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.isinteractive":[{"Tuple{}":" isinteractive() -> Bool\n\nDetermine whether Julia is running an interactive session.\n"}],"Base.nextprod":[{"Tuple{Array{Int64,1},Any}":" nextprod([k_1, k_2,...], n)\n\nNext integer greater than or equal to `n` that can be written as ``\\prod k_i^{p_i}`` for integers\n``p_1``, ``p_2``, etc.\n\n# Examples\n```jldoctest\njulia> nextprod([2, 3], 105)\n108\n\njulia> 2^2 * 3^3\n108\n```\n"}],"Base.eachcol":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachcol(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the second dimension of matrix `A`, returning the\ncolumns as views.\n\nSee also [`eachrow`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.reset":[{"Union{Tuple{T}, Tuple{T}} where T<:IO":" reset(s)\n\nReset a stream `s` to a previously marked position, and remove the mark. Return the\npreviously marked position. Throw an error if the stream is not marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`ismarked`](@ref).\n"}],"Base.argmin":[{"Tuple{Any}":" argmin(itr) -> Integer\n\nReturn the index of the minimum element in a collection. If there are multiple minimal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmin([8,0.1,-9,pi])\n3\n\njulia> argmin([7,1,1,6])\n2\n\njulia> argmin([7,1,1,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmin(A; dims) -> indices\n\nFor an array input, return the indices of the minimum elements over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmin(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1) CartesianIndex(1, 2)\n\njulia> argmin(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n```\n"}],"Base.mapfoldr":[{"Tuple{Any,Any,Any}":" mapfoldr(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed right associativity, as in [`foldr`](@ref). If\nprovided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.AbstractSet":[{"Union{}":" AbstractSet{T}\n\nSupertype for set-like types whose elements are of type `T`.\n[`Set`](@ref), [`BitSet`](@ref) and other types are subtypes of this.\n"}],"Base.isiterable":[{"Tuple{Any}":" isiterable(T) -> Bool\n\nTest if type `T` is an iterable collection type or not,\nthat is whether it has an `iterate` method or not.\n"}],"Base.Missing":[{"Union{}":" Missing\n\nA type with no fields whose singleton instance [`missing`](@ref) is used\nto represent missing values.\n"}],"Base.flipsign":[{"Tuple{Real,Real}":" flipsign(x, y)\n\nReturn `x` with its sign flipped if `y` is negative. For example `abs(x) = flipsign(x,x)`.\n\n# Examples\n```jldoctest\njulia> flipsign(5, 3)\n5\n\njulia> flipsign(5, -3)\n-5\n```\n"}],"Base.finalizer":[{"Tuple{Any,Any}":" finalizer(f, x)\n\nRegister a function `f(x)` to be called when there are no program-accessible references to\n`x`, and return `x`. The type of `x` must be a `mutable struct`, otherwise the behavior of\nthis function is unpredictable.\n\n`f` must not cause a task switch, which excludes most I/O operations such as `println`.\n`@schedule println(\"message\")` or `ccall(:jl_, Cvoid, (Any,), \"message\")` may be helpful for\ndebugging purposes.\n"}],"Base.summarysize":[{"Tuple{Any}":" Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int\n\nCompute the amount of memory, in bytes, used by all unique objects reachable from the argument.\n\n# Keyword Arguments\n- `exclude`: specifies the types of objects to exclude from the traversal.\n- `chargeall`: specifies the types of objects to always charge the size of all of their\n fields, even if those fields would normally be excluded.\n"}],"Base.isprimitivetype":[{"Tuple{Type}":" isprimitivetype(T) -> Bool\n\nDetermine whether type `T` was declared as a primitive type\n(i.e. using the `primitive` keyword).\n"}],"Base.trues":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" trues(dims)\n\nCreate a `BitArray` with all values set to `true`.\n\n# Examples\n```jldoctest\njulia> trues(2,3)\n2×3 BitArray{2}:\n 1 1 1\n 1 1 1\n```\n"}],"Base.sleep":[{"Tuple{Real}":" sleep(seconds)\n\nBlock the current task for a specified number of seconds. The minimum sleep time is 1\nmillisecond or input of `0.001`.\n"}],"Base.fieldnames":[{"Tuple{DataType}":" fieldnames(x::DataType)\n\nGet a tuple with the names of the fields of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldnames(Rational)\n(:num, :den)\n```\n"}],"Base.digits":[{"Tuple{Integer}":" digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)\n\nReturn an array with element type `T` (default `Int`) of the digits of `n` in the given\nbase, optionally padded with zeros to a specified size. More significant digits are at\nhigher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`.\n\n# Examples\n```jldoctest\njulia> digits(10, base = 10)\n2-element Array{Int64,1}:\n 0\n 1\n\njulia> digits(10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits(10, base = 2, pad = 6)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.prevfloat":[{"Tuple{AbstractFloat}":" prevfloat(x::AbstractFloat)\n\nReturn the largest floating point number `y` of the same type as `x` such `y < x`. If no\nsuch `y` exists (e.g. if `x` is `-Inf` or `NaN`), then return `x`.\n"},{"Tuple{AbstractFloat,Integer}":" prevfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `prevfloat` to `x` if `n >= 0`, or `-n`\napplications of `nextfloat` if `n < 0`.\n"}],"Base.digits!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,1},Integer}} where T<:Integer":" digits!(array, n::Integer; base::Integer = 10)\n\nFills an array of the digits of `n` in the given base. More significant digits are at higher\nindices. If the array length is insufficient, the least significant digits are filled up to\nthe array length. If the array length is excessive, the excess portion is filled with zeros.\n\n# Examples\n```jldoctest\njulia> digits!([2,2,2,2], 10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits!([2,2,2,2,2,2], 10, base = 2)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.signed":[{"Tuple{Any}":" signed(x)\n\nConvert a number to a signed integer. If the argument is unsigned, it is reinterpreted as\nsigned without checking for overflow.\n"}],"Base.∉":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.conj!":[{"Tuple{AbstractArray{#s662,N} where N where #s662<:Number}":" conj!(A)\n\nTransform an array to its complex conjugate in-place.\n\nSee also [`conj`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1+im 2-im; 2+2im 3+im]\n2×2 Array{Complex{Int64},2}:\n 1+1im 2-1im\n 2+2im 3+1im\n\njulia> conj!(A);\n\njulia> A\n2×2 Array{Complex{Int64},2}:\n 1-1im 2+1im\n 2-2im 3-1im\n```\n"}],"Base.>>>":[{"Tuple{BitArray{1},Int64}":" >>>(B::BitVector, n) -> BitVector\n\nUnsigned right bitshift operator, `B >>> n`. Equivalent to `B >> n`. See [`>>`](@ref) for\ndetails and examples.\n"},{"Tuple{Integer,Integer}":" >>>(x, n)\n\nUnsigned right bit shift operator, `x >>> n`. For `n >= 0`, the result is `x`\nshifted right by `n` bits, where `n >= 0`, filling with `0`s. For `n < 0`, this\nis equivalent to `x << -n`.\n\nFor [`Unsigned`](@ref) integer types, this is equivalent to [`>>`](@ref). For\n[`Signed`](@ref) integer types, this is equivalent to `signed(unsigned(x) >> n)`.\n\n# Examples\n```jldoctest\njulia> Int8(-14) >>> 2\n60\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(60))\n\"00111100\"\n```\n\n[`BigInt`](@ref)s are treated as if having infinite size, so no filling is required and this\nis equivalent to [`>>`](@ref).\n\nSee also [`>>`](@ref), [`<<`](@ref).\n"}],"Base.parent":[{"Tuple{AbstractArray}":" parent(A)\n\nReturns the \"parent array\" of an array view type (e.g., `SubArray`), or the array itself if\nit is not a view.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> V = view(A, 1:2, :)\n2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64:\n 1 2\n 3 4\n\njulia> parent(V)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"}],"Base.widemul":[{"Tuple{Number,Number}":" widemul(x, y)\n\nMultiply `x` and `y`, giving the result as a larger type.\n\n# Examples\n```jldoctest\njulia> widemul(Float32(3.), 4.)\n12.0\n```\n"}],"Base.Dims":[{"Union{}":" Dims{N}\n\nAn `NTuple` of `N` `Int`s used to represent the dimensions\nof an [`AbstractArray`](@ref).\n"}],"Base.code_lowered":[{"Tuple{Any,Any}":" code_lowered(f, types; generated=true, debuginfo=:default)\n\nReturn an array of the lowered forms (IR) for the methods matching the given generic function\nand type signature.\n\nIf `generated` is `false`, the returned `CodeInfo` instances will correspond to fallback\nimplementations. An error is thrown if no fallback implementation exists.\nIf `generated` is `true`, these `CodeInfo` instances will correspond to the method bodies\nyielded by expanding the generators.\n\nThe keyword debuginfo controls the amount of code metadata present in the output.\n\nNote that an error will be thrown if `types` are not leaf types when `generated` is\n`true` and any of the corresponding methods are an `@generated` method.\n"}],"Base.reverseind":[{"Tuple{AbstractString,Integer}":" reverseind(v, i)\n\nGiven an index `i` in [`reverse(v)`](@ref), return the corresponding index in\n`v` so that `v[reverseind(v,i)] == reverse(v)[i]`. (This can be nontrivial in\ncases where `v` contains non-ASCII characters.)\n\n# Examples\n```jldoctest\njulia> r = reverse(\"Julia\")\n\"ailuJ\"\n\njulia> for i in 1:length(r)\n print(r[reverseind(\"Julia\", i)])\n end\nJulia\n```\n"}],"Base.fma":[{"Union{}":" fma(x, y, z)\n\nComputes `x*y+z` without rounding the intermediate result `x*y`. On some systems this is\nsignificantly more expensive than `x*y+z`. `fma` is used to improve accuracy in certain\nalgorithms. See [`muladd`](@ref).\n"}],"Base.require":[{"Tuple{Module,Symbol}":" require(into::Module, module::Symbol)\n\nThis function is part of the implementation of [`using`](@ref) / [`import`](@ref), if a module is not\nalready defined in `Main`. It can also be called directly to force reloading a module,\nregardless of whether it has been loaded before (for example, when interactively developing\nlibraries).\n\nLoads a source file, in the context of the `Main` module, on every active node, searching\nstandard locations for files. `require` is considered a top-level operation, so it sets the\ncurrent `include` path but does not use it to search for files (see help for [`include`](@ref)).\nThis function is typically used to load library code, and is implicitly called by `using` to\nload packages.\n\nWhen searching for files, `require` first looks for package code in the global array\n[`LOAD_PATH`](@ref). `require` is case-sensitive on all platforms, including those with\ncase-insensitive filesystems like macOS and Windows.\n\nFor more details regarding code loading, see the manual sections on [modules](@ref modules) and\n[parallel computing](@ref code-availability).\n"}],"Base.write":[{"Union{}":" write(io::IO, x)\n write(filename::AbstractString, x)\n\nWrite the canonical binary representation of a value to the given I/O stream or file.\nReturn the number of bytes written into the stream. See also [`print`](@ref) to\nwrite a text representation (with an encoding that may depend upon `io`).\n\nYou can write multiple values with the same `write` call. i.e. the following are equivalent:\n\n write(io, x, y...)\n write(io, x) + write(io, y...)\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> write(io, \"Sometimes those members\") + write(io, \" write documentation.\")\n44\n\njulia> String(take!(io))\n\"Sometimes those members write documentation.\"\n```\nUser-defined plain-data types without `write` methods can be written when wrapped in a `Ref`:\n```jldoctest\njulia> struct MyStruct; x::Float64; end\n\njulia> io = IOBuffer()\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=Inf, ptr=1, mark=-1)\n\njulia> write(io, Ref(MyStruct(42.0)))\n8\n\njulia> seekstart(io); read!(io, Ref(MyStruct(NaN)))\nBase.RefValue{MyStruct}(MyStruct(42.0))\n```\n"}],"Base.axes":[{"Tuple{Any}":" axes(A)\n\nReturn the tuple of valid indices for array `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A)\n(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" axes(A, d)\n\nReturn the valid range of indices for array `A` along dimension `d`.\n\nSee also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A, 2)\nBase.OneTo(6)\n```\n"}],"Base.ReentrantLock":[{"Union{}":" ReentrantLock()\n\nCreates a re-entrant lock for synchronizing [`Task`](@ref)s.\nThe same task can acquire the lock as many times as required.\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n"}],"Base.position":[{"Tuple{IOStream}":" position(s)\n\nGet the current position of a stream.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> position(io)\n5\n\njulia> skip(io, 10);\n\njulia> position(io)\n15\n\njulia> seekend(io);\n\njulia> position(io)\n35\n```\n"}],"Base.readline":[{"Tuple{AbstractString}":" readline(io::IO=stdin; keep::Bool=false)\n readline(filename::AbstractString; keep::Bool=false)\n\nRead a single line of text from the given I/O stream or file (defaults to `stdin`).\nWhen reading from a file, the text is assumed to be encoded in UTF-8. Lines in the\ninput end with `'\\n'` or `\"\\r\\n\"` or the end of an input stream. When `keep` is\nfalse (as it is by default), these trailing newline characters are removed from the\nline before it is returned. When `keep` is true, they are returned as part of the\nline.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readline(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\"\n\njulia> readline(\"my_file.txt\", keep=true)\n\"JuliaLang is a GitHub organization.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.kill":[{"Tuple{Base.Process,Integer}":" kill(p::Process, signum=Base.SIGTERM)\n\nSend a signal to a process. The default is to terminate the process.\nReturns successfully if the process has already exited, but throws an\nerror if killing the process failed for other reasons (e.g. insufficient\npermissions).\n"}],"Base.circshift!":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any,Tuple{Vararg{Integer,N}} where N}} where N where T":" circshift!(dest, src, shifts)\n\nCircularly shift, i.e. rotate, the data in `src`, storing the result in\n`dest`. `shifts` specifies the amount to shift in each dimension.\n\nThe `dest` array must be distinct from the `src` array (they cannot\nalias each other).\n\nSee also [`circshift`](@ref).\n"}],"Base.⊇":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.@label":[{"Tuple{Symbol}":" @label name\n\nLabels a statement with the symbolic label `name`. The label marks the end-point\nof an unconditional jump with [`@goto name`](@ref).\n"}],"Base.AsyncCondition":[{"Union{}":" AsyncCondition()\n\nCreate a async condition that wakes up tasks waiting for it\n(by calling [`wait`](@ref) on the object)\nwhen notified from C by a call to `uv_async_send`.\nWaiting tasks are woken with an error when the object is closed (by [`close`](@ref).\nUse [`isopen`](@ref) to check whether it is still active.\n"},{"Tuple{Function}":" AsyncCondition(callback::Function)\n\nCreate a async condition that calls the given `callback` function. The `callback` is passed one argument,\nthe async condition object itself.\n"}],"Base.!==":[{"Tuple{Any,Any}":" !==(x, y)\n ≢(x,y)\n\nAlways gives the opposite answer as [`===`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1, 2]; b = [1, 2];\n\njulia> a ≢ b\ntrue\n\njulia> a ≢ a\nfalse\n```\n"}],"Base.isbitsunion":[{"Tuple{Union}":" Base.isbitsunion(::Type{T})\n\nReturn whether a type is an \"is-bits\" Union type, meaning each type included in a Union is [`isbitstype`](@ref).\n\n# Examples\n```jldoctest\njulia> Base.isbitsunion(Union{Float64, UInt8})\ntrue\n\njulia> Base.isbitsunion(Union{Float64, String})\nfalse\n```\n"}],"Base.⊈":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.DenseVector":[{"Union{}":" DenseVector{T}\n\nOne-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,1}`.\n"}],"Base.@time":[{"Tuple{Any}":" @time\n\nA macro to execute an expression, printing the time it took to execute, the number of\nallocations, and the total number of bytes its execution caused to be allocated, before\nreturning the value of the expression.\n\nSee also [`@timev`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n!!! note\n For more serious benchmarking, consider the `@btime` macro from the BenchmarkTools.jl\n package which among other things evaluates the function multiple times in order to\n reduce noise.\n\n```julia-repl\njulia> @time rand(10^6);\n 0.001525 seconds (7 allocations: 7.630 MiB)\n\njulia> @time begin\n sleep(0.3)\n 1+1\n end\n 0.301395 seconds (8 allocations: 336 bytes)\n2\n```\n"}],"Base.bytesavailable":[{"Tuple{Base.AbstractPipe}":" bytesavailable(io)\n\nReturn the number of bytes available for reading before a read from this stream or buffer will block.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> bytesavailable(io)\n34\n```\n"}],"Base.replace_ref_end!":[{"Tuple{Any}":" replace_ref_end!(ex)\n\nRecursively replace occurrences of the symbol :end in a \"ref\" expression (i.e. A[...]) `ex`\nwith the appropriate function calls (`lastindex` or `size`). Replacement uses\nthe closest enclosing ref, so\n\n A[B[end]]\n\nshould transform to\n\n A[B[lastindex(B)]]\n\n"}],"Base.systemerror":[{"Tuple{Any,Bool}":" systemerror(sysfunc[, errno::Cint=Libc.errno()])\n systemerror(sysfunc, iftrue::Bool)\n\nRaises a `SystemError` for `errno` with the descriptive string `sysfunc` if `iftrue` is `true`\n"}],"Base.padding":[{"Tuple{Any}":" Compute the location of padding in a type.\n"}],"Base.parentindices":[{"Tuple{AbstractArray}":" parentindices(A)\n\nReturn the indices in the [`parent`](@ref) which correspond to the array view `A`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> V = view(A, 1, :)\n2-element view(::Array{Int64,2}, 1, :) with eltype Int64:\n 1\n 2\n\njulia> parentindices(V)\n(1, Base.Slice(Base.OneTo(2)))\n```\n"}],"Base.missing":[{"Union{}":" missing\n\nThe singleton instance of type [`Missing`](@ref) representing a missing value.\n"}],"Base.tryparse":[{"Union{Tuple{T}, Tuple{Type{T},AbstractString}} where T<:Integer":" tryparse(type, str; base)\n\nLike [`parse`](@ref), but returns either a value of the requested type,\nor [`nothing`](@ref) if the string does not contain a valid number.\n"}],"Base.mod1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" mod1(x, y)\n\nModulus after flooring division, returning a value `r` such that `mod(r, y) == mod(x, y)`\nin the range ``(0, y]`` for positive `y` and in the range ``[y,0)`` for negative `y`.\n\nSee also: [`fld1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod1(4, 2)\n2\n\njulia> mod1(4, 3)\n1\n```\n"}],"Base.AsyncCollector":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing) -> iterator\n\nReturn an iterator which applies `f` to each element of `c` asynchronously\nand collects output into `results`.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `iterate(::AsyncCollector, state) -> (nothing, state)`. A successful return\n from `iterate` indicates that the next element from the input collection is\n being processed asynchronously. It blocks until a free worker task becomes\n available.\n\n!!! note\n `for _ in AsyncCollector(f, results, c...; ntasks=1) end` is equivalent to\n `map!(f, results, c...)`.\n"}],"Base.add12":[{"Union{Tuple{T}, Tuple{T,T}} where T":" zhi, zlo = add12(x, y)\n\nA high-precision representation of `x + y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x + y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nBecause of the way floating-point numbers are printed, `lo` may not\nlook the way you might expect from the standpoint of decimal\nrepresentation, even though it is exact from the standpoint of binary\nrepresentation.\n\nExample:\n```julia\njulia> 1.0 + 1.0001e-15\n1.000000000000001\n\njulia> big(1.0) + big(1.0001e-15)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n\njulia> hi, lo = Base.add12(1.0, 1.0001e-15)\n(1.000000000000001, -1.1012302462515652e-16)\n\njulia> big(hi) + big(lo)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n```\n\n`lo` differs from 1.0e-19 because `hi` is not exactly equal to\nthe first 16 decimal digits of the answer.\n"}],"Base.trailing_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" trailing_zeros(x::Integer) -> Integer\n\nNumber of zeros trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_zeros(2)\n1\n```\n"}],"Base.vect":[{"Tuple":" vect(X...)\n\nCreate a [`Vector`](@ref) with element type computed from the `promote_typeof` of the argument,\ncontaining the argument list.\n\n# Examples\n```jldoctest\njulia> a = Base.vect(UInt8(1), 2.5, 1//2)\n3-element Array{Float64,1}:\n 1.0\n 2.5\n 0.5\n```\n"}],"Base.time_ns":[{"Tuple{}":" time_ns()\n\nGet the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.\n"}],"Base.parameter_upper_bound":[{"Tuple{UnionAll,Any}":" Base.parameter_upper_bound(t::UnionAll, idx)\n\nDetermine the upper bound of a type parameter in the underlying datatype.\nThis method should generally not be relied upon:\ncode instead should usually use static parameters in dispatch to extract these values.\n\n# Examples\n```jldoctest\njulia> struct Foo{T<:AbstractFloat, N}\n x::Tuple{T, N}\n end\n\njulia> Base.parameter_upper_bound(Foo, 1)\nAbstractFloat\n\njulia> Base.parameter_upper_bound(Foo, 2)\nAny\n```\n"}],"Base.rpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" rpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the right with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> rpad(\"March\", 20)\n\"March \"\n```\n"}],"Base.redirect_stderr":[{"Union{}":" redirect_stderr([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stderr`](@ref).\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stderr(f::Function, stream)\n\nRun the function `f` while redirecting [`stderr`](@ref) to `stream`.\nUpon completion, [`stderr`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.first":[{"Tuple{Any}":" first(coll)\n\nGet the first element of an iterable collection. Return the start point of an\n[`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> first(2:2:10)\n2\n\njulia> first([1; 2; 3; 4])\n1\n```\n"},{"Tuple{AbstractString,Integer}":" first(s::AbstractString, n::Integer)\n\nGet a string consisting of the first `n` characters of `s`.\n\n```jldoctest\njulia> first(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 1)\n\"∀\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 3)\n\"∀ϵ≠\"\n```\n"}],"Base.fill!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" fill!(A, x)\n\nFill array `A` with the value `x`. If `x` is an object reference, all elements will refer to\nthe same object. `fill!(A, Foo())` will return `A` filled with the result of evaluating\n`Foo()` once.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,3)\n2×3 Array{Float64,2}:\n 0.0 0.0 0.0\n 0.0 0.0 0.0\n\njulia> fill!(A, 2.)\n2×3 Array{Float64,2}:\n 2.0 2.0 2.0\n 2.0 2.0 2.0\n\njulia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A\n3-element Array{Array{Int64,1},1}:\n [2, 1, 1]\n [2, 1, 1]\n [2, 1, 1]\n\njulia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())\n3-element Array{Int64,1}:\n 1\n 1\n 1\n```\n"}],"Base.close":[{"Union{}":" close(stream)\n\nClose an I/O stream. Performs a [`flush`](@ref) first.\n"},{"Union{Tuple{Channel}, Tuple{Channel,Exception}}":" close(c::Channel[, excp::Exception])\n\nClose a channel. An exception (optionally given by `excp`), is thrown by:\n\n* [`put!`](@ref) on a closed channel.\n* [`take!`](@ref) and [`fetch`](@ref) on an empty, closed channel.\n"}],"Base.@task":[{"Tuple{Any}":" @task\n\nWrap an expression in a [`Task`](@ref) without executing it, and return the [`Task`](@ref). This only\ncreates a task, and does not run it.\n\n# Examples\n```jldoctest\njulia> a1() = sum(i for i in 1:1000);\n\njulia> b = @task a1();\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.oneunit":[{"Union{Tuple{T}, Tuple{T}} where T":" oneunit(x::T)\n oneunit(T::Type)\n\nReturns `T(one(x))`, where `T` is either the type of the argument or\n(if a type is passed) the argument. This differs from [`one`](@ref) for\ndimensionful quantities: `one` is dimensionless (a multiplicative identity)\nwhile `oneunit` is dimensionful (of the same type as `x`, or of type `T`).\n\n# Examples\n```jldoctest\njulia> oneunit(3.7)\n1.0\n\njulia> import Dates; oneunit(Dates.Day)\n1 day\n```\n"}],"Base.sizeof":[{"Tuple{Any}":" sizeof(T::DataType)\n sizeof(obj)\n\nSize, in bytes, of the canonical binary representation of the given `DataType` `T`, if any.\nSize, in bytes, of object `obj` if it is not `DataType`.\n\n# Examples\n```jldoctest\njulia> sizeof(Float32)\n4\n\njulia> sizeof(ComplexF64)\n16\n\njulia> sizeof(1.0)\n8\n\njulia> sizeof([1.0:10.0;])\n80\n```\n\nIf `DataType` `T` does not have a specific size, an error is thrown.\n\n```jldoctest\njulia> sizeof(AbstractArray)\nERROR: Abstract type AbstractArray does not have a definite size.\nStacktrace:\n[...]\n```\n"},{"Tuple{AbstractString}":" sizeof(str::AbstractString)\n\nSize, in bytes, of the string `str`. Equal to the number of code units in `str` multiplied by\nthe size, in bytes, of one code unit in `str`.\n\n# Examples\n```jldoctest\njulia> sizeof(\"\")\n0\n\njulia> sizeof(\"∀\")\n3\n```\n"}],"Base.isinteger":[{"Tuple{Integer}":" isinteger(x) -> Bool\n\nTest whether `x` is numerically equal to some integer.\n\n# Examples\n```jldoctest\njulia> isinteger(4.0)\ntrue\n```\n"}],"Base.Cchar":[{"Union{}":" Cchar\n\nEquivalent to the native `char` c-type.\n"}],"Base.datatype_pointerfree":[{"Tuple{DataType}":" Base.datatype_pointerfree(dt::DataType) -> Bool\n\nReturn whether instances of this type can contain references to gc-managed memory.\nCan be called on any `isconcretetype`.\n"}],"Base.uabs":[{"Tuple{Integer}":" uabs(x::Integer)\n\nReturn the absolute value of `x`, possibly returning a different type should the\noperation be susceptible to overflow. This typically arises when `x` is a two's complement\nsigned integer, so that `abs(typemin(x)) == typemin(x) < 0`, in which case the result of\n`uabs(x)` will be an unsigned integer of the same size.\n"}],"Base.hasmethod":[{"Tuple{Any,Any}":" hasmethod(f, t::Type{<:Tuple}[, kwnames]; world=typemax(UInt)) -> Bool\n\nDetermine whether the given generic function has a method matching the given\n`Tuple` of argument types with the upper bound of world age given by `world`.\n\nIf a tuple of keyword argument names `kwnames` is provided, this also checks\nwhether the method of `f` matching `t` has the given keyword argument names.\nIf the matching method accepts a variable number of keyword arguments, e.g.\nwith `kwargs...`, any names given in `kwnames` are considered valid. Otherwise\nthe provided names must be a subset of the method's keyword arguments.\n\nSee also [`applicable`](@ref).\n\n!!! compat \"Julia 1.2\"\n Providing keyword argument names requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> hasmethod(length, Tuple{Array})\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:dims,))\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:apples, :bananas))\nfalse\n\njulia> g(; xs...) = 4;\n\njulia> hasmethod(g, Tuple{}, (:a, :b, :c, :d)) # g accepts arbitrary kwargs\ntrue\n```\n"}],"Base.isdispatchtuple":[{"Tuple{Any}":" isdispatchtuple(T)\n\nDetermine whether type `T` is a tuple \"leaf type\",\nmeaning it could appear as a type signature in dispatch\nand has no subtypes (or supertypes) which could appear in a call.\n"}],"Base.process_exited":[{"Tuple{Base.Process}":" process_exited(p::Process)\n\nDetermine whether a process has exited.\n"}],"Base.Val":[{"Union{}":" Val(c)\n\nReturn `Val{c}()`, which contains no run-time data. Types like this can be used to\npass the information between functions through the value `c`, which must be an `isbits`\nvalue. The intent of this construct is to be able to dispatch on constants directly (at\ncompile time) without having to test the value of the constant at run time.\n\n# Examples\n```jldoctest\njulia> f(::Val{true}) = \"Good\"\nf (generic function with 1 method)\n\njulia> f(::Val{false}) = \"Bad\"\nf (generic function with 2 methods)\n\njulia> f(Val(true))\n\"Good\"\n```\n"}],"Base.minimum":[{"Tuple{Any}":" minimum(itr)\n\nReturns the smallest element in a collection.\n\n# Examples\n```jldoctest\njulia> minimum(-20.5:10)\n-20.5\n\njulia> minimum([1,2,3])\n1\n```\n"},{"Tuple{AbstractArray}":" minimum(A::AbstractArray; dims)\n\nCompute the minimum value of an array over the given dimensions. See also the\n[`min(a,b)`](@ref) function to take the minimum of two or more arguments,\nwhich can be applied elementwise to arrays via `min.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum(A, dims=1)\n1×2 Array{Int64,2}:\n 1 2\n\njulia> minimum(A, dims=2)\n2×1 Array{Int64,2}:\n 1\n 3\n```\n"},{"Tuple{Any,Any}":" minimum(f, itr)\n\nReturns the smallest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> minimum(length, [\"Julion\", \"Julia\", \"Jule\"])\n4\n```\n"}],"Base.rethrow":[{"Tuple{}":" rethrow()\n\nRethrow the current exception from within a `catch` block. The rethrown\nexception will continue propagation as if it had not been caught.\n\n!!! note\n The alternative form `rethrow(e)` allows you to associate an alternative\n exception object `e` with the current backtrace. However this misrepresents\n the program state at the time of the error so you're encouraged to instead\n throw a new exception using `throw(e)`. In Julia 1.1 and above, using\n `throw(e)` will preserve the root cause exception on the stack, as\n described in [`catch_stack`](@ref).\n"}],"Base.hasfastin":[{"Tuple{Type}":" hasfastin(T)\n\nDetermine whether the computation `x ∈ collection` where `collection::T` can be considered\nas a \"fast\" operation (typically constant or logarithmic complexity).\nThe definition `hasfastin(x) = hasfastin(typeof(x))` is provided for convenience so that instances\ncan be passed instead of types.\nHowever the form that accepts a type argument should be defined for new types.\n"}],"Base.add_sum":[{"Tuple{Any,Any}":" Base.add_sum(x, y)\n\nThe reduction operator used in `sum`. The main difference from [`+`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.Channel":[{"Union{}":" Channel{T=Any}(size::Int=0)\n\nConstructs a `Channel` with an internal buffer that can hold a maximum of `size` objects\nof type `T`.\n[`put!`](@ref) calls on a full channel block until an object is removed with [`take!`](@ref).\n\n`Channel(0)` constructs an unbuffered channel. `put!` blocks until a matching `take!` is called.\nAnd vice-versa.\n\nOther constructors:\n\n* `Channel()`: default constructor, equivalent to `Channel{Any}(0)`\n* `Channel(Inf)`: equivalent to `Channel{Any}(typemax(Int))`\n* `Channel(sz)`: equivalent to `Channel{Any}(sz)`\n\n!!! compat \"Julia 1.3\"\n The default constructor `Channel()` and default `size=0` were added in Julia 1.3.\n"},{"Union{Tuple{Function}, Tuple{T}, Tuple{Function,Any}} where T":" Channel{T=Any}(func::Function, size=0; taskref=nothing, spawn=false)\n\nCreate a new task from `func`, bind it to a new channel of type\n`T` and size `size`, and schedule the task, all in a single call.\n\n`func` must accept the bound channel as its only argument.\n\nIf you need a reference to the created task, pass a `Ref{Task}` object via\nthe keyword argument `taskref`.\n\nIf `spawn = true`, the Task created for `func` may be scheduled on another thread\nin parallel, equivalent to creating a task via [`Threads.@spawn`](@ref).\n\nReturn a `Channel`.\n\n# Examples\n```jldoctest\njulia> chnl = Channel() do ch\n foreach(i -> put!(ch, i), 1:4)\n end;\n\njulia> typeof(chnl)\nChannel{Any}\n\njulia> for i in chnl\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n```\n\nReferencing the created task:\n\n```jldoctest\njulia> taskref = Ref{Task}();\n\njulia> chnl = Channel(taskref=taskref) do ch\n println(take!(ch))\n end;\n\njulia> istaskdone(taskref[])\nfalse\n\njulia> put!(chnl, \"Hello\");\nHello\n\njulia> istaskdone(taskref[])\ntrue\n```\n\n!!! compat \"Julia 1.3\"\n The `spawn=` parameter was added in Julia 1.3. This constructor was added in Julia 1.3.\n In earlier versions of Julia, Channel used keyword arguments to set `size` and `T`, but\n those constructors are deprecated.\n\n```jldoctest\njulia> chnl = Channel{Char}(1, spawn=true) do ch\n for c in \"hello world\"\n put!(ch, c)\n end\n end\nChannel{Char}(sz_max:1,sz_curr:1)\n\njulia> String(collect(chnl))\n\"hello world\"\n```\n"}],"Base.VERSION":[{"Union{}":" VERSION\n\nA `VersionNumber` object describing which version of Julia is in use. For details see\n[Version Number Literals](@ref man-version-number-literals).\n"}],"Base.union!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" union!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the union of passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> union!(a, 1:2:8);\n\njulia> a\nSet{Int64} with 5 elements:\n 7\n 4\n 3\n 5\n 1\n```\n"}],"Base.findlast":[{"Tuple{Any}":" findlast(A)\n\nReturn the index or key of the last `true` value in `A`.\nReturn `nothing` if there is no `true` value in `A`.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, true, false]\n4-element Array{Bool,1}:\n 1\n 0\n 1\n 0\n\njulia> findlast(A)\n3\n\njulia> A = falses(2,2);\n\njulia> findlast(A) # returns nothing, but not printed in the REPL\n\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> findlast(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findlast(predicate::Function, A)\n\nReturn the index or key of the last element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4]\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> findlast(isodd, A)\n3\n\njulia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> findlast(isodd, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findlast(pattern::AbstractString, string::AbstractString)\n\nFind the last occurrence of `pattern` in `string`. Equivalent to\n[`findprev(pattern, string, lastindex(string))`](@ref).\n\n# Examples\n```jldoctest\njulia> findlast(\"o\", \"Hello to the world\")\n15:15\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findlast(ch::AbstractChar, string::AbstractString)\n\nFind the last occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findlast('p', \"happy\")\n4\n\njulia> findlast('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.Event":[{"Union{}":" Event()\n\nCreate a level-triggered event source. Tasks that call [`wait`](@ref) on an\n`Event` are suspended and queued until `notify` is called on the `Event`.\nAfter `notify` is called, the `Event` remains in a signaled state and\ntasks will no longer block when waiting for it.\n\n!!! compat \"Julia 1.1\"\n This functionality requires at least Julia 1.1.\n"}],"Base.NaN16":[{"Union{}":" NaN16\n\nA not-a-number value of type [`Float16`](@ref).\n"}],"Base.>=":[{"Tuple{Any}":" >=(x)\n\nCreate a function that compares its argument to `x` using [`>=`](@ref), i.e.\na function equivalent to `y -> y >= x`.\nThe returned function is of type `Base.Fix2{typeof(>=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >=(x, y)\n ≥(x,y)\n\nGreater-than-or-equals comparison operator. Falls back to `y <= x`.\n\n# Examples\n```jldoctest\njulia> 'a' >= 'b'\nfalse\n\njulia> 7 ≥ 7 ≥ 3\ntrue\n\njulia> \"abc\" ≥ \"abc\"\ntrue\n\njulia> 5 >= 3\ntrue\n```\n"}],"Base.unique":[{"Tuple{Any}":" unique(itr)\n\nReturn an array containing only the unique elements of collection `itr`,\nas determined by [`isequal`](@ref), in the order that the first of each\nset of equivalent elements originally appears. The element type of the\ninput is preserved.\n\n# Examples\n```jldoctest\njulia> unique([1, 2, 6, 2])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> unique(Real[1, 1.0, 2])\n2-element Array{Real,1}:\n 1\n 2\n```\n"},{"Tuple{AbstractArray}":" unique(A::AbstractArray; dims::Int)\n\nReturn unique regions of `A` along dimension `dims`.\n\n# Examples\n```jldoctest\njulia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))\n2×2×2 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n\n[:, :, 2] =\n 1 1\n 0 0\n\njulia> unique(A)\n2-element Array{Bool,1}:\n 1\n 0\n\njulia> unique(A, dims=2)\n2×1×2 Array{Bool,3}:\n[:, :, 1] =\n 1\n 0\n\n[:, :, 2] =\n 1\n 0\n\njulia> unique(A, dims=3)\n2×2×1 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n```\n"},{"Tuple{Any,Any}":" unique(f, itr)\n\nReturns an array containing one value from `itr` for each unique value produced by `f`\napplied to elements of `itr`.\n\n# Examples\n```jldoctest\njulia> unique(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n```\n"}],"Base.getindex":[{"Union{}":" getindex(collection, key...)\n\nRetrieve the value(s) stored at the given key or index within a collection. The syntax\n`a[i,j,...]` is converted by the compiler to `getindex(a, i, j, ...)`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> getindex(A, \"a\")\n1\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" getindex(A, inds...)\n\nReturn a subset of array `A` as specified by `inds`, where each `ind` may be an\n`Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref). See the manual section on\n[array indexing](@ref man-array-indexing) for details.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> getindex(A, 1)\n1\n\njulia> getindex(A, [2, 1])\n2-element Array{Int64,1}:\n 3\n 1\n\njulia> getindex(A, 2:4)\n3-element Array{Int64,1}:\n 3\n 2\n 4\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Vararg{Any,N} where N}} where T":" getindex(type[, elements...])\n\nConstruct a 1-d array of the specified type. This is usually called with the syntax\n`Type[]`. Element values can be specified using `Type[a,b,c,...]`.\n\n# Examples\n```jldoctest\njulia> Int8[1, 2, 3]\n3-element Array{Int8,1}:\n 1\n 2\n 3\n\njulia> getindex(Int8, 1, 2, 3)\n3-element Array{Int8,1}:\n 1\n 2\n 3\n```\n"}],"Base.ones":[{"Union{}":" ones([T=Float64,] dims::Tuple)\n ones([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all ones with size specified by `dims`.\nSee also: [`fill`](@ref), [`zeros`](@ref).\n\n# Examples\n```jldoctest\njulia> ones(1,2)\n1×2 Array{Float64,2}:\n 1.0 1.0\n\njulia> ones(ComplexF64, 2, 3)\n2×3 Array{Complex{Float64},2}:\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n```\n"}],"Base.iterate":[{"Union{}":" iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}\n\nAdvance the iterator to obtain the next element. If no elements\nremain, `nothing` should be returned. Otherwise, a 2-tuple of the\nnext element and the new iteration state should be returned.\n"},{"Tuple{AbstractString,Integer}":" iterate(s::AbstractString, i::Integer) -> Union{Tuple{<:AbstractChar, Int}, Nothing}\n\nReturn a tuple of the character in `s` at index `i` with the index of the start\nof the following character in `s`. This is the key method that allows strings to\nbe iterated, yielding a sequences of characters. If `i` is out of bounds in `s`\nthen a bounds error is raised. The `iterate` function, as part of the iteration\nprotocol may assume that `i` is the start of a character in `s`.\n\nSee also: [`getindex`](@ref), [`checkbounds`](@ref)\n"}],"Base.readavailable":[{"Union{}":" readavailable(stream)\n\nRead all available data on the stream, blocking the task only if no data is available. The\nresult is a `Vector{UInt8,1}`.\n"}],"Base.fieldoffset":[{"Tuple{DataType,Integer}":" fieldoffset(type, i)\n\nThe byte offset of field `i` of a type relative to the data start. For example, we could\nuse it in the following manner to summarize information about a struct:\n\n```jldoctest\njulia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i = 1:fieldcount(T)];\n\njulia> structinfo(Base.Filesystem.StatStruct)\n12-element Array{Tuple{UInt64,Symbol,DataType},1}:\n (0x0000000000000000, :device, UInt64)\n (0x0000000000000008, :inode, UInt64)\n (0x0000000000000010, :mode, UInt64)\n (0x0000000000000018, :nlink, Int64)\n (0x0000000000000020, :uid, UInt64)\n (0x0000000000000028, :gid, UInt64)\n (0x0000000000000030, :rdev, UInt64)\n (0x0000000000000038, :size, Int64)\n (0x0000000000000040, :blksize, Int64)\n (0x0000000000000048, :blocks, Int64)\n (0x0000000000000050, :mtime, Float64)\n (0x0000000000000058, :ctime, Float64)\n```\n"}],"Base.one":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" one(x)\n one(T::type)\n\nReturn a multiplicative identity for `x`: a value such that\n`one(x)*x == x*one(x) == x`. Alternatively `one(T)` can\ntake a type `T`, in which case `one` returns a multiplicative\nidentity for any `x` of type `T`.\n\nIf possible, `one(x)` returns a value of the same type as `x`,\nand `one(T)` returns a value of type `T`. However, this may\nnot be the case for types representing dimensionful quantities\n(e.g. time in days), since the multiplicative\nidentity must be dimensionless. In that case, `one(x)`\nshould return an identity value of the same precision\n(and shape, for matrices) as `x`.\n\nIf you want a quantity that is of the same type as `x`, or of type `T`,\neven if `x` is dimensionful, use [`oneunit`](@ref) instead.\n\n# Examples\n```jldoctest\njulia> one(3.7)\n1.0\n\njulia> one(Int)\n1\n\njulia> import Dates; one(Dates.Day(1))\n1\n```\n"}],"Base.IteratorSize":[{"Tuple{Any}":" IteratorSize(itertype::Type) -> IteratorSize\n\nGiven the type of an iterator, return one of the following values:\n\n* `SizeUnknown()` if the length (number of elements) cannot be determined in advance.\n* `HasLength()` if there is a fixed, finite length.\n* `HasShape{N}()` if there is a known length plus a notion of multidimensional shape (as for an array).\n In this case `N` should give the number of dimensions, and the [`axes`](@ref) function is valid\n for the iterator.\n* `IsInfinite()` if the iterator yields values forever.\n\nThe default value (for iterators that do not define this function) is `HasLength()`.\nThis means that most iterators are assumed to implement [`length`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate space for their\nresult, and algorithms that resize their result incrementally.\n\n```jldoctest\njulia> Base.IteratorSize(1:5)\nBase.HasShape{1}()\n\njulia> Base.IteratorSize((2,3))\nBase.HasLength()\n```\n"}],"Base.convert":[{"Union{}":" convert(T, x)\n\nConvert `x` to a value of type `T`.\n\nIf `T` is an [`Integer`](@ref) type, an [`InexactError`](@ref) will be raised if `x`\nis not representable by `T`, for example if `x` is not integer-valued, or is outside the\nrange supported by `T`.\n\n# Examples\n```jldoctest\njulia> convert(Int, 3.0)\n3\n\njulia> convert(Int, 3.5)\nERROR: InexactError: Int64(3.5)\nStacktrace:\n[...]\n```\n\nIf `T` is a [`AbstractFloat`](@ref) or [`Rational`](@ref) type,\nthen it will return the closest value to `x` representable by `T`.\n\n```jldoctest\njulia> x = 1/3\n0.3333333333333333\n\njulia> convert(Float32, x)\n0.33333334f0\n\njulia> convert(Rational{Int32}, x)\n1//3\n\njulia> convert(Rational{Int64}, x)\n6004799503160661//18014398509481984\n```\n\nIf `T` is a collection type and `x` a collection, the result of\n`convert(T, x)` may alias all or part of `x`.\n```jldoctest\njulia> x = Int[1, 2, 3];\n\njulia> y = convert(Vector{Int}, x);\n\njulia> y === x\ntrue\n```\n"}],"Base.displaysize":[{"Tuple{IO}":" displaysize([io::IO]) -> (lines, columns)\n\nReturn the nominal size of the screen that may be used for rendering output to\nthis `IO` object.\nIf no input is provided, the environment variables `LINES` and `COLUMNS` are read.\nIf those are not set, a default size of `(24, 80)` is returned.\n\n# Examples\n```jldoctest\njulia> withenv(\"LINES\" => 30, \"COLUMNS\" => 100) do\n displaysize()\n end\n(30, 100)\n```\n\nTo get your TTY size,\n\n```julia\njulia> displaysize(stdout)\n(34, 147)\n```\n"}],"Base.extrema":[{"Tuple{Any,AbstractArray}":" extrema(f, A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum of `f` applied to each element in the given dimensions\nof `A`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n"},{"Tuple{Any}":" extrema(itr) -> Tuple\n\nCompute both the minimum and maximum element in a single pass, and return them as a 2-tuple.\n\n# Examples\n```jldoctest\njulia> extrema(2:10)\n(2, 10)\n\njulia> extrema([9,pi,4.5])\n(3.141592653589793, 9.0)\n```\n"},{"Tuple{AbstractArray}":" extrema(A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = reshape(Vector(1:2:16), (2,2,2))\n2×2×2 Array{Int64,3}:\n[:, :, 1] =\n 1 5\n 3 7\n\n[:, :, 2] =\n 9 13\n 11 15\n\njulia> extrema(A, dims = (1,2))\n1×1×2 Array{Tuple{Int64,Int64},3}:\n[:, :, 1] =\n (1, 7)\n\n[:, :, 2] =\n (9, 15)\n```\n"},{"Tuple{Any,Any}":" extrema(f, itr) -> Tuple\n\nCompute both the minimum and maximum of `f` applied to each element in `itr` and return\nthem as a 2-tuple. Only one pass is made over `itr`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> extrema(sin, 0:π)\n(0.0, 0.9092974268256817)\n```\n"}],"Base.istaskfailed":[{"Tuple{Task}":" istaskfailed(t::Task) -> Bool\n\nDetermine whether a task has exited because an exception was thrown.\n\n# Examples\n```jldoctest\njulia> a4() = error(\"task failed\");\n\njulia> b = Task(a4);\n\njulia> istaskfailed(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskfailed(b)\ntrue\n```\n"}],"Base.map!":[{"Tuple{Any,Base.ValueIterator}":" map!(f, values(dict::AbstractDict))\n\nModifies `dict` by transforming each value from `val` to `f(val)`.\nNote that the type of `dict` cannot be changed: if `f(val)` is not an instance of the value type\nof `dict` then it will be converted to the value type if possible and otherwise raise an error.\n\n# Examples\n```jldoctest\njulia> d = Dict(:a => 1, :b => 2)\nDict{Symbol,Int64} with 2 entries:\n :a => 1\n :b => 2\n\njulia> map!(v -> v-1, values(d))\nBase.ValueIterator for a Dict{Symbol,Int64} with 2 entries. Values:\n 0\n 1\n```\n"},{"Union{Tuple{F}, Tuple{F,AbstractArray,Vararg{AbstractArray,N} where N}} where F":" map!(function, destination, collection...)\n\nLike [`map`](@ref), but stores the result in `destination` rather than a new\ncollection. `destination` must be at least as large as the first collection.\n\n# Examples\n```jldoctest\njulia> a = zeros(3);\n\njulia> map!(x -> x * 2, a, [1, 2, 3]);\n\njulia> a\n3-element Array{Float64,1}:\n 2.0\n 4.0\n 6.0\n```\n"}],"Base.@inbounds":[{"Tuple{Any}":" @inbounds(blk)\n\nEliminates array bounds checking within expressions.\n\nIn the example below the in-range check for referencing\nelement `i` of array `A` is skipped to improve performance.\n\n```julia\nfunction sum(A::AbstractArray)\n r = zero(eltype(A))\n for i = 1:length(A)\n @inbounds r += A[i]\n end\n return r\nend\n```\n\n!!! warning\n\n Using `@inbounds` may return incorrect results/crashes/corruption\n for out-of-bounds indices. The user is responsible for checking it manually.\n Only use `@inbounds` when it is certain from the information locally available\n that all accesses are in bounds.\n"}],"Base.showerror":[{"Tuple{IO,Any}":" showerror(io, e)\n\nShow a descriptive representation of an exception object `e`.\nThis method is used to display the exception after a call to [`throw`](@ref).\n\n# Examples\n```jldoctest\njulia> struct MyException <: Exception\n msg::AbstractString\n end\n\njulia> function Base.showerror(io::IO, err::MyException)\n print(io, \"MyException: \")\n print(io, err.msg)\n end\n\njulia> err = MyException(\"test exception\")\nMyException(\"test exception\")\n\njulia> sprint(showerror, err)\n\"MyException: test exception\"\n\njulia> throw(MyException(\"test exception\"))\nERROR: MyException: test exception\n```\n"}],"Base.islocked":[{"Tuple{ReentrantLock}":" islocked(lock) -> Status (Boolean)\n\nCheck whether the `lock` is held by any task/thread.\nThis should not be used for synchronization (see instead [`trylock`](@ref)).\n"}],"Base.AbstractUnitRange":[{"Union{}":" AbstractUnitRange{T} <: OrdinalRange{T, T}\n\nSupertype for ranges with a step size of [`oneunit(T)`](@ref) with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.Slice":[{"Union{}":" Slice(indices)\n\nRepresent an AbstractUnitRange of indices as a vector of the indices themselves,\nwith special handling to signal they represent a complete slice of a dimension (:).\n\nUpon calling `to_indices`, Colons are converted to Slice objects to represent\nthe indices over which the Colon spans. Slice objects are themselves unit\nranges with the same indices as those they wrap. This means that indexing into\nSlice objects with an integer always returns that exact integer, and they\niterate over all the wrapped indices, even supporting offset indices.\n"}],"Base.IndexCartesian":[{"Union{}":" IndexCartesian()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by a Cartesian index. This is the default\nfor new custom [`AbstractArray`](@ref) subtypes.\n\nA Cartesian indexing style uses multiple integer indices to describe the position in\na multidimensional array, with exactly one index per dimension. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexCartesian` will return\na range of [`CartesianIndices`](@ref).\n\nA `N`-dimensional custom array that reports its `IndexStyle` as `IndexCartesian` needs\nto implement indexing (and indexed assignment) with exactly `N` `Int` indices;\nall other indexing expressions — including linear indexing — will\nbe recomputed to the equivalent Cartesian location. For example, if `A` were a `2×3` custom\nmatrix with cartesian indexing, and we referenced `A[5]`, this would be\nrecomputed to the equivalent Cartesian index and call `A[1, 3]` since `5 = 2*1 + 3`.\n\nIt is significantly more expensive to compute Cartesian indices from a linear index than it is\nto go the other way. The former operation requires division — a very costly operation — whereas\nthe latter only uses multiplication and addition and is essentially free. This asymmetry means it\nis far more costly to use linear indexing with an `IndexCartesian` array than it is to use\nCartesian indexing with an `IndexLinear` array.\n\nSee also [`IndexLinear`](@ref).\n"}],"Base.DenseMatrix":[{"Union{}":" DenseMatrix{T}\n\nTwo-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,2}`.\n"}],"Base.!=":[{"Tuple{Any}":" !=(x)\n\nCreate a function that compares its argument to `x` using [`!=`](@ref), i.e.\na function equivalent to `y -> y != x`.\nThe returned function is of type `Base.Fix2{typeof(!=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" !=(x, y)\n ≠(x,y)\n\nNot-equals comparison operator. Always gives the opposite answer as [`==`](@ref).\n\n# Implementation\nNew types should generally not implement this, and rely on the fallback definition\n`!=(x,y) = !(x==y)` instead.\n\n# Examples\n```jldoctest\njulia> 3 != 2\ntrue\n\njulia> \"foo\" ≠ \"foo\"\nfalse\n```\n"}],"Base.@generated":[{"Tuple{Any}":" @generated f\n @generated(f)\n`@generated` is used to annotate a function which will be generated.\nIn the body of the generated function, only types of arguments can be read\n(not the values). The function returns a quoted expression evaluated when the\nfunction is called. The `@generated` macro should not be used on functions mutating\nthe global scope or depending on mutable elements.\n\nSee [Metaprogramming](@ref) for further details.\n\n## Example:\n```julia\njulia> @generated function bar(x)\n if x <: Integer\n return :(x ^ 2)\n else\n return :(x)\n end\n end\nbar (generic function with 1 method)\n\njulia> bar(4)\n16\n\njulia> bar(\"baz\")\n\"baz\"\n```\n"}],"Base.maximum!":[{"Tuple{Any,Any}":" maximum!(r, A)\n\nCompute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 4\n\njulia> maximum!([1 1], A)\n1×2 Array{Int64,2}:\n 3 4\n```\n"}],"Base.~":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" ~(x)\n\nBitwise not.\n\n# Examples\n```jldoctest\njulia> ~4\n-5\n\njulia> ~10\n-11\n\njulia> ~true\nfalse\n```\n"}],"Base.isvalid":[{"Tuple{AbstractString,Integer}":" isvalid(s::AbstractString, i::Integer) -> Bool\n\nPredicate indicating whether the given index is the start of the encoding of a\ncharacter in `s` or not. If `isvalid(s, i)` is true then `s[i]` will return the\ncharacter whose encoding starts at that index, if it's false, then `s[i]` will\nraise an invalid index error or a bounds error depending on if `i` is in bounds.\nIn order for `isvalid(s, i)` to be an O(1) function, the encoding of `s` must be\n[self-synchronizing](https://en.wikipedia.org/wiki/Self-synchronizing_code) this\nis a basic assumption of Julia's generic string support.\n\nSee also: [`getindex`](@ref), [`iterate`](@ref), [`thisind`](@ref),\n[`nextind`](@ref), [`prevind`](@ref), [`length`](@ref)\n\n# Examples\n\n```jldoctest\njulia> str = \"αβγdef\";\n\njulia> isvalid(str, 1)\ntrue\n\njulia> str[1]\n'α': Unicode U+03B1 (category Ll: Letter, lowercase)\n\njulia> isvalid(str, 2)\nfalse\n\njulia> str[2]\nERROR: StringIndexError(\"αβγdef\", 2)\nStacktrace:\n[...]\n```\n"}],"Base.resize!":[{"Tuple{Array{T,1} where T,Integer}":" resize!(a::Vector, n::Integer) -> Vector\n\nResize `a` to contain `n` elements. If `n` is smaller than the current collection\nlength, the first `n` elements will be retained. If `n` is larger, the new elements are not\nguaranteed to be initialized.\n\n# Examples\n```jldoctest\njulia> resize!([6, 5, 4, 3, 2, 1], 3)\n3-element Array{Int64,1}:\n 6\n 5\n 4\n\njulia> a = resize!([6, 5, 4, 3, 2, 1], 8);\n\njulia> length(a)\n8\n\njulia> a[1:6]\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.@kwdef":[{"Tuple{Any}":" @kwdef typedef\n\nThis is a helper macro that automatically defines a keyword-based constructor for the type\ndeclared in the expression `typedef`, which must be a `struct` or `mutable struct`\nexpression. The default argument is supplied by declaring fields of the form `field::T =\ndefault` or `field = default`. If no default is provided then the keyword argument becomes\na required keyword argument in the resulting type constructor.\n\nInner constructors can still be defined, but at least one should accept arguments in the\nsame form as the default inner constructor (i.e. one positional argument per field) in\norder to function correctly with the keyword outer constructor.\n\n!!! compat \"Julia 1.1\"\n `Base.@kwdef` for parametric structs, and structs with supertypes\n requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> Base.@kwdef struct Foo\n a::Int = 1 # specified default\n b::String # required keyword\n end\nFoo\n\njulia> Foo(b=\"hi\")\nFoo(1, \"hi\")\n\njulia> Foo()\nERROR: UndefKeywordError: keyword argument b not assigned\nStacktrace:\n[...]\n```\n"}],"Base.ltoh":[{"Tuple{Any}":" ltoh(x)\n\nConvert the endianness of a value from Little-endian to that used by the Host.\n"}],"Base.@__DIR__":[{"Tuple{}":" @__DIR__ -> AbstractString\n\nExpand to a string with the absolute path to the directory of the file\ncontaining the macrocall.\nReturn the current working directory if run from a REPL or if evaluated by `julia -e `.\n"}],"Base.precompile":[{"Tuple{Any,Tuple}":" precompile(f, args::Tuple{Vararg{Any}})\n\nCompile the given function `f` for the argument tuple (of types) `args`, but do not execute it.\n"}],"Base.leading_ones":[{"Tuple{Integer}":" leading_ones(x::Integer) -> Integer\n\nNumber of ones leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_ones(UInt32(2 ^ 32 - 2))\n31\n```\n"}],"Base.read!":[{"Union{}":" read!(stream::IO, array::AbstractArray)\n read!(filename::AbstractString, array::AbstractArray)\n\nRead binary data from an I/O stream or file, filling in `array`.\n"}],"Base.prompt":[{"Tuple{IO,IO,AbstractString}":" prompt(message; default=\"\") -> Union{String, Nothing}\n\nDisplays the `message` then waits for user input. Input is terminated when a newline (\\n)\nis encountered or EOF (^D) character is entered on a blank line. If a `default` is provided\nthen the user can enter just a newline character to select the `default`.\n\nSee also `Base.getpass` and `Base.winprompt` for secure entry of passwords.\n"}],"Base.istaskdone":[{"Tuple{Task}":" istaskdone(t::Task) -> Bool\n\nDetermine whether a task has exited.\n\n# Examples\n```jldoctest\njulia> a2() = sum(i for i in 1:1000);\n\njulia> b = Task(a2);\n\njulia> istaskdone(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.AsyncGenerator":[{"Union{}":" AsyncGenerator(f, c...; ntasks=0, batch_size=nothing) -> iterator\n\nApply `f` to each element of `c` using at most `ntasks` asynchronous tasks.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `collect(AsyncGenerator(f, c...; ntasks=1))` is equivalent to\n `map(f, c...)`.\n"}],"Base.@async":[{"Tuple{Any}":" @async\n\nWrap an expression in a [`Task`](@ref) and add it to the local machine's scheduler queue.\n\nValues can be interpolated into `@async` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.open_flags":[{"Tuple{}":" open_flags(; keywords...) -> NamedTuple\n\nCompute the `read`, `write`, `create`, `truncate`, `append` flag value for\na given set of keyword arguments to [`open`](@ref) a [`NamedTuple`](@ref).\n"}],"Base.transcode":[{"Union{}":" transcode(T, src)\n\nConvert string data between Unicode encodings. `src` is either a\n`String` or a `Vector{UIntXX}` of UTF-XX code units, where\n`XX` is 8, 16, or 32. `T` indicates the encoding of the return value:\n`String` to return a (UTF-8 encoded) `String` or `UIntXX`\nto return a `Vector{UIntXX}` of UTF-`XX` data. (The alias [`Cwchar_t`](@ref)\ncan also be used as the integer type, for converting `wchar_t*` strings\nused by external C libraries.)\n\nThe `transcode` function succeeds as long as the input data can be\nreasonably represented in the target encoding; it always succeeds for\nconversions between UTF-XX encodings, even for invalid Unicode data.\n\nOnly conversion to/from UTF-8 is currently supported.\n"}],"Base.round":[{"Tuple{Type,Any}":" round([T,] x, [r::RoundingMode])\n round(x, [r::RoundingMode]; digits::Integer=0, base = 10)\n round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)\n\nRounds the number `x`.\n\nWithout keyword arguments, `x` is rounded to an integer value, returning a value of type\n`T`, or of the same type of `x` if no `T` is provided. An [`InexactError`](@ref) will be\nthrown if the value is not representable by `T`, similar to [`convert`](@ref).\n\nIf the `digits` keyword argument is provided, it rounds to the specified number of digits\nafter the decimal place (or before if negative), in base `base`.\n\nIf the `sigdigits` keyword argument is provided, it rounds to the specified number of\nsignificant digits, in base `base`.\n\nThe [`RoundingMode`](@ref) `r` controls the direction of the rounding; the default is\n[`RoundNearest`](@ref), which rounds to the nearest integer, with ties (fractional values\nof 0.5) being rounded to the nearest even integer. Note that `round` may give incorrect\nresults if the global rounding mode is changed (see [`rounding`](@ref)).\n\n# Examples\n```jldoctest\njulia> round(1.7)\n2.0\n\njulia> round(Int, 1.7)\n2\n\njulia> round(1.5)\n2.0\n\njulia> round(2.5)\n2.0\n\njulia> round(pi; digits=2)\n3.14\n\njulia> round(pi; digits=3, base=2)\n3.125\n\njulia> round(123.456; sigdigits=2)\n120.0\n\njulia> round(357.913; sigdigits=4, base=2)\n352.0\n```\n\n!!! note\n Rounding to specified digits in bases other than 2 can be inexact when\n operating on binary floating point numbers. For example, the [`Float64`](@ref)\n value represented by `1.15` is actually *less* than 1.15, yet will be\n rounded to 1.2.\n\n # Examples\n ```jldoctest; setup = :(using Printf)\n julia> x = 1.15\n 1.15\n\n julia> @sprintf \"%.20f\" x\n \"1.14999999999999991118\"\n\n julia> x < 115//100\n true\n\n julia> round(x, digits=1)\n 1.2\n ```\n\n# Extensions\n\nTo extend `round` to new numeric types, it is typically sufficient to define `Base.round(x::NewType, r::RoundingMode)`.\n"},{"Union{Tuple{Complex}, Tuple{Complex,RoundingMode}, Tuple{Complex,RoundingMode,RoundingMode}}":" round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10)\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)\n\nReturn the nearest integral value of the same type as the complex-valued `z` to `z`,\nbreaking ties using the specified [`RoundingMode`](@ref)s. The first\n[`RoundingMode`](@ref) is used for rounding the real components while the\nsecond is used for rounding the imaginary components.\n\n# Example\n```jldoctest\njulia> round(3.14 + 4.5im)\n3.0 + 4.0im\n```\n"}],"Base.invpermute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" invpermute!(v, p)\n\nLike [`permute!`](@ref), but the inverse of the given permutation is applied.\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> invpermute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 1\n```\n"}],"Base.withenv":[{"Union{Tuple{T}, Tuple{Function,Vararg{Pair{T,B} where B,N} where N}} where T<:AbstractString":" withenv(f::Function, kv::Pair...)\n\nExecute `f` in an environment that is temporarily modified (not replaced as in `setenv`)\nby zero or more `\"var\"=>val` arguments `kv`. `withenv` is generally used via the\n`withenv(kv...) do ... end` syntax. A value of `nothing` can be used to temporarily unset an\nenvironment variable (if it is set). When `withenv` returns, the original environment has\nbeen restored.\n"}],"Base.Rational":[{"Union{}":" Rational{T<:Integer} <: Real\n\nRational number type, with numerator and denominator of type `T`.\nRationals are checked for overflow.\n"}],"Base.unlock":[{"Tuple{ReentrantLock}":" unlock(lock)\n\nReleases ownership of the `lock`.\n\nIf this is a recursive lock which has been acquired before, decrement an\ninternal counter and return immediately.\n"}],"Base.@boundscheck":[{"Tuple{Any}":" @boundscheck(blk)\n\nAnnotates the expression `blk` as a bounds checking block, allowing it to be elided by [`@inbounds`](@ref).\n\n!!! note\n The function in which `@boundscheck` is written must be inlined into\n its caller in order for `@inbounds` to have effect.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> @inline function g(A, i)\n @boundscheck checkbounds(A, i)\n return \"accessing ($A)[$i]\"\n end;\n\njulia> f1() = return g(1:2, -1);\n\njulia> f2() = @inbounds return g(1:2, -1);\n\njulia> f1()\nERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]\nStacktrace:\n [1] throw_boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:455\n [2] checkbounds at ./abstractarray.jl:420 [inlined]\n [3] g at ./none:2 [inlined]\n [4] f1() at ./none:1\n [5] top-level scope\n\njulia> f2()\n\"accessing (1:2)[-1]\"\n```\n\n!!! warning\n\n The `@boundscheck` annotation allows you, as a library writer, to opt-in to\n allowing *other code* to remove your bounds checks with [`@inbounds`](@ref).\n As noted there, the caller must verify—using information they can access—that\n their accesses are valid before using `@inbounds`. For indexing into your\n [`AbstractArray`](@ref) subclasses, for example, this involves checking the\n indices against its [`size`](@ref). Therefore, `@boundscheck` annotations\n should only be added to a [`getindex`](@ref) or [`setindex!`](@ref)\n implementation after you are certain its behavior is correct.\n"}],"Base.isreadonly":[{"Tuple{Any}":" isreadonly(io) -> Bool\n\nDetermine whether a stream is read-only.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> isreadonly(io)\ntrue\n\njulia> io = IOBuffer();\n\njulia> isreadonly(io)\nfalse\n```\n"}],"Base.rstrip":[{"Tuple{Any,AbstractString}":" rstrip([pred=isspace,] str::AbstractString) -> SubString\n rstrip(str::AbstractString, chars) -> SubString\n\nRemove trailing characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove trailing whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = rpad(\"March\", 20)\n\"March \"\n\njulia> rstrip(a)\n\"March\"\n```\n"}],"Base.escape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" escape_string(str::AbstractString[, esc])::AbstractString\n escape_string(io, str::AbstractString[, esc::])::Nothing\n\nGeneral escaping of traditional C and Unicode escape sequences. The first form returns the\nescaped string, the second prints the result to `io`.\n\nBackslashes (`\\`) are escaped with a double-backslash (`\"\\\\\"`). Non-printable\ncharacters are escaped either with their standard C escape codes, `\"\\0\"` for NUL (if\nunambiguous), unicode code point (`\"\\u\"` prefix) or hex (`\"\\x\"` prefix).\n\nThe optional `esc` argument specifies any additional characters that should also be\nescaped by a prepending backslash (`\"` is also escaped by default in the first form).\n\n# Examples\n```jldoctest\njulia> escape_string(\"aaa\\nbbb\")\n\"aaa\\\\nbbb\"\n\njulia> escape_string(\"\\xfe\\xff\") # invalid utf-8\n\"\\\\xfe\\\\xff\"\n\njulia> escape_string(string('\\u2135','\\0')) # unambiguous\n\"ℵ\\\\0\"\n\njulia> escape_string(string('\\u2135','\\0','0')) # \\0 would be ambiguous\n\"ℵ\\\\x000\"\n```\n\n## See also\n[`unescape_string`](@ref) for the reverse operation.\n"}],"Base.insert!":[{"Union{Tuple{T}, Tuple{Array{T,1},Integer,Any}} where T":" insert!(a::Vector, index::Integer, item)\n\nInsert an `item` into `a` at the given `index`. `index` is the index of `item` in\nthe resulting `a`.\n\n# Examples\n```jldoctest\njulia> insert!([6, 5, 4, 2, 1], 4, 3)\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.unique!":[{"Tuple{Any,AbstractArray{T,1} where T}":" unique!(f, A::AbstractVector)\n\nSelects one value from `A` for each unique value produced by `f` applied to\nelements of `A` , then return the modified A.\n\n!!! compat \"Julia 1.1\"\n This method is available as of Julia 1.1.\n\n# Examples\n```jldoctest\njulia> unique!(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])\n3-element Array{Int64,1}:\n 5\n 1\n 9\n\njulia> unique!(iseven, [2, 3, 5, 7, 9])\n2-element Array{Int64,1}:\n 2\n 3\n```\n"},{"Tuple{Union{AbstractArray{#s662,1} where #s662<:Real, AbstractArray{#s661,1} where #s661<:AbstractString, AbstractArray{#s660,1} where #s660<:Symbol}}":" unique!(A::AbstractVector)\n\nRemove duplicate items as determined by [`isequal`](@ref), then return the modified `A`.\n`unique!` will return the elements of `A` in the order that they occur. If you do not care\nabout the order of the returned data, then calling `(sort!(A); unique!(A))` will be much\nmore efficient as long as the elements of `A` can be sorted.\n\n# Examples\n```jldoctest\njulia> unique!([1, 1, 1])\n1-element Array{Int64,1}:\n 1\n\njulia> A = [7, 3, 2, 3, 7, 5];\n\njulia> unique!(A)\n4-element Array{Int64,1}:\n 7\n 3\n 2\n 5\n\njulia> B = [7, 6, 42, 6, 7, 42];\n\njulia> sort!(B); # unique! is able to process sorted data much more efficiently.\n\njulia> unique!(B)\n3-element Array{Int64,1}:\n 6\n 7\n 42\n```\n"}],"Base.isreal":[{"Tuple{Real}":" isreal(x) -> Bool\n\nTest whether `x` or all its elements are numerically equal to some real number\nincluding infinities and NaNs. `isreal(x)` is true if `isequal(x, real(x))`\nis true.\n\n# Examples\n```jldoctest\njulia> isreal(5.)\ntrue\n\njulia> isreal(Inf + 0im)\ntrue\n\njulia> isreal([4.; complex(0,1)])\nfalse\n```\n"}],"Base.fieldcount":[{"Tuple{Any}":" fieldcount(t::Type)\n\nGet the number of fields that an instance of the given type would have.\nAn error is thrown if the type is too abstract to determine this.\n"}],"Base.Clong":[{"Union{}":" Clong\n\nEquivalent to the native `signed long` c-type.\n"}],"Base.which":[{"Tuple{Any,Any}":" which(f, types)\n\nReturns the method of `f` (a `Method` object) that would be called for arguments of the given `types`.\n\nIf `types` is an abstract type, then the method that would be called by `invoke` is returned.\n"},{"Tuple{Module,Symbol}":" which(module, symbol)\n\nReturn the module in which the binding for the variable referenced by `symbol` in `module` was created.\n"}],"Base.finalize":[{"Tuple{Any}":" finalize(x)\n\nImmediately run finalizers registered for object `x`.\n"}],"Base.prepend!":[{"Union{}":" prepend!(a::Vector, items) -> collection\n\nInsert the elements of `items` to the beginning of `a`.\n\n# Examples\n```jldoctest\njulia> prepend!([3],[1,2])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.IteratorEltype":[{"Tuple{Any}":" IteratorEltype(itertype::Type) -> IteratorEltype\n\nGiven the type of an iterator, return one of the following values:\n\n* `EltypeUnknown()` if the type of elements yielded by the iterator is not known in advance.\n* `HasEltype()` if the element type is known, and [`eltype`](@ref) would return a meaningful value.\n\n`HasEltype()` is the default, since iterators are assumed to implement [`eltype`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate a specific\ntype of result, and algorithms that pick a result type based on the types of yielded\nvalues.\n\n```jldoctest\njulia> Base.IteratorEltype(1:5)\nBase.HasEltype()\n```\n"}],"Base.indexin":[{"Tuple{Any,AbstractArray}":" indexin(a, b)\n\nReturn an array containing the first index in `b` for\neach value in `a` that is a member of `b`. The output\narray contains `nothing` wherever `a` is not a member of `b`.\n\n# Examples\n```jldoctest\njulia> a = ['a', 'b', 'c', 'b', 'd', 'a'];\n\njulia> b = ['a', 'b', 'c'];\n\njulia> indexin(a, b)\n6-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n 2\n nothing\n 1\n\njulia> indexin(b, a)\n3-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n```\n"}],"Base.reim":[{"Tuple{Any}":" reim(z)\n\nReturn both the real and imaginary parts of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> reim(1 + 3im)\n(1, 3)\n```\n"}],"Base.AbstractVecOrMat":[{"Union{}":" AbstractVecOrMat{T}\n\nUnion type of [`AbstractVector{T}`](@ref) and [`AbstractMatrix{T}`](@ref).\n"}],"Base.GenericCondition":[{"Union{}":" GenericCondition\n\nAbstract implementation of a condition object\nfor synchonizing tasks objects with a given lock.\n"}],"Base.SecretBuffer!":[{"Tuple{Array{UInt8,1}}":" SecretBuffer!(data::Vector{UInt8})\n\nInitialize a new `SecretBuffer` from `data`, securely zeroing `data` afterwards.\n"}],"Base.Cintmax_t":[{"Union{}":" Cintmax_t\n\nEquivalent to the native `intmax_t` c-type ([`Int64`](@ref)).\n"}],"Base.Inf32":[{"Union{}":" Inf32\n\nPositive infinity of type [`Float32`](@ref).\n"}],"Base.@sync":[{"Tuple{Any}":" @sync\n\nWait until all lexically-enclosed uses of `@async`, `@spawn`, `@spawnat` and `@distributed`\nare complete. All exceptions thrown by enclosed async operations are collected and thrown as\na `CompositeException`.\n"}],"Base.securezero!":[{"Union{}":" securezero!(o)\n\n`securezero!` fills the memory associated with an object `o` with zeros.\nUnlike `fill!(o,0)` and similar code, which might be optimized away by\nthe compiler for objects about to be discarded, the `securezero!` function\nwill always be called.\n"}],"Base.Regex":[{"Union{}":" Regex(pattern[, flags])\n\nA type representing a regular expression. `Regex` objects can be used to match strings\nwith [`match`](@ref).\n\n`Regex` objects can be created using the [`@r_str`](@ref) string macro. The\n`Regex(pattern[, flags])` constructor is usually used if the `pattern` string needs\nto be interpolated. See the documentation of the string macro for details on flags.\n"}],"Base.reduce_first":[{"Tuple{Any,Any}":" Base.reduce_first(op, x)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref`) or\n[`foldr`](@ref) with reduction `op` over an iterator which contains a single element\n`x`. This value may also used to initialise the recursion, so that `reduce(op, [x, y])`\nmay call `op(reduce_first(op, x), y)`.\n\nThe default is `x` for most types. The main purpose is to ensure type stability, so\nadditional methods should only be defined for cases where `op` gives a result with\ndifferent types than its inputs.\n"}],"Base.dataids":[{"Tuple{AbstractArray}":" Base.dataids(A::AbstractArray)\n\nReturn a tuple of `UInt`s that represent the mutable data segments of an array.\n\nCustom arrays that would like to opt-in to aliasing detection of their component\nparts can specialize this method to return the concatenation of the `dataids` of\ntheir component parts. A typical definition for an array that wraps a parent is\n`Base.dataids(C::CustomArray) = dataids(C.parent)`.\n"}],"Base.unindent":[{"Tuple{AbstractString,Int64}":" unindent(str::AbstractString, indent::Int; tabwidth=8)\n\nRemove leading indentation from string.\n\n# Examples\n```jldoctest\njulia> Base.unindent(\" a\\n b\", 2)\n\" a\\n b\"\n\njulia> Base.unindent(\"\\ta\\n\\tb\", 2, tabwidth=8)\n\" a\\n b\"\n```\n"}],"Base.empty!":[{"Union{Tuple{Dict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" empty!(collection) -> collection\n\nRemove all elements from a `collection`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> empty!(A);\n\njulia> A\nDict{String,Int64} with 0 entries\n```\n"}],"Base.findmax":[{"Tuple{Any}":" findmax(itr) -> (x, index)\n\nReturn the maximum element of the collection `itr` and its index. If there are multiple\nmaximal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `max`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmax([8,0.1,-9,pi])\n(8.0, 1)\n\njulia> findmax([1,7,7,6])\n(7, 2)\n\njulia> findmax([1,7,7,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmax(A; dims) -> (maxval, index)\n\nFor an array input, returns the value and index of the maximum over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmax(A, dims=1)\n([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])\n\njulia> findmax(A, dims=2)\n([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])\n```\n"}],"Base.isabstracttype":[{"Tuple{Any}":" isabstracttype(T)\n\nDetermine whether type `T` was declared as an abstract type\n(i.e. using the `abstract` keyword).\n\n# Examples\n```jldoctest\njulia> isabstracttype(AbstractArray)\ntrue\n\njulia> isabstracttype(Vector)\nfalse\n```\n"}],"Base.include_string":[{"Tuple{Module,String,String}":" include_string(m::Module, code::AbstractString, filename::AbstractString=\"string\")\n\nLike [`include`](@ref), except reads code from the given string rather than from a file.\n"}],"Base.cld":[{"Tuple{Any,Any}":" cld(x, y)\n\nSmallest integer larger than or equal to `x/y`. Equivalent to `div(x, y, RoundUp)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> cld(5.5,2.2)\n3.0\n```\n"}],"Base.@views":[{"Tuple{Any}":" @views expression\n\nConvert every array-slicing operation in the given expression\n(which may be a `begin`/`end` block, loop, function, etc.)\nto return a view. Scalar indices, non-array types, and\nexplicit [`getindex`](@ref) calls (as opposed to `array[...]`) are\nunaffected.\n\n!!! note\n The `@views` macro only affects `array[...]` expressions\n that appear explicitly in the given `expression`, not array slicing that\n occurs in functions called by that code.\n\n# Examples\n```jldoctest\njulia> A = zeros(3, 3);\n\njulia> @views for row in 1:3\n b = A[row, :]\n b[:] .= row\n end\n\njulia> A\n3×3 Array{Float64,2}:\n 1.0 1.0 1.0\n 2.0 2.0 2.0\n 3.0 3.0 3.0\n```\n"}],"Base.eachindex":[{"Tuple{AbstractArray}":" eachindex(A...)\n\nCreate an iterable object for visiting each index of an `AbstractArray` `A` in an efficient\nmanner. For array types that have opted into fast linear indexing (like `Array`), this is\nsimply the range `1:length(A)`. For other array types, return a specialized Cartesian\nrange to efficiently index into the array with indices specified for every dimension. For\nother iterables, including strings and dictionaries, return an iterator object\nsupporting arbitrary index types (e.g. unevenly spaced or non-integer indices).\n\nIf you supply more than one `AbstractArray` argument, `eachindex` will create an\niterable object that is fast for all arguments (a [`UnitRange`](@ref)\nif all inputs have fast linear indexing, a [`CartesianIndices`](@ref)\notherwise).\nIf the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception\nwill be thrown.\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> for i in eachindex(A) # linear indexing\n println(i)\n end\n1\n2\n3\n4\n\njulia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing\n println(i)\n end\nCartesianIndex(1, 1)\nCartesianIndex(2, 1)\n```\n"}],"Base.macroexpand":[{"Tuple{Module,Any}":" macroexpand(m::Module, x; recursive=true)\n\nTake the expression `x` and return an equivalent expression with all macros removed (expanded)\nfor executing in module `m`.\nThe `recursive` keyword controls whether deeper levels of nested macros are also expanded.\nThis is demonstrated in the example below:\n```julia-repl\njulia> module M\n macro m1()\n 42\n end\n macro m2()\n :(@m1())\n end\n end\nM\n\njulia> macroexpand(M, :(@m2()), recursive=true)\n42\n\njulia> macroexpand(M, :(@m2()), recursive=false)\n:(#= REPL[16]:6 =# M.@m1)\n```\n"}],"Base.stdout":[{"Union{}":" stdout\n\nGlobal variable referring to the standard out stream.\n"}],"Base.copyfirst!":[{"Tuple{AbstractArray,AbstractArray}":"Extract first entry of slices of array A into existing array R.\n"}],"Base.Cfloat":[{"Union{}":" Cfloat\n\nEquivalent to the native `float` c-type ([`Float32`](@ref)).\n"}],"Base.mapreduce_empty":[{"Tuple{Any,Any,Any}":" Base.mapreduce_empty(f, op, T)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an empty array with element type\nof `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.ProcessFailedException":[{"Union{}":" ProcessFailedException\n\nIndicates problematic exit status of a process.\nWhen running commands or pipelines, this is thrown to indicate\na nonzero exit code was returned (i.e. that the invoked process failed).\n"}],"Base.valtype":[{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" valtype(type)\n\nGet the value type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> valtype(Dict(Int32(1) => \"foo\"))\nString\n```\n"},{"Tuple{Type{#s662} where #s662<:AbstractArray}":" valtype(T::Type{<:AbstractArray})\n valtype(A::AbstractArray)\n\nReturn the value type of an array. This is identical to `eltype` and is\nprovided mainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> valtype([\"one\", \"two\", \"three\"])\nString\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"}],"Base.take!":[{"Tuple{Base.GenericIOBuffer}":" take!(b::IOBuffer)\n\nObtain the contents of an `IOBuffer` as an array, without copying. Afterwards, the\n`IOBuffer` is reset to its initial state.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n```\n"},{"Tuple{Channel}":" take!(c::Channel)\n\nRemove and return a value from a [`Channel`](@ref). Blocks until data is available.\n\nFor unbuffered channels, blocks until a [`put!`](@ref) is performed by a different\ntask.\n"}],"Base.RangeStepStyle":[{"Union{}":" RangeStepStyle(instance)\n RangeStepStyle(T::Type)\n\nIndicate whether an instance or a type supports constructing a range with\na perfectly regular step or not. A regular step means that\n[`step`](@ref) will always be exactly equal to the difference between two\nsubsequent elements in a range, i.e. for a range `r::AbstractRange{T}`:\n```julia\nall(diff(r) .== step(r))\n```\n\nWhen a type `T` always leads to ranges with regular steps, it should\ndefine the following method:\n```julia\nBase.RangeStepStyle(::Type{<:AbstractRange{<:T}}) = Base.RangeStepRegular()\n```\nThis will allow [`hash`](@ref) to use an O(1) algorithm for `AbstractRange{T}`\nobjects instead of the default O(N) algorithm (with N the length of the range).\n\nIn some cases, whether the step will be regular depends not only on the\nelement type `T`, but also on the type of the step `S`. In that case, more\nspecific methods should be defined:\n```julia\nBase.RangeStepStyle(::Type{<:OrdinalRange{<:T, <:S}}) = Base.RangeStepRegular()\n```\n\nBy default, all range types are assumed to be `RangeStepIrregular`, except\nranges with an element type which is a subtype of `Integer`.\n"}],"Base.println":[{"Tuple{IO,Vararg{Any,N} where N}":" println([io::IO], xs...)\n\nPrint (using [`print`](@ref)) `xs` followed by a newline.\nIf `io` is not supplied, prints to [`stdout`](@ref).\n\n# Examples\n```jldoctest\njulia> println(\"Hello, world\")\nHello, world\n\njulia> io = IOBuffer();\n\njulia> println(io, \"Hello, world\")\n\njulia> String(take!(io))\n\"Hello, world\\n\"\n```\n"}],"Base.promote_op":[{"Tuple{Any,Vararg{Type,N} where N}":" promote_op(f, argtypes...)\n\nGuess what an appropriate container eltype would be for storing results of\n`f(::argtypes...)`. The guess is in part based on type inference, so can change any time.\n\n!!! warning\n Due to its fragility, use of `promote_op` should be avoided. It is preferable to base\n the container eltype on the type of the actual elements. Only in the absence of any\n elements (for an empty result container), it may be unavoidable to call `promote_op`.\n"}],"Base.readbytes!":[{"Union{Tuple{IO,AbstractArray{UInt8,N} where N}, Tuple{IO,AbstractArray{UInt8,N} where N,Any}}":" readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n"},{"Union{Tuple{IOStream,Array{UInt8,N} where N}, Tuple{IOStream,Array{UInt8,N} where N,Any}}":" readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"}],"Base.any":[{"Tuple{Any}":" any(itr) -> Bool\n\nTest whether any elements of a boolean collection are `true`, returning `true` as\nsoon as the first `true` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> any(a)\ntrue\n\njulia> any((println(i); v) for (i, v) in enumerate(a))\n1\ntrue\n\njulia> any([missing, true])\ntrue\n\njulia> any([false, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" any(A; dims)\n\nTest whether any values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> any(A, dims=2)\n2×1 Array{Bool,2}:\n 1\n 1\n```\n"},{"Tuple{Any,Any}":" any(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for any elements of `itr`, returning\n`true` as soon as the first item in `itr` for which `p` returns `true` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> any(i->(4<=i<=6), [3,5,7])\ntrue\n\njulia> any(i -> (println(i); i > 3), 1:10)\n1\n2\n3\n4\ntrue\n\njulia> any(i -> i > 0, [1, missing])\ntrue\n\njulia> any(i -> i > 0, [-1, missing])\nmissing\n\njulia> any(i -> i > 0, [-1, 0])\nfalse\n```\n"}],"Base.ndigits":[{"Tuple{Integer}":" ndigits(n::Integer; base::Integer=10, pad::Integer=1)\n\nCompute the number of digits in integer `n` written in base `base`\n(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros\nto a specified size (the result will never be less than `pad`).\n\n# Examples\n```jldoctest\njulia> ndigits(12345)\n5\n\njulia> ndigits(1022, base=16)\n3\n\njulia> string(1022, base=16)\n\"3fe\"\n\njulia> ndigits(123, pad=5)\n5\n```\n"}],"Base.StringIndexError":[{"Union{}":" StringIndexError(str, i)\n\nAn error occurred when trying to access `str` at index `i` that is not valid.\n"}],"Base.nonmissingtype":[{"Union{Tuple{Type{T}}, Tuple{T}} where T":" nonmissingtype(T::Type)\n\nIf `T` is a union of types containing `Missing`, return a new type with\n`Missing` removed.\n\n# Examples\n```jldoctest\njulia> nonmissingtype(Union{Int64,Missing})\nInt64\n\njulia> nonmissingtype(Any)\nAny\n```\n\n!!! compat \"Julia 1.3\"\n This function is exported as of Julia 1.3.\n"}],"Base.prod":[{"Tuple{Any}":" prod(itr)\n\nReturns the product of all elements of a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(1:20)\n2432902008176640000\n```\n"},{"Tuple{AbstractArray}":" prod(A::AbstractArray; dims)\n\nMultiply elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod(A, dims=1)\n1×2 Array{Int64,2}:\n 3 8\n\njulia> prod(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 12\n```\n"},{"Tuple{Any,Any}":" prod(f, itr)\n\nReturns the product of `f` applied to each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(abs2, [2; 3; 4])\n576\n```\n"}],"Base.range":[{"Tuple{Any}":" range(start[, stop]; length, stop, step=1)\n\nGiven a starting value, construct a range either by length or from `start` to `stop`,\noptionally with a given step (defaults to 1, a [`UnitRange`](@ref)).\nOne of `length` or `stop` is required. If `length`, `stop`, and `step` are all specified, they must agree.\n\nIf `length` and `stop` are provided and `step` is not, the step size will be computed\nautomatically such that there are `length` linearly spaced elements in the range (a [`LinRange`](@ref)).\n\nIf `step` and `stop` are provided and `length` is not, the overall range length will be computed\nautomatically such that the elements are `step` spaced (a [`StepRange`](@ref)).\n\n`stop` may be specified as either a positional or keyword argument.\n\n!!! compat \"Julia 1.1\"\n `stop` as a positional argument requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> range(1, length=100)\n1:100\n\njulia> range(1, stop=100)\n1:100\n\njulia> range(1, step=5, length=100)\n1:5:496\n\njulia> range(1, step=5, stop=100)\n1:5:96\n\njulia> range(1, 10, length=101)\n1.0:0.09:10.0\n\njulia> range(1, 100, step=5)\n1:5:96\n```\n"}],"Base.cat":[{"Tuple":" cat(A...; dims=dims)\n\nConcatenate the input arrays along the specified dimensions in the iterable `dims`. For\ndimensions not in `dims`, all input arrays should have the same size, which will also be the\nsize of the output array along that dimension. For dimensions in `dims`, the size of the\noutput array is the sum of the sizes of the input arrays along that dimension. If `dims` is\na single number, the different arrays are tightly stacked along that dimension. If `dims` is\nan iterable containing several dimensions, this allows one to construct block diagonal\nmatrices and their higher-dimensional analogues by simultaneously increasing several\ndimensions for every new input array and putting zero blocks elsewhere. For example,\n`cat(matrices...; dims=(1,2))` builds a block diagonal matrix, i.e. a block matrix with\n`matrices[1]`, `matrices[2]`, ... as diagonal blocks and matching zero blocks away from the\ndiagonal.\n"}],"Base.Cwstring":[{"Union{}":" Cwstring\n\nA C-style string composed of the native wide character type\n[`Cwchar_t`](@ref)s. `Cwstring`s are NUL-terminated. For\nC-style strings composed of the native character\ntype, see [`Cstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n\n"}],"Base.coalesce":[{"Union{}":" coalesce(x, y...)\n\nReturn the first value in the arguments which is not equal to [`missing`](@ref),\nif any. Otherwise return `missing`.\n\nSee also [`something`](@ref).\n\n# Examples\n\n```jldoctest\njulia> coalesce(missing, 1)\n1\n\njulia> coalesce(1, missing)\n1\n\njulia> coalesce(nothing, 1) # returns `nothing`\n\njulia> coalesce(missing, missing)\nmissing\n```\n"}],"Base.keys":[{"Union{}":" keys(iterator)\n\nFor an iterator or collection that has keys and values (e.g. arrays and dictionaries),\nreturn an iterator over the keys.\n"},{"Tuple{AbstractDict}":" keys(a::AbstractDict)\n\nReturn an iterator over all keys in a dictionary.\n`collect(keys(a))` returns an array of keys.\nWhen the keys are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(keys(D))\n2-element Array{Char,1}:\n 'a'\n 'b'\n```\n"}],"Base.findmax!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmax!(rval, rind, A) -> (maxval, index)\n\nFind the maximum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as greater than all other values.\n"}],"Base.>>":[{"Tuple{Integer,Integer}":" >>(x, n)\n\nRight bit shift operator, `x >> n`. For `n >= 0`, the result is `x` shifted\nright by `n` bits, where `n >= 0`, filling with `0`s if `x >= 0`, `1`s if `x <\n0`, preserving the sign of `x`. This is equivalent to `fld(x, 2^n)`. For `n <\n0`, this is equivalent to `x << -n`.\n\n# Examples\n```jldoctest\njulia> Int8(13) >> 2\n3\n\njulia> bitstring(Int8(13))\n\"00001101\"\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> Int8(-14) >> 2\n-4\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(-4))\n\"11111100\"\n```\nSee also [`>>>`](@ref), [`<<`](@ref).\n"},{"Tuple{BitArray{1},Union{Int64, UInt64}}":" >>(B::BitVector, n) -> BitVector\n\nRight bit shift operator, `B >> n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions forward, filling with `false`\nvalues. If `n < 0`, elements are shifted backwards. Equivalent to\n`B << -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B >> 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n\njulia> B >> -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n```\n"}],"Base.copy":[{"Union{}":" copy(x)\n\nCreate a shallow copy of `x`: the outer structure is copied, but not all internal values.\nFor example, copying an array produces a new array with identically-same elements as the\noriginal.\n"}],"Base.has_bottom_parameter":[{"Tuple{DataType}":" has_bottom_parameter(t) -> Bool\n\nDetermine whether `t` is a Type for which one or more of its parameters is `Union{}`.\n"}],"Base.datatype_fielddesc_type":[{"Tuple{DataType}":" Base.datatype_fielddesc_type(dt::DataType) -> Int\n\nReturn the size in bytes of each field-description entry in the layout array,\nlocated at `(dt.layout + sizeof(DataTypeLayout))`.\nCan be called on any `isconcretetype`.\n\nSee also [`fieldoffset`](@ref).\n"}],"Base.@allocated":[{"Tuple{Any}":" @allocated\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\ntotal number of bytes allocated during evaluation of the expression.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@elapsed`](@ref).\n\n```julia-repl\njulia> @allocated rand(10^6)\n8000080\n```\n"}],"Base.names":[{"Tuple{Module}":" names(x::Module; all::Bool = false, imported::Bool = false)\n\nGet an array of the names exported by a `Module`, excluding deprecated names.\nIf `all` is true, then the list also includes non-exported names defined in the module,\ndeprecated names, and compiler-generated names.\nIf `imported` is true, then names explicitly imported from other modules\nare also included.\n\nAs a special case, all names defined in `Main` are considered \"exported\",\nsince it is not idiomatic to explicitly export names from `Main`.\n"}],"Base.hastypemax":[{"Tuple{Union{Type{Int128}, Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt128}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}}":" hastypemax(T::Type) -> Bool\n\nReturn `true` if and only if `typemax(T)` is defined.\n"}],"Base.isinf":[{"Tuple{Real}":" isinf(f) -> Bool\n\nTest whether a number is infinite.\n"}],"Base.DEPOT_PATH":[{"Union{}":" DEPOT_PATH\n\nA stack of \"depot\" locations where the package manager, as well as Julia's code\nloading mechanisms, look for package registries, installed packages, named\nenvironments, repo clones, cached compiled package images, and configuration\nfiles. By default it includes:\n\n1. `~/.julia` where `~` is the user home as appropriate on the system;\n2. an architecture-specific shared system directory, e.g. `/usr/local/share/julia`;\n3. an architecture-independent shared system directory, e.g. `/usr/share/julia`.\n\nSo `DEPOT_PATH` might be:\n```julia\n[joinpath(homedir(), \".julia\"), \"/usr/local/share/julia\", \"/usr/share/julia\"]\n```\nThe first entry is the \"user depot\" and should be writable by and owned by the\ncurrent user. The user depot is where: registries are cloned, new package versions\nare installed, named environments are created and updated, package repos are cloned,\nnewly compiled package image files are saved, log files are written, development\npackages are checked out by default, and global configuration data is saved. Later\nentries in the depot path are treated as read-only and are appropriate for\nregistries, packages, etc. installed and managed by system administrators.\n\n`DEPOT_PATH` is populated based on the [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)\nenvironment variable if set.\n\nSee also:\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.stdin":[{"Union{}":" stdin\n\nGlobal variable referring to the standard input stream.\n"}],"Base.gensym":[{"Tuple{}":" gensym([tag])\n\nGenerates a symbol which will not conflict with other variable names.\n"}],"Base.@v_str":[{"Tuple{Any}":" @v_str\n\nString macro used to parse a string to a [`VersionNumber`](@ref).\n\n# Examples\n```jldoctest\njulia> v\"1.2.3\"\nv\"1.2.3\"\n\njulia> v\"2.0.1-rc1\"\nv\"2.0.1-rc1\"\n```\n"}],"Base.include_dependency":[{"Tuple{AbstractString}":" include_dependency(path::AbstractString)\n\nIn a module, declare that the file specified by `path` (relative or absolute) is a\ndependency for precompilation; that is, the module will need to be recompiled if this file\nchanges.\n\nThis is only needed if your module depends on a file that is not used via [`include`](@ref). It has\nno effect outside of compilation.\n"}],"Base.@deprecate":[{"Union{Tuple{Any,Any}, Tuple{Any,Any,Any}}":" @deprecate old new [ex=true]\n\nThe first argument `old` is the signature of the deprecated method, the second one\n`new` is the call which replaces it. `@deprecate` exports `old` unless the optional\nthird argument is `false`.\n\n# Examples\n```jldoctest\njulia> @deprecate old(x) new(x)\nold (generic function with 1 method)\n\njulia> @deprecate old(x) new(x) false\nold (generic function with 1 method)\n```\n"}],"Base.unsafe_read":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_read(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from the `IO` stream object into `ref` (converted to a pointer).\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.task_local_storage":[{"Tuple{Any}":" task_local_storage(key)\n\nLook up the value of a key in the current task's task-local storage.\n"},{"Tuple{Function,Any,Any}":" task_local_storage(body, key, value)\n\nCall the function `body` with a modified task-local storage, in which `value` is assigned to\n`key`; the previous value of `key`, or lack thereof, is restored afterwards. Useful\nfor emulating dynamic scoping.\n"},{"Tuple{Any,Any}":" task_local_storage(key, value)\n\nAssign a value to a key in the current task's task-local storage.\n"}],"Base.CompositeException":[{"Union{}":" CompositeException\n\nWrap a `Vector` of exceptions thrown by a [`Task`](@ref) (e.g. generated from a remote worker over a channel\nor an asynchronously executing local I/O write or a remote worker under `pmap`) with information about the series of exceptions.\nFor example, if a group of workers are executing several tasks, and multiple workers fail, the resulting `CompositeException` will\ncontain a \"bundle\" of information from each worker indicating where and why the exception(s) occurred.\n"}],"Base.hex2bytes!":[{"Tuple{AbstractArray{UInt8,1},Union{AbstractArray{UInt8,1}, String}}":" hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})\n\nConvert an array `s` of bytes representing a hexadecimal string to its binary\nrepresentation, similar to [`hex2bytes`](@ref) except that the output is written in-place\nin `d`. The length of `s` must be exactly twice the length of `d`.\n"}],"Base.ignorestatus":[{"Tuple{Cmd}":" ignorestatus(command)\n\nMark a command object so that running it will not throw an error if the result code is non-zero.\n"}],"Base.mightalias":[{"Tuple{AbstractArray,AbstractArray}":" Base.mightalias(A::AbstractArray, B::AbstractArray)\n\nPerform a conservative test to check if arrays `A` and `B` might share the same memory.\n\nBy default, this simply checks if either of the arrays reference the same memory\nregions, as identified by their [`Base.dataids`](@ref).\n"}],"Base.PROGRAM_FILE":[{"Union{}":" PROGRAM_FILE\n\nA string containing the script name passed to Julia from the command line. Note that the\nscript name remains unchanged from within included files. Alternatively see\n[`@__FILE__`](@ref).\n"}],"Base.values":[{"Tuple{Any}":" values(iterator)\n\nFor an iterator or collection that has keys and values, return an iterator\nover the values.\nThis function simply returns its argument by default, since the elements\nof a general iterator are normally considered its \"values\".\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> values(d)\nBase.ValueIterator for a Dict{String,Int64} with 2 entries. Values:\n 2\n 1\n\njulia> values([2])\n1-element Array{Int64,1}:\n 2\n```\n"},{"Tuple{AbstractDict}":" values(a::AbstractDict)\n\nReturn an iterator over all values in a collection.\n`collect(values(a))` returns an array of values.\nWhen the values are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(values(D))\n2-element Array{Int64,1}:\n 2\n 3\n```\n"}],"Base.findall":[{"Tuple{Any}":" findall(A)\n\nReturn a vector `I` of the `true` indices or keys of `A`.\nIf there are no such elements of `A`, return an empty array.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, false, true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> findall(A)\n2-element Array{Int64,1}:\n 1\n 4\n\njulia> A = [true false; false true]\n2×2 Array{Bool,2}:\n 1 0\n 0 1\n\njulia> findall(A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 2)\n\njulia> findall(falses(3))\n0-element Array{Int64,1}\n```\n"},{"Tuple{Union{Regex, AbstractString},AbstractString}":" findall(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn a `Vector{UnitRange{Int}}` of all the matches for `pattern` in `string`.\nEach element of the returned vector is a range of indices where the\nmatching sequence is found, like the return value of [`findnext`](@ref).\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Function,Any}":" findall(f::Function, A)\n\nReturn a vector `I` of the indices or keys of `A` where `f(A[I])` returns `true`.\nIf there are no such elements of `A`, return an empty array.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 3, 4]\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> findall(isodd, x)\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> A = [1 2 0; 3 4 0]\n2×3 Array{Int64,2}:\n 1 2 0\n 3 4 0\njulia> findall(isodd, A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n\njulia> findall(!iszero, A)\n4-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n\njulia> d = Dict(:A => 10, :B => -1, :C => 0)\nDict{Symbol,Int64} with 3 entries:\n :A => 10\n :B => -1\n :C => 0\n\njulia> findall(x -> x >= 0, d)\n2-element Array{Symbol,1}:\n :A\n :C\n\n```\n"}],"Base.any!":[{"Tuple{Any,Any}":" any!(r, A)\n\nTest whether any values in `A` along the singleton dimensions of `r` are `true`, and write\nresults to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 1\n\njulia> any!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.show_invalid":[{"Union{}":" show_invalid(io::IO, c::AbstractChar)\n\nCalled by `show(io, c)` when [`isoverlong(c)`](@ref) or\n[`ismalformed(c)`](@ref) return `true`. Subclasses\nof `AbstractChar` should define `Base.show_invalid` methods\nif they support storing invalid character data.\n"}],"Base.hton":[{"Tuple{Any}":" hton(x)\n\nConvert the endianness of a value from that used by the Host to Network byte order (big-endian).\n"}],"Base.AbstractLock":[{"Union{}":" AbstractLock\n\nAbstract supertype describing types that\nimplement the synchronization primitives:\n[`lock`](@ref), [`trylock`](@ref), [`unlock`](@ref), and [`islocked`](@ref).\n"}],"Base.catch_backtrace":[{"Tuple{}":" catch_backtrace()\n\nGet the backtrace of the current exception, for use within `catch` blocks.\n"}],"Base.nameof":[{"Tuple{Module}":" nameof(m::Module) -> Symbol\n\nGet the name of a `Module` as a [`Symbol`](@ref).\n\n# Examples\n```jldoctest\njulia> nameof(Base.Broadcast)\n:Broadcast\n```\n"},{"Tuple{Function}":" nameof(f::Function) -> Symbol\n\nGet the name of a generic `Function` as a symbol. For anonymous functions,\nthis is a compiler-generated name. For explicitly-declared subtypes of\n`Function`, it is the name of the function's type.\n"},{"Tuple{DataType}":" nameof(t::DataType) -> Symbol\n\nGet the name of a (potentially `UnionAll`-wrapped) `DataType` (without its parent module)\nas a symbol.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct S{T}\n end\n end\nFoo\n\njulia> nameof(Foo.S{T} where T)\n:S\n```\n"}],"Base.IOContext":[{"Tuple{IO,Pair,Vararg{Pair,N} where N}":" IOContext(io::IO, KV::Pair...)\n\nCreate an `IOContext` that wraps a given stream, adding the specified `key=>value` pairs to\nthe properties of that stream (note that `io` can itself be an `IOContext`).\n\n - use `(key => value) in io` to see if this particular combination is in the properties set\n - use `get(io, key, default)` to retrieve the most recent value for a particular key\n\nThe following properties are in common use:\n\n - `:compact`: Boolean specifying that small values should be printed more compactly, e.g.\n that numbers should be printed with fewer digits. This is set when printing array\n elements.\n - `:limit`: Boolean specifying that containers should be truncated, e.g. showing `…` in\n place of most elements.\n - `:displaysize`: A `Tuple{Int,Int}` giving the size in rows and columns to use for text\n output. This can be used to override the display size for called functions, but to\n get the size of the screen use the `displaysize` function.\n - `:typeinfo`: a `Type` characterizing the information already printed\n concerning the type of the object about to be displayed. This is mainly useful when\n displaying a collection of objects of the same type, so that redundant type information\n can be avoided (e.g. `[Float16(0)]` can be shown as \"Float16[0.0]\" instead\n of \"Float16[Float16(0.0)]\" : while displaying the elements of the array, the `:typeinfo`\n property will be set to `Float16`).\n - `:color`: Boolean specifying whether ANSI color/escape codes are supported/expected.\n By default, this is determined by whether `io` is a compatible terminal and by any\n `--color` command-line flag when `julia` was launched.\n\n# Examples\n\n```jldoctest\njulia> io = IOBuffer();\n\njulia> printstyled(IOContext(io, :color => true), \"string\", color=:red)\n\njulia> String(take!(io))\n\"\\e[31mstring\\e[39m\"\n\njulia> printstyled(io, \"string\", color=:red)\n\njulia> String(take!(io))\n\"string\"\n```\n\n```jldoctest\njulia> print(IOContext(stdout, :compact => false), 1.12341234)\n1.12341234\njulia> print(IOContext(stdout, :compact => true), 1.12341234)\n1.12341\n```\n\n```jldoctest\njulia> function f(io::IO)\n if get(io, :short, false)\n print(io, \"short\")\n else\n print(io, \"loooooong\")\n end\n end\nf (generic function with 1 method)\n\njulia> f(stdout)\nloooooong\njulia> f(IOContext(stdout, :short => true))\nshort\n```\n"},{"Union{}":" IOContext\n\n`IOContext` provides a mechanism for passing output configuration settings among [`show`](@ref) methods.\n\nIn short, it is an immutable dictionary that is a subclass of `IO`. It supports standard\ndictionary operations such as [`getindex`](@ref), and can also be used as an I/O stream.\n"},{"Tuple{IO,IO}":" IOContext(io::IO, context::IOContext)\n\nCreate an `IOContext` that wraps an alternate `IO` but inherits the properties of `context`.\n"}],"Base.printstyled":[{"Tuple{IO,Vararg{Any,N} where N}":" printstyled([io], xs...; bold::Bool=false, color::Union{Symbol,Int}=:normal)\n\nPrint `xs` in a color specified as a symbol or integer, optionally in bold.\n\n`color` may take any of the values `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow`\nor an integer between 0 and 255 inclusive. Note that not all terminals support 256 colors.\nIf the keyword `bold` is given as `true`, the result will be printed in bold.\n"}],"Base.Inf":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.codepoint":[{"Union{}":" codepoint(c::AbstractChar) -> Integer\n\nReturn the Unicode codepoint (an unsigned integer) corresponding\nto the character `c` (or throw an exception if `c` does not represent\na valid character). For `Char`, this is a `UInt32` value, but\n`AbstractChar` types that represent only a subset of Unicode may\nreturn a different-sized integer (e.g. `UInt8`).\n"}],"Base.endswith":[{"Tuple{AbstractString,Regex}":" endswith(s::AbstractString, suffix::Regex)\n\nReturn `true` if `s` ends with the regex pattern, `suffix`.\n\n!!! note\n `endswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"...$\", s)` is faster than `endswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`startswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> endswith(\"JuliaLang\", r\"Lang|Roberts\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" endswith(s::AbstractString, suffix::AbstractString)\n\nReturn `true` if `s` ends with `suffix`. If `suffix` is a vector or set of\ncharacters, test whether the last character of `s` belongs to that set.\n\nSee also [`startswith`](@ref).\n\n# Examples\n```jldoctest\njulia> endswith(\"Sunday\", \"day\")\ntrue\n```\n"}],"Base.Some":[{"Union{}":" Some{T}\n\nA wrapper type used in `Union{Some{T}, Nothing}` to distinguish between the absence\nof a value ([`nothing`](@ref)) and the presence of a `nothing` value (i.e. `Some(nothing)`).\n\nUse [`something`](@ref) to access the value wrapped by a `Some` object.\n"}],"Base.OneTo":[{"Union{}":" Base.OneTo(n)\n\nDefine an `AbstractUnitRange` that behaves like `1:n`, with the added\ndistinction that the lower limit is guaranteed (by the type system) to\nbe 1.\n"}],"Base.tail":[{"Tuple{Tuple}":" tail(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the first component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.tail((1,2,3))\n(2, 3)\n\njulia> Base.tail(())\nERROR: ArgumentError: Cannot call tail on an empty tuple.\n```\n"}],"Base.ncodeunits":[{"Tuple{Char}":" ncodeunits(c::Char) -> Int\n\nReturn the number of code units required to encode a character as UTF-8.\nThis is the number of bytes which will be printed if the character is written\nto an output stream, or `ncodeunits(string(c))` but computed efficiently.\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 consider\n using `ncodeunits(string(c))`.\n"},{"Tuple{AbstractString}":" ncodeunits(s::AbstractString) -> Int\n\nReturn the number of code units in a string. Indices that are in bounds to\naccess this string must satisfy `1 ≤ i ≤ ncodeunits(s)`. Not all such indices\nare valid – they may not be the start of a character, but they will return a\ncode unit value when calling `codeunit(s,i)`.\n\nSee also: [`codeunit`](@ref), [`checkbounds`](@ref), [`sizeof`](@ref),\n[`length`](@ref), [`lastindex`](@ref)\n"}],"Base.datatype_alignment":[{"Tuple{DataType}":" Base.datatype_alignment(dt::DataType) -> Int\n\nMemory allocation minimum alignment for instances of this type.\nCan be called on any `isconcretetype`.\n"}],"Base.StepRangeLen":[{"Union{}":" StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}\n StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}\n\nA range `r` where `r[i]` produces values of type `T` (in the second\nform, `T` is deduced automatically), parameterized by a `ref`erence\nvalue, a `step`, and the `len`gth. By default `ref` is the starting\nvalue `r[1]`, but alternatively you can supply it as the value of\n`r[offset]` for some other index `1 <= offset <= len`. In conjunction\nwith `TwicePrecision` this can be used to implement ranges that are\nfree of roundoff error.\n"}],"Base.fdio":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Bool}}":" fdio([name::AbstractString, ]fd::Integer[, own::Bool=false]) -> IOStream\n\nCreate an [`IOStream`](@ref) object from an integer file descriptor. If `own` is `true`, closing\nthis object will close the underlying descriptor. By default, an `IOStream` is closed when\nit is garbage collected. `name` allows you to associate the descriptor with a named file.\n"}],"Base.isstructtype":[{"Tuple{Type}":" isstructtype(T) -> Bool\n\nDetermine whether type `T` was declared as a struct type\n(i.e. using the `struct` or `mutable struct` keyword).\n"}],"Base.@pure":[{"Tuple{Any}":" @pure ex\n @pure(ex)\n\n`@pure` gives the compiler a hint for the definition of a pure function,\nhelping for type inference.\n\nA pure function can only depend on immutable information.\nThis also means a `@pure` function cannot use any global mutable state, including\ngeneric functions. Calls to generic functions depend on method tables which are\nmutable global state.\nUse with caution, incorrect `@pure` annotation of a function may introduce\nhard to identify bugs. Double check for calls to generic functions.\nThis macro is intended for internal compiler use and may be subject to changes.\n"}],"Base.==":[{"Tuple{Any}":" ==(x)\n\nCreate a function that compares its argument to `x` using [`==`](@ref), i.e.\na function equivalent to `y -> y == x`.\n\nThe returned function is of type `Base.Fix2{typeof(==)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" ==(x, y)\n\nGeneric equality operator. Falls back to [`===`](@ref).\nShould be implemented for all types with a notion of equality, based on the abstract value\nthat an instance represents. For example, all numeric types are compared by numeric value,\nignoring type. Strings are compared as sequences of characters, ignoring encoding.\nFor collections, `==` is generally called recursively on all contents,\nthough other properties (like the shape for arrays) may also be taken into account.\n\nThis operator follows IEEE semantics for floating-point numbers: `0.0 == -0.0` and\n`NaN != NaN`.\n\nThe result is of type `Bool`, except when one of the operands is [`missing`](@ref),\nin which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic)).\nFor collections, `missing` is returned if at least one of the operands contains\na `missing` value and all non-missing values are equal.\nUse [`isequal`](@ref) or [`===`](@ref) to always get a `Bool` result.\n\n# Implementation\nNew numeric types should implement this function for two arguments of the new type, and\nhandle comparison to other types via promotion rules where possible.\n\n[`isequal`](@ref) falls back to `==`, so new methods of `==` will be used by the\n[`Dict`](@ref) type to compare keys. If your type will be used as a dictionary key, it\nshould therefore also implement [`hash`](@ref).\n"},{"Tuple{AbstractString,AbstractString}":" ==(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether two strings are equal character by character (technically, Unicode\ncode point by code point).\n\n# Examples\n```jldoctest\njulia> \"abc\" == \"abc\"\ntrue\n\njulia> \"abc\" == \"αβγ\"\nfalse\n```\n"}],"Base.@noinline":[{"Tuple{Any}":" @noinline\n\nGive a hint to the compiler that it should not inline a function.\n\nSmall functions are typically inlined automatically.\nBy using `@noinline` on small functions, auto-inlining can be\nprevented. This is shown in the following example:\n\n```julia\n@noinline function smallfunction(x)\n #=\n Function Definition\n =#\nend\n\nIf the function is trivial (for example returning a constant) it might get inlined anyway.\n```\n"}],"Base.fldmod":[{"Tuple{Any,Any}":" fldmod(x, y)\n\nThe floored quotient and modulus after division. A convenience wrapper for\n`divrem(x, y, RoundDown)`. Equivalent to `(fld(x,y), mod(x,y))`.\n"}],"Base.shell_escape":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape(args::Union{Cmd,AbstractString...}; special::AbstractString=\"\")\n\nThe unexported `shell_escape` function is the inverse of the unexported `shell_split` function:\nit takes a string or command object and escapes any special characters in such a way that calling\n`shell_split` on it would give back the array of words in the original command. The `special`\nkeyword argument controls what characters in addition to whitespace, backslashes, quotes and\ndollar signs are considered to be special (default: none).\n\n# Examples\n```jldoctest\njulia> Base.shell_escape(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' && echo done\"\n\njulia> Base.shell_escape(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this && that\"\n```\n"}],"Base.ndigits0z":[{"Tuple{Integer,Integer}":" ndigits0z(n::Integer, b::Integer=10)\n\nReturn 0 if `n == 0`, otherwise compute the number of digits in\ninteger `n` written in base `b` (i.e. equal to `ndigits(n, base=b)`\nin this case).\nThe base `b` must not be in `[-1, 0, 1]`.\n\n# Examples\n```jldoctest\njulia> Base.ndigits0z(0, 16)\n0\n\njulia> Base.ndigits(0, base=16)\n1\n\njulia> Base.ndigits0z(0)\n0\n\njulia> Base.ndigits0z(10, 2)\n4\n\njulia> Base.ndigits0z(10)\n2\n```\n\nSee also [`ndigits`](@ref).\n"}],"Base.Cuintmax_t":[{"Union{}":" Cuintmax_t\n\nEquivalent to the native `uintmax_t` c-type ([`UInt64`](@ref)).\n"}],"Base.cmp":[{"Tuple{Any,Any}":" cmp(x,y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. Uses the total order implemented by `isless`.\n\n# Examples\n```jldoctest\njulia> cmp(1, 2)\n-1\n\njulia> cmp(2, 1)\n1\n\njulia> cmp(2+im, 3-im)\nERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})\n[...]\n```\n"},{"Tuple{Any,Any,Any}":" cmp(<, x, y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. The first argument specifies a less-than comparison function to use.\n"},{"Tuple{AbstractString,AbstractString}":" cmp(a::AbstractString, b::AbstractString) -> Int\n\nCompare two strings. Return `0` if both strings have the same length and the character\nat each index is the same in both strings. Return `-1` if `a` is a prefix of `b`, or if\n`a` comes before `b` in alphabetical order. Return `1` if `b` is a prefix of `a`, or if\n`b` comes before `a` in alphabetical order (technically, lexicographical order by Unicode\ncode points).\n\n# Examples\n```jldoctest\njulia> cmp(\"abc\", \"abc\")\n0\n\njulia> cmp(\"ab\", \"abc\")\n-1\n\njulia> cmp(\"abc\", \"ab\")\n1\n\njulia> cmp(\"ab\", \"ac\")\n-1\n\njulia> cmp(\"ac\", \"ab\")\n1\n\njulia> cmp(\"α\", \"a\")\n1\n\njulia> cmp(\"b\", \"β\")\n-1\n```\n"}],"Base.nextind":[{"Tuple{AbstractString,Integer,Integer}":" nextind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts after index `i`. In other words, if `i` is the start of a\n character, return the start of the next character; if `i` is not the start\n of a character, move forward until the start of a character and return that index.\n If `i` is equal to `0` return `1`.\n If `i` is in bounds but greater or equal to `lastindex(str)` return `ncodeunits(str)+1`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `nextind` for `n==1`. The only difference\n is that if `n` is so large that applying `nextind` would reach `ncodeunits(str)+1` then\n each remaining iteration increases the returned value by `1`. This means that in this\n case `nextind` can return a value greater than `ncodeunits(str)+1`.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `s` or is equal to `0`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> nextind(\"α\", 0)\n1\n\njulia> nextind(\"α\", 1)\n3\n\njulia> nextind(\"α\", 3)\nERROR: BoundsError: attempt to access String\n at index [3]\n[...]\n\njulia> nextind(\"α\", 0, 2)\n3\n\njulia> nextind(\"α\", 1, 2)\n4\n```\n"}],"Base.powermod":[{"Union{Tuple{T}, Tuple{Integer,Integer,T}} where T<:Integer":" powermod(x::Integer, p::Integer, m)\n\nCompute ``x^p \\pmod m``.\n\n# Examples\n```jldoctest\njulia> powermod(2, 6, 5)\n4\n\njulia> mod(2^6, 5)\n4\n\njulia> powermod(5, 2, 20)\n5\n\njulia> powermod(5, 2, 19)\n6\n\njulia> powermod(5, 3, 19)\n11\n```\n"}],"Base.in":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"},{"Tuple{Any}":" in(x)\n\nCreate a function that checks whether its argument is [`in`](@ref) `x`, i.e.\na function equivalent to `y -> y in x`.\n\nThe returned function is of type `Base.Fix2{typeof(in)}`, which can be\nused to implement specialized methods.\n"}],"Base.bind":[{"Tuple{Channel,Task}":" bind(chnl::Channel, task::Task)\n\nAssociate the lifetime of `chnl` with a task.\n`Channel` `chnl` is automatically closed when the task terminates.\nAny uncaught exception in the task is propagated to all waiters on `chnl`.\n\nThe `chnl` object can be explicitly closed independent of task termination.\nTerminating tasks have no effect on already closed `Channel` objects.\n\nWhen a channel is bound to multiple tasks, the first task to terminate will\nclose the channel. When multiple channels are bound to the same task,\ntermination of the task will close all of the bound channels.\n\n# Examples\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async foreach(i->put!(c, i), 1:4);\n\njulia> bind(c,task);\n\njulia> for i in c\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n\njulia> isopen(c)\nfalse\n```\n\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async (put!(c,1);error(\"foo\"));\n\njulia> bind(c,task);\n\njulia> take!(c)\n1\n\njulia> put!(c,1);\nERROR: foo\nStacktrace:\n[...]\n```\n"}],"Base.AbstractChannel":[{"Union{}":" AbstractChannel{T}\n\nRepresentation of a channel passing objects of type `T`.\n"}],"Base.OrdinalRange":[{"Union{}":" OrdinalRange{T, S} <: AbstractRange{T}\n\nSupertype for ordinal ranges with elements of type `T` with\nspacing(s) of type `S`. The steps should be always-exact\nmultiples of [`oneunit`](@ref), and `T` should be a \"discrete\"\ntype, which cannot have values smaller than `oneunit`. For example,\n`Integer` or `Date` types would qualify, whereas `Float64` would not (since this\ntype can represent values smaller than `oneunit(Float64)`.\n[`UnitRange`](@ref), [`StepRange`](@ref), and other types are subtypes of this.\n"}],"Base.chomp":[{"Tuple{AbstractString}":" chomp(s::AbstractString) -> SubString\n\nRemove a single trailing newline from a string.\n\n# Examples\n```jldoctest\njulia> chomp(\"Hello\\n\")\n\"Hello\"\n```\n"}],"Base.BottomRF":[{"Union{}":" BottomRF(rf) -> rf′\n\n\"Bottom\" reducing function. This is a thin wrapper around the `op` argument\npassed to `foldl`-like functions for handling the initial invocation to call\n[`reduce_first`](@ref).\n"}],"Base.operator_precedence":[{"Tuple{Symbol}":" operator_precedence(s::Symbol)\n\nReturn an integer representing the precedence of operator `s`, relative to\nother operators. Higher-numbered operators take precedence over lower-numbered\noperators. Return `0` if `s` is not a valid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)\n(11, 12, 17)\n\njulia> Base.operator_precedence(:sin), Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens on `:(=)`)\n(0, 1, 1)\n```\n"}],"Base.delete_method":[{"Tuple{Method}":" delete_method(m::Method)\n\nMake method `m` uncallable and force recompilation of any methods that use(d) it.\n"}],"Base.merge!":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nSee also [`merge`](@ref).\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 4\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(combine, d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nValues with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(+, d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 6\n\njulia> merge!(-, d1, d1);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 0\n 3 => 0\n 1 => 0\n```\n"}],"Base.invokelatest":[{"Tuple{Any,Vararg{Any,N} where N}":" invokelatest(f, args...; kwargs...)\n\nCalls `f(args...; kwargs...)`, but guarantees that the most recent method of `f`\nwill be executed. This is useful in specialized circumstances,\ne.g. long-running event loops or callback functions that may\ncall obsolete versions of a function `f`.\n(The drawback is that `invokelatest` is somewhat slower than calling\n`f` directly, and the type of the result cannot be inferred by the compiler.)\n"}],"Base.catch_stack":[{"Union{Tuple{}, Tuple{Any}}":" catch_stack(task=current_task(); [inclue_bt=true])\n\nGet the stack of exceptions currently being handled. For nested catch blocks\nthere may be more than one current exception in which case the most recently\nthrown exception is last in the stack. The stack is returned as a Vector of\n`(exception,backtrace)` pairs, or a Vector of exceptions if `include_bt` is\nfalse.\n\nExplicitly passing `task` will return the current exception stack on an\narbitrary task. This is useful for inspecting tasks which have failed due to\nuncaught exceptions.\n\n!!! compat \"Julia 1.1\"\n This function is experimental in Julia 1.1 and will likely be renamed in a\n future release (see https://github.com/JuliaLang/julia/pull/29901).\n"}],"Base.setindex!":[{"Union{}":" setindex!(collection, value, key...)\n\nStore the given value at the given key or index within a collection. The syntax `a[i,j,...] =\nx` is converted by the compiler to `(setindex!(a, x, i, j, ...); x)`.\n"},{"Tuple{AbstractArray,Any,Vararg{Any,N} where N}":" setindex!(A, X, inds...)\n A[inds...] = X\n\nStore values from array `X` within some subset of `A` as specified by `inds`.\nThe syntax `A[inds...] = X` is equivalent to `setindex!(A, X, inds...)`.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,2);\n\njulia> setindex!(A, [10, 20], [1, 2]);\n\njulia> A[[3, 4]] = [30, 40];\n\njulia> A\n2×2 Array{Float64,2}:\n 10.0 30.0\n 20.0 40.0\n```\n"}],"Base.getpass":[{"Union{}":" Base.getpass(message::AbstractString) -> Base.SecretBuffer\n\nDisplay a message and wait for the user to input a secret, returning an `IO`\nobject containing the secret.\n\nNote that on Windows, the secret might be displayed as it is typed; see\n`Base.winprompt` for securely retrieving username/password pairs from a\ngraphical interface.\n"}],"Base.issetequal":[{"Tuple{AbstractSet,AbstractSet}":" issetequal(a, b) -> Bool\n\nDetermine whether `a` and `b` have the same elements. Equivalent\nto `a ⊆ b && b ⊆ a` but more efficient when possible.\n\n# Examples\n```jldoctest\njulia> issetequal([1, 2], [1, 2, 3])\nfalse\n\njulia> issetequal([1, 2], [2, 1])\ntrue\n```\n"}],"Base.abs":[{"Union{}":" abs(x)\n\nThe absolute value of `x`.\n\nWhen `abs` is applied to signed integers, overflow may occur,\nresulting in the return of a negative value. This overflow occurs only\nwhen `abs` is applied to the minimum representable value of a signed\ninteger. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,\nnot `-x` as might be expected.\n\n# Examples\n```jldoctest\njulia> abs(-3)\n3\n\njulia> abs(1 + im)\n1.4142135623730951\n\njulia> abs(typemin(Int64))\n-9223372036854775808\n```\n"}],"Base.Pair":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.has_offset_axes":[{"Tuple{Any}":" has_offset_axes(A)\n has_offset_axes(A, B, ...)\n\nReturn `true` if the indices of `A` start with something other than 1 along any axis.\nIf multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.\n"}],"Base.Cint":[{"Union{}":" Cint\n\nEquivalent to the native `signed int` c-type ([`Int32`](@ref)).\n"}],"Base.checkbounds_indices":[{"Tuple{Type{Bool},Tuple,Tuple}":" checkbounds_indices(Bool, IA, I)\n\nReturn `true` if the \"requested\" indices in the tuple `I` fall within\nthe bounds of the \"permitted\" indices specified by the tuple\n`IA`. This function recursively consumes elements of these tuples,\nusually in a 1-for-1 fashion,\n\n checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &\n checkbounds_indices(Bool, IA, I)\n\nNote that [`checkindex`](@ref) is being used to perform the actual\nbounds-check for a single dimension of the array.\n\nThere are two important exceptions to the 1-1 rule: linear indexing and\nCartesianIndex{N}, both of which may \"consume\" more than one element\nof `IA`.\n\nSee also [`checkbounds`](@ref).\n"}],"Base.isambiguous":[{"Tuple{Method,Method}":" Base.isambiguous(m1, m2; ambiguous_bottom=false) -> Bool\n\nDetermine whether two methods `m1` and `m2` (typically of the same\nfunction) are ambiguous. This test is performed in the context of\nother methods of the same function; in isolation, `m1` and `m2` might\nbe ambiguous, but if a third method resolving the ambiguity has been\ndefined, this returns `false`.\n\nFor parametric types, the `ambiguous_bottom` keyword argument controls whether\n`Union{}` counts as an ambiguous intersection of type parameters – when `true`,\nit is considered ambiguous, when `false` it is not.\n\n# Examples\n```jldoctest\njulia> foo(x::Complex{<:Integer}) = 1\nfoo (generic function with 1 method)\n\njulia> foo(x::Complex{<:Rational}) = 2\nfoo (generic function with 2 methods)\n\njulia> m1, m2 = collect(methods(foo));\n\njulia> typeintersect(m1.sig, m2.sig)\nTuple{typeof(foo),Complex{Union{}}}\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=true)\ntrue\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=false)\nfalse\n```\n"}],"Base.Colon":[{"Union{}":" Colon()\n\nColons (:) are used to signify indexing entire objects or dimensions at once.\n\nVery few operations are defined on Colons directly; instead they are converted\nby [`to_indices`](@ref) to an internal vector type (`Base.Slice`) to represent the\ncollection of indices they span before being used.\n\nThe singleton instance of `Colon` is also a function used to construct ranges;\nsee [`:`](@ref).\n"}],"Base.inv":[{"Tuple{Number}":" inv(x)\n\nReturn the multiplicative inverse of `x`, such that `x*inv(x)` or `inv(x)*x`\nyields [`one(x)`](@ref) (the multiplicative identity) up to roundoff errors.\n\nIf `x` is a number, this is essentially the same as `one(x)/x`, but for\nsome types `inv(x)` may be slightly more efficient.\n\n# Examples\n```jldoctest\njulia> inv(2)\n0.5\n\njulia> inv(1 + 2im)\n0.2 - 0.4im\n\njulia> inv(1 + 2im) * (1 + 2im)\n1.0 + 0.0im\n\njulia> inv(2//3)\n3//2\n```\n\n!!! compat \"Julia 1.2\"\n `inv(::Missing)` requires at least Julia 1.2.\n"}],"Base.SubArray":[{"Union{}":" SubArray{T,N,P,I,L} <: AbstractArray{T,N}\n\n`N`-dimensional view into a parent array (of type `P`) with an element type `T`, restricted by a tuple of indices (of type `I`). `L` is true for types that support fast linear indexing, and `false` otherwise.\n\nConstruct `SubArray`s using the [`view`](@ref) function.\n"}],"Base.prevpow":[{"Tuple{Real,Real}":" prevpow(a, x)\n\nThe largest `a^n` not greater than `x`, where `n` is a non-negative integer.\n`a` must be greater than 1, and `x` must not be less than 1.\n\n# Examples\n```jldoctest\njulia> prevpow(2, 7)\n4\n\njulia> prevpow(2, 9)\n8\n\njulia> prevpow(5, 20)\n5\n\njulia> prevpow(4, 16)\n16\n```\nSee also [`nextpow`](@ref).\n"}],"Base.AbstractVector":[{"Union{}":" AbstractVector{T}\n\nSupertype for one-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,1}`](@ref).\n"}],"Base.//":[{"Tuple{Integer,Integer}":" //(num, den)\n\nDivide two integers or rational numbers, giving a [`Rational`](@ref) result.\n\n# Examples\n```jldoctest\njulia> 3 // 5\n3//5\n\njulia> (3 // 5) // (2 // 1)\n3//10\n```\n"}],"Base.imag":[{"Tuple{Complex}":" imag(z)\n\nReturn the imaginary part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> imag(1 + 3im)\n3\n```\n"}],"Base._xfadjoint":[{"Tuple{Any,Any}":" _xfadjoint(op, itr) -> op′, itr′\n\nGiven a pair of reducing function `op` and an iterator `itr`, return a pair\n`(op′, itr′)` of similar types. If the iterator `itr` is transformed by an\niterator transform `ixf` whose adjoint transducer `xf` is known, `op′ = xf(op)`\nand `itr′ = ixf⁻¹(itr)` is returned. Otherwise, `op` and `itr` are returned\nas-is. For example, transducer `rf -> MappingRF(f, rf)` is the adjoint of\niterator transform `itr -> Generator(f, itr)`.\n\nNested iterator transforms are converted recursively. That is to say,\ngiven `op` and\n\n itr = (ixf₁ ∘ ixf₂ ∘ ... ∘ ixfₙ)(itr′)\n\nwhat is returned is `itr′` and\n\n op′ = (xfₙ ∘ ... ∘ xf₂ ∘ xf₁)(op)\n"}],"Base.objectid":[{"Tuple{Any}":" objectid(x)\n\nGet a hash value for `x` based on object identity. `objectid(x)==objectid(y)` if `x === y`.\n"}],"Base.>:":[{"Union{}":" >:(T1, T2)\n\nSupertype operator, equivalent to `T2 <: T1`.\n"}],"Base.getkey":[{"Union{Tuple{V}, Tuple{K}, Tuple{Dict{K,V},Any,Any}} where V where K":" getkey(collection, key, default)\n\nReturn the key matching argument `key` if one exists in `collection`, otherwise return `default`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> getkey(D, 'a', 1)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> getkey(D, 'd', 'a')\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n```\n"}],"Base.Cstring":[{"Union{}":" Cstring\n\nA C-style string composed of the native character type\n[`Cchar`](@ref)s. `Cstring`s are NUL-terminated. For\nC-style strings composed of the native wide character\ntype, see [`Cwstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n"}],"Base.rotr90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotr90(A, k)\n\nRight-rotate matrix `A` 90 degrees clockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a,1)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotr90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotr90(a,3)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotr90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotr90(A)\n\nRotate matrix `A` right 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n```\n"}],"Base.xor":[{"Tuple{Bool,Bool}":" xor(x, y)\n ⊻(x, y)\n\nBitwise exclusive or of `x` and `y`. Implements\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one of the arguments is `missing`.\n\nThe infix operation `a ⊻ b` is a synonym for `xor(a,b)`, and\n`⊻` can be typed by tab-completing `\\xor` or `\\veebar` in the Julia REPL.\n\n# Examples\n```jldoctest\njulia> xor(true, false)\ntrue\n\njulia> xor(true, true)\nfalse\n\njulia> xor(true, missing)\nmissing\n\njulia> false ⊻ false\nfalse\n\njulia> [true; true; false] .⊻ [true; false; false]\n3-element BitArray{1}:\n 0\n 1\n 0\n```\n"}],"Base.reverse":[{"Tuple{AbstractArray}":" reverse(A; dims::Integer)\n\nReverse `A` in dimension `dims`.\n\n# Examples\n```jldoctest\njulia> b = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> reverse(b, dims=2)\n2×2 Array{Int64,2}:\n 2 1\n 4 3\n```\n"},{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse(v [, start=1 [, stop=length(v) ]] )\n\nReturn a copy of `v` reversed from start to stop. See also [`Iterators.reverse`](@ref)\nfor reverse-order iteration without making a copy.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse(A)\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n\njulia> reverse(A, 1, 4)\n5-element Array{Int64,1}:\n 4\n 3\n 2\n 1\n 5\n\njulia> reverse(A, 3, 5)\n5-element Array{Int64,1}:\n 1\n 2\n 5\n 4\n 3\n```\n"},{"Tuple{Union{SubString{String}, String}}":" reverse(s::AbstractString) -> AbstractString\n\nReverses a string. Technically, this function reverses the codepoints in a string and its\nmain utility is for reversed-order string processing, especially for reversed\nregular-expression searches. See also [`reverseind`](@ref) to convert indices in `s` to\nindices in `reverse(s)` and vice-versa, and `graphemes` from module `Unicode` to\noperate on user-visible \"characters\" (graphemes) rather than codepoints.\nSee also [`Iterators.reverse`](@ref) for\nreverse-order iteration without making a copy. Custom string types must implement the\n`reverse` function themselves and should typically return a string with the same type\nand encoding. If they return a string with a different encoding, they must also override\n`reverseind` for that string type to satisfy `s[reverseind(s,i)] == reverse(s)[i]`.\n\n# Examples\n```jldoctest\njulia> reverse(\"JuliaLang\")\n\"gnaLailuJ\"\n\njulia> reverse(\"ax̂e\") # combining characters can lead to surprising results\n\"êxa\"\n\njulia> using Unicode\n\njulia> join(reverse(collect(graphemes(\"ax̂e\")))) # reverses graphemes\n\"ex̂a\"\n```\n"}],"Base.sortslices":[{"Tuple{AbstractArray}":" sortslices(A; dims, alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)\n\nSort slices of an array `A`. The required keyword argument `dims` must\nbe either an integer or a tuple of integers. It specifies the\ndimension(s) over which the slices are sorted.\n\nE.g., if `A` is a matrix, `dims=1` will sort rows, `dims=2` will sort columns.\nNote that the default comparison function on one dimensional slices sorts\nlexicographically.\n\nFor the remaining keyword arguments, see the documentation of [`sort!`](@ref).\n\n# Examples\n```jldoctest\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1) # Sort rows\n3×3 Array{Int64,2}:\n -1 6 4\n 7 3 5\n 9 -2 8\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, rev=true)\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2) # Sort columns\n3×3 Array{Int64,2}:\n 3 5 7\n -1 -4 6\n -2 8 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 5 3 7\n -4 -1 6\n 8 -2 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, rev=true)\n3×3 Array{Int64,2}:\n 7 5 3\n 6 -4 -1\n 9 8 -2\n```\n\n# Higher dimensions\n\n`sortslices` extends naturally to higher dimensions. E.g., if `A` is a\na 2x2x2 array, `sortslices(A, dims=3)` will sort slices within the 3rd dimension,\npassing the 2x2 slices `A[:, :, 1]` and `A[:, :, 2]` to the comparison function.\nNote that while there is no default order on higher-dimensional slices, you may\nuse the `by` or `lt` keyword argument to specify such an order.\n\nIf `dims` is a tuple, the order of the dimensions in `dims` is\nrelevant and specifies the linear order of the slices. E.g., if `A` is three\ndimensional and `dims` is `(1, 2)`, the orderings of the first two dimensions\nare re-arranged such such that the slices (of the remaining third dimension) are sorted.\nIf `dims` is `(2, 1)` instead, the same slices will be taken,\nbut the result order will be row-major instead.\n\n# Higher dimensional examples\n```\njulia> A = permutedims(reshape([4 3; 2 1; 'A' 'B'; 'C' 'D'], (2, 2, 2)), (1, 3, 2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 4 3\n 2 1\n\n[:, :, 2] =\n 'A' 'B'\n 'C' 'D'\n\njulia> sortslices(A, dims=(1,2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 3\n 2 4\n\n[:, :, 2] =\n 'D' 'B'\n 'C' 'A'\n\njulia> sortslices(A, dims=(2,1))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 2\n 3 4\n\n[:, :, 2] =\n 'D' 'C'\n 'B' 'A'\n\njulia> sortslices(reshape([5; 4; 3; 2; 1], (1,1,5)), dims=3, by=x->x[1,1])\n1×1×5 Array{Int64,3}:\n[:, :, 1] =\n 1\n\n[:, :, 2] =\n 2\n\n[:, :, 3] =\n 3\n\n[:, :, 4] =\n 4\n\n[:, :, 5] =\n 5\n```\n"}],"Base.Culong":[{"Union{}":" Culong\n\nEquivalent to the native `unsigned long` c-type.\n"}],"Base.pathof":[{"Tuple{Module}":" pathof(m::Module)\n\nReturn the path of the `m.jl` file that was used to `import` module `m`,\nor `nothing` if `m` was not imported from a package.\n\nUse [`dirname`](@ref) to get the directory part and [`basename`](@ref)\nto get the file name part of the path.\n"}],"Base.Dict":[{"Union{}":" Dict([itr])\n\n`Dict{K,V}()` constructs a hash table with keys of type `K` and values of type `V`.\nKeys are compared with [`isequal`](@ref) and hashed with [`hash`](@ref).\n\nGiven a single iterable argument, constructs a [`Dict`](@ref) whose key-value pairs\nare taken from 2-tuples `(key,value)` generated by the argument.\n\n# Examples\n```jldoctest\njulia> Dict([(\"A\", 1), (\"B\", 2)])\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n\nAlternatively, a sequence of pair arguments may be passed.\n\n```jldoctest\njulia> Dict(\"A\"=>1, \"B\"=>2)\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n"}],"Base.pushfirst!":[{"Union{Tuple{T}, Tuple{Array{T,1},Any}} where T":" pushfirst!(collection, items...) -> collection\n\nInsert one or more `items` at the beginning of `collection`.\n\n# Examples\n```jldoctest\njulia> pushfirst!([1, 2, 3, 4], 5, 6)\n6-element Array{Int64,1}:\n 5\n 6\n 1\n 2\n 3\n 4\n```\n"}],"Base.@macroexpand":[{"Tuple{Any}":" @macroexpand\n\nReturn equivalent expression with all macros removed (expanded).\n\nThere are differences between `@macroexpand` and [`macroexpand`](@ref).\n\n* While [`macroexpand`](@ref) takes a keyword argument `recursive`, `@macroexpand`\nis always recursive. For a non recursive macro version, see [`@macroexpand1`](@ref).\n\n* While [`macroexpand`](@ref) has an explicit `module` argument, `@macroexpand` always\nexpands with respect to the module in which it is called.\nThis is best seen in the following example:\n```julia-repl\njulia> module M\n macro m()\n 1\n end\n function f()\n (@macroexpand(@m),\n macroexpand(M, :(@m)),\n macroexpand(Main, :(@m))\n )\n end\n end\nM\n\njulia> macro m()\n 2\n end\n@m (macro with 1 method)\n\njulia> M.f()\n(1, 1, 2)\n```\nWith `@macroexpand` the expression expands where `@macroexpand` appears in the code (module `M` in the example).\nWith `macroexpand` the expression expands in the module given as the first argument.\n"}],"Base.sum!":[{"Tuple{Any,Any}":" sum!(r, A)\n\nSum elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum!([1; 1], A)\n2-element Array{Int64,1}:\n 3\n 7\n\njulia> sum!([1 1], A)\n1×2 Array{Int64,2}:\n 4 6\n```\n"}],"Base.abs2":[{"Tuple{Real}":" abs2(x)\n\nSquared absolute value of `x`.\n\n# Examples\n```jldoctest\njulia> abs2(-3)\n9\n```\n"}],"Base.__precompile__":[{"Union{Tuple{}, Tuple{Bool}}":" __precompile__(isprecompilable::Bool)\n\nSpecify whether the file calling this function is precompilable, defaulting to `true`.\nIf a module or file is *not* safely precompilable, it should call `__precompile__(false)` in\norder to throw an error if Julia attempts to precompile it.\n"}],"Base.similar":[{"Union{Tuple{T}, Tuple{Type{T},Vararg{Union{Integer, AbstractUnitRange},N} where N}} where T<:AbstractArray":" similar(storagetype, axes)\n\nCreate an uninitialized mutable array analogous to that specified by\n`storagetype`, but with `axes` specified by the last\nargument. `storagetype` might be a type or a function.\n\n**Examples**:\n\n similar(Array{Int}, axes(A))\n\ncreates an array that \"acts like\" an `Array{Int}` (and might indeed be\nbacked by one), but which is indexed identically to `A`. If `A` has\nconventional indexing, this will be identical to\n`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the\nindices of the result will match `A`.\n\n similar(BitArray, (axes(A, 2),))\n\nwould create a 1-dimensional logical array whose indices match those\nof the columns of `A`.\n"},{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" similar(array, [element_type=eltype(array)], [dims=size(array)])\n\nCreate an uninitialized mutable array with the given element type and size, based upon the\ngiven source array. The second and third arguments are both optional, defaulting to the\ngiven array's `eltype` and `size`. The dimensions may be specified either as a single tuple\nargument or as a series of integer arguments.\n\nCustom AbstractArray subtypes may choose which specific array type is best-suited to return\nfor the given element type and dimensionality. If they do not specialize this method, the\ndefault is an `Array{element_type}(undef, dims...)`.\n\nFor example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are\nneither mutable nor support 2 dimensions:\n\n```julia-repl\njulia> similar(1:10, 1, 4)\n1×4 Array{Int64,2}:\n 4419743872 4374413872 4419743888 0\n```\n\nConversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two\nelements since `BitArray`s are both mutable and can support 1-dimensional arrays:\n\n```julia-repl\njulia> similar(trues(10,10), 2)\n2-element BitArray{1}:\n 0\n 0\n```\n\nSince `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a\ndifferent element type it will create a regular `Array` instead:\n\n```julia-repl\njulia> similar(falses(10), Float64, 2, 4)\n2×4 Array{Float64,2}:\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n```\n\n"}],"Base.EnvDict":[{"Union{}":" EnvDict() -> EnvDict\n\nA singleton of this type provides a hash table interface to environment variables.\n"}],"Base.∘":[{"Tuple{Any,Any}":" f ∘ g\n\nCompose functions: i.e. `(f ∘ g)(args...)` means `f(g(args...))`. The `∘` symbol can be\nentered in the Julia REPL (and most editors, appropriately configured) by typing `\\circ`.\n\nFunction composition also works in prefix form: `∘(f, g)` is the same as `f ∘ g`.\nThe prefix form supports composition of multiple functions: `∘(f, g, h) = f ∘ g ∘ h`\nand splatting `∘(fs...)` for composing an iterable collection of functions.\n\n!!! compat \"Julia 1.4\"\n Multiple function composition requires at least Julia 1.4.\n\n# Examples\n```jldoctest\njulia> map(uppercase∘first, [\"apple\", \"banana\", \"carrot\"])\n3-element Array{Char,1}:\n 'A'\n 'B'\n 'C'\n\njulia> fs = [\n x -> 2x\n x -> x/2\n x -> x-1\n x -> x+1\n ];\n\njulia> ∘(fs...)(3)\n3.0\n```\n"}],"Base.NaN64":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.⊋":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.eachslice":[{"Tuple{AbstractArray}":" eachslice(A::AbstractArray; dims)\n\nCreate a generator that iterates over dimensions `dims` of `A`, returning views that select all\nthe data from the other dimensions in `A`.\n\nOnly a single dimension in `dims` is currently supported. Equivalent to `(view(A,:,:,...,i,:,:\n...)) for i in axes(A, dims))`, where `i` is in position `dims`.\n\nSee also [`eachrow`](@ref), [`eachcol`](@ref), and [`selectdim`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.CyclePadding":[{"Union{}":" CyclePadding(padding, total_size)\n\nCylces an iterator of `Padding` structs, restarting the padding at `total_size`.\nE.g. if `padding` is all the padding in a struct and `total_size` is the total\naligned size of that array, `CyclePadding` will correspond to the padding in an\ninfinite vector of such structs.\n"}],"Base.lcm":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" lcm(x,y)\n\nLeast common (non-negative) multiple.\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> lcm(2,3)\n6\n\njulia> lcm(-2,3)\n6\n```\n"}],"Base.isoperator":[{"Tuple{Union{AbstractString, Symbol}}":" isoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as an operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isoperator(:+), Base.isoperator(:f)\n(true, false)\n```\n"}],"Base.to_indices":[{"Tuple{Any,Tuple}":" to_indices(A, I::Tuple)\n\nConvert the tuple `I` to a tuple of indices for use in indexing into array `A`.\n\nThe returned tuple must only contain either `Int`s or `AbstractArray`s of\nscalar indices that are supported by array `A`. It will error upon encountering\na novel index type that it does not know how to process.\n\nFor simple index types, it defers to the unexported `Base.to_index(A, i)` to\nprocess each index `i`. While this internal function is not intended to be\ncalled directly, `Base.to_index` may be extended by custom array or index types\nto provide custom indexing behaviors.\n\nMore complicated index types may require more context about the dimension into\nwhich they index. To support those cases, `to_indices(A, I)` calls\n`to_indices(A, axes(A), I)`, which then recursively walks through both the\ngiven tuple of indices and the dimensional indices of `A` in tandem. As such,\nnot all index types are guaranteed to propagate to `Base.to_index`.\n"}],"Base.unmark":[{"Tuple{IO}":" unmark(s)\n\nRemove a mark from stream `s`. Return `true` if the stream was marked, `false` otherwise.\n\nSee also [`mark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.eof":[{"Tuple{Base.AbstractPipe}":" eof(stream) -> Bool\n\nTest whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this\nfunction will block to wait for more data if necessary, and then return `false`. Therefore\nit is always safe to read one byte after seeing `eof` return `false`. `eof` will return\n`false` as long as buffered data is still available, even if the remote end of a connection\nis closed.\n"}],"Base.mapreduce_first":[{"Tuple{Any,Any,Any}":" Base.mapreduce_first(f, op, x)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an iterator which contains a\nsingle element `x`. This value may also used to initialise the recursion, so that\n`mapreduce(f, op, [x, y])` may call `op(reduce_first(op, f, x), f(y))`.\n\nThe default is `reduce_first(op, f(x))`.\n"}],"Base.angle":[{"Tuple{Complex}":" angle(z)\n\nCompute the phase angle in radians of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> rad2deg(angle(1 + im))\n45.0\n\njulia> rad2deg(angle(1 - im))\n-45.0\n\njulia> rad2deg(angle(-1 - im))\n-135.0\n```\n"}],"Base.leading_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" leading_zeros(x::Integer) -> Integer\n\nNumber of zeros leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_zeros(Int32(1))\n31\n```\n"}],"Base.occursin":[{"Tuple{Union{AbstractChar, AbstractString},AbstractString}":" occursin(needle::Union{AbstractString,Regex,AbstractChar}, haystack::AbstractString)\n\nDetermine whether the first argument is a substring of the second. If `needle`\nis a regular expression, checks whether `haystack` contains a match.\n\n# Examples\n```jldoctest\njulia> occursin(\"Julia\", \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin('a', \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin(r\"a.a\", \"aba\")\ntrue\n\njulia> occursin(r\"a.a\", \"abba\")\nfalse\n```\n"}],"Base.isopen":[{"Union{}":" isopen(object) -> Bool\n\nDetermine whether an object - such as a stream or timer\n-- is not yet closed. Once an object is closed, it will never produce a new event.\nHowever, since a closed stream may still have data to read in its buffer,\nuse [`eof`](@ref) to check for the ability to read data.\nUse the `FileWatching` package to be notified when a stream might be writable or readable.\n\n# Examples\n```jldoctest\njulia> io = open(\"my_file.txt\", \"w+\");\n\njulia> isopen(io)\ntrue\n\njulia> close(io)\n\njulia> isopen(io)\nfalse\n```\n"}],"Base.Matrix":[{"Union{}":" Matrix{T} <: AbstractMatrix{T}\n\nTwo-dimensional dense array with elements of type `T`, often used to represent\na mathematical matrix. Alias for [`Array{T,2}`](@ref).\n"}],"Base.merge":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge(d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. If the same key is present in another collection, the\nvalue for that key will be the value it has in the last collection listed.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4711.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n\njulia> merge(b, a)\nDict{String,Float64} with 3 entries:\n \"bar\" => 42.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Tuple{NamedTuple,Any}":" merge(a::NamedTuple, iterable)\n\nInterpret an iterable of key-value pairs as a named tuple, and perform a merge.\n\n```jldoctest\njulia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])\n(a = 1, b = 4, c = 3, d = 5)\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge(combine, d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. Values with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(+, a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4753.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,NamedTuple{bn,T} where T<:Tuple}} where bn where an":" merge(a::NamedTuple, bs::NamedTuple...)\n\nConstruct a new named tuple by merging two or more existing ones, in a left-associative\nmanner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields\npresent in both the leftmost and rightmost named tuples take the same position as they are found in the\nleftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that\ncontains that field. Fields present in only the rightmost named tuple of a pair are appended at the end.\nA fallback is implemented for when only a single named tuple is supplied,\nwith signature `merge(a::NamedTuple)`.\n\n!!! compat \"Julia 1.1\"\n Merging 3 or more `NamedTuple` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> merge((a=1, b=2, c=3), (b=4, d=5))\n(a = 1, b = 4, c = 3, d = 5)\n```\n\n```jldoctest\njulia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))\n(a = 1, b = 3, c = (d = 2,))\n```\n"}],"Base.codeunit":[{"Tuple{AbstractString}":" codeunit(s::AbstractString) -> Type{<:Union{UInt8, UInt16, UInt32}}\n\nReturn the code unit type of the given string object. For ASCII, Latin-1, or\nUTF-8 encoded strings, this would be `UInt8`; for UCS-2 and UTF-16 it would be\n`UInt16`; for UTF-32 it would be `UInt32`. The unit code type need not be\nlimited to these three types, but it's hard to think of widely used string\nencodings that don't use one of these units. `codeunit(s)` is the same as\n`typeof(codeunit(s,1))` when `s` is a non-empty string.\n\nSee also: [`ncodeunits`](@ref)\n"},{"Tuple{AbstractString,Integer}":" codeunit(s::AbstractString, i::Integer) -> Union{UInt8, UInt16, UInt32}\n\nReturn the code unit value in the string `s` at index `i`. Note that\n\n codeunit(s, i) :: codeunit(s)\n\nI.e. the value returned by `codeunit(s, i)` is of the type returned by\n`codeunit(s)`.\n\nSee also: [`ncodeunits`](@ref), [`checkbounds`](@ref)\n"}],"Base.@raw_str":[{"Tuple{Any}":" @raw_str -> String\n\nCreate a raw string without interpolation and unescaping.\nThe exception is that quotation marks still must be escaped. Backslashes\nescape both quotation marks and other backslashes, but only when a sequence\nof backslashes precedes a quote character. Thus, 2n backslashes followed by\na quote encodes n backslashes and the end of the literal while 2n+1 backslashes\nfollowed by a quote encodes n backslashes followed by a quote character.\n\n# Examples\n```jldoctest\njulia> println(raw\"\\ $x\")\n\\ $x\n\njulia> println(raw\"\\\"\")\n\"\n\njulia> println(raw\"\\\\\\\"\")\n\\\"\n\njulia> println(raw\"\\\\x \\\\\\\"\")\n\\\\x \\\"\n```\n"}],"Base.firstindex":[{"Tuple{AbstractArray}":" firstindex(collection) -> Integer\n firstindex(collection, d) -> Integer\n\nReturn the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.\n\n# Examples\n```jldoctest\njulia> firstindex([1,2,4])\n1\n\njulia> firstindex(rand(3,4,5), 2)\n1\n```\n"}],"Base.@view":[{"Tuple{Any}":" @view A[inds...]\n\nCreates a `SubArray` from an indexing expression. This can only be applied directly to a\nreference expression (e.g. `@view A[1,2:end]`), and should *not* be used as the target of\nan assignment (e.g. `@view(A[1,2:end]) = ...`). See also [`@views`](@ref)\nto switch an entire block of code to use views for slicing.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = @view A[:, 1]\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.symdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the symmetric difference of the passed in sets, and overwrite `s` with the result.\nWhen `s` is an array, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n"}],"Base.<=":[{"Tuple{Any}":" <=(x)\n\nCreate a function that compares its argument to `x` using [`<=`](@ref), i.e.\na function equivalent to `y -> y <= x`.\nThe returned function is of type `Base.Fix2{typeof(<=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <=(x, y)\n ≤(x,y)\n\nLess-than-or-equals comparison operator. Falls back to `(x < y) | (x == y)`.\n\n# Examples\n```jldoctest\njulia> 'a' <= 'b'\ntrue\n\njulia> 7 ≤ 7 ≤ 9\ntrue\n\njulia> \"abc\" ≤ \"abc\"\ntrue\n\njulia> 5 <= 3\nfalse\n```\n"}],"Base.max":[{"Tuple{Any,Any}":" max(x, y, ...)\n\nReturn the maximum of the arguments. See also the [`maximum`](@ref) function\nto take the maximum element from a collection.\n\n# Examples\n```jldoctest\njulia> max(2, 5, 1)\n5\n```\n"}],"Base.promote_shape":[{"Tuple{Tuple{Vararg{Int64,N}} where N,Tuple{Vararg{Int64,N}} where N}":" promote_shape(s1, s2)\n\nCheck two array shapes for compatibility, allowing trailing singleton dimensions, and return\nwhichever shape has more dimensions.\n\n# Examples\n```jldoctest\njulia> a = fill(1, (3,4,1,1,1));\n\njulia> b = fill(1, (3,4));\n\njulia> promote_shape(a,b)\n(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))\n\njulia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))\n(2, 3, 1, 4, 1)\n```\n"}],"Base.cumprod":[{"Tuple{AbstractArray}":" cumprod(A; dims::Integer)\n\nCumulative product along the dimension `dim`. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumprod(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 10 18\n\njulia> cumprod(a, dims=2)\n2×3 Array{Int64,2}:\n 1 2 6\n 4 20 120\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumprod(x::AbstractVector)\n\nCumulative product of a vector. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumprod(fill(1//2, 3))\n3-element Array{Rational{Int64},1}:\n 1//2\n 1//4\n 1//8\n\njulia> cumprod([fill(1//3, 2, 2) for i in 1:3])\n3-element Array{Array{Rational{Int64},2},1}:\n [1//3 1//3; 1//3 1//3]\n [2//9 2//9; 2//9 2//9]\n [4//27 4//27; 4//27 4//27]\n```\n"}],"Base.minimum!":[{"Tuple{Any,Any}":" minimum!(r, A)\n\nCompute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> minimum!([1 1], A)\n1×2 Array{Int64,2}:\n 1 2\n```\n"}],"Base.complex":[{"Tuple{Complex}":" complex(r, [i])\n\nConvert real numbers or arrays to complex. `i` defaults to zero.\n\n# Examples\n```jldoctest\njulia> complex(7)\n7 + 0im\n\njulia> complex([1, 2, 3])\n3-element Array{Complex{Int64},1}:\n 1 + 0im\n 2 + 0im\n 3 + 0im\n```\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Real":" complex(T::Type)\n\nReturn an appropriate type which can represent a value of type `T` as a complex number.\nEquivalent to `typeof(complex(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> complex(Complex{Int})\nComplex{Int64}\n\njulia> complex(Int)\nComplex{Int64}\n```\n"}],"Base.splitprec":[{"Union{Tuple{F}, Tuple{Type{F},Integer}} where F<:AbstractFloat":" hi, lo = splitprec(F::Type{<:AbstractFloat}, i::Integer)\n\nRepresent an integer `i` as a pair of floating-point numbers `hi` and\n`lo` (of type `F`) such that:\n- `widen(hi) + widen(lo) ≈ i`. It is exact if 1.5 * (number of precision bits in `F`) is greater than the number of bits in `i`.\n- all bits in `hi` are more significant than any of the bits in `lo`\n- `hi` can be exactly multiplied by the `hi` component of another call to `splitprec`.\n\nIn particular, while `convert(Float64, i)` can be lossy since Float64\nhas only 53 bits of precision, `splitprec(Float64, i)` is exact for\nany Int64/UInt64.\n"}],"Base.unalias":[{"Tuple{Any,AbstractArray}":" Base.unalias(dest, A)\n\nReturn either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from\naffecting the returned object. No guarantees are provided.\n\nCustom arrays that wrap or use fields containing arrays that might alias against other\nexternal objects should provide a [`Base.dataids`](@ref) implementation.\n\nThis function must return an object of exactly the same type as `A` for performance and type\nstability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should\nprovide a [`Base.unaliascopy`](@ref) implementation.\n\nSee also [`Base.mightalias`](@ref).\n"}],"Base.rem":[{"Union{}":" rem(x, y)\n %(x, y)\n\nRemainder from Euclidean division, returning a value of the same sign as `x`, and smaller in\nmagnitude than `y`. This value is always exact.\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> x % y\n3\n\njulia> x == div(x, y) * y + rem(x, y)\ntrue\n```\n"},{"Tuple{Any,Any,RoundingMode}":" rem(x, y, r::RoundingMode=RoundToZero)\n\nCompute the remainder of `x` after integer division by `y`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - y*round(x/y,r)\n\nwithout any intermediate rounding.\n\n- if `r == RoundNearest`, then the result is exact, and in the interval\n ``[-|y|/2, |y|/2]``. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero` (default), then the result is exact, and in the interval\n ``[0, |y|)`` if `x` is positive, or ``(-|y|, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, y)`` if `y` is positive, or\n ``(y, 0]`` otherwise. The result may not be exact if `x` and `y` have different signs, and\n `abs(x) < abs(y)`. See also [`RoundDown`](@ref).\n\n- if `r == RoundUp`, then the result is in the interval `(-y,0]` if `y` is positive, or\n `[0,-y)` otherwise. The result may not be exact if `x` and `y` have the same sign, and\n `abs(x) < abs(y)`. See also [`RoundUp`](@ref).\n\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"}],"Base.@threadcall":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @threadcall((cfunc, clib), rettype, (argtypes...), argvals...)\n\nThe `@threadcall` macro is called in the same way as [`ccall`](@ref) but does the work\nin a different thread. This is useful when you want to call a blocking C\nfunction without causing the main `julia` thread to become blocked. Concurrency\nis limited by size of the libuv thread pool, which defaults to 4 threads but\ncan be increased by setting the `UV_THREADPOOL_SIZE` environment variable and\nrestarting the `julia` process.\n\nNote that the called function should never call back into Julia.\n"}],"Base.∌":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.instances":[{"Union{}":" instances(T::Type)\n\nReturn a collection of all instances of the given type, if applicable. Mostly used for\nenumerated types (see `@enum`).\n\n# Example\n```jldoctest\njulia> @enum Color red blue green\n\njulia> instances(Color)\n(red, blue, green)\n```\n"}],"Base.|>":[{"Tuple{Any,Any}":" |>(x, f)\n\nApplies a function to the preceding argument. This allows for easy function chaining.\n\n# Examples\n```jldoctest\njulia> [1:5;] |> x->x.^2 |> sum |> inv\n0.01818181818181818\n```\n"}],"Base.Cdouble":[{"Union{}":" Cdouble\n\nEquivalent to the native `double` c-type ([`Float64`](@ref)).\n"}],"Base.vec":[{"Tuple{AbstractArray}":" vec(a::AbstractArray) -> AbstractVector\n\nReshape the array `a` as a one-dimensional column vector. Return `a` if it is\nalready an `AbstractVector`. The resulting array\nshares the same underlying data as `a`, so it will only be mutable if `a` is\nmutable, in which case modifying one will also modify the other.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> vec(a)\n6-element Array{Int64,1}:\n 1\n 4\n 2\n 5\n 3\n 6\n\njulia> vec(1:3)\n1:3\n```\n\nSee also [`reshape`](@ref).\n"}],"Base.≉":[{"Tuple":" x ≉ y\n\nThis is equivalent to `!isapprox(x,y)` (see [`isapprox`](@ref)).\n"}],"Base.join":[{"Tuple{IO,Any,Any,Any}":" join([io::IO,] strings [, delim [, last]])\n\nJoin an array of `strings` into a single string, inserting the given delimiter (if any) between\nadjacent strings. If `last` is given, it will be used instead of `delim` between the last\ntwo strings. If `io` is given, the result is written to `io` rather than returned as\nas a `String`.\n\n`strings` can be any iterable over elements `x` which are convertible to strings\nvia `print(io::IOBuffer, x)`. `strings` will be printed to `io`.\n\n# Examples\n```jldoctest\njulia> join([\"apples\", \"bananas\", \"pineapples\"], \", \", \" and \")\n\"apples, bananas and pineapples\"\n\njulia> join([1,2,3,4,5])\n\"12345\"\n```\n"}],"Base.front":[{"Tuple{Tuple}":" front(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the last component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.front((1,2,3))\n(1, 2)\n\njulia> Base.front(())\nERROR: ArgumentError: Cannot call front on an empty tuple.\n```\n"}],"Base.UnitRange":[{"Union{}":" UnitRange{T<:Real}\n\nA range parameterized by a `start` and `stop` of type `T`, filled\nwith elements spaced by `1` from `start` until `stop` is exceeded.\nThe syntax `a:b` with `a` and `b` both `Integer`s creates a `UnitRange`.\n\n# Examples\n```jldoctest\njulia> collect(UnitRange(2.3, 5.2))\n3-element Array{Float64,1}:\n 2.3\n 3.3\n 4.3\n\njulia> typeof(1:10)\nUnitRange{Int64}\n```\n"}],"Base.typemin":[{"Union{}":" typemin(T)\n\nThe lowest value representable by the given (real) numeric DataType `T`.\n\n# Examples\n```jldoctest\njulia> typemin(Float16)\n-Inf16\n\njulia> typemin(Float32)\n-Inf32\n```\n"}],"Base.sign":[{"Tuple{Number}":" sign(x)\n\nReturn zero if `x==0` and ``x/|x|`` otherwise (i.e., ±1 for real `x`).\n"}],"Base.exit":[{"Tuple{Any}":" exit(code=0)\n\nStop the program with an exit code. The default exit code is zero, indicating that the\nprogram completed successfully. In an interactive session, `exit()` can be called with\nthe keyboard shortcut `^D`.\n"}],"Base.floor":[{"Union{}":" floor([T,] x)\n floor(x; digits::Integer= [, base = 10])\n floor(x; sigdigits::Integer= [, base = 10])\n\n`floor(x)` returns the nearest integral value of the same type as `x` that is less than or\nequal to `x`.\n\n`floor(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.C_NULL":[{"Union{}":" C_NULL\n\nThe C null pointer constant, sometimes used when calling external code.\n"}],"Base.ENV":[{"Union{}":" ENV\n\nReference to the singleton `EnvDict`, providing a dictionary interface to system environment\nvariables.\n\n(On Windows, system environment variables are case-insensitive, and `ENV` correspondingly converts\nall keys to uppercase for display, iteration, and copying. Portable code should not rely on the\nability to distinguish variables by case, and should beware that setting an ostensibly lowercase\nvariable may result in an uppercase `ENV` key.)\n"}],"Base.vcat":[{"Tuple":" vcat(A...)\n\nConcatenate along dimension 1.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3 4 5]\n1×5 Array{Int64,2}:\n 1 2 3 4 5\n\njulia> b = [6 7 8 9 10; 11 12 13 14 15]\n2×5 Array{Int64,2}:\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> vcat(a,b)\n3×5 Array{Int64,2}:\n 1 2 3 4 5\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> c = ([1 2 3], [4 5 6])\n([1 2 3], [4 5 6])\n\njulia> vcat(c...)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n```\n"}],"Base.typeintersect":[{"Tuple{Any,Any}":" typeintersect(T, S)\n\nCompute a type that contains the intersection of `T` and `S`. Usually this will be the\nsmallest such type or one close to it.\n"}],"Base.isfinite":[{"Tuple{AbstractFloat}":" isfinite(f) -> Bool\n\nTest whether a number is finite.\n\n# Examples\n```jldoctest\njulia> isfinite(5)\ntrue\n\njulia> isfinite(NaN32)\nfalse\n```\n"}],"Base.@macroexpand1":[{"Tuple{Any}":" @macroexpand1\n\nNon recursive version of [`@macroexpand`](@ref).\n"}],"Base.gcd":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcd(x,y)\n\nGreatest common (positive) divisor (or zero if `x` and `y` are both zero).\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcd(6,9)\n3\n\njulia> gcd(6,-9)\n3\n```\n"}],"Base.VersionNumber":[{"Union{}":" VersionNumber\n\nVersion number type which follow the specifications of\n[semantic versioning](https://semver.org/), composed of major, minor\nand patch numeric values, followed by pre-release and build\nalpha-numeric annotations. See also [`@v_str`](@ref).\n\n# Examples\n```jldoctest\njulia> VersionNumber(\"1.2.3\")\nv\"1.2.3\"\n\njulia> VersionNumber(\"2.0.1-rc1\")\nv\"2.0.1-rc1\"\n```\n"}],"Base.EOFError":[{"Union{}":" EOFError()\n\nNo more data was available to read from a file or stream.\n"}],"Base.findnext":[{"Tuple{Function,Any,Any}":" findnext(predicate::Function, A, i)\n\nFind the next index after or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2];\n\njulia> findnext(isodd, A, 1)\n1\n\njulia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL\n\njulia> A = [1 4; 2 2];\n\njulia> findnext(isodd, A, CartesianIndex(1, 1))\nCartesianIndex(1, 1)\n```\n"},{"Tuple{Any,Any}":" findnext(A, i)\n\nFind the next index after or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findnext(A, 1)\n3\n\njulia> findnext(A, 4) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findnext(A, CartesianIndex(1, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findnext(pattern::AbstractString, string::AbstractString, start::Integer)\n findnext(pattern::Regex, string::String, start::Integer)\n\nFind the next occurrence of `pattern` in `string` starting at position `start`.\n`pattern` can be either a string, or a regular expression, in which case `string`\nmust be of type `String`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findnext(x, s, i)] == x`:\n\n`findnext(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `i <= start`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findnext(\"z\", \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext(\"o\", \"Hello to the world\", 6)\n8:8\n\njulia> findnext(\"Lang\", \"JuliaLang\", 2)\n6:9\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findnext(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the next occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findnext('z', \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext('o', \"Hello to the world\", 6)\n8\n```\n"}],"Base.UUID":[{"Union{}":" Represents a Universally Unique Identifier (UUID).\n Can be built from one `UInt128` (all byte values), two `UInt64`, or four `UInt32`.\n Conversion from a string will check the UUID validity.\n"}],"Base.mark":[{"Tuple{IO}":" mark(s)\n\nAdd a mark at the current position of stream `s`. Return the marked position.\n\nSee also [`unmark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.read":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" read(filename::AbstractString, args...)\n\nOpen a file and read its contents. `args` is passed to `read`: this is equivalent to\n`open(io->read(io, args...), filename)`.\n\n read(filename::AbstractString, String)\n\nRead the entire contents of a file as a string.\n"},{"Tuple{Any,Any}":" read(io::IO, T)\n\nRead a single value of type `T` from `io`, in canonical binary representation.\n\n read(io::IO, String)\n\nRead the entirety of `io`, as a `String`.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization\"\n```\n"},{"Union{Tuple{IO}, Tuple{IO,Integer}}":" read(s::IO, nb=typemax(Int))\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n"},{"Tuple{Base.AbstractCmd,Type{String}}":" read(command::Cmd, String)\n\nRun `command` and return the resulting output as a `String`.\n"},{"Tuple{IOStream,Integer}":" read(s::IOStream, nb::Integer; all=true)\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"},{"Tuple{Base.AbstractCmd}":" read(command::Cmd)\n\nRun `command` and return the resulting output as an array of bytes.\n"}],"Base.Inf16":[{"Union{}":" Inf16\n\nPositive infinity of type [`Float16`](@ref).\n"}],"Base.gcdx":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcdx(x,y)\n\nComputes the greatest common (positive) divisor of `x` and `y` and their Bézout\ncoefficients, i.e. the integer coefficients `u` and `v` that satisfy\n``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``.\n\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcdx(12, 42)\n(6, -3, 1)\n\njulia> gcdx(240, 46)\n(2, -9, 47)\n```\n\n!!! note\n Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal\n Bézout coefficients that are computed by the extended Euclidean algorithm.\n (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)\n For signed integers, these coefficients `u` and `v` are minimal in\n the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore,\n the signs of `u` and `v` are chosen so that `d` is positive.\n For unsigned integers, the coefficients `u` and `v` might be near\n their `typemax`, and the identity then holds only via the unsigned\n integers' modulo arithmetic.\n"}],"Base.reduce":[{"Tuple{Any,AbstractArray}":" reduce(f, A; dims=:, [init])\n\nReduce 2-argument function `f` along dimensions of `A`. `dims` is a vector specifying the\ndimensions to reduce, and the keyword argument `init` is the initial value to use in the\nreductions. For `+`, `*`, `max` and `min` the `init` argument is optional.\n\nThe associativity of the reduction is implementation-dependent; if you need a particular\nassociativity, e.g. left-to-right, you should write your own loop or consider using\n[`foldl`](@ref) or [`foldr`](@ref). See documentation for [`reduce`](@ref).\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reduce(max, a, dims=2)\n4×1 Array{Int64,2}:\n 13\n 14\n 15\n 16\n\njulia> reduce(max, a, dims=1)\n1×4 Array{Int64,2}:\n 4 8 12 16\n```\n"},{"Tuple{Any,Any}":" reduce(op, itr; [init])\n\nReduce the given collection `itr` with the given binary operator `op`. If provided, the\ninitial value `init` must be a neutral element for `op` that will be returned for empty\ncollections. It is unspecified whether `init` is used for non-empty collections.\n\nFor empty collections, providing `init` will be necessary, except for some special cases\n(e.g. when `op` is one of `+`, `*`, `max`, `min`, `&`, `|`) when Julia can determine the\nneutral element of `op`.\n\nReductions for certain commonly-used operators may have special implementations, and\nshould be used instead: `maximum(itr)`, `minimum(itr)`, `sum(itr)`, `prod(itr)`,\n `any(itr)`, `all(itr)`.\n\nThe associativity of the reduction is implementation dependent. This means that you can't\nuse non-associative operations like `-` because it is undefined whether `reduce(-,[1,2,3])`\nshould be evaluated as `(1-2)-3` or `1-(2-3)`. Use [`foldl`](@ref) or\n[`foldr`](@ref) instead for guaranteed left or right associativity.\n\nSome operations accumulate error. Parallelism will be easier if the reduction can be\nexecuted in groups. Future versions of Julia might change the algorithm. Note that the\nelements are not reordered if you use an ordered collection.\n\n# Examples\n```jldoctest\njulia> reduce(*, [2; 3; 4])\n24\n\njulia> reduce(*, [2; 3; 4]; init=-1)\n-24\n```\n"}],"Base.Fix1":[{"Union{}":" Fix1(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the first argument fixed to the value \"x\". In other words,\n`Fix1(f, x)` behaves similarly to `y->f(x, y)`.\n"}],"Base.ntuple":[{"Union{Tuple{F}, Tuple{F,Integer}} where F":" ntuple(f::Function, n::Integer)\n\nCreate a tuple of length `n`, computing each element as `f(i)`,\nwhere `i` is the index of the element.\n\n# Examples\n```jldoctest\njulia> ntuple(i -> 2*i, 4)\n(2, 4, 6, 8)\n```\n"}],"Base.setindex":[{"Tuple{NamedTuple,Any,Symbol}":" setindex(nt::NamedTuple, val, key::Symbol)\n\nConstructs a new `NamedTuple` with the key `key` set to `val`.\nIf `key` is already in the keys of `nt`, `val` replaces the old value.\n\n```jldoctest\njulia> nt = (a = 3,)\n(a = 3,)\n\njulia> Base.setindex(nt, 33, :b)\n(a = 3, b = 33)\n\njulia> Base.setindex(nt, 4, :a)\n(a = 4,)\n\njulia> Base.setindex(nt, \"a\", :a)\n(a = \"a\",)\n```\n"},{"Tuple{Tuple,Any,Integer}":" setindex(c::Tuple, v, i::Integer)\n\nCreates a new tuple similar to `x` with the value at index `i` set to `v`.\nThrows a `BoundsError` when out of bounds.\n\n# Examples\n```jldoctest\njulia> Base.setindex((1, 2, 6), 2, 3) == (1, 2, 2)\ntrue\n```\n"}],"Base.parentmodule":[{"Tuple{Any,Any}":" parentmodule(f::Function, types) -> Module\n\nDetermine the module containing a given definition of a generic function.\n"},{"Tuple{Module}":" parentmodule(m::Module) -> Module\n\nGet a module's enclosing `Module`. `Main` is its own parent.\n\n# Examples\n```jldoctest\njulia> parentmodule(Main)\nMain\n\njulia> parentmodule(Base.Broadcast)\nBase\n```\n"},{"Tuple{Function}":" parentmodule(f::Function) -> Module\n\nDetermine the module containing the (first) definition of a generic\nfunction.\n"},{"Tuple{DataType}":" parentmodule(t::DataType) -> Module\n\nDetermine the module containing the definition of a (potentially `UnionAll`-wrapped) `DataType`.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct Int end\n end\nFoo\n\njulia> parentmodule(Int)\nCore\n\njulia> parentmodule(Foo.Int)\nFoo\n```\n"}],"Base.readchomp":[{"Tuple{Any}":" readchomp(x)\n\nRead the entirety of `x` as a string and remove a single trailing newline\nif there is one. Equivalent to `chomp(read(x, String))`.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end;\n\njulia> readchomp(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\\nIt has many members.\"\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.invmod":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" invmod(x,m)\n\nTake the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``,\nwith ``div(x,y) = 0``. This is undefined for ``m = 0``, or if\n``gcd(x,m) \\neq 1``.\n\n# Examples\n```jldoctest\njulia> invmod(2,5)\n3\n\njulia> invmod(2,3)\n2\n\njulia> invmod(5,6)\n5\n```\n"}],"Base.detach":[{"Tuple{Cmd}":" detach(command)\n\nMark a command object so that it will be run in a new process group, allowing it to outlive the julia process, and not have Ctrl-C interrupts passed to it.\n"}],"Base.ExponentialBackOff":[{"Tuple{}":" ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)\n\nA [`Float64`](@ref) iterator of length `n` whose elements exponentially increase at a\nrate in the interval `factor` * (1 ± `jitter`). The first element is\n`first_delay` and all elements are clamped to `max_delay`.\n"}],"Base.ceil":[{"Union{}":" ceil([T,] x)\n ceil(x; digits::Integer= [, base = 10])\n ceil(x; sigdigits::Integer= [, base = 10])\n\n`ceil(x)` returns the nearest integral value of the same type as `x` that is greater than or\nequal to `x`.\n\n`ceil(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not\nrepresentable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.@specialize":[{"Tuple":" @specialize\n\nReset the specialization hint for an argument back to the default.\nFor details, see [`@nospecialize`](@ref).\n"}],"Base.get!":[{"Tuple{Function,Any,Any}":" get!(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => f()`, and return `f()`.\n\nThis is intended to be called using `do` block syntax:\n```julia\nget!(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get!(collection, key, default)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => default`, and return `default`.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> get!(d, \"a\", 5)\n1\n\njulia> get!(d, \"d\", 4)\n4\n\njulia> d\nDict{String,Int64} with 4 entries:\n \"c\" => 3\n \"b\" => 2\n \"a\" => 1\n \"d\" => 4\n```\n"}],"Base.maximum":[{"Tuple{Any}":" maximum(itr)\n\nReturns the largest element in a collection.\n\n# Examples\n```jldoctest\njulia> maximum(-20.5:10)\n9.5\n\njulia> maximum([1,2,3])\n3\n```\n"},{"Tuple{AbstractArray}":" maximum(A::AbstractArray; dims)\n\nCompute the maximum value of an array over the given dimensions. See also the\n[`max(a,b)`](@ref) function to take the maximum of two or more arguments,\nwhich can be applied elementwise to arrays via `max.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum(A, dims=1)\n1×2 Array{Int64,2}:\n 3 4\n\njulia> maximum(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 4\n```\n"},{"Tuple{Any,Any}":" maximum(f, itr)\n\nReturns the largest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> maximum(length, [\"Julion\", \"Julia\", \"Jule\"])\n6\n```\n"}],"Base.:":[{"Union{Tuple{T}, Tuple{T,Any,T}} where T":" (:)(start, [step], stop)\n\nRange operator. `a:b` constructs a range from `a` to `b` with a step size of 1 (a [`UnitRange`](@ref))\n, and `a:s:b` is similar but uses a step size of `s` (a [`StepRange`](@ref)).\n\n`:` is also used in indexing to select whole dimensions\n and for [`Symbol`](@ref) literals, as in e.g. `:hello`.\n"}],"Base.unsafe_trunc":[{"Union{}":" unsafe_trunc(T, x)\n\nReturn the nearest integral value of type `T` whose absolute value is\nless than or equal to `x`. If the value is not representable by `T`, an arbitrary value will\nbe returned.\n"}],"Base.popfirst!":[{"Tuple{Array{T,1} where T}":" popfirst!(collection) -> item\n\nRemove the first `item` from `collection`.\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4, 5, 6]\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n\njulia> popfirst!(A)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 2\n 3\n 4\n 5\n 6\n```\n"}],"Base.isempty":[{"Tuple{Any}":" isempty(collection) -> Bool\n\nDetermine whether a collection is empty (has no elements).\n\n# Examples\n```jldoctest\njulia> isempty([])\ntrue\n\njulia> isempty([1 2 3])\nfalse\n```\n"},{"Tuple{Base.GenericCondition}":" isempty(condition)\n\nReturn `true` if no tasks are waiting on the condition, `false` otherwise.\n"}],"Base.delete!":[{"Tuple{Any,Any}":" delete!(collection, key)\n\nDelete the mapping for the given key in a collection, if any, and return the collection.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> delete!(d, \"b\")\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n\njulia> delete!(d, \"b\") # d is left unchanged\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n```\n"}],"Base.@r_str":[{"Tuple{Any,Vararg{Any,N} where N}":" @r_str -> Regex\n\nConstruct a regex, such as `r\"^[a-z]*$\"`, without interpolation and unescaping (except for\nquotation mark `\"` which still has to be escaped). The regex also accepts one or more flags,\nlisted after the ending quote, to change its behaviour:\n\n- `i` enables case-insensitive matching\n- `m` treats the `^` and `$` tokens as matching the start and end of individual lines, as\n opposed to the whole string.\n- `s` allows the `.` modifier to match newlines.\n- `x` enables \"comment mode\": whitespace is enabled except when escaped with `\\`, and `#`\n is treated as starting a comment.\n- `a` disables `UCP` mode (enables ASCII mode). By default `\\B`, `\\b`, `\\D`, `\\d`, `\\S`,\n `\\s`, `\\W`, `\\w`, etc. match based on Unicode character properties. With this option,\n these sequences only match ASCII characters.\n\nSee `Regex` if interpolation is needed.\n\n# Examples\n```jldoctest\njulia> match(r\"a+.*b+.*?d$\"ism, \"Goodbye,\\nOh, angry,\\nBad world\\n\")\nRegexMatch(\"angry,\\nBad world\")\n```\nThis regex has the first three flags enabled.\n"}],"Base.trunc":[{"Union{}":" trunc([T,] x)\n trunc(x; digits::Integer= [, base = 10])\n trunc(x; sigdigits::Integer= [, base = 10])\n\n`trunc(x)` returns the nearest integral value of the same type as `x` whose absolute value\nis less than or equal to `x`.\n\n`trunc(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.count_zeros":[{"Tuple{Integer}":" count_zeros(x::Integer) -> Integer\n\nNumber of zeros in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_zeros(Int32(2 ^ 16 - 1))\n16\n```\n"}],"Base.gc_live_bytes":[{"Tuple{}":" Base.gc_live_bytes()\n\nReturn the total size (in bytes) of objects currently in memory.\nThis is computed as the total size of live objects after\nthe last garbage collection, plus the number of bytes allocated\nsince then.\n"}],"Base.push!":[{"Union{}":" push!(collection, items...) -> collection\n\nInsert one or more `items` in `collection`. If `collection` is an ordered container,\nthe items are inserted at the end (in the given order).\n\n# Examples\n```jldoctest\njulia> push!([1, 2, 3], 4, 5, 6)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nIf `collection` is ordered, use [`append!`](@ref) to add all the elements of another\ncollection to it. The result of the preceding example is equivalent to `append!([1, 2, 3], [4,\n5, 6])`. For `AbstractSet` objects, [`union!`](@ref) can be used instead.\n"}],"Base.pointer":[{"Union{}":" pointer(array [, index])\n\nGet the native address of an array or string, optionally at a given location `index`.\n\nThis function is \"unsafe\". Be careful to ensure that a Julia reference to\n`array` exists as long as this pointer will be used. The [`GC.@preserve`](@ref)\nmacro should be used to protect the `array` argument from garbage collection\nwithin a given block of code.\n\nCalling [`Ref(array[, index])`](@ref Ref) is generally preferable to this function as it guarantees validity.\n"}],"Base.isassigned":[{"Union{}":" isassigned(array, i) -> Bool\n\nTest whether the given array has a value associated with index `i`. Return `false`\nif the index is out of bounds, or has an undefined reference.\n\n# Examples\n```jldoctest\njulia> isassigned(rand(3, 3), 5)\ntrue\n\njulia> isassigned(rand(3, 3), 3 * 3 + 1)\nfalse\n\njulia> mutable struct Foo end\n\njulia> v = similar(rand(3), Foo)\n3-element Array{Foo,1}:\n #undef\n #undef\n #undef\n\njulia> isassigned(v, 1)\nfalse\n```\n"}],"Base.Clonglong":[{"Union{}":" Clonglong\n\nEquivalent to the native `signed long long` c-type ([`Int64`](@ref)).\n"}],"Base.flush":[{"Tuple{IO}":" flush(stream)\n\nCommit all currently buffered writes to the given stream.\n"}],"Base.cumsum":[{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" cumsum(A; dims::Integer)\n\nCumulative sum along the dimension `dims`. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumsum(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 5 7 9\n\njulia> cumsum(a, dims=2)\n2×3 Array{Int64,2}:\n 1 3 6\n 4 9 15\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumsum(x::AbstractVector)\n\nCumulative sum a vector. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumsum([1, 1, 1])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> cumsum([fill(1, 2) for i in 1:3])\n3-element Array{Array{Int64,1},1}:\n [1, 1]\n [2, 2]\n [3, 3]\n```\n"}],"Base.splice!":[{"Union{Tuple{Array{T,1} where T,UnitRange{#s662} where #s662<:Integer}, Tuple{Array{T,1} where T,UnitRange{#s661} where #s661<:Integer,Any}}":" splice!(a::Vector, range, [replacement]) -> items\n\nRemove items in the specified index range, and return a collection containing\nthe removed items.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered collection will be spliced in\nplace of the removed items.\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n\n# Examples\n```jldoctest\njulia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)\n0-element Array{Int64,1}\n\njulia> A\n8-element Array{Int64,1}:\n -1\n -2\n -3\n 2\n 5\n 4\n 3\n -1\n```\n"},{"Union{Tuple{Array{T,1} where T,Integer}, Tuple{Array{T,1} where T,Integer,Any}}":" splice!(a::Vector, index::Integer, [replacement]) -> item\n\nRemove the item at the given index, and return the removed item.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered\ncollection will be spliced in place of the removed item.\n\n# Examples\n```jldoctest\njulia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)\n2\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 1\n\njulia> splice!(A, 5, -1)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n -1\n\njulia> splice!(A, 1, [-1, -2, -3])\n6\n\njulia> A\n7-element Array{Int64,1}:\n -1\n -2\n -3\n 5\n 4\n 3\n -1\n```\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n"}],"Base.findmin!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmin!(rval, rind, A) -> (minval, index)\n\nFind the minimum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as less than all other values.\n"}],"Base.moduleroot":[{"Tuple{Module}":" moduleroot(m::Module) -> Module\n\nFind the root module of a given module. This is the first module in the chain of\nparent modules of `m` which is either a registered root module or which is its\nown parent module.\n"}],"Base.@s_str":[{"Tuple{Any}":" @s_str -> SubstitutionString\n\nConstruct a substitution string, used for regular expression substitutions. Within the\nstring, sequences of the form `\\N` refer to the Nth capture group in the regex, and\n`\\g` refers to a named capture group with name `groupname`.\n\n```jldoctest\njulia> msg = \"#Hello# from Julia\";\n\njulia> replace(msg, r\"#(.+)# from (?\\w+)\" => s\"FROM: \\g; MESSAGE: \\1\")\n\"FROM: Julia; MESSAGE: Hello\"\n```\n"}],"Base.seekstart":[{"Tuple{IO}":" seekstart(s)\n\nSeek a stream to its beginning.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n\njulia> seekstart(io);\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n```\n"}],"Base.canonicalize2":[{"Tuple{Any,Any}":" hi, lo = canonicalize2(big, little)\n\nGenerate a representation where all the nonzero bits in `hi` are more\nsignificant than any of the nonzero bits in `lo`. `big` must be larger\nin absolute value than `little`.\n"}],"Base.unsafe_store!":[{"Union{Tuple{Ptr{Any},Any}, Tuple{Ptr{Any},Any,Integer}}":" unsafe_store!(p::Ptr{T}, x, i::Integer=1)\n\nStore a value of type `T` to the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1] = x`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may corrupt or segfault your\nprogram, in the same manner as C.\n"}],"Base.propertynames":[{"Tuple{Any}":" propertynames(x, private=false)\n\nGet a tuple or a vector of the properties (`x.property`) of an object `x`.\nThis is typically the same as [`fieldnames(typeof(x))`](@ref), but types\nthat overload [`getproperty`](@ref) should generally overload `propertynames`\nas well to get the properties of an instance of the type.\n\n`propertynames(x)` may return only \"public\" property names that are part\nof the documented interface of `x`. If you want it to also return \"private\"\nfieldnames intended for internal use, pass `true` for the optional second argument.\nREPL tab completion on `x.` shows only the `private=false` properties.\n"}],"Base.numerator":[{"Tuple{Integer}":" numerator(x)\n\nNumerator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> numerator(2//3)\n2\n\njulia> numerator(4)\n4\n```\n"}],"Base.Cshort":[{"Union{}":" Cshort\n\nEquivalent to the native `signed short` c-type ([`Int16`](@ref)).\n"}],"Base.ismissing":[{"Tuple{Any}":" ismissing(x)\n\nIndicate whether `x` is [`missing`](@ref).\n"}],"Base.⊉":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.process_running":[{"Tuple{Base.Process}":" process_running(p::Process)\n\nDetermine whether a process is currently running.\n"}],"Base.split":[{"Union{}":" split(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true)\n split(str::AbstractString; limit::Integer=0, keepempty::Bool=false)\n\nSplit `str` into an array of substrings on occurrences of the delimiter(s) `dlm`. `dlm`\ncan be any of the formats allowed by [`findnext`](@ref)'s first argument (i.e. as a\nstring, regular expression or a function), or as a single character or collection of\ncharacters.\n\nIf `dlm` is omitted, it defaults to [`isspace`](@ref).\n\nThe optional keyword arguments are:\n - `limit`: the maximum size of the result. `limit=0` implies no maximum (default)\n - `keepempty`: whether empty fields should be kept in the result. Default is `false` without\n a `dlm` argument, `true` with a `dlm` argument.\n\nSee also [`rsplit`](@ref).\n\n# Examples\n```jldoctest\njulia> a = \"Ma.rch\"\n\"Ma.rch\"\n\njulia> split(a,\".\")\n2-element Array{SubString{String},1}:\n \"Ma\"\n \"rch\"\n```\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Cartesian_docstrings.json b/zh_CN/docstrings/Cartesian_docstrings.json new file mode 100644 index 00000000..309a059d --- /dev/null +++ b/zh_CN/docstrings/Cartesian_docstrings.json @@ -0,0 +1 @@ +{"Base.Cartesian.@nextract":[{"Tuple{Int64,Symbol,Symbol}":" @nextract N esym isym\n\nGenerate `N` variables `esym_1`, `esym_2`, ..., `esym_N` to extract values from `isym`.\n`isym` can be either a `Symbol` or anonymous-function expression.\n\n`@nextract 2 x y` would generate\n\n x_1 = y[1]\n x_2 = y[2]\n\nwhile `@nextract 3 x d->y[2d-1]` yields\n\n x_1 = y[1]\n x_2 = y[3]\n x_3 = y[5]\n\n"}],"Base.Cartesian.@nall":[{"Tuple{Int64,Expr}":" @nall N expr\n\nCheck whether all of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nall 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 && i_2 > 1 && i_3 > 1)`. This\ncan be convenient for bounds-checking.\n"}],"Base.Cartesian.@nif":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" @nif N conditionexpr expr\n @nif N conditionexpr expr elseexpr\n\nGenerates a sequence of `if ... elseif ... else ... end` statements. For example:\n\n @nif 3 d->(i_d >= size(A,d)) d->(error(\"Dimension \", d, \" too big\")) d->println(\"All OK\")\n\nwould generate:\n\n if i_1 > size(A, 1)\n error(\"Dimension \", 1, \" too big\")\n elseif i_2 > size(A, 2)\n error(\"Dimension \", 2, \" too big\")\n else\n println(\"All OK\")\n end\n"}],"Base.Cartesian.@ncall":[{"Tuple{Int64,Any,Vararg{Any,N} where N}":" @ncall N f sym...\n\nGenerate a function call expression. `sym` represents any number of function arguments, the\nlast of which may be an anonymous-function expression and is expanded into `N` arguments.\n\nFor example, `@ncall 3 func a` generates\n\n func(a_1, a_2, a_3)\n\nwhile `@ncall 2 func a b i->c[i]` yields\n\n func(a, b, c[1], c[2])\n\n"}],"Base.Cartesian.@nloops":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @nloops N itersym rangeexpr bodyexpr\n @nloops N itersym rangeexpr preexpr bodyexpr\n @nloops N itersym rangeexpr preexpr postexpr bodyexpr\n\nGenerate `N` nested loops, using `itersym` as the prefix for the iteration variables.\n`rangeexpr` may be an anonymous-function expression, or a simple symbol `var` in which case\nthe range is `axes(var, d)` for dimension `d`.\n\nOptionally, you can provide \"pre\" and \"post\" expressions. These get executed first and last,\nrespectively, in the body of each loop. For example:\n\n @nloops 2 i A d -> j_d = min(i_d, 5) begin\n s += @nref 2 A j\n end\n\nwould generate:\n\n for i_2 = axes(A, 2)\n j_2 = min(i_2, 5)\n for i_1 = axes(A, 1)\n j_1 = min(i_1, 5)\n s += A[j_1, j_2]\n end\n end\n\nIf you want just a post-expression, supply [`nothing`](@ref) for the pre-expression. Using\nparentheses and semicolons, you can supply multi-statement expressions.\n"}],"Base.Cartesian.@ntuple":[{"Tuple{Int64,Any}":" @ntuple N expr\n\nGenerates an `N`-tuple. `@ntuple 2 i` would generate `(i_1, i_2)`, and `@ntuple 2 k->k+1`\nwould generate `(2,3)`.\n"}],"Base.Cartesian.@nany":[{"Tuple{Int64,Expr}":" @nany N expr\n\nCheck whether any of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nany 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 || i_2 > 1 || i_3 > 1)`.\n"}],"Base.Cartesian.@nexprs":[{"Tuple{Int64,Expr}":" @nexprs N expr\n\nGenerate `N` expressions. `expr` should be an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]\nquote\n y[1] = A[1 + j]\n y[2] = A[2 + j]\n y[3] = A[3 + j]\n y[4] = A[4 + j]\nend\n```\n"}],"Base.Cartesian.@nref":[{"Tuple{Int64,Symbol,Any}":" @nref N A indexexpr\n\nGenerate expressions like `A[i_1, i_2, ...]`. `indexexpr` can either be an iteration-symbol\nprefix, or an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nref 3 A i\n:(A[i_1, i_2, i_3])\n```\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Enums_docstrings.json b/zh_CN/docstrings/Enums_docstrings.json new file mode 100644 index 00000000..6d38adb5 --- /dev/null +++ b/zh_CN/docstrings/Enums_docstrings.json @@ -0,0 +1 @@ +{"Base.Enums.@enum":[{"Tuple{Any,Vararg{Any,N} where N}":" @enum EnumName[::BaseType] value1[=x] value2[=y]\n\nCreate an `Enum{BaseType}` subtype with name `EnumName` and enum member values of\n`value1` and `value2` with optional assigned values of `x` and `y`, respectively.\n`EnumName` can be used just like other types and enum member values as regular values, such as\n\n# Examples\n```jldoctest fruitenum\njulia> @enum Fruit apple=1 orange=2 kiwi=3\n\njulia> f(x::Fruit) = \"I'm a Fruit with value: $(Int(x))\"\nf (generic function with 1 method)\n\njulia> f(apple)\n\"I'm a Fruit with value: 1\"\n\njulia> Fruit(1)\napple::Fruit = 1\n```\n\nValues can also be specified inside a `begin` block, e.g.\n\n```julia\n@enum EnumName begin\n value1\n value2\nend\n```\n\n`BaseType`, which defaults to [`Int32`](@ref), must be a primitive subtype of `Integer`.\nMember values can be converted between the enum type and `BaseType`. `read` and `write`\nperform these conversions automatically.\n\nTo list all the instances of an enum use `instances`, e.g.\n\n```jldoctest fruitenum\njulia> instances(Fruit)\n(apple, orange, kiwi)\n```\n"}],"Base.Enums.Enum":[{"Union{}":" Enum{T<:Integer}\n\nThe abstract supertype of all enumerated types defined with [`@enum`](@ref).\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Experimental_docstrings.json b/zh_CN/docstrings/Experimental_docstrings.json new file mode 100644 index 00000000..2e72786c --- /dev/null +++ b/zh_CN/docstrings/Experimental_docstrings.json @@ -0,0 +1 @@ +{"Base.Experimental.Const":[{"Union{}":" Const(A::Array)\n\nMark an Array as constant/read-only. The invariant guaranteed is that you will not\nmodify an Array (through another reference) within an `@aliasscope` scope.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}],"Base.Experimental.@aliasscope":[{"Tuple{Any}":" @aliasscope expr\n\nAllows the compiler to assume that all `Const`s are not being modified through stores\nwithin this scope, even if the compiler can't prove this to be the case.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/FastMath_docstrings.json b/zh_CN/docstrings/FastMath_docstrings.json new file mode 100644 index 00000000..cfbc9b02 --- /dev/null +++ b/zh_CN/docstrings/FastMath_docstrings.json @@ -0,0 +1 @@ +{"Base.FastMath.@fastmath":[{"Tuple{Any}":" @fastmath expr\n\nExecute a transformed version of the expression, which calls functions that\nmay violate strict IEEE semantics. This allows the fastest possible operation,\nbut results are undefined -- be careful when doing this, as it may change numerical\nresults.\n\nThis sets the [LLVM Fast-Math flags](http://llvm.org/docs/LangRef.html#fast-math-flags),\nand corresponds to the `-ffast-math` option in clang. See [the notes on performance\nannotations](@ref man-performance-annotations) for more details.\n\n# Examples\n```jldoctest\njulia> @fastmath 1+2\n3\n\njulia> @fastmath(sin(3))\n0.1411200080598672\n```\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Filesystem_docstrings.json b/zh_CN/docstrings/Filesystem_docstrings.json new file mode 100644 index 00000000..94feec98 --- /dev/null +++ b/zh_CN/docstrings/Filesystem_docstrings.json @@ -0,0 +1 @@ +{"Base.Filesystem.issocket":[{"Tuple{Base.Filesystem.StatStruct}":" issocket(path) -> Bool\n\nReturn `true` if `path` is a socket, `false` otherwise.\n"}],"Base.Filesystem.isblockdev":[{"Tuple{Base.Filesystem.StatStruct}":" isblockdev(path) -> Bool\n\nReturn `true` if `path` is a block device, `false` otherwise.\n"}],"Base.Filesystem.chown":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Integer}}":" chown(path::AbstractString, owner::Integer, group::Integer=-1)\n\nChange the owner and/or group of `path` to `owner` and/or `group`. If the value entered for `owner` or `group`\nis `-1` the corresponding ID will not change. Only integer `owner`s and `group`s are currently supported.\nReturn `path`.\n"}],"Base.Filesystem.ctime":[{"Tuple{Base.Filesystem.StatStruct}":" ctime(file)\n\nEquivalent to `stat(file).ctime`.\n"}],"Base.Filesystem.operm":[{"Tuple{Base.Filesystem.StatStruct}":" operm(file)\n\nLike [`uperm`](@ref) but gets the permissions for people who neither own the file nor are a member of\nthe group owning the file\n"}],"Base.Filesystem.issetuid":[{"Tuple{Base.Filesystem.StatStruct}":" issetuid(path) -> Bool\n\nReturn `true` if `path` has the setuid flag set, `false` otherwise.\n"}],"Base.Filesystem.gperm":[{"Tuple{Base.Filesystem.StatStruct}":" gperm(file)\n\nLike [`uperm`](@ref) but gets the permissions of the group owning the file.\n"}],"Base.Filesystem.splitdrive":[{"Tuple{AbstractString}":" splitdrive(path::AbstractString) -> (AbstractString, AbstractString)\n\nOn Windows, split a path into the drive letter part and the path part. On Unix systems, the\nfirst component is always the empty string.\n"}],"Base.Filesystem.touch":[{"Tuple{AbstractString}":" touch(path::AbstractString)\n\nUpdate the last-modified timestamp on a file to the current time.\n\nIf the file does not exist a new file is created.\n\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> write(\"my_little_file\", 2);\n\njulia> mtime(\"my_little_file\")\n1.5273815391135583e9\n\njulia> touch(\"my_little_file\");\n\njulia> mtime(\"my_little_file\")\n1.527381559163435e9\n```\n\nWe can see the [`mtime`](@ref) has been modified by `touch`.\n"}],"Base.Filesystem.mkpath":[{"Tuple{AbstractString}":" mkpath(path::AbstractString; mode::Unsigned = 0o777)\n\nCreate all directories in the given `path`, with permissions `mode`. `mode` defaults to\n`0o777`, modified by the current file creation mask.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n\njulia> mkpath(\"my/test/dir\")\n\"my/test/dir\"\n\njulia> readdir()\n1-element Array{String,1}:\n \"my\"\n\njulia> cd(\"my\")\n\njulia> readdir()\n1-element Array{String,1}:\n \"test\"\n\njulia> readdir(\"test\")\n1-element Array{String,1}:\n \"dir\"\n```\n"}],"Base.Filesystem.homedir":[{"Tuple{}":" homedir() -> String\n\nReturn the current user's home directory.\n\n!!! note\n `homedir` determines the home directory via `libuv`'s `uv_os_homedir`. For details\n (for example on how to specify the home directory via environment variables), see the\n [`uv_os_homedir` documentation](http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir).\n"}],"Base.Filesystem.filemode":[{"Tuple{Base.Filesystem.StatStruct}":" filemode(file)\n\nEquivalent to `stat(file).mode`.\n"}],"Base.Filesystem.dirname":[{"Tuple{AbstractString}":" dirname(path::AbstractString) -> AbstractString\n\nGet the directory part of a path. Trailing characters ('/' or '\\') in the path are\ncounted as part of the path.\n\n# Examples\n```jldoctest\njulia> dirname(\"/home/myuser\")\n\"/home\"\n\njulia> dirname(\"/home/myuser/\")\n\"/home/myuser\"\n```\n\nSee also: [`basename`](@ref)\n"}],"Base.Filesystem.relpath":[{"Union{Tuple{String}, Tuple{String,String}}":" relpath(path::AbstractString, startpath::AbstractString = \".\") -> AbstractString\n\nReturn a relative filepath to `path` either from the current directory or from an optional\nstart directory. This is a path computation: the filesystem is not accessed to confirm the\nexistence or nature of `path` or `startpath`.\n"}],"Base.Filesystem.uperm":[{"Tuple{Base.Filesystem.StatStruct}":" uperm(file)\n\nGet the permissions of the owner of the file as a bitfield of\n\n| Value | Description |\n|:------|:-------------------|\n| 01 | Execute Permission |\n| 02 | Write Permission |\n| 04 | Read Permission |\n\nFor allowed arguments, see [`stat`](@ref).\n"}],"Base.Filesystem.isabspath":[{"Tuple{AbstractString}":" isabspath(path::AbstractString) -> Bool\n\nDetermine whether a path is absolute (begins at the root directory).\n\n# Examples\n```jldoctest\njulia> isabspath(\"/home\")\ntrue\n\njulia> isabspath(\"home\")\nfalse\n```\n"}],"Base.Filesystem.isdir":[{"Tuple{Base.Filesystem.StatStruct}":" isdir(path) -> Bool\n\nReturn `true` if `path` is a directory, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isdir(homedir())\ntrue\n\njulia> isdir(\"not/a/directory\")\nfalse\n```\n\nSee also: [`isfile`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.realpath":[{"Tuple{AbstractString}":" realpath(path::AbstractString) -> String\n\nCanonicalize a path by expanding symbolic links and removing \".\" and \"..\" entries.\nOn case-insensitive case-preserving filesystems (typically Mac and Windows), the\nfilesystem's stored case for the path is returned.\n\n(This function throws an exception if `path` does not exist in the filesystem.)\n"}],"Base.Filesystem.filesize":[{"Tuple{Base.Filesystem.StatStruct}":" filesize(path...)\n\nEquivalent to `stat(file).size`.\n"}],"Base.Filesystem.issticky":[{"Tuple{Base.Filesystem.StatStruct}":" issticky(path) -> Bool\n\nReturn `true` if `path` has the sticky bit set, `false` otherwise.\n"}],"Base.Filesystem.isdirpath":[{"Tuple{String}":" isdirpath(path::AbstractString) -> Bool\n\nDetermine whether a path refers to a directory (for example, ends with a path separator).\n\n# Examples\n```jldoctest\njulia> isdirpath(\"/home\")\nfalse\n\njulia> isdirpath(\"/home/\")\ntrue\n```\n"}],"Base.Filesystem.isfile":[{"Tuple{Base.Filesystem.StatStruct}":" isfile(path) -> Bool\n\nReturn `true` if `path` is a regular file, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isfile(homedir())\nfalse\n\njulia> f = open(\"test_file.txt\", \"w\");\n\njulia> isfile(f)\ntrue\n\njulia> close(f); rm(\"test_file.txt\")\n```\n\nSee also: [`isdir`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.symlink":[{"Tuple{AbstractString,AbstractString}":" symlink(target::AbstractString, link::AbstractString)\n\nCreates a symbolic link to `target` with the name `link`.\n\n!!! note\n This function raises an error under operating systems that do not support\n soft symbolic links, such as Windows XP.\n"}],"Base.Filesystem.splitext":[{"Tuple{String}":" splitext(path::AbstractString) -> (AbstractString, AbstractString)\n\nIf the last component of a path contains a dot, split the path into everything before the\ndot and everything including and after the dot. Otherwise, return a tuple of the argument\nunmodified and the empty string.\n\n# Examples\n```jldoctest\njulia> splitext(\"/home/myuser/example.jl\")\n(\"/home/myuser/example\", \".jl\")\n\njulia> splitext(\"/home/myuser/example\")\n(\"/home/myuser/example\", \"\")\n```\n"}],"Base.Filesystem.lstat":[{"Tuple":" lstat(file)\n\nLike [`stat`](@ref), but for symbolic links gets the info for the link\nitself rather than the file it refers to.\nThis function must be called on a file path rather than a file object or a file\ndescriptor.\n"}],"Base.Filesystem.ispath":[{"Tuple{Base.Filesystem.StatStruct}":" ispath(path) -> Bool\n\nReturn `true` if a valid filesystem entity exists at `path`,\notherwise returns `false`.\nThis is the generalization of [`isfile`](@ref), [`isdir`](@ref) etc.\n"}],"Base.Filesystem.joinpath":[{"Union{}":" joinpath(parts::AbstractString...) -> String\n\nJoin path components into a full path. If some argument is an absolute path or\n(on Windows) has a drive specification that doesn't match the drive computed for\nthe join of the preceding paths, then prior components are dropped.\n\nNote on Windows since there is a current directory for each drive, `joinpath(\"c:\", \"foo\")`\nrepresents a path relative to the current directory on drive \"c:\" so this is equal to \"c:foo\",\nnot \"c:\\foo\". Furthermore, `joinpath` treats this as a non-absolute path and ignores the drive\nletter casing, hence `joinpath(\"C:\\A\",\"c:b\") = \"C:\\A\\b\"`.\n\n# Examples\n```jldoctest\njulia> joinpath(\"/home/myuser\", \"example.jl\")\n\"/home/myuser/example.jl\"\n```\n"}],"Base.Filesystem.tempdir":[{"Tuple{}":" tempdir()\n\nGets the path of the temporary directory. On Windows, `tempdir()` uses the first environment\nvariable found in the ordered list `TMP`, `TEMP`, `USERPROFILE`. On all other operating\nsystems, `tempdir()` uses the first environment variable found in the ordered list `TMPDIR`,\n`TMP`, `TEMP`, and `TEMPDIR`. If none of these are found, the path `\"/tmp\"` is used.\n"}],"Base.Filesystem.readdir":[{"Tuple{AbstractString}":" readdir(dir::AbstractString=pwd();\n join::Bool = false,\n sort::Bool = true,\n ) -> Vector{String}\n\nReturn the names in the directory `dir` or the current working directory if not\ngiven. When `join` is false, `readdir` returns just the names in the directory\nas is; when `join` is true, it returns `joinpath(dir, name)` for each `name` so\nthat the returned strings are full paths. If you want to get absolute paths\nback, call `readdir` with an absolute directory path and `join` set to true.\n\nBy default, `readdir` sorts the list of names it returns. If you want to skip\nsorting the names and get them in the order that the file system lists them,\nyou can use `readir(dir, sort=false)` to opt out of sorting.\n\n!!! compat \"Julia 1.4\"\n The `join` and `sort` keyword arguments require at least Julia 1.4.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/dev/julia\")\n\njulia> readdir()\n30-element Array{String,1}:\n \".appveyor.yml\"\n \".git\"\n \".gitattributes\"\n ⋮\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> readdir(join=true)\n30-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/.appveyor.yml\"\n \"/home/JuliaUser/dev/julia/.git\"\n \"/home/JuliaUser/dev/julia/.gitattributes\"\n ⋮\n \"/home/JuliaUser/dev/julia/ui\"\n \"/home/JuliaUser/dev/julia/usr\"\n \"/home/JuliaUser/dev/julia/usr-staging\"\n\njulia> readdir(\"base\")\n145-element Array{String,1}:\n \".gitignore\"\n \"Base.jl\"\n \"Enums.jl\"\n ⋮\n \"version_git.sh\"\n \"views.jl\"\n \"weakkeydict.jl\"\n\njulia> readdir(\"base\", join=true)\n145-element Array{String,1}:\n \"base/.gitignore\"\n \"base/Base.jl\"\n \"base/Enums.jl\"\n ⋮\n \"base/version_git.sh\"\n \"base/views.jl\"\n \"base/weakkeydict.jl\"```\n\njulia> readdir(abspath(\"base\"), join=true)\n145-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/base/.gitignore\"\n \"/home/JuliaUser/dev/julia/base/Base.jl\"\n \"/home/JuliaUser/dev/julia/base/Enums.jl\"\n ⋮\n \"/home/JuliaUser/dev/julia/base/version_git.sh\"\n \"/home/JuliaUser/dev/julia/base/views.jl\"\n \"/home/JuliaUser/dev/julia/base/weakkeydict.jl\"\n```\n"}],"Base.Filesystem.walkdir":[{"Tuple{Any}":" walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)\n\nReturn an iterator that walks the directory tree of a directory.\nThe iterator returns a tuple containing `(rootpath, dirs, files)`.\nThe directory tree can be traversed top-down or bottom-up.\nIf `walkdir` encounters a [`SystemError`](@ref)\nit will rethrow the error by default.\nA custom error handling function can be provided through `onerror` keyword argument.\n`onerror` is called with a `SystemError` as argument.\n\n# Examples\n```julia\nfor (root, dirs, files) in walkdir(\".\")\n println(\"Directories in $root\")\n for dir in dirs\n println(joinpath(root, dir)) # path to directories\n end\n println(\"Files in $root\")\n for file in files\n println(joinpath(root, file)) # path to files\n end\nend\n```\n\n```julia-repl\njulia> mkpath(\"my/test/dir\");\n\njulia> itr = walkdir(\"my\");\n\njulia> (root, dirs, files) = first(itr)\n(\"my\", [\"test\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test\", [\"dir\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test/dir\", String[], String[])\n```\n"}],"Base.Filesystem.chmod":[{"Tuple{AbstractString,Integer}":" chmod(path::AbstractString, mode::Integer; recursive::Bool=false)\n\nChange the permissions mode of `path` to `mode`. Only integer `mode`s (e.g. `0o777`) are\ncurrently supported. If `recursive=true` and the path is a directory all permissions in\nthat directory will be recursively changed.\nReturn `path`.\n"}],"Base.Filesystem.basename":[{"Tuple{AbstractString}":" basename(path::AbstractString) -> AbstractString\n\nGet the file name part of a path.\n\n# Examples\n```jldoctest\njulia> basename(\"/home/myuser/example.jl\")\n\"example.jl\"\n```\n\nSee also: [`dirname`](@ref)\n"}],"Base.Filesystem.mktemp":[{"Tuple{Any}":" mktemp(parent=tempdir(); cleanup=true) -> (path, io)\n\nReturn `(path, io)`, where `path` is the path of a new temporary file in `parent`\nand `io` is an open file object for this path. The `cleanup` option controls whether\nthe temporary file is automatically deleted when the process exits.\n"},{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktemp(f::Function, parent=tempdir())\n\nApply the function `f` to the result of [`mktemp(parent)`](@ref) and remove the\ntemporary file upon completion.\n"}],"Base.Filesystem.expanduser":[{"Tuple{AbstractString}":" expanduser(path::AbstractString) -> AbstractString\n\nOn Unix systems, replace a tilde character at the start of a path with the current user's home directory.\n"}],"Base.Filesystem.splitpath":[{"Tuple{AbstractString}":" splitpath(path::AbstractString) -> Vector{String}\n\nSplit a file path into all its path components. This is the opposite of\n`joinpath`. Returns an array of substrings, one for each directory or file in\nthe path, including the root directory if present.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> splitpath(\"/home/myuser/example.jl\")\n4-element Array{String,1}:\n \"/\"\n \"home\"\n \"myuser\"\n \"example.jl\"\n```\n"}],"Base.Filesystem.readlink":[{"Tuple{AbstractString}":" readlink(path::AbstractString) -> AbstractString\n\nReturn the target location a symbolic link `path` points to.\n"}],"Base.Filesystem.cd":[{"Tuple{AbstractString}":" cd(dir::AbstractString=homedir())\n\nSet the current working directory.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n\njulia> cd()\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"},{"Tuple{Function}":" cd(f::Function, dir::AbstractString=homedir())\n\nTemporarily change the current working directory to `dir`, apply function `f` and\nfinally return to the original directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(readdir, \"/home/JuliaUser/Projects/julia\")\n34-element Array{String,1}:\n \".circleci\"\n \".freebsdci.sh\"\n \".git\"\n \".gitattributes\"\n \".github\"\n ⋮\n \"test\"\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"}],"Base.Filesystem.mkdir":[{"Tuple{AbstractString}":" mkdir(path::AbstractString; mode::Unsigned = 0o777)\n\nMake a new directory with name `path` and permissions `mode`. `mode` defaults to `0o777`,\nmodified by the current file creation mask. This function never creates more than one\ndirectory. If the directory already exists, or some intermediate directories do not exist,\nthis function throws an error. See [`mkpath`](@ref) for a function which creates all\nrequired intermediate directories.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n```\n"}],"Base.Filesystem.issetgid":[{"Tuple{Base.Filesystem.StatStruct}":" issetgid(path) -> Bool\n\nReturn `true` if `path` has the setgid flag set, `false` otherwise.\n"}],"Base.Filesystem.mktempdir":[{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktempdir(f::Function, parent=tempdir(); prefix=\"jl_\")\n\nApply the function `f` to the result of [`mktempdir(parent; prefix)`](@ref) and remove the\ntemporary directory all of its contents upon completion.\n"},{"Union{Tuple{}, Tuple{AbstractString}}":" mktempdir(parent=tempdir(); prefix=\"jl_\", cleanup=true) -> path\n\nCreate a temporary directory in the `parent` directory with a name\nconstructed from the given prefix and a random suffix, and return its path.\nAdditionally, any trailing `X` characters may be replaced with random characters.\nIf `parent` does not exist, throw an error. The `cleanup` option controls whether\nthe temporary directory is automatically deleted when the process exits.\n"}],"Base.Filesystem.abspath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" abspath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to an absolute path by joining them together and adding the\ncurrent directory if necessary. Equivalent to `abspath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" abspath(path::AbstractString) -> String\n\nConvert a path to an absolute path by adding the current directory if necessary.\nAlso normalizes the path as in [`normpath`](@ref).\n"}],"Base.Filesystem.mv":[{"Tuple{AbstractString,AbstractString}":" mv(src::AbstractString, dst::AbstractString; force::Bool=false)\n\nMove the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\nReturn `dst`.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> write(\"hello.txt\", \"world\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\n\"goodbye.txt\"\n\njulia> \"hello.txt\" in readdir()\nfalse\n\njulia> readline(\"goodbye.txt\")\n\"world\"\n\njulia> write(\"hello.txt\", \"world2\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\nERROR: ArgumentError: 'goodbye.txt' exists. `force=true` is required to remove 'goodbye.txt' before moving.\nStacktrace:\n [1] #checkfor_mv_cp_cptree#10(::Bool, ::Function, ::String, ::String, ::String) at ./file.jl:293\n[...]\n\njulia> mv(\"hello.txt\", \"goodbye.txt\", force=true)\n\"goodbye.txt\"\n\njulia> rm(\"goodbye.txt\");\n\n```\n"}],"Base.Filesystem.mtime":[{"Tuple{Base.Filesystem.StatStruct}":" mtime(file)\n\nEquivalent to `stat(file).mtime`.\n"}],"Base.Filesystem.isfifo":[{"Tuple{Base.Filesystem.StatStruct}":" isfifo(path) -> Bool\n\nReturn `true` if `path` is a FIFO, `false` otherwise.\n"}],"Base.Filesystem.rm":[{"Tuple{AbstractString}":" rm(path::AbstractString; force::Bool=false, recursive::Bool=false)\n\nDelete the file, link, or empty directory at the given path. If `force=true` is passed, a\nnon-existing path is not treated as error. If `recursive=true` is passed and the path is a\ndirectory, then all contents are removed recursively.\n\n# Examples\n```jldoctest\njulia> mkpath(\"my/test/dir\");\n\njulia> rm(\"my\", recursive=true)\n\njulia> rm(\"this_file_does_not_exist\", force=true)\n\njulia> rm(\"this_file_does_not_exist\")\nERROR: IOError: unlink: no such file or directory (ENOENT)\nStacktrace:\n[...]\n```\n"}],"Base.Filesystem.ischardev":[{"Tuple{Base.Filesystem.StatStruct}":" ischardev(path) -> Bool\n\nReturn `true` if `path` is a character device, `false` otherwise.\n"}],"Base.Filesystem.splitdir":[{"Tuple{String}":" splitdir(path::AbstractString) -> (AbstractString, AbstractString)\n\nSplit a path into a tuple of the directory name and file name.\n\n# Examples\n```jldoctest\njulia> splitdir(\"/home/myuser\")\n(\"/home\", \"myuser\")\n```\n"}],"Base.Filesystem.cp":[{"Tuple{AbstractString,AbstractString}":" cp(src::AbstractString, dst::AbstractString; force::Bool=false, follow_symlinks::Bool=false)\n\nCopy the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\n\nIf `follow_symlinks=false`, and `src` is a symbolic link, `dst` will be created as a\nsymbolic link. If `follow_symlinks=true` and `src` is a symbolic link, `dst` will be a copy\nof the file or directory `src` refers to.\nReturn `dst`.\n"}],"Base.Filesystem.pwd":[{"Tuple{}":" pwd() -> AbstractString\n\nGet the current working directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n```\n"}],"Base.Filesystem.normpath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" normpath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to a normalized path by joining them together and removing\n\".\" and \"..\" entries. Equivalent to `normpath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" normpath(path::AbstractString) -> String\n\nNormalize a path, removing \".\" and \"..\" entries.\n\n# Examples\n```jldoctest\njulia> normpath(\"/home/myuser/../example.jl\")\n\"/home/example.jl\"\n```\n"}],"Base.Filesystem.contractuser":[{"Tuple{AbstractString}":" contractuser(path::AbstractString) -> AbstractString\n\nOn Unix systems, if the path starts with `homedir()`, replace it with a tilde character.\n"}],"Base.Filesystem.tempname":[{"Tuple{}":" tempname(parent=tempdir(); cleanup=true) -> String\n\nGenerate a temporary file path. This function only returns a path; no file is\ncreated. The path is likely to be unique, but this cannot be guaranteed due to\nthe very remote posibility of two simultaneous calls to `tempname` generating\nthe same file name. The name is guaranteed to differ from all files already\nexisting at the time of the call to `tempname`.\n\nWhen called with no arguments, the temporary name will be an absolute path to a\ntemporary name in the system temporary directory as given by `tempdir()`. If a\n`parent` directory argument is given, the temporary path will be in that\ndirectory instead.\n\nThe `cleanup` option controls whether the process attempts to delete the\nreturned path automatically when the process exits. Note that the `tempname`\nfunction does not create any file or directory at the returned location, so\nthere is nothing to cleanup unless you create a file or directory there. If\nyou do and `clean` is `true` it will be deleted upon process termination.\n\n!!! compat \"Julia 1.4\"\n The `parent` and `cleanup` arguments were added in 1.4. Prior to Julia 1.4\n the path `tempname` would never be cleaned up at process termination.\n\n!!! warning\n\n This can lead to security holes if another process obtains the same\n file name and creates the file before you are able to. Open the file with\n `JL_O_EXCL` if this is a concern. Using [`mktemp()`](@ref) is also\n recommended instead.\n"}],"Base.Filesystem.islink":[{"Tuple{Base.Filesystem.StatStruct}":" islink(path) -> Bool\n\nReturn `true` if `path` is a symbolic link, `false` otherwise.\n"}],"Base.Filesystem.ismount":[{"Tuple":" ismount(path) -> Bool\n\nReturn `true` if `path` is a mount point, `false` otherwise.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/GC_docstrings.json b/zh_CN/docstrings/GC_docstrings.json new file mode 100644 index 00000000..642c2f36 --- /dev/null +++ b/zh_CN/docstrings/GC_docstrings.json @@ -0,0 +1 @@ +{"Base.GC.enable":[{"Tuple{Bool}":" GC.enable(on::Bool)\n\nControl whether garbage collection is enabled using a boolean argument (`true` for enabled,\n`false` for disabled). Return previous GC state.\n\n!!! warning\n Disabling garbage collection should be used only with caution, as it can cause memory\n use to grow without bound.\n"}],"Base.GC.safepoint":[{"Tuple{}":" GC.safepoint()\n\nInserts a point in the program where garbage collection may run.\nThis can be useful in rare cases in multi-threaded programs where some threads\nare allocating memory (and hence may need to run GC) but other threads are doing\nonly simple operations (no allocation, task switches, or I/O).\nCalling this function periodically in non-allocating threads allows garbage\ncollection to run.\n\n!!! compat \"Julia 1.4\"\n This function is available as of Julia 1.4.\n"}],"Base.GC.gc":[{"Union{Tuple{}, Tuple{Bool}}":" GC.gc([full=true])\n\nPerform garbage collection. The argument `full` determines the kind of\ncollection: A full collection (default) sweeps all objects, which makes the\nnext GC scan much slower, while an incremental collection may only sweep\nso-called young objects.\n\n!!! warning\n Excessive use will likely lead to poor performance.\n"}],"Base.GC.@preserve":[{"Tuple":" GC.@preserve x1 x2 ... xn expr\n\nTemporarily protect the given objects from being garbage collected, even if they would\notherwise be unreferenced.\n\nThe last argument is the expression during which the object(s) will be preserved.\nThe previous arguments are the objects to preserve.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Grisu_docstrings.json b/zh_CN/docstrings/Grisu_docstrings.json new file mode 100644 index 00000000..801ab27a --- /dev/null +++ b/zh_CN/docstrings/Grisu_docstrings.json @@ -0,0 +1 @@ +{"Base.Grisu.grisu":[{"Union{Tuple{AbstractFloat,Any,Any}, Tuple{AbstractFloat,Any,Any,Any}, Tuple{AbstractFloat,Any,Any,Any,Any}}":" (len, point, neg) = Grisu.grisu(v::AbstractFloat, mode, requested_digits, [buffer], [bignums])\n\nConvert the number `v` to decimal using the Grisu algorithm.\n\n`mode` can be one of:\n - `Grisu.SHORTEST`: convert to the shortest decimal representation which can be \"round-tripped\" back to `v`.\n - `Grisu.FIXED`: round to `requested_digits` digits.\n - `Grisu.PRECISION`: round to `requested_digits` significant digits.\n\nThe characters are written as bytes to `buffer`, with a terminating NUL byte, and `bignums` are used internally as part of the correction step. You can call `Grisu.getbuf()` to obtain a suitable task-local buffer.\n\nThe returned tuple contains:\n\n - `len`: the number of digits written to `buffer` (excluding NUL)\n - `point`: the location of the radix point relative to the start of the array (e.g. if\n `point == 3`, then the radix point should be inserted between the 3rd and 4th\n digit). Note that this can be negative (for very small values), or greater than `len`\n (for very large values).\n - `neg`: the signbit of `v` (see [`signbit`](@ref)).\n"}],"Base.Grisu.print_shortest":[{"Tuple{IO,AbstractFloat,Bool}":" print_shortest(io::IO, x)\n\nPrint the shortest possible representation, with the minimum number of consecutive non-zero\ndigits, of number `x`, ensuring that it would parse to the exact same number.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Iterators_docstrings.json b/zh_CN/docstrings/Iterators_docstrings.json new file mode 100644 index 00000000..e95efd23 --- /dev/null +++ b/zh_CN/docstrings/Iterators_docstrings.json @@ -0,0 +1 @@ +{"Base.Iterators.dropwhile":[{"Tuple{Any,Any}":" dropwhile(pred, iter)\n\nAn iterator that drops element from `iter` as long as predicate `pred` is true,\nafterwards, returns every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.dropwhile(<(3),s))\n3-element Array{Int64,1}:\n 3\n 4\n 5\n```\n"}],"Base.Iterators.partition":[{"Tuple{Any,Integer}":" partition(collection, n)\n\nIterate over a collection `n` elements at a time.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.partition([1,2,3,4,5], 2))\n3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:\n [1, 2]\n [3, 4]\n [5]\n```\n"}],"Base.Iterators.only":[{"Tuple{Any}":" only(x)\n\nReturns the one and only element of collection `x`, and throws an `ArgumentError` if the\ncollection has zero or multiple elements.\n\nSee also: [`first`](@ref), [`last`](@ref).\n\n!!! compat \"Julia 1.4\"\n This method requires at least Julia 1.4.\n"}],"Base.Iterators.product":[{"Tuple":" product(iters...)\n\nReturn an iterator over the product of several iterators. Each generated element is\na tuple whose `i`th element comes from the `i`th argument iterator. The first iterator\nchanges the fastest.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.product(1:2, 3:5))\n2×3 Array{Tuple{Int64,Int64},2}:\n (1, 3) (1, 4) (1, 5)\n (2, 3) (2, 4) (2, 5)\n```\n"}],"Base.Iterators.enumerate":[{"Tuple{Any}":" enumerate(iter)\n\nAn iterator that yields `(i, x)` where `i` is a counter starting at 1,\nand `x` is the `i`th value from the given iterator. It's useful when\nyou need not only the values `x` over which you are iterating, but\nalso the number of iterations so far. Note that `i` may not be valid\nfor indexing `iter`; it's also possible that `x != iter[i]`, if `iter`\nhas indices that do not start at 1. See the `pairs(IndexLinear(),\niter)` method if you want to ensure that `i` is an index.\n\n# Examples\n```jldoctest\njulia> a = [\"a\", \"b\", \"c\"];\n\njulia> for (index, value) in enumerate(a)\n println(\"$index $value\")\n end\n1 a\n2 b\n3 c\n```\n"}],"Base.Iterators.countfrom":[{"Tuple{Number,Number}":" countfrom(start=1, step=1)\n\nAn iterator that counts forever, starting at `start` and incrementing by `step`.\n\n# Examples\n```jldoctest\njulia> for v in Iterators.countfrom(5, 2)\n v > 10 && break\n println(v)\n end\n5\n7\n9\n```\n"}],"Base.Iterators.take":[{"Tuple{Any,Integer}":" take(iter, n)\n\nAn iterator that generates at most the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.take(a,3))\n3-element Array{Int64,1}:\n 1\n 3\n 5\n```\n"}],"Base.Iterators.takewhile":[{"Tuple{Any,Any}":" takewhile(pred, iter)\n\nAn iterator that generates element from `iter` as long as predicate `pred` is true,\nafterwards, drops every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.takewhile(<(3),s))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.Iterators.accumulate":[{"Tuple{Any,Any}":" Iterators.accumulate(f, itr)\n\nGiven a 2-argument function `f` and an iterator `itr`, return a new\niterator that successively applies `f` to the previous value and the\nnext element of `itr`.\n\nThis is effectively a lazy version of [`Base.accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> f = Iterators.accumulate(+, [1,2,3,4])\nBase.Iterators.Accumulate{typeof(+),Array{Int64,1}}(+, [1, 2, 3, 4])\n\njulia> foreach(println, f)\n1\n3\n6\n10\n```\n"}],"Base.Iterators.cycle":[{"Tuple{Any}":" cycle(iter)\n\nAn iterator that cycles through `iter` forever.\nIf `iter` is empty, so is `cycle(iter)`.\n\n# Examples\n```jldoctest\njulia> for (i, v) in enumerate(Iterators.cycle(\"hello\"))\n print(v)\n i > 10 && break\n end\nhellohelloh\n```\n"}],"Base.Iterators.rest":[{"Tuple{Any,Any}":" rest(iter, state)\n\nAn iterator that yields the same elements as `iter`, but starting at the given `state`.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.rest([1,2,3,4], 2))\n3-element Array{Int64,1}:\n 2\n 3\n 4\n```\n"}],"Base.Iterators.zip":[{"Tuple":" zip(iters...)\n\nRun multiple iterators at the same time, until any of them is exhausted. The value type of\nthe `zip` iterator is a tuple of values of its subiterators.\n\n!!! note\n `zip` orders the calls to its subiterators in such a way that stateful iterators will\n not advance when another iterator finishes in the current iteration.\n\n# Examples\n```jldoctest\njulia> a = 1:5\n1:5\n\njulia> b = [\"e\",\"d\",\"b\",\"c\",\"a\"]\n5-element Array{String,1}:\n \"e\"\n \"d\"\n \"b\"\n \"c\"\n \"a\"\n\njulia> c = zip(a,b)\nBase.Iterators.Zip{Tuple{UnitRange{Int64},Array{String,1}}}((1:5, [\"e\", \"d\", \"b\", \"c\", \"a\"]))\n\njulia> length(c)\n5\n\njulia> first(c)\n(1, \"e\")\n```\n"}],"Base.Iterators.repeated":[{"Tuple{Any,Integer}":" repeated(x[, n::Int])\n\nAn iterator that generates the value `x` forever. If `n` is specified, generates `x` that\nmany times (equivalent to `take(repeated(x), n)`).\n\n# Examples\n```jldoctest\njulia> a = Iterators.repeated([1 2], 4);\n\njulia> collect(a)\n4-element Array{Array{Int64,2},1}:\n [1 2]\n [1 2]\n [1 2]\n [1 2]\n```\n"}],"Base.Iterators.peel":[{"Tuple{Any}":" peel(iter)\n\nReturns the first element and an iterator over the remaining elements.\n\n# Examples\n```jldoctest\njulia> (a, rest) = Iterators.peel(\"abc\");\n\njulia> a\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(rest)\n2-element Array{Char,1}:\n 'b'\n 'c'\n```\n"}],"Base.Iterators.Stateful":[{"Union{}":" Stateful(itr)\n\nThere are several different ways to think about this iterator wrapper:\n\n1. It provides a mutable wrapper around an iterator and\n its iteration state.\n2. It turns an iterator-like abstraction into a `Channel`-like\n abstraction.\n3. It's an iterator that mutates to become its own rest iterator\n whenever an item is produced.\n\n`Stateful` provides the regular iterator interface. Like other mutable iterators\n(e.g. [`Channel`](@ref)), if iteration is stopped early (e.g. by a [`break`](@ref) in a [`for`](@ref) loop),\niteration can be resumed from the same spot by continuing to iterate over the\nsame iterator object (in contrast, an immutable iterator would restart from the\nbeginning).\n\n# Examples\n```jldoctest\njulia> a = Iterators.Stateful(\"abcdef\");\n\njulia> isempty(a)\nfalse\n\njulia> popfirst!(a)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(Iterators.take(a, 3))\n3-element Array{Char,1}:\n 'b'\n 'c'\n 'd'\n\njulia> collect(a)\n2-element Array{Char,1}:\n 'e'\n 'f'\n```\n\n```jldoctest\njulia> a = Iterators.Stateful([1,1,1,2,3,4]);\n\njulia> for x in a; x == 1 || break; end\n\njulia> Base.peek(a)\n3\n\njulia> sum(a) # Sum the remaining elements\n7\n```\n"}],"Base.Iterators.drop":[{"Tuple{Any,Integer}":" drop(iter, n)\n\nAn iterator that generates all but the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.drop(a,4))\n2-element Array{Int64,1}:\n 9\n 11\n```\n"}],"Base.Iterators.reverse":[{"Tuple{Any}":" Iterators.reverse(itr)\n\nGiven an iterator `itr`, then `reverse(itr)` is an iterator over the\nsame collection but in the reverse order.\n\nThis iterator is \"lazy\" in that it does not make a copy of the collection in\norder to reverse it; see [`Base.reverse`](@ref) for an eager implementation.\n\nNot all iterator types `T` support reverse-order iteration. If `T`\ndoesn't, then iterating over `Iterators.reverse(itr::T)` will throw a [`MethodError`](@ref)\nbecause of the missing [`iterate`](@ref) methods for `Iterators.Reverse{T}`.\n(To implement these methods, the original iterator\n`itr::T` can be obtained from `r = Iterators.reverse(itr)` by `r.itr`.)\n\n# Examples\n```jldoctest\njulia> foreach(println, Iterators.reverse(1:5))\n5\n4\n3\n2\n1\n```\n"}],"Base.Iterators.flatten":[{"Tuple{Any}":" flatten(iter)\n\nGiven an iterator that yields iterators, return an iterator that yields the\nelements of those iterators.\nPut differently, the elements of the argument iterator are concatenated.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.flatten((1:2, 8:9)))\n4-element Array{Int64,1}:\n 1\n 2\n 8\n 9\n```\n"}],"Base.Iterators.Pairs":[{"Union{}":" Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}\n\nTransforms an indexable container into an Dictionary-view of the same data.\nModifying the key-space of the underlying data may invalidate this object.\n"}],"Base.Iterators.filter":[{"Tuple{Any,Any}":" Iterators.filter(flt, itr)\n\nGiven a predicate function `flt` and an iterable object `itr`, return an\niterable object which upon iteration yields the elements `x` of `itr` that\nsatisfy `flt(x)`. The order of the original iterator is preserved.\n\nThis function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time\nand use ``Θ(1)`` additional space, and `flt` will not be called by an\ninvocation of `filter`. Calls to `flt` will be made when iterating over the\nreturned iterable object. These calls are not cached and repeated calls will be\nmade when reiterating.\n\nSee [`Base.filter`](@ref) for an eager implementation of filtering for arrays.\n\n# Examples\n```jldoctest\njulia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])\nBase.Iterators.Filter{typeof(isodd),Array{Int64,1}}(isodd, [1, 2, 3, 4, 5])\n\njulia> foreach(println, f)\n1\n3\n5\n```\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Libc_docstrings.json b/zh_CN/docstrings/Libc_docstrings.json new file mode 100644 index 00000000..11baabff --- /dev/null +++ b/zh_CN/docstrings/Libc_docstrings.json @@ -0,0 +1 @@ +{"Base.Libc.getpid":[{"Tuple{}":" getpid() -> Int32\n\nGet Julia's process ID.\n"}],"Base.Libc.time":[{"Tuple{}":" time()\n\nGet the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.\n"},{"Tuple{Base.Libc.TmStruct}":" time(t::TmStruct)\n\nConverts a `TmStruct` struct to a number of seconds since the epoch.\n"}],"Base.Libc.calloc":[{"Tuple{Integer,Integer}":" calloc(num::Integer, size::Integer) -> Ptr{Cvoid}\n\nCall `calloc` from the C standard library.\n"}],"Base.Libc.malloc":[{"Tuple{Integer}":" malloc(size::Integer) -> Ptr{Cvoid}\n\nCall `malloc` from the C standard library.\n"}],"Base.Libc.systemsleep":[{"Union{}":" systemsleep(s::Real)\n\nSuspends execution for `s` seconds.\nThis function does not yield to Julia's scheduler and therefore blocks\nthe Julia thread that it is running on for the duration of the sleep time.\n\nSee also: [`sleep`](@ref)\n"}],"Base.Libc.FormatMessage":[{"Union{}":" FormatMessage(n=GetLastError())\n\nConvert a Win32 system call error code to a descriptive string [only available on Windows].\n"}],"Base.Libc.realloc":[{"Tuple{Ptr,Integer}":" realloc(addr::Ptr, size::Integer) -> Ptr{Cvoid}\n\nCall `realloc` from the C standard library.\n\nSee warning in the documentation for [`free`](@ref) regarding only using this on memory originally\nobtained from [`malloc`](@ref).\n"}],"Base.Libc.rand":[{"Tuple{}":" rand([T::Type])\n\nInterface to the C `rand()` function. If `T` is provided, generate a value of type `T`\nby composing two calls to `rand()`. `T` can be `UInt32` or `Float64`.\n"}],"Base.Libc.gethostname":[{"Tuple{}":" gethostname() -> AbstractString\n\nGet the local machine's host name.\n"}],"Base.Libc.free":[{"Tuple{Ptr}":" free(addr::Ptr)\n\nCall `free` from the C standard library. Only use this on memory obtained from [`malloc`](@ref), not\non pointers retrieved from other C libraries. [`Ptr`](@ref) objects obtained from C libraries should\nbe freed by the free functions defined in that library, to avoid assertion failures if\nmultiple `libc` libraries exist on the system.\n"}],"Base.Libc.GetLastError":[{"Union{}":" GetLastError()\n\nCall the Win32 `GetLastError` function [only available on Windows].\n"}],"Base.Libc.strptime":[{"Tuple{AbstractString}":" strptime([format], timestr)\n\nParse a formatted time string into a `TmStruct` giving the seconds, minute, hour, date, etc.\nSupported formats are the same as those in the standard C library. On some platforms,\ntimezones will not be parsed correctly. If the result of this function will be passed to\n`time` to convert it to seconds since the epoch, the `isdst` field should be filled in\nmanually. Setting it to `-1` will tell the C library to use the current system settings to\ndetermine the timezone.\n"}],"Base.Libc.strerror":[{"Tuple{Integer}":" strerror(n=errno())\n\nConvert a system call error code to a descriptive string\n"}],"Base.Libc.srand":[{"Union{Tuple{}, Tuple{Any}}":" srand([seed])\n\nInterface to the C `srand(seed)` function.\n"}],"Base.Libc.TmStruct":[{"Union{}":" TmStruct([seconds])\n\nConvert a number of seconds since the epoch to broken-down format, with fields `sec`, `min`,\n`hour`, `mday`, `month`, `year`, `wday`, `yday`, and `isdst`.\n"}],"Base.Libc.errno":[{"Tuple{}":" errno([code])\n\nGet the value of the C library's `errno`. If an argument is specified, it is used to set the\nvalue of `errno`.\n\nThe value of `errno` is only valid immediately after a `ccall` to a C library routine that\nsets it. Specifically, you cannot call `errno` at the next prompt in a REPL, because lots of\ncode is executed between prompts.\n"}],"Base.Libc.strftime":[{"Tuple{Any}":" strftime([format], time)\n\nConvert time, given as a number of seconds since the epoch or a `TmStruct`, to a formatted\nstring using the given format. Supported formats are the same as those in the standard C\nlibrary.\n"}],"Base.Libc.flush_cstdio":[{"Tuple{}":" flush_cstdio()\n\nFlushes the C `stdout` and `stderr` streams (which may have been written to by external C code).\n"}],"Base.Libc.RawFD":[{"Union{}":" RawFD\n\nPrimitive type which wraps the native OS file descriptor.\n`RawFD`s can be passed to methods like [`stat`](@ref) to\ndiscover information about the underlying file, and can\nalso be used to open streams, with the `RawFD` describing\nthe OS file backing the stream.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/MPFR_docstrings.json b/zh_CN/docstrings/MPFR_docstrings.json new file mode 100644 index 00000000..e7e6de64 --- /dev/null +++ b/zh_CN/docstrings/MPFR_docstrings.json @@ -0,0 +1 @@ +{"Base.MPFR.unsafe_cast":[{"Tuple{Any,BigFloat,RoundingMode}":" MPFR.unsafe_cast(T, x::BigFloat, r::RoundingMode)\n\nConvert `x` to integer type `T`, rounding the direction of `r`. If the value is not\nrepresentable by T, an arbitrary value will be returned.\n"}],"Base.MPFR.MPFRRoundingMode":[{"Union{}":" MPFR.MPFRRoundingMode\n\nMatches the `mpfr_rnd_t` enum provided by MPFR, see\nhttps://www.mpfr.org/mpfr-current/mpfr.html#Rounding-Modes\n\nThis is for internal use, and ensures that `ROUNDING_MODE[]` is type-stable.\n"}],"Base.MPFR.setprecision":[{"Tuple{Type{BigFloat},Integer}":" setprecision([T=BigFloat,] precision::Int)\n\nSet the precision (in bits) to be used for `T` arithmetic.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},Integer}} where T":" setprecision(f::Function, [T=BigFloat,] precision::Integer)\n\nChange the `T` arithmetic precision (in bits) for the duration of `f`.\nIt is logically equivalent to:\n\n old = precision(BigFloat)\n setprecision(BigFloat, precision)\n f()\n setprecision(BigFloat, old)\n\nOften used as `setprecision(T, precision) do ... end`\n\nNote: `nextfloat()`, `prevfloat()` do not use the precision mentioned by\n`setprecision`\n"}],"Base.MPFR.BigFloat":[{"Union{}":" BigFloat <: AbstractFloat\n\nArbitrary precision floating point number type.\n"},{"Tuple{Any,RoundingMode}":" BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])\n\nCreate an arbitrary precision floating point number from `x`, with precision\n`precision`. The `rounding` argument specifies the direction in which the result should be\nrounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.\n\n`BigFloat(x::Real)` is the same as `convert(BigFloat,x)`, except if `x` itself is already\n`BigFloat`, in which case it will return a value with the precision set to the current\nglobal precision; `convert` will always return `x`.\n\n`BigFloat(x::AbstractString)` is identical to [`parse`](@ref). This is provided for\nconvenience since decimal literals are converted to `Float64` when parsed, so\n`BigFloat(2.1)` may not yield what you expect.\n\n!!! compat \"Julia 1.1\"\n `precision` as a keyword argument requires at least Julia 1.1.\n In Julia 1.0 `precision` is the second positional argument (`BigFloat(x, precision)`).\n\n# Examples\n```jldoctest\njulia> BigFloat(2.1) # 2.1 here is a Float64\n2.100000000000000088817841970012523233890533447265625\n\njulia> BigFloat(\"2.1\") # the closest BigFloat to 2.1\n2.099999999999999999999999999999999999999999999999999999999999999999999999999986\n\njulia> BigFloat(\"2.1\", RoundUp)\n2.100000000000000000000000000000000000000000000000000000000000000000000000000021\n\njulia> BigFloat(\"2.1\", RoundUp, precision=128)\n2.100000000000000000000000000000000000007\n```\n\n# See also\n- [`@big_str`](@ref)\n- [`rounding`](@ref) and [`setrounding`](@ref)\n- [`precision`](@ref) and [`setprecision`](@ref)\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/MathConstants_docstrings.json b/zh_CN/docstrings/MathConstants_docstrings.json new file mode 100644 index 00000000..f935bdb4 --- /dev/null +++ b/zh_CN/docstrings/MathConstants_docstrings.json @@ -0,0 +1 @@ +{"Base.MathConstants.eulergamma":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.catalan":[{"Union{}":" catalan\n\nCatalan's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.catalan\ncatalan = 0.9159655941772...\n```\n"}],"Base.MathConstants.golden":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.ℯ":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}],"Base.MathConstants.pi":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.π":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.γ":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.φ":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.e":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Math_docstrings.json b/zh_CN/docstrings/Math_docstrings.json new file mode 100644 index 00000000..7f7b4b54 --- /dev/null +++ b/zh_CN/docstrings/Math_docstrings.json @@ -0,0 +1 @@ +{"Base.Math.sec":[{"Tuple{Number}":" sec(x)\n\nCompute the secant of `x`, where `x` is in radians.\n"}],"Base.Math.sincos":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" sincos(x)\n\nSimultaneously compute the sine and cosine of `x`, where the `x` is in radians.\n"}],"Base.Math.cosd":[{"Tuple{Any}":" cosd(x)\nCompute cosine of `x`, where `x` is in degrees. "}],"Base.Math.exponent":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" exponent(x) -> Int\n\nGet the exponent of a normalized floating-point number.\n"}],"Base.Math.sinpi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" sinpi(x)\n\nCompute ``\\sin(\\pi x)`` more accurately than `sin(pi*x)`, especially for large `x`.\n"}],"Base.Math.hypot":[{"Tuple{Number,Number}":" hypot(x, y)\n\nCompute the hypotenuse ``\\sqrt{|x|^2+|y|^2}`` avoiding overflow and underflow.\n\nThis code is an implementation of the algorithm described in:\nAn Improved Algorithm for `hypot(a,b)`\nby Carlos F. Borges\nThe article is available online at ArXiv at the link\n https://arxiv.org/abs/1904.09481\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> a = Int64(10)^10;\n\njulia> hypot(a, a)\n1.4142135623730951e10\n\njulia> √(a^2 + a^2) # a^2 overflows\nERROR: DomainError with -2.914184810805068e18:\nsqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).\nStacktrace:\n[...]\n\njulia> hypot(3, 4im)\n5.0\n```\n"},{"Tuple{Vararg{Number,N} where N}":" hypot(x...)\n\nCompute the hypotenuse ``\\sqrt{\\sum |x_i|^2}`` avoiding overflow and underflow.\n\n# Examples\n```jldoctest\njulia> hypot(-5.7)\n5.7\n\njulia> hypot(3, 4im, 12.0)\n13.0\n```\n"}],"Base.Math.asech":[{"Tuple{Number}":" asech(x)\nCompute the inverse hyperbolic secant of `x`. "}],"Base.Math.clamp":[{"Union{Tuple{H}, Tuple{L}, Tuple{X}, Tuple{X,L,H}} where H where L where X":" clamp(x, lo, hi)\n\nReturn `x` if `lo <= x <= hi`. If `x > hi`, return `hi`. If `x < lo`, return `lo`. Arguments\nare promoted to a common type.\n\n# Examples\n```jldoctest\njulia> clamp.([pi, 1.0, big(10.)], 2., 9.)\n3-element Array{BigFloat,1}:\n 3.141592653589793238462643383279502884197169399375105820974944592307816406286198\n 2.0\n 9.0\n\njulia> clamp.([11,8,5],10,6) # an example where lo > hi\n3-element Array{Int64,1}:\n 6\n 6\n 10\n```\n"}],"Base.Math.rem2pi":[{"Union{}":" rem2pi(x, r::RoundingMode)\n\nCompute the remainder of `x` after integer division by `2π`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - 2π*round(x/(2π),r)\n\nwithout any intermediate rounding. This internally uses a high precision approximation of\n2π, and so will give a more accurate result than `rem(x,2π,r)`\n\n- if `r == RoundNearest`, then the result is in the interval ``[-π, π]``. This will generally\n be the most accurate result. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero`, then the result is in the interval ``[0, 2π]`` if `x` is positive,.\n or ``[-2π, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, 2π]``.\n See also [`RoundDown`](@ref).\n- if `r == RoundUp`, then the result is in the interval ``[-2π, 0]``.\n See also [`RoundUp`](@ref).\n\n# Examples\n```jldoctest\njulia> rem2pi(7pi/4, RoundNearest)\n-0.7853981633974485\n\njulia> rem2pi(7pi/4, RoundDown)\n5.497787143782138\n```\n"}],"Base.Math.acscd":[{"Tuple{Any}":" acscd(x)\n\nCompute the inverse cosecant of `x`, where the output is in degrees. "}],"Base.Math.fromfraction":[{"Tuple{Int128}":" fromfraction(f::Int128)\n\nCompute a tuple of values `(z1,z2)` such that\n ``z1 + z2 == f / 2^128``\nand the significand of `z1` has 27 trailing zeros.\n"}],"Base.Math.cos_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" cos_kernel(y)\n\nCompute the cosine on the interval y∈[-π/4; π/4].\n"}],"Base.Math.deg2rad":[{"Tuple{AbstractFloat}":" deg2rad(x)\n\nConvert `x` from degrees to radians.\n\n# Examples\n```jldoctest\njulia> deg2rad(90)\n1.5707963267948966\n```\n"}],"Base.Math.sind":[{"Tuple{Any}":" sind(x)\nCompute sine of `x`, where `x` is in degrees. "}],"Base.Math.sincosd":[{"Tuple{Real}":" sincosd(x)\n\nSimultaneously compute the sine and cosine of `x`, where `x` is in degrees.\n\n!!! compat \"Julia 1.3\"\n This function requires at least Julia 1.3.\n"}],"Base.Math.rem_pio2_kernel":[{"Tuple{Float64}":" rem_pio2_kernel(x)\n\nReturn the remainder of `x` modulo π/2 as a double-double pair, along with a `k`\nsuch that ``k \\mod 3 == K \\mod 3`` where ``K*π/2 = x - rem``. Note, that it is\nonly meant for use when ``|x|>=π/4``, and that ``π/2`` is always subtracted or\nadded for ``π/4<|x|<=π/2`` instead of simply returning `x`.\n"}],"Base.Math.ldexp":[{"Union{Tuple{T}, Tuple{T,Integer}} where T<:Union{Float16, Float32, Float64}":" ldexp(x, n)\n\nCompute ``x \\times 2^n``.\n\n# Examples\n```jldoctest\njulia> ldexp(5., 2)\n20.0\n```\n"}],"Base.Math.asecd":[{"Tuple{Any}":" asecd(x)\n\nCompute the inverse secant of `x`, where the output is in degrees. "}],"Base.Math.evalpoly":[{"Tuple{Any,Tuple}":" evalpoly(x, p)\n\nEvaluate the polynomial ``\\sum_k p[k] x^{k-1}`` for the coefficients `p[1]`, `p[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `x`.\nLoops are unrolled at compile time if the number of coefficients is statically known, i.e.\nwhen `p` is a `Tuple`.\nThis function generates efficient code using Horner's method if `x` is real, or using\na Goertzel-like [^DK62] algorithm if `x` is complex.\n\n[^DK62]: Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.\n\n!!! compat \"Julia 1.4\"\n This function requires Julia 1.4 or later.\n\n# Example\n```jldoctest\njulia> evalpoly(2, (1, 2, 3))\n17\n```\n"}],"Base.Math.@evalpoly":[{"Tuple{Any,Vararg{Any,N} where N}":" @evalpoly(z, c...)\n\nEvaluate the polynomial ``\\sum_k c[k] z^{k-1}`` for the coefficients `c[1]`, `c[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `z`. This macro expands\nto efficient inline code that uses either Horner's method or, for complex `z`, a more\nefficient Goertzel-like algorithm.\n\n# Examples\n```jldoctest\njulia> @evalpoly(3, 1, 0, 1)\n10\n\njulia> @evalpoly(2, 1, 0, 1)\n5\n\njulia> @evalpoly(2, 1, 1, 1)\n7\n```\n"}],"Base.Math.rad2deg":[{"Tuple{AbstractFloat}":" rad2deg(x)\n\nConvert `x` from radians to degrees.\n\n# Examples\n```jldoctest\njulia> rad2deg(pi)\n180.0\n```\n"}],"Base.Math.coth":[{"Tuple{Number}":" coth(x)\n\nCompute the hyperbolic cotangent of `x`.\n"}],"Base.Math.sin_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" sin_kernel(yhi, ylo)\n\nComputes the sine on the interval [-π/4; π/4].\n"}],"Base.Math.tand":[{"Tuple{Any}":" tand(x)\nCompute tangent of `x`, where `x` is in degrees. "}],"Base.Math.significand":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" significand(x)\n\nExtract the `significand(s)` (a.k.a. mantissa), in binary representation, of a\nfloating-point number. If `x` is a non-zero finite number, then the result will be\na number of the same type on the interval ``[1,2)``. Otherwise `x` is returned.\n\n# Examples\n```jldoctest\njulia> significand(15.2)/15.2\n0.125\n\njulia> significand(15.2)*8\n15.2\n```\n"}],"Base.Math.clamp!":[{"Tuple{AbstractArray,Any,Any}":" clamp!(array::AbstractArray, lo, hi)\n\nRestrict values in `array` to the specified range, in-place.\nSee also [`clamp`](@ref).\n"}],"Base.Math._frexp_exp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" exp_x, k2 = _frexp_exp(x)\n\nCalculate exp(x) as exp_x*2^k2 and return exp_x = exp(x-kr*log(w))*2^ks where kr\nis a type dependant range reduction constant, ks scales exp_x towards the largest\nfinite number, and k2 is used to absorb the remaning scale to allow for exp(x)\nto be outside the normal floating point range.\n\nThis function is intended for use in our hyperbolic and exponential functions.\n"}],"Base.Math.csc":[{"Tuple{Number}":" csc(x)\n\nCompute the cosecant of `x`, where `x` is in radians.\n"}],"Base.Math.acsch":[{"Tuple{Number}":" acsch(x)\nCompute the inverse hyperbolic cosecant of `x`. "}],"Base.Math.cot":[{"Tuple{Number}":" cot(x)\n\nCompute the cotangent of `x`, where `x` is in radians.\n"}],"Base.Math.poshighword":[{"Tuple{Float64}":" poshighword(x)\n\nReturn positive part of the high word of `x` as a `UInt32`.\n"}],"Base.Math.cosc":[{"Tuple{Number}":" cosc(x)\n\nCompute ``\\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2)`` if ``x \\neq 0``, and ``0`` if\n``x = 0``. This is the derivative of `sinc(x)`.\n"}],"Base.Math.sinc":[{"Tuple{Number}":" sinc(x)\n\n当 ``x \\neq 0`` 时,计算 ``\\sin(\\pi x) / (\\pi x)`` ,当 ``x = 0`` 时,返回 ``1`` 。\n"}],"Base.Math.asec":[{"Tuple{Number}":" asec(x)\nCompute the inverse secant of `x`, where the output is in radians. "}],"Base.Math.atand":[{"Tuple{Any}":" atand(y)\n atand(y,x)\n\nCompute the inverse tangent of `y` or `y/x`, respectively, where the output is in degrees.\n"}],"Base.Math._ldexp_exp":[{"Union{Tuple{T}, Tuple{T,Any}} where T<:Union{Float32, Float64}":" _ldexp_exp(x, l2)\nReturns exp(x) * 2^l2. The function is intended for large arguments, x, where\nx >= ln(prevfloat(typemax(x)) and care is needed to avoid overflow.\n\nThe present implementation is narrowly tailored for our hyperbolic and\nexponential functions. We assume l2 is small (0 or -1), and the caller\nhas filtered out very large x, for which overflow would be inevitable.\n"}],"Base.Math.mod2pi":[{"Tuple{Any}":" mod2pi(x)\n\nModulus after division by `2π`, returning in the range ``[0,2π)``.\n\nThis function computes a floating point representation of the modulus after division by\nnumerically exact `2π`, and is therefore not exactly the same as `mod(x,2π)`, which would\ncompute the modulus of `x` relative to division by the floating-point number `2π`.\n\n!!! note\n Depending on the format of the input value, the closest representable value to 2π may\n be less than 2π. For example, the expression `mod2pi(2π)` will not return `0`, because\n the intermediate value of `2*π` is a `Float64` and `2*Float64(π) < 2*big(π)`. See\n [`rem2pi`](@ref) for more refined control of this behavior.\n\n# Examples\n```jldoctest\njulia> mod2pi(9*pi/4)\n0.7853981633974481\n```\n"}],"Base.Math.acsc":[{"Tuple{Number}":" acsc(x)\nCompute the inverse cosecant of `x`, where the output is in radians. "}],"Base.Math.secd":[{"Tuple{Number}":" secd(x)\n\nCompute the secant of `x`, where `x` is in degrees.\n"}],"Base.Math.highword":[{"Tuple{Float64}":" highword(x)\n\nReturn the high word of `x` as a `UInt32`.\n"}],"Base.Math.cotd":[{"Tuple{Number}":" cotd(x)\n\nCompute the cotangent of `x`, where `x` is in degrees.\n"}],"Base.Math.csch":[{"Tuple{Number}":" csch(x)\n\nCompute the hyperbolic cosecant of `x`.\n"}],"Base.Math.acotd":[{"Tuple{Any}":" acotd(x)\n\nCompute the inverse cotangent of `x`, where the output is in degrees. "}],"Base.Math.asind":[{"Tuple{Any}":" asind(x)\n\nCompute the inverse sine of `x`, where the output is in degrees. "}],"Base.Math.modf":[{"Tuple{Any}":" modf(x)\n\nReturn a tuple `(fpart, ipart)` of the fractional and integral parts of a number. Both parts\nhave the same sign as the argument.\n\n# Examples\n```jldoctest\njulia> modf(3.5)\n(0.5, 3.0)\n\njulia> modf(-3.5)\n(-0.5, -3.0)\n```\n"}],"Base.Math.frexp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" frexp(val)\n\nReturn `(x,exp)` such that `x` has a magnitude in the interval ``[1/2, 1)`` or 0,\nand `val` is equal to ``x \\times 2^{exp}``.\n"}],"Base.Math._approx_cbrt":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" _approx_cbrt(x)\n\nApproximate `cbrt` to 5 bits precision\n\n cbrt(2^e * (1+m)) ≈ 2^(e÷3) * (1 + (e%3+m)÷3)\n\nwhere:\n - `e` is integral and >= 0\n - `m` is real and in [0, 1),\n - `÷` is integer division\n - `%` is integer remainder\n\nThe RHS is always >= the LHS and has a maximum relative error of about 1 in 16.\nAdding a bias of -0.03306235651 to the `(e%3+m)÷3` term reduces the error to about 1 in\n32.\n\nWith the IEEE floating point representation, for finite positive normal values, ordinary\ninteger division of the value in bits magically gives almost exactly the RHS of the above\nprovided we first subtract the exponent bias and later add it back. We do the\nsubtraction virtually to keep e >= 0 so that ordinary integer division rounds towards\nminus infinity; this is also efficient. All operations can be done in 32-bit.\n\nThese implementations assume that NaNs, infinities and zeros have already been filtered.\n"}],"Base.Math.acoth":[{"Tuple{Number}":" acoth(x)\nCompute the inverse hyperbolic cotangent of `x`. "}],"Base.Math.sech":[{"Tuple{Number}":" sech(x)\n\nCompute the hyperbolic secant of `x`.\n"}],"Base.Math.cospi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" cospi(x)\n\nCompute ``\\cos(\\pi x)`` more accurately than `cos(pi*x)`, especially for large `x`.\n"}],"Base.Math.cbrt":[{"Tuple{Real}":" cbrt(x::Real)\n\nReturn the cube root of `x`, i.e. ``x^{1/3}``. Negative values are accepted\n(returning the negative real root when ``x < 0``).\n\nThe prefix operator `∛` is equivalent to `cbrt`.\n\n# Examples\n```jldoctest\njulia> cbrt(big(27))\n3.0\n\njulia> cbrt(big(-27))\n-3.0\n```\n"}],"Base.Math.acosd":[{"Tuple{Any}":" acosd(x)\n\nCompute the inverse cosine of `x`, where the output is in degrees. "}],"Base.Math.cscd":[{"Tuple{Number}":" cscd(x)\n\nCompute the cosecant of `x`, where `x` is in degrees.\n"}],"Base.Math.@horner":[{"Tuple{Any,Vararg{Any,N} where N}":" @horner(x, p...)\n\nEvaluate `p[1] + x * (p[2] + x * (....))`, i.e. a polynomial via Horner's rule.\n"}],"Base.Math.acot":[{"Tuple{Number}":" acot(x)\nCompute the inverse cotangent of `x`, where the output is in radians. "}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Meta_docstrings.json b/zh_CN/docstrings/Meta_docstrings.json new file mode 100644 index 00000000..7b8c55d0 --- /dev/null +++ b/zh_CN/docstrings/Meta_docstrings.json @@ -0,0 +1 @@ +{"Base.Meta.isexpr":[{"Tuple{Any,Symbol}":" Meta.isexpr(ex, head[, n])::Bool\n\nCheck if `ex` is an expression with head `head` and `n` arguments.\n\n# Examples\n```jldoctest\njulia> ex = :(f(x))\n:(f(x))\n\njulia> Meta.isexpr(ex, :block)\nfalse\n\njulia> Meta.isexpr(ex, :call)\ntrue\n\njulia> Meta.isexpr(ex, [:block, :call]) # multiple possible heads\ntrue\n\njulia> Meta.isexpr(ex, :call, 1)\nfalse\n\njulia> Meta.isexpr(ex, :call, 2)\ntrue\n```\n"}],"Base.Meta.@dump":[{"Tuple{Any}":" @dump expr\n\nShow every part of the representation of the given expression. Equivalent to\n[`dump(:(expr))`](@ref dump).\n"}],"Base.Meta.@lower":[{"Tuple{Any}":" @lower [m] x\n\nReturn lowered form of the expression `x` in module `m`.\nBy default `m` is the module in which the macro is called.\nSee also [`lower`](@ref).\n"}],"Base.Meta.show_sexpr":[{"Tuple{Any}":" Meta.show_sexpr([io::IO,], ex)\n\nShow expression `ex` as a lisp style S-expression.\n\n# Examples\n```jldoctest\njulia> Meta.show_sexpr(:(f(x, g(y,z))))\n(:call, :f, :x, (:call, :g, :y, :z))\n```\n"}],"Base.Meta.lower":[{"Tuple{Module,Any}":" lower(m, x)\n\nTakes the expression `x` and returns an equivalent expression in lowered form\nfor executing in module `m`.\nSee also [`code_lowered`](@ref).\n"}],"Base.Meta.ParseError":[{"Union{}":" ParseError(msg)\n\nThe expression passed to the [`parse`](@ref) function could not be interpreted as a valid Julia\nexpression.\n"}],"Base.Meta.quot":[{"Tuple{Any}":" Meta.quot(ex)::Expr\n\nQuote expression `ex` to produce an expression with head `quote`. This can for instance be used to represent objects of type `Expr` in the AST.\nSee also the manual section about [QuoteNode](@ref man-quote-node).\n\n# Examples\n```jldoctest\njulia> eval(Meta.quot(:x))\n:x\n\njulia> dump(Meta.quot(:x))\nExpr\n head: Symbol quote\n args: Array{Any}((1,))\n 1: Symbol x\n\njulia> eval(Meta.quot(:(1+2)))\n:(1 + 2)\n```\n"}],"Base.Meta.parse":[{"Tuple{AbstractString}":" parse(str; raise=true, depwarn=true)\n\nParse the expression string greedily, returning a single expression. An error is thrown if\nthere are additional characters after the first expression. If `raise` is `true` (default),\nsyntax errors will raise an error; otherwise, `parse` will return an expression that will\nraise an error upon evaluation. If `depwarn` is `false`, deprecation warnings will be\nsuppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3\")\n:(x = 3)\n\njulia> Meta.parse(\"x = \")\n:($(Expr(:incomplete, \"incomplete: premature end of input\")))\n\njulia> Meta.parse(\"1.0.2\")\nERROR: Base.Meta.ParseError(\"invalid numeric constant \\\"1.0.\\\"\")\nStacktrace:\n[...]\n\njulia> Meta.parse(\"1.0.2\"; raise = false)\n:($(Expr(:error, \"invalid numeric constant \\\"1.0.\\\"\")))\n```\n"},{"Tuple{AbstractString,Integer}":" parse(str, start; greedy=true, raise=true, depwarn=true)\n\nParse the expression string and return an expression (which could later be passed to eval\nfor execution). `start` is the index of the first character to start parsing. If `greedy` is\n`true` (default), `parse` will try to consume as much input as it can; otherwise, it will\nstop as soon as it has parsed a valid expression. Incomplete but otherwise syntactically\nvalid expressions will return `Expr(:incomplete, \"(error message)\")`. If `raise` is `true`\n(default), syntax errors other than incomplete expressions will raise an error. If `raise`\nis `false`, `parse` will return an expression that will raise an error upon evaluation. If\n`depwarn` is `false`, deprecation warnings will be suppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3, y = 5\", 7)\n(:(y = 5), 13)\n\njulia> Meta.parse(\"x = 3, y = 5\", 5)\n(:((3, y) = 5), 13)\n```\n"}],"Base.Meta.partially_inline!":[{"Tuple{Array{Any,1},Array{Any,1},Any,Array{Any,1},Int64,Int64,Symbol}":" partially_inline!(code::Vector{Any}, slot_replacements::Vector{Any},\n type_signature::Type{<:Tuple}, static_param_values::Vector{Any},\n slot_offset::Int, statement_offset::Int,\n boundscheck::Symbol)\n\nReturn `code` after performing an in-place partial inlining pass on the Julia IR stored\nwithin it.\n\nThe kind of inlining transformations performed by this function are those that are generally\npossible given only a runtime type signature for a method invocation and the corresponding\nmethod's lowered IR. Thus, this function is mainly useful when preparing Julia IR to be\nemitted from a `@generated` function.\n\nThe performed transformations are:\n\n- replace slot numbers in the range `1:length(slot_replacements)` with the corresponding items in `slot_replacements`\n- increment other slot numbers by `slot_offset`\n- substitute static parameter placeholders (e.g. `Expr(:static_parameter, 1)`) with the corresponding\nvalues in `static_param_values`\n- increment any statement indices present in the IR (`GotoNode`s, `SSAValue`s, etc.) by `statement_offset`\n(useful when the caller plans to prepend new statements to the IR)\n- turn off boundschecking (if `boundscheck === :off`) or propagate boundschecking (if `boundscheck === :propagate`)\n\nThis function is similar to `Core.Compiler.ssa_substitute!`, but works on pre-type-inference\nIR instead of the optimizer's IR.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Multimedia_docstrings.json b/zh_CN/docstrings/Multimedia_docstrings.json new file mode 100644 index 00000000..915485ac --- /dev/null +++ b/zh_CN/docstrings/Multimedia_docstrings.json @@ -0,0 +1 @@ +{"Base.Multimedia.showable":[{"Union{Tuple{mime}, Tuple{MIME{mime},Any}} where mime":" showable(mime, x)\n\nReturns a boolean value indicating whether or not the object `x` can be written\nas the given `mime` type.\n\n(By default, this is determined automatically by the existence of the\ncorresponding [`show`](@ref) method for `typeof(x)`. Some types provide custom `showable`\nmethods; for example, if the available MIME formats depend on the *value* of `x`.)\n\n# Examples\n```jldoctest\njulia> showable(MIME(\"text/plain\"), rand(5))\ntrue\n\njulia> showable(\"img/png\", rand(5))\nfalse\n```\n"}],"Base.Multimedia.redisplay":[{"Tuple{Any}":" redisplay(x)\n redisplay(d::AbstractDisplay, x)\n redisplay(mime, x)\n redisplay(d::AbstractDisplay, mime, x)\n\nBy default, the `redisplay` functions simply call [`display`](@ref).\nHowever, some display backends may override `redisplay` to modify an existing\ndisplay of `x` (if any).\nUsing `redisplay` is also a hint to the backend that `x` may be redisplayed\nseveral times, and the backend may choose to defer the display until\n(for example) the next interactive prompt.\n"}],"Base.Multimedia.istextmime":[{"Tuple{MIME}":" istextmime(m::MIME)\n\nDetermine whether a MIME type is text data. MIME types are assumed to be binary\ndata except for a set of types known to be text data (possibly Unicode).\n\n# Examples\n```jldoctest\njulia> istextmime(MIME(\"text/plain\"))\ntrue\n\njulia> istextmime(MIME(\"img/png\"))\nfalse\n```\n"}],"Base.Multimedia.MIME":[{"Union{}":" MIME\n\nA type representing a standard internet data format. \"MIME\" stands for\n\"Multipurpose Internet Mail Extensions\", since the standard was originally\nused to describe multimedia attachments to email messages.\n\nA `MIME` object can be passed as the second argument to [`show`](@ref) to\nrequest output in that format.\n\n# Examples\n```jldoctest\njulia> show(stdout, MIME(\"text/plain\"), \"hi\")\n\"hi\"\n```\n"}],"Base.Multimedia.displayable":[{"Tuple{AbstractDisplay,AbstractString}":" displayable(mime) -> Bool\n displayable(d::AbstractDisplay, mime) -> Bool\n\nReturns a boolean value indicating whether the given `mime` type (string) is displayable by\nany of the displays in the current display stack, or specifically by the display `d` in the\nsecond variant.\n"}],"Base.Multimedia.display":[{"Tuple{Any}":" display(x)\n display(d::AbstractDisplay, x)\n display(mime, x)\n display(d::AbstractDisplay, mime, x)\n\nAbstractDisplay `x` using the topmost applicable display in the display stack, typically using the\nrichest supported multimedia output for `x`, with plain-text [`stdout`](@ref) output as a fallback.\nThe `display(d, x)` variant attempts to display `x` on the given display `d` only, throwing\na [`MethodError`](@ref) if `d` cannot display objects of this type.\n\nIn general, you cannot assume that `display` output goes to `stdout` (unlike [`print(x)`](@ref) or\n[`show(x)`](@ref)). For example, `display(x)` may open up a separate window with an image.\n`display(x)` means \"show `x` in the best way you can for the current output device(s).\"\nIf you want REPL-like text output that is guaranteed to go to `stdout`, use\n[`show(stdout, \"text/plain\", x)`](@ref) instead.\n\nThere are also two variants with a `mime` argument (a MIME type string, such as\n`\"image/png\"`), which attempt to display `x` using the requested MIME type *only*, throwing\na `MethodError` if this type is not supported by either the display(s) or by `x`. With these\nvariants, one can also supply the \"raw\" data in the requested MIME type by passing\n`x::AbstractString` (for MIME types with text-based storage, such as text/html or\napplication/postscript) or `x::Vector{UInt8}` (for binary MIME types).\n"}],"Base.Multimedia.pushdisplay":[{"Tuple{AbstractDisplay}":" pushdisplay(d::AbstractDisplay)\n\nPushes a new display `d` on top of the global display-backend stack. Calling `display(x)` or\n`display(mime, x)` will display `x` on the topmost compatible backend in the stack (i.e.,\nthe topmost backend that does not throw a [`MethodError`](@ref)).\n"}],"Base.Multimedia.@MIME_str":[{"Tuple{Any}":" @MIME_str\n\nA convenience macro for writing [`MIME`](@ref) types, typically used when\nadding methods to [`show`](@ref).\nFor example the syntax `show(io::IO, ::MIME\"text/html\", x::MyType) = ...`\ncould be used to define how to write an HTML representation of `MyType`.\n"}],"Base.Multimedia.popdisplay":[{"Tuple{}":" popdisplay()\n popdisplay(d::AbstractDisplay)\n\nPop the topmost backend off of the display-backend stack, or the topmost copy of `d` in the\nsecond variant.\n"}],"Base.Multimedia.TextDisplay":[{"Union{}":" TextDisplay(io::IO)\n\nReturns a `TextDisplay <: AbstractDisplay`, which displays any object as the text/plain MIME type\n(by default), writing the text representation to the given I/O stream. (This is how\nobjects are printed in the Julia REPL.)\n"}],"Base.Multimedia.AbstractDisplay":[{"Union{}":" AbstractDisplay\n\nAbstract supertype for rich display output devices. [`TextDisplay`](@ref) is a subtype\nof this.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Rounding_docstrings.json b/zh_CN/docstrings/Rounding_docstrings.json new file mode 100644 index 00000000..6f8bcbef --- /dev/null +++ b/zh_CN/docstrings/Rounding_docstrings.json @@ -0,0 +1 @@ +{"Base.Rounding.get_zero_subnormals":[{"Tuple{}":" get_zero_subnormals() -> Bool\n\nReturn `false` if operations on subnormal floating-point values (\"denormals\") obey rules\nfor IEEE arithmetic, and `true` if they might be converted to zeros.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.RoundNearestTiesUp":[{"Union{}":" RoundNearestTiesUp\n\nRounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.RoundUp":[{"Union{}":" RoundUp\n\n[`round`](@ref) using this rounding mode is an alias for [`ceil`](@ref).\n"}],"Base.Rounding.setrounding":[{"Tuple{Type,Any}":" setrounding(T, mode)\n\nSet the rounding mode of floating point type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref),\n[`/`](@ref) and [`sqrt`](@ref)) and type conversion. Other numerical\nfunctions may give incorrect or invalid values when using rounding modes other than the\ndefault [`RoundNearest`](@ref).\n\nNote that this is currently only supported for `T == BigFloat`.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},RoundingMode}} where T":" setrounding(f::Function, T, mode)\n\nChange the rounding mode of floating point type `T` for the duration of `f`. It is logically\nequivalent to:\n\n old = rounding(T)\n setrounding(T, mode)\n f()\n setrounding(T, old)\n\nSee [`RoundingMode`](@ref) for available rounding modes.\n"}],"Base.Rounding.RoundDown":[{"Union{}":" RoundDown\n\n[`round`](@ref) using this rounding mode is an alias for [`floor`](@ref).\n"}],"Base.Rounding.RoundFromZero":[{"Union{}":" RoundFromZero\n\nRounds away from zero.\nThis rounding mode may only be used with `T == BigFloat` inputs to [`round`](@ref).\n\n# Examples\n```jldoctest\njulia> BigFloat(\"1.0000000000000001\", 5, RoundFromZero)\n1.06\n```\n"}],"Base.Rounding.set_zero_subnormals":[{"Tuple{Bool}":" set_zero_subnormals(yes::Bool) -> Bool\n\nIf `yes` is `false`, subsequent floating-point operations follow rules for IEEE arithmetic\non subnormal values (\"denormals\"). Otherwise, floating-point operations are permitted (but\nnot required) to convert subnormal inputs or outputs to zero. Returns `true` unless\n`yes==true` but the hardware does not support zeroing of subnormal numbers.\n\n`set_zero_subnormals(true)` can speed up some computations on some hardware. However, it can\nbreak identities such as `(x-y==0) == (x==y)`.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.rounding":[{"Union{}":" rounding(T)\n\nGet the current floating point rounding mode for type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref), [`/`](@ref)\nand [`sqrt`](@ref)) and type conversion.\n\nSee [`RoundingMode`](@ref) for available modes.\n"}],"Base.Rounding.RoundNearest":[{"Union{}":" RoundNearest\n\nThe default rounding mode. Rounds to the nearest integer, with ties (fractional values of\n0.5) being rounded to the nearest even integer.\n"}],"Base.Rounding.RoundToZero":[{"Union{}":" RoundToZero\n\n[`round`](@ref) using this rounding mode is an alias for [`trunc`](@ref).\n"}],"Base.Rounding.RoundNearestTiesAway":[{"Union{}":" RoundNearestTiesAway\n\nRounds to nearest integer, with ties rounded away from zero (C/C++\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.RoundingMode":[{"Union{}":" RoundingMode\n\nA type used for controlling the rounding mode of floating point operations (via\n[`rounding`](@ref)/[`setrounding`](@ref) functions), or as\noptional arguments for rounding to the nearest integer (via the [`round`](@ref)\nfunction).\n\nCurrently supported rounding modes are:\n\n- [`RoundNearest`](@ref) (default)\n- [`RoundNearestTiesAway`](@ref)\n- [`RoundNearestTiesUp`](@ref)\n- [`RoundToZero`](@ref)\n- [`RoundFromZero`](@ref) ([`BigFloat`](@ref) only)\n- [`RoundUp`](@ref)\n- [`RoundDown`](@ref)\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/SimdLoop_docstrings.json b/zh_CN/docstrings/SimdLoop_docstrings.json new file mode 100644 index 00000000..f4c76059 --- /dev/null +++ b/zh_CN/docstrings/SimdLoop_docstrings.json @@ -0,0 +1 @@ +{"Base.SimdLoop.@simd":[{"Tuple{Any}":" @simd\n\nAnnotate a `for` loop to allow the compiler to take extra liberties to allow loop re-ordering\n\n!!! warning\n This feature is experimental and could change or disappear in future versions of Julia.\n Incorrect use of the `@simd` macro may cause unexpected results.\n\nThe object iterated over in a `@simd for` loop should be a one-dimensional range.\nBy using `@simd`, you are asserting several properties of the loop:\n\n* It is safe to execute iterations in arbitrary or overlapping order, with special consideration for reduction variables.\n* Floating-point operations on reduction variables can be reordered, possibly causing different results than without `@simd`.\n\nIn many cases, Julia is able to automatically vectorize inner for loops without the use of `@simd`.\nUsing `@simd` gives the compiler a little extra leeway to make it possible in more situations. In\neither case, your inner loop should have the following properties to allow vectorization:\n\n* The loop must be an innermost loop\n* The loop body must be straight-line code. Therefore, [`@inbounds`](@ref) is\n currently needed for all array accesses. The compiler can sometimes turn\n short `&&`, `||`, and `?:` expressions into straight-line code if it is safe\n to evaluate all operands unconditionally. Consider using the [`ifelse`](@ref)\n function instead of `?:` in the loop if it is safe to do so.\n* Accesses must have a stride pattern and cannot be \"gathers\" (random-index\n reads) or \"scatters\" (random-index writes).\n* The stride should be unit stride.\n\n!!! note\n The `@simd` does not assert by default that the loop is completely free of loop-carried\n memory dependencies, which is an assumption that can easily be violated in generic code.\n If you are writing non-generic code, you can use `@simd ivdep for ... end` to also assert that:\n\n* There exists no loop-carried memory dependencies\n* No iteration ever waits on a previous iteration to make forward progress.\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Sys_docstrings.json b/zh_CN/docstrings/Sys_docstrings.json new file mode 100644 index 00000000..b600f389 --- /dev/null +++ b/zh_CN/docstrings/Sys_docstrings.json @@ -0,0 +1 @@ +{"Base.Sys.islinux":[{"Tuple{Symbol}":" Sys.islinux([os])\n\nPredicate for testing if the OS is a derivative of Linux.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isnetbsd":[{"Tuple{Symbol}":" Sys.isnetbsd([os])\n\nPredicate for testing if the OS is a derivative of NetBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on NetBSD but also on\n other BSD-based systems. `Sys.isnetbsd()` refers only to NetBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.isjsvm":[{"Tuple{Symbol}":" Sys.isjsvm([os])\n\nPredicate for testing if Julia is running in a JavaScript VM (JSVM),\nincluding e.g. a WebAssembly JavaScript embedding in a web browser.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.Sys.STDLIB":[{"Union{}":" Sys.STDLIB\n\nA string containing the full path to the directory containing the `stdlib` packages.\n"}],"Base.Sys.set_process_title":[{"Tuple{AbstractString}":" Sys.set_process_title(title::AbstractString)\n\nSet the process title. No-op on some operating systems.\n"}],"Base.Sys.isopenbsd":[{"Tuple{Symbol}":" Sys.isopenbsd([os])\n\nPredicate for testing if the OS is a derivative of OpenBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on OpenBSD but also on\n other BSD-based systems. `Sys.isopenbsd()` refers only to OpenBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.free_memory":[{"Tuple{}":" Sys.free_memory()\n\nGet the total free memory in RAM in kilobytes.\n"}],"Base.Sys.windows_version":[{"Union{}":" Sys.windows_version()\n\nReturn the version number for the Windows NT Kernel as a `VersionNumber`,\ni.e. `v\"major.minor.build\"`, or `v\"0.0.0\"` if this is not running on Windows.\n"}],"Base.Sys.BINDIR":[{"Union{}":" Sys.BINDIR\n\nA string containing the full path to the directory containing the `julia` executable.\n"}],"Base.Sys.WORD_SIZE":[{"Union{}":" Sys.WORD_SIZE\n\nStandard word size on the current machine, in bits.\n"}],"Base.Sys.isapple":[{"Tuple{Symbol}":" Sys.isapple([os])\n\nPredicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.maxrss":[{"Tuple{}":" Sys.maxrss()\n\nGet the maximum resident set size utilized in bytes.\nSee also:\n - man page of getrusage(2) on Linux and FreeBSD.\n - windows api `GetProcessMemoryInfo`\n"}],"Base.Sys.MACHINE":[{"Union{}":" Sys.MACHINE\n\nA string containing the build triple.\n"}],"Base.Sys.CPU_THREADS":[{"Union{}":" Sys.CPU_THREADS\n\nThe number of logical CPU cores available in the system, i.e. the number of threads\nthat the CPU can run concurrently. Note that this is not necessarily the number of\nCPU cores, for example, in the presence of\n[hyper-threading](https://en.wikipedia.org/wiki/Hyper-threading).\n\nSee Hwloc.jl or CpuId.jl for extended information, including number of physical cores.\n"}],"Base.Sys.isexecutable":[{"Tuple{String}":" Sys.isexecutable(path::String)\n\nReturn `true` if the given `path` has executable permissions.\n"}],"Base.Sys.isbsd":[{"Tuple{Symbol}":" Sys.isbsd([os])\n\nPredicate for testing if the OS is a derivative of BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n The Darwin kernel descends from BSD, which means that `Sys.isbsd()` is\n `true` on macOS systems. To exclude macOS from a predicate, use\n `Sys.isbsd() && !Sys.isapple()`.\n"}],"Base.Sys.KERNEL":[{"Union{}":" Sys.KERNEL\n\nA symbol representing the name of the operating system, as returned by `uname` of the build configuration.\n"}],"Base.Sys.which":[{"Tuple{String}":" Sys.which(program_name::String)\n\nGiven a program name, search the current `PATH` to find the first binary with\nthe proper executable permissions that can be run and return an absolute path\nto it, or return `nothing` if no such program is available. If a path with\na directory in it is passed in for `program_name`, tests that exact path\nfor executable permissions only (with `.exe` and `.com` extensions added on\nWindows platforms); no searching of `PATH` is performed.\n"}],"Base.Sys.loadavg":[{"Tuple{}":" Sys.loadavg()\n\nGet the load average. See: https://en.wikipedia.org/wiki/Load_(computing).\n"}],"Base.Sys.isunix":[{"Tuple{Symbol}":" Sys.isunix([os])\n\nPredicate for testing if the OS provides a Unix-like interface.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isfreebsd":[{"Tuple{Symbol}":" Sys.isfreebsd([os])\n\nPredicate for testing if the OS is a derivative of FreeBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on FreeBSD but also on\n other BSD-based systems. `Sys.isfreebsd()` refers only to FreeBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.get_process_title":[{"Tuple{}":" Sys.get_process_title()\n\nGet the process title. On some systems, will always return an empty string.\n"}],"Base.Sys.total_memory":[{"Tuple{}":" Sys.total_memory()\n\nGet the total memory in RAM (including that which is currently used) in kilobytes.\n"}],"Base.Sys.ARCH":[{"Union{}":" Sys.ARCH\n\nA symbol representing the architecture of the build configuration.\n"}],"Base.Sys.uptime":[{"Tuple{}":" Sys.uptime()\n\nGets the current system uptime in seconds.\n"}],"Base.Sys.isdragonfly":[{"Tuple{Symbol}":" Sys.isdragonfly([os])\n\nPredicate for testing if the OS is a derivative of DragonFly BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on DragonFly but also on\n other BSD-based systems. `Sys.isdragonfly()` refers only to DragonFly.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.iswindows":[{"Tuple{Symbol}":" Sys.iswindows([os])\n\nPredicate for testing if the OS is a derivative of Microsoft Windows NT.\nSee documentation in [Handling Operating System Variation](@ref).\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Threads_docstrings.json b/zh_CN/docstrings/Threads_docstrings.json new file mode 100644 index 00000000..f2c21a82 --- /dev/null +++ b/zh_CN/docstrings/Threads_docstrings.json @@ -0,0 +1 @@ +{"Base.Threads.atomic_max!":[{"Union{}":" Threads.atomic_max!(x::Atomic{T}, val::T) where T\n\nAtomically store the maximum of `x` and `val` in `x`\n\nPerforms `x[] = max(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw max` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_max!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.resize_nthreads!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}}":" resize_nthreads!(A, copyvalue=A[1])\n\nResize the array `A` to length [`nthreads()`](@ref). Any new\nelements that are allocated are initialized to `deepcopy(copyvalue)`,\nwhere `copyvalue` defaults to `A[1]`.\n\nThis is typically used to allocate per-thread variables, and\nshould be called in `__init__` if `A` is a global constant.\n"}],"Base.Threads.atomic_fence":[{"Tuple{}":" Threads.atomic_fence()\n\nInsert a sequential-consistency memory fence\n\nInserts a memory fence with sequentially-consistent ordering\nsemantics. There are algorithms where this is needed, i.e. where an\nacquire/release ordering is insufficient.\n\nThis is likely a very expensive operation. Given that all other atomic\noperations in Julia already have acquire/release semantics, explicit\nfences should not be necessary in most cases.\n\nFor further details, see LLVM's `fence` instruction.\n"}],"Base.Threads.Atomic":[{"Union{}":" Threads.Atomic{T}\n\nHolds a reference to an object of type `T`, ensuring that it is only\naccessed atomically, i.e. in a thread-safe manner.\n\nOnly certain \"simple\" types can be used atomically, namely the\nprimitive boolean, integer, and float-point types. These are `Bool`,\n`Int8`...`Int128`, `UInt8`...`UInt128`, and `Float16`...`Float64`.\n\nNew atomic objects can be created from a non-atomic values; if none is\nspecified, the atomic object is initialized with zero.\n\nAtomic objects can be accessed using the `[]` notation:\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> x[] = 1\n1\n\njulia> x[]\n1\n```\n\nAtomic operations use an `atomic_` prefix, such as [`atomic_add!`](@ref),\n[`atomic_xchg!`](@ref), etc.\n"}],"Base.Threads.atomic_nand!":[{"Union{}":" Threads.atomic_nand!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-nand (not-and) `x` with `val`\n\nPerforms `x[] = ~(x[] & val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw nand` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_nand!(x, 2)\n3\n\njulia> x[]\n-3\n```\n"}],"Base.Threads.atomic_min!":[{"Union{}":" Threads.atomic_min!(x::Atomic{T}, val::T) where T\n\nAtomically store the minimum of `x` and `val` in `x`\n\nPerforms `x[] = min(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw min` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(7)\nBase.Threads.Atomic{Int64}(7)\n\njulia> Threads.atomic_min!(x, 5)\n7\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@spawn":[{"Tuple{Any}":" Threads.@spawn expr\n\nCreate and run a [`Task`](@ref) on any available thread. To wait for the task to\nfinish, call [`wait`](@ref) on the result of this macro, or call [`fetch`](@ref)\nto wait and then obtain its return value.\n\nValues can be interpolated into `@spawn` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! note\n This feature is currently considered experimental.\n\n!!! compat \"Julia 1.3\"\n This macro is available as of Julia 1.3.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.Threads.Condition":[{"Union{}":" Threads.Condition([lock])\n\nA thread-safe version of [`Base.Condition`](@ref).\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"}],"Base.Threads.atomic_sub!":[{"Union{}":" Threads.atomic_sub!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically subtract `val` from `x`\n\nPerforms `x[] -= val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw sub` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_sub!(x, 2)\n3\n\njulia> x[]\n1\n```\n"}],"Base.Threads.threadid":[{"Tuple{}":" Threads.threadid()\n\nGet the ID number of the current thread of execution. The master thread has ID `1`.\n"}],"Base.Threads.atomic_cas!":[{"Union{}":" Threads.atomic_cas!(x::Atomic{T}, cmp::T, newval::T) where T\n\nAtomically compare-and-set `x`\n\nAtomically compares the value in `x` with `cmp`. If equal, write\n`newval` to `x`. Otherwise, leaves `x` unmodified. Returns the old\nvalue in `x`. By comparing the returned value to `cmp` (via `===`) one\nknows whether `x` was modified and now holds the new value `newval`.\n\nFor further details, see LLVM's `cmpxchg` instruction.\n\nThis function can be used to implement transactional semantics. Before\nthe transaction, one records the value in `x`. After the transaction,\nthe new value is stored only if `x` has not been modified in the mean\ntime.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 4, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 3, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(2)\n```\n"}],"Base.Threads.atomic_xor!":[{"Union{}":" Threads.atomic_xor!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-xor (exclusive-or) `x` with `val`\n\nPerforms `x[] $= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw xor` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_xor!(x, 7)\n5\n\njulia> x[]\n2\n```\n"}],"Base.Threads.atomic_and!":[{"Union{}":" Threads.atomic_and!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-and `x` with `val`\n\nPerforms `x[] &= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw and` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_and!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}],"Base.Threads.nthreads":[{"Tuple{}":" Threads.nthreads()\n\nGet the number of threads available to the Julia process. This is the inclusive upper bound\non `threadid()`.\n"}],"Base.Threads.atomic_add!":[{"Union{}":" Threads.atomic_add!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically add `val` to `x`\n\nPerforms `x[] += val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw add` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_add!(x, 2)\n3\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@threads":[{"Tuple":" Threads.@threads\n\nA macro to parallelize a for-loop to run with multiple threads. This spawns `nthreads()`\nnumber of threads, splits the iteration space amongst them, and iterates in parallel.\nA barrier is placed at the end of the loop which waits for all the threads to finish\nexecution, and the loop returns.\n"}],"Base.Threads.atomic_or!":[{"Union{}":" Threads.atomic_or!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-or `x` with `val`\n\nPerforms `x[] |= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw or` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_or!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.SpinLock":[{"Union{}":" SpinLock()\n\nCreate a non-reentrant, test-and-test-and-set spin lock.\nRecursive use will result in a deadlock.\nThis kind of lock should only be used around code that takes little time\nto execute and does not block (e.g. perform I/O).\nIn general, [`ReentrantLock`](@ref) should be used instead.\n\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n\nTest-and-test-and-set spin locks are quickest up to about 30ish\ncontending threads. If you have more contention than that, different\nsynchronization approaches should be considered.\n"}],"Base.Threads.atomic_xchg!":[{"Union{}":" Threads.atomic_xchg!(x::Atomic{T}, newval::T) where T\n\nAtomically exchange the value in `x`\n\nAtomically exchanges the value in `x` with `newval`. Returns the **old**\nvalue.\n\nFor further details, see LLVM's `atomicrmw xchg` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_xchg!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}]} \ No newline at end of file diff --git a/zh_CN/docstrings/Unicode_docstrings.json b/zh_CN/docstrings/Unicode_docstrings.json new file mode 100644 index 00000000..2a3de9a5 --- /dev/null +++ b/zh_CN/docstrings/Unicode_docstrings.json @@ -0,0 +1 @@ +{"Base.Unicode.lowercasefirst":[{"Tuple{AbstractString}":" lowercasefirst(s::AbstractString)\n\nReturn `s` with the first character converted to lowercase.\n\nSee also: [`uppercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> lowercasefirst(\"Julia\")\n\"julia\"\n```\n"}],"Base.Unicode.titlecase":[{"Tuple{AbstractString}":" titlecase(s::AbstractString; [wordsep::Function], strict::Bool=true) -> String\n\nCapitalize the first character of each word in `s`;\nif `strict` is true, every other character is\nconverted to lowercase, otherwise they are left unchanged.\nBy default, all non-letters are considered as word separators;\na predicate can be passed as the `wordsep` keyword to determine\nwhich characters should be considered as word separators.\nSee also [`uppercasefirst`](@ref) to capitalize only the first\ncharacter in `s`.\n\n# Examples\n```jldoctest\njulia> titlecase(\"the JULIA programming language\")\n\"The Julia Programming Language\"\n\njulia> titlecase(\"ISS - international space station\", strict=false)\n\"ISS - International Space Station\"\n\njulia> titlecase(\"a-a b-b\", wordsep = c->c==' ')\n\"A-a B-b\"\n```\n"}],"Base.Unicode.textwidth":[{"Tuple{AbstractChar}":" textwidth(c)\n\nGive the number of columns needed to print a character.\n\n# Examples\n```jldoctest\njulia> textwidth('α')\n1\n\njulia> textwidth('⛵')\n2\n```\n"},{"Tuple{AbstractString}":" textwidth(s::AbstractString)\n\nGive the number of columns needed to print a string.\n\n# Examples\n```jldoctest\njulia> textwidth(\"March\")\n5\n```\n"}],"Base.Unicode.isletter":[{"Tuple{AbstractChar}":" isletter(c::AbstractChar) -> Bool\n\nTest whether a character is a letter.\nA character is classified as a letter if it belongs to the Unicode general\ncategory Letter, i.e. a character whose category code begins with 'L'.\n\n# Examples\n```jldoctest\njulia> isletter('❤')\nfalse\n\njulia> isletter('α')\ntrue\n\njulia> isletter('9')\nfalse\n```\n"}],"Base.Unicode.lowercase":[{"Tuple{AbstractString}":" lowercase(s::AbstractString)\n\nReturn `s` with all characters converted to lowercase.\n\n# Examples\n```jldoctest\njulia> lowercase(\"STRINGS AND THINGS\")\n\"strings and things\"\n```\n"}],"Base.Unicode.iscased":[{"Tuple{AbstractChar}":" iscased(c::AbstractChar) -> Bool\n\nTests whether a character is cased, i.e. is lower-, upper- or title-cased.\n"}],"Base.Unicode.iscntrl":[{"Tuple{AbstractChar}":" iscntrl(c::AbstractChar) -> Bool\n\nTests whether a character is a control character.\nControl characters are the non-printing characters of the Latin-1 subset of Unicode.\n\n# Examples\n```jldoctest\njulia> iscntrl('\\x01')\ntrue\n\njulia> iscntrl('a')\nfalse\n```\n"}],"Base.Unicode.uppercasefirst":[{"Tuple{AbstractString}":" uppercasefirst(s::AbstractString) -> String\n\nReturn `s` with the first character converted to uppercase (technically \"title\ncase\" for Unicode). See also [`titlecase`](@ref) to capitalize the first\ncharacter of every word in `s`.\n\nSee also: [`lowercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> uppercasefirst(\"python\")\n\"Python\"\n```\n"}],"Base.Unicode.isuppercase":[{"Tuple{AbstractChar}":" isuppercase(c::AbstractChar) -> Bool\n\nTests whether a character is an uppercase letter.\nA character is classified as uppercase if it belongs to Unicode category Lu,\nLetter: Uppercase, or Lt, Letter: Titlecase.\n\n# Examples\n```jldoctest\njulia> isuppercase('γ')\nfalse\n\njulia> isuppercase('Γ')\ntrue\n\njulia> isuppercase('❤')\nfalse\n```\n"}],"Base.Unicode.ispunct":[{"Tuple{AbstractChar}":" ispunct(c::AbstractChar) -> Bool\n\nTests whether a character belongs to the Unicode general category Punctuation, i.e. a\ncharacter whose category code begins with 'P'.\n\n# Examples\n```jldoctest\njulia> ispunct('α')\nfalse\n\njulia> ispunct('/')\ntrue\n\njulia> ispunct(';')\ntrue\n```\n"}],"Base.Unicode.isnumeric":[{"Tuple{AbstractChar}":" isnumeric(c::AbstractChar) -> Bool\n\nTests whether a character is numeric.\nA character is classified as numeric if it belongs to the Unicode general category Number,\ni.e. a character whose category code begins with 'N'.\n\nNote that this broad category includes characters such as ¾ and ௰.\nUse [`isdigit`](@ref) to check whether a character a decimal digit between 0 and 9.\n\n# Examples\n```jldoctest\njulia> isnumeric('௰')\ntrue\n\njulia> isnumeric('9')\ntrue\n\njulia> isnumeric('α')\nfalse\n\njulia> isnumeric('❤')\nfalse\n```\n"}],"Base.Unicode.isxdigit":[{"Tuple{AbstractChar}":" isxdigit(c::AbstractChar) -> Bool\n\nTest whether a character is a valid hexadecimal digit. Note that this does not\ninclude `x` (as in the standard `0x` prefix).\n\n# Examples\n```jldoctest\njulia> isxdigit('a')\ntrue\n\njulia> isxdigit('x')\nfalse\n```\n"}],"Base.Unicode.islowercase":[{"Tuple{AbstractChar}":" islowercase(c::AbstractChar) -> Bool\n\nTests whether a character is a lowercase letter.\nA character is classified as lowercase if it belongs to Unicode category Ll,\nLetter: Lowercase.\n\n# Examples\n```jldoctest\njulia> islowercase('α')\ntrue\n\njulia> islowercase('Γ')\nfalse\n\njulia> islowercase('❤')\nfalse\n```\n"}],"Base.Unicode.isdigit":[{"Tuple{AbstractChar}":" isdigit(c::AbstractChar) -> Bool\n\nTests whether a character is a decimal digit (0-9).\n\n# Examples\n```jldoctest\njulia> isdigit('❤')\nfalse\n\njulia> isdigit('9')\ntrue\n\njulia> isdigit('α')\nfalse\n```\n"}],"Base.Unicode.isspace":[{"Tuple{AbstractChar}":" isspace(c::AbstractChar) -> Bool\n\nTests whether a character is any whitespace character. Includes ASCII characters '\\t',\n'\\n', '\\v', '\\f', '\\r', and ' ', Latin-1 character U+0085, and characters in Unicode\ncategory Zs.\n\n# Examples\n```jldoctest\njulia> isspace('\\n')\ntrue\n\njulia> isspace('\\r')\ntrue\n\njulia> isspace(' ')\ntrue\n\njulia> isspace('\\x20')\ntrue\n```\n"}],"Base.Unicode.isprint":[{"Tuple{AbstractChar}":" isprint(c::AbstractChar) -> Bool\n\nTests whether a character is printable, including spaces, but not a control character.\n\n# Examples\n```jldoctest\njulia> isprint('\\x01')\nfalse\n\njulia> isprint('A')\ntrue\n```\n"}],"Base.Unicode.uppercase":[{"Tuple{AbstractString}":" uppercase(s::AbstractString)\n\nReturn `s` with all characters converted to uppercase.\n\n# Examples\n```jldoctest\njulia> uppercase(\"Julia\")\n\"JULIA\"\n```\n"}]} \ No newline at end of file From cf98aa4ac2e85dc8abb6d463c20faf59aabc94b2 Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 16:13:18 +0800 Subject: [PATCH 5/8] Dump again --- en/docstrings/Base_docstrings.json | 2 +- en/docstrings/Cartesian_docstrings.json | 2 +- en/docstrings/Enums_docstrings.json | 2 +- en/docstrings/Experimental_docstrings.json | 2 +- en/docstrings/Filesystem_docstrings.json | 2 +- en/docstrings/GC_docstrings.json | 2 +- en/docstrings/Grisu_docstrings.json | 2 +- en/docstrings/Iterators_docstrings.json | 2 +- en/docstrings/Libc_docstrings.json | 2 +- en/docstrings/MPFR_docstrings.json | 2 +- en/docstrings/MathConstants_docstrings.json | 2 +- en/docstrings/Math_docstrings.json | 2 +- en/docstrings/Meta_docstrings.json | 2 +- en/docstrings/Multimedia_docstrings.json | 2 +- en/docstrings/Rounding_docstrings.json | 2 +- en/docstrings/Sys_docstrings.json | 2 +- en/docstrings/Threads_docstrings.json | 2 +- en/docstrings/Unicode_docstrings.json | 2 +- src/docstrings.jl | 8 ++++++-- 19 files changed, 24 insertions(+), 20 deletions(-) diff --git a/en/docstrings/Base_docstrings.json b/en/docstrings/Base_docstrings.json index 1bbfd181..80e23f65 100644 --- a/en/docstrings/Base_docstrings.json +++ b/en/docstrings/Base_docstrings.json @@ -1 +1 @@ -{"Base.htol":[{"Tuple{Any}":" htol(x)\n\nConvert the endianness of a value from that used by the Host to Little-endian.\n"}],"Base.zeros":[{"Union{}":" zeros([T=Float64,] dims::Tuple)\n zeros([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all zeros with size specified by `dims`.\nSee also [`fill`](@ref), [`ones`](@ref).\n\n# Examples\n```jldoctest\njulia> zeros(1)\n1-element Array{Float64,1}:\n 0.0\n\njulia> zeros(Int8, 2, 3)\n2×3 Array{Int8,2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.div12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = div12(x, y)\n\nA high-precision representation of `x / y` for floating-point\nnumbers. Mathematically, `zhi + zlo ≈ x / y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x, y = Float32(π), 3.1f0\n(3.1415927f0, 3.1f0)\n\njulia> x / y\n1.013417f0\n\njulia> Float64(x) / Float64(y)\n1.0134170444063078\n\njulia> hi, lo = Base.div12(x, y)\n(1.013417f0, 3.8867366f-8)\n\njulia> Float64(hi) + Float64(lo)\n1.0134170444063066\n"}],"Base.iseven":[{"Tuple{Integer}":" iseven(x::Integer) -> Bool\n\nReturn `true` is `x` is even (that is, divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> iseven(9)\nfalse\n\njulia> iseven(10)\ntrue\n```\n"}],"Base.foldr":[{"Tuple{Any,Any}":" foldr(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed right associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldr(=>, 1:4)\n1 => (2 => (3 => 4))\n\njulia> foldr(=>, 1:4; init=0)\n1 => (2 => (3 => (4 => 0)))\n```\n"}],"Base.lastindex":[{"Tuple{AbstractArray}":" lastindex(collection) -> Integer\n lastindex(collection, d) -> Integer\n\nReturn the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.\n\nThe syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and\n`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.\n\n# Examples\n```jldoctest\njulia> lastindex([1,2,4])\n3\n\njulia> lastindex(rand(3,4,5), 2)\n4\n```\n"}],"Base.FlatteningRF":[{"Union{}":" FlatteningRF(rf) -> rf′\n\nCreate a flattening reducing function that is roughly equivalent to\n`rf′(acc, x) = foldl(rf, x; init=acc)`.\n"}],"Base.istaskstarted":[{"Tuple{Task}":" istaskstarted(t::Task) -> Bool\n\nDetermine whether a task has started executing.\n\n# Examples\n```jldoctest\njulia> a3() = sum(i for i in 1:1000);\n\njulia> b = Task(a3);\n\njulia> istaskstarted(b)\nfalse\n```\n"}],"Base.Csize_t":[{"Union{}":" Csize_t\n\nEquivalent to the native `size_t` c-type (`UInt`).\n"}],"Base.&":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" &(x, y)\n\nBitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `true`.\n\n# Examples\n```jldoctest\njulia> 4 & 10\n0\n\njulia> 4 & 12\n4\n\njulia> true & missing\nmissing\n\njulia> false & missing\nfalse\n```\n"}],"Base.Timer":[{"Union{}":" Timer(delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object).\n\nWaiting tasks are woken after an initial delay of `delay` seconds, and then repeating with the given\n`interval` in seconds. If `interval` is equal to `0`, the timer is only triggered once. When\nthe timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n"},{"Tuple{Function,Real}":" Timer(callback::Function, delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object) and\ncalls the function `callback`.\n\nWaiting tasks are woken and the function `callback` is called after an initial delay of `delay` seconds,\nand then repeating with the given `interval` in seconds. If `interval` is equal to `0`, the timer\nis only triggered once. The function `callback` is called with a single argument, the timer itself.\nWhen the timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n\n# Examples\n\nHere the first number is printed after a delay of two seconds, then the following numbers are printed quickly.\n\n```julia-repl\njulia> begin\n i = 0\n cb(timer) = (global i += 1; println(i))\n t = Timer(cb, 2, interval=0.2)\n wait(t)\n sleep(0.5)\n close(t)\n end\n1\n2\n3\n```\n"}],"Base.Cssize_t":[{"Union{}":" Cssize_t\n\nEquivalent to the native `ssize_t` c-type.\n"}],"Base.unsafe_write":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_write(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from `ref` (converted to a pointer) into the `IO` object.\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.open":[{"Union{Tuple{Base.AbstractCmd}, Tuple{Base.AbstractCmd,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, stdio=devnull; write::Bool = false, read::Bool = !write)\n\nStart running `command` asynchronously, and return a `process::IO` object. If `read` is\ntrue, then reads from the process come from the process's standard output and `stdio` optionally\nspecifies the process's standard input stream. If `write` is true, then writes go to\nthe process's standard input and `stdio` optionally specifies the process's standard output\nstream.\nThe process's standard error stream is connected to the current global `stderr`.\n"},{"Tuple{Function,Vararg{Any,N} where N}":" open(f::Function, args...; kwargs....)\n\nApply the function `f` to the result of `open(args...; kwargs...)` and close the resulting file\ndescriptor upon completion.\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n write(io, \"Hello world!\")\n end;\n\njulia> open(f->read(f, String), \"myfile.txt\")\n\"Hello world!\"\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Union{Tuple{Base.AbstractCmd,AbstractString}, Tuple{Base.AbstractCmd,AbstractString,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, mode::AbstractString, stdio=devnull)\n\nRun `command` asynchronously. Like `open(command, stdio; read, write)` except specifying\nthe read and write flags via a mode string instead of keyword arguments.\nPossible mode strings are:\n\n| Mode | Description | Keywords |\n|:-----|:------------|:---------------------------------|\n| `r` | read | none |\n| `w` | write | `write = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write | `read = true, write = true` |\n"},{"Tuple{Function,Base.AbstractCmd,Vararg{Any,N} where N}":" open(f::Function, command, args...; kwargs...)\n\nSimilar to `open(command, args...; kwargs...)`, but calls `f(stream)` on the resulting process\nstream, then closes the input stream and waits for the process to complete.\nReturns the value returned by `f`.\n"},{"Tuple{AbstractString}":" open(filename::AbstractString; keywords...) -> IOStream\n\nOpen a file in a mode specified by five boolean keyword arguments:\n\n| Keyword | Description | Default |\n|:-----------|:-----------------------|:----------------------------------------|\n| `read` | open for reading | `!write` |\n| `write` | open for writing | `truncate \\| append` |\n| `create` | create if non-existent | `!read & write \\| truncate \\| append` |\n| `truncate` | truncate to zero size | `!read & write` |\n| `append` | seek to end | `false` |\n\nThe default when no keywords are passed is to open files for reading only.\nReturns a stream for accessing the opened file.\n"},{"Tuple{AbstractString,AbstractString}":" open(filename::AbstractString, [mode::AbstractString]) -> IOStream\n\nAlternate syntax for open, where a string-based mode specifier is used instead of the five\nbooleans. The values of `mode` correspond to those from `fopen(3)` or Perl `open`, and are\nequivalent to setting the following boolean groups:\n\n| Mode | Description | Keywords |\n|:-----|:------------------------------|:------------------------------------|\n| `r` | read | none |\n| `w` | write, create, truncate | `write = true` |\n| `a` | write, create, append | `append = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write, create, truncate | `truncate = true, read = true` |\n| `a+` | read, write, create, append | `append = true, read = true` |\n\n# Examples\n```jldoctest\njulia> io = open(\"myfile.txt\", \"w\");\n\njulia> write(io, \"Hello world!\");\n\njulia> close(io);\n\njulia> io = open(\"myfile.txt\", \"r\");\n\njulia> read(io, String)\n\"Hello world!\"\n\njulia> write(io, \"This file is read only\")\nERROR: ArgumentError: write failed, IOStream is not writeable\n[...]\n\njulia> close(io)\n\njulia> io = open(\"myfile.txt\", \"a\");\n\njulia> write(io, \"This stream is not read only\")\n28\n\njulia> close(io)\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Tuple{RawFD}":" open(fd::OS_HANDLE) -> IO\n\nTake a raw file descriptor wrap it in a Julia-aware IO type,\nand take ownership of the fd handle.\nCall `open(Libc.dup(fd))` to avoid the ownership capture\nof the original handle.\n\n!!! warn\n Do not call this on a handle that's already owned by some\n other part of the system.\n"}],"Base.hash":[{"Tuple{Any}":" hash(x[, h::UInt])\n\nCompute an integer hash code such that `isequal(x,y)` implies `hash(x)==hash(y)`. The\noptional second argument `h` is a hash code to be mixed with the result.\n\nNew types should implement the 2-argument form, typically by calling the 2-argument `hash`\nmethod recursively in order to mix hashes of the contents with each other (and with `h`).\nTypically, any type that implements `hash` should also implement its own `==` (hence\n`isequal`) to guarantee the property mentioned above. Types supporting subtraction\n(operator `-`) should also implement [`widen`](@ref), which is required to hash\nvalues inside heterogeneous arrays.\n"}],"Base.ismalformed":[{"Tuple{AbstractChar}":" ismalformed(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents malformed (non-Unicode) data according to the\nencoding used by `c`. Defaults to `false` for non-`Char` types. See also\n[`show_invalid`](@ref).\n"}],"Base.ntoh":[{"Tuple{Any}":" ntoh(x)\n\nConvert the endianness of a value from Network byte order (big-endian) to that used by the Host.\n"}],"Base.length":[{"Union{}":" length(collection) -> Integer\n\nReturn the number of elements in the collection.\n\nUse [`lastindex`](@ref) to get the last valid index of an indexable collection.\n\n# Examples\n```jldoctest\njulia> length(1:5)\n5\n\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractArray}":" length(A::AbstractArray)\n\nReturn the number of elements in the array, defaults to `prod(size(A))`.\n\n# Examples\n```jldoctest\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractString}":" length(s::AbstractString) -> Int\n length(s::AbstractString, i::Integer, j::Integer) -> Int\n\nThe number of characters in string `s` from indices `i` through `j`. This is\ncomputed as the number of code unit indices from `i` to `j` which are valid\ncharacter indices. With only a single string argument, this computes the\nnumber of characters in the entire string. With `i` and `j` arguments it\ncomputes the number of indices between `i` and `j` inclusive that are valid\nindices in the string `s`. In addition to in-bounds values, `i` may take the\nout-of-bounds value `ncodeunits(s) + 1` and `j` may take the out-of-bounds\nvalue `0`.\n\nSee also: [`isvalid`](@ref), [`ncodeunits`](@ref), [`lastindex`](@ref),\n[`thisind`](@ref), [`nextind`](@ref), [`prevind`](@ref)\n\n# Examples\n```jldoctest\njulia> length(\"jμΛIα\")\n5\n```\n"}],"Base.copymutable":[{"Tuple{AbstractArray}":" copymutable(a)\n\nMake a mutable copy of an array or iterable `a`. For `a::Array`,\nthis is equivalent to `copy(a)`, but for other array types it may\ndiffer depending on the type of `similar(a)`. For generic iterables\nthis is equivalent to `collect(a)`.\n\n# Examples\n```jldoctest\njulia> tup = (1, 2, 3)\n(1, 2, 3)\n\njulia> Base.copymutable(tup)\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.Inf64":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.Pipe":[{"Tuple{}":"Construct an uninitialized Pipe object.\n\nThe appropriate end of the pipe will be automatically initialized if\nthe object is used in process spawning. This can be useful to easily\nobtain references in process pipelines, e.g.:\n\n```\njulia> err = Pipe()\n\n# After this `err` will be initialized and you may read `foo`'s\n# stderr from the `err` pipe.\njulia> run(pipeline(pipeline(`foo`, stderr=err), `cat`), wait=false)\n```\n"}],"Base.Condition":[{"Union{}":" Condition()\n\nCreate an edge-triggered event source that tasks can wait for. Tasks that call [`wait`](@ref) on a\n`Condition` are suspended and queued. Tasks are woken up when [`notify`](@ref) is later called on\nthe `Condition`. Edge triggering means that only tasks waiting at the time [`notify`](@ref) is\ncalled can be woken up. For level-triggered notifications, you must keep extra state to keep\ntrack of whether a notification has happened. The [`Channel`](@ref) and [`Threads.Event`](@ref) types do\nthis, and can be used for level-triggered events.\n\nThis object is NOT thread-safe. See [`Threads.Condition`](@ref) for a thread-safe version.\n"}],"Base.collect":[{"Tuple{Any}":" collect(collection)\n\nReturn an `Array` of all items in a collection or iterator. For dictionaries, returns\n`Pair{KeyType, ValType}`. If the argument is array-like or is an iterator with the\n[`HasShape`](@ref IteratorSize) trait, the result will have the same shape\nand number of dimensions as the argument.\n\n# Examples\n```jldoctest\njulia> collect(1:2:13)\n7-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n 13\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" collect(element_type, collection)\n\nReturn an `Array` with the given element type of all items in a collection or iterable.\nThe result has the same shape and number of dimensions as `collection`.\n\n# Examples\n```jldoctest\njulia> collect(Float64, 1:2:5)\n3-element Array{Float64,1}:\n 1.0\n 3.0\n 5.0\n```\n"}],"Base.include":[{"Union{}":" Base.include([m::Module,] path::AbstractString)\n\nEvaluate the contents of the input source file in the global scope of module `m`.\nEvery module (except those defined with [`baremodule`](@ref)) has its own 1-argument\ndefinition of `include`, which evaluates the file in that module.\nReturns the result of the last evaluated expression of the input file. During including,\na task-local include path is set to the directory containing the file. Nested calls to\n`include` will search relative to that path. This function is typically used to load source\ninteractively, or to combine files in packages that are broken into multiple source files.\n"}],"Base.success":[{"Tuple{Base.AbstractCmd}":" success(command)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual), and tell whether it was successful (exited with a code of 0).\nAn exception is raised if the process cannot be started.\n"}],"Base.skip":[{"Tuple{IOStream,Integer}":" skip(s, offset)\n\nSeek a stream relative to the current position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> skip(io, 10);\n\njulia> read(io, Char)\n'G': ASCII/Unicode U+0047 (category Lu: Letter, uppercase)\n```\n"}],"Base.chop":[{"Tuple{AbstractString}":" chop(s::AbstractString; head::Integer = 0, tail::Integer = 1)\n\nRemove the first `head` and the last `tail` characters from `s`.\nThe call `chop(s)` removes the last character from `s`.\nIf it is requested to remove more characters than `length(s)`\nthen an empty string is returned.\n\n# Examples\n```jldoctest\njulia> a = \"March\"\n\"March\"\n\njulia> chop(a)\n\"Marc\"\n\njulia> chop(a, head = 1, tail = 2)\n\"ar\"\n\njulia> chop(a, head = 5, tail = 5)\n\"\"\n```\n"}],"Base.factorial":[{"Tuple{Integer}":" factorial(n::Integer)\n\nFactorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an\ninteger (promoted to at least 64 bits). Note that this may overflow if `n` is not small,\nbut you can use `factorial(big(n))` to compute the result exactly in arbitrary precision.\n\n# Examples\n```jldoctest\njulia> factorial(6)\n720\n\njulia> factorial(21)\nERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead\nStacktrace:\n[...]\n\njulia> factorial(big(21))\n51090942171709440000\n```\n\n# See also\n* [`binomial`](@ref)\n\n# External links\n* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia.\n"}],"Base.isascii":[{"Tuple{Char}":" isascii(c::Union{AbstractChar,AbstractString}) -> Bool\n\nTest whether a character belongs to the ASCII character set, or whether this is true for\nall elements of a string.\n\n# Examples\n```jldoctest\njulia> isascii('a')\ntrue\n\njulia> isascii('α')\nfalse\n\njulia> isascii(\"abc\")\ntrue\n\njulia> isascii(\"αβγ\")\nfalse\n```\n"}],"Base.windowserror":[{"Tuple{Any,Bool}":" windowserror(sysfunc[, code::UInt32=Libc.GetLastError()])\n windowserror(sysfunc, iftrue::Bool)\n\nLike [`systemerror`](@ref), but for Windows API functions that use [`GetLastError`](@ref Base.Libc.GetLastError) to\nreturn an error code instead of setting [`errno`](@ref Base.Libc.errno).\n"}],"Base.setenv":[{"Tuple{Cmd,Any}":" setenv(command::Cmd, env; dir=\"\")\n\nSet environment variables to use when running the given `command`. `env` is either a\ndictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, or zero\nor more `\"var\"=>val` pair arguments. In order to modify (rather than replace) the existing\nenvironment, create `env` by `copy(ENV)` and then setting `env[\"var\"]=val` as desired, or\nuse `withenv`.\n\nThe `dir` keyword argument can be used to specify a working directory for the command.\n"}],"Base.asyncmap!":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)\n\nLike [`asyncmap`](@ref), but stores output in `results` rather than\nreturning a collection.\n"}],"Base.cconvert":[{"Union{}":" cconvert(T,x)\n\nConvert `x` to a value to be passed to C code as type `T`, typically by calling `convert(T, x)`.\n\nIn cases where `x` cannot be safely converted to `T`, unlike [`convert`](@ref), `cconvert` may\nreturn an object of a type different from `T`, which however is suitable for\n[`unsafe_convert`](@ref) to handle. The result of this function should be kept valid (for the GC)\nuntil the result of [`unsafe_convert`](@ref) is not needed anymore.\nThis can be used to allocate memory that will be accessed by the `ccall`.\nIf multiple objects need to be allocated, a tuple of the objects can be used as return value.\n\nNeither `convert` nor `cconvert` should take a Julia object and turn it into a `Ptr`.\n"}],"Base.@nospecialize":[{"Tuple":" @nospecialize\n\nApplied to a function argument name, hints to the compiler that the method\nshould not be specialized for different types of that argument,\nbut instead to use precisely the declared type for each argument.\nThis is only a hint for avoiding excess code generation.\nCan be applied to an argument within a formal argument list,\nor in the function body.\nWhen applied to an argument, the macro must wrap the entire argument expression.\nWhen used in a function body, the macro must occur in statement position and\nbefore any code.\n\nWhen used without arguments, it applies to all arguments of the parent scope.\nIn local scope, this means all arguments of the containing function.\nIn global (top-level) scope, this means all methods subsequently defined in the current module.\n\nSpecialization can reset back to the default by using [`@specialize`](@ref).\n\n```julia\nfunction example_function(@nospecialize x)\n ...\nend\n\nfunction example_function(@nospecialize(x = 1), y)\n ...\nend\n\nfunction example_function(x, y, z)\n @nospecialize x y\n ...\nend\n\n@nospecialize\nf(y) = [x for x in y]\n@specialize\n```\n"}],"Base.rationalize":[{"Union{Tuple{T}, Tuple{Type{T},AbstractFloat,Real}} where T<:Integer":" rationalize([T<:Integer=Int,] x; tol::Real=eps(x))\n\nApproximate floating point number `x` as a [`Rational`](@ref) number with components\nof the given integer type. The result will differ from `x` by no more than `tol`.\n\n# Examples\n```jldoctest\njulia> rationalize(5.6)\n28//5\n\njulia> a = rationalize(BigInt, 10.3)\n103//10\n\njulia> typeof(numerator(a))\nBigInt\n```\n"}],"Base.floatmax":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmax(T)\n\nThe highest finite value representable by the given floating-point DataType `T`.\n\n# Examples\n```jldoctest\njulia> floatmax(Float16)\nFloat16(6.55e4)\n\njulia> floatmax(Float32)\n3.4028235f38\n```\n"}],"Base.isconst":[{"Tuple{Module,Symbol}":" isconst(m::Module, s::Symbol) -> Bool\n\nDetermine whether a global is declared `const` in a given `Module`.\n"}],"Base.unsafe_string":[{"Tuple{Union{Ptr{Int8}, Ptr{UInt8}},Integer}":" unsafe_string(p::Ptr{UInt8}, [length::Integer])\n\nCopy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8.\n(The pointer can be safely freed afterwards.) If `length` is specified\n(the length of the data in bytes), the string does not have to be NUL-terminated.\n\nThis function is labeled \"unsafe\" because it will crash if `p` is not\na valid memory address to data of the requested length.\n"}],"Base.VecOrMat":[{"Union{}":" VecOrMat{T}\n\nUnion type of [`Vector{T}`](@ref) and [`Matrix{T}`](@ref).\n"}],"Base.mul12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = mul12(x, y)\n\nA high-precision representation of `x * y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x * y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x = Float32(π)\n3.1415927f0\n\njulia> x * x\n9.869605f0\n\njulia> Float64(x) * Float64(x)\n9.869604950382893\n\njulia> hi, lo = Base.mul12(x, x)\n(9.869605f0, -1.140092f-7)\n\njulia> Float64(hi) + Float64(lo)\n9.869604950382893\n```\n"}],"Base.issubset":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.Generator":[{"Union{}":" Generator(f, iter)\n\nGiven a function `f` and an iterator `iter`, construct an iterator that yields\nthe values of `f` applied to the elements of `iter`.\nThe syntax `f(x) for x in iter [if cond(x)::Bool]` is syntax for constructing an instance of this\ntype. The `[if cond(x)::Bool]` expression is optional and acts as a \"guard\", effectively\nfiltering out values where the condition is false.\n\n```jldoctest\njulia> g = (abs2(x) for x in 1:5 if x != 3);\n\njulia> for x in g\n println(x)\n end\n1\n4\n16\n25\n\njulia> collect(g)\n4-element Array{Int64,1}:\n 1\n 4\n 16\n 25\n```\n"}],"Base.unsigned":[{"Tuple{Any}":" unsigned(x) -> Unsigned\n\nConvert a number to an unsigned integer. If the argument is signed, it is reinterpreted as\nunsigned without checking for negative values.\n\n# Examples\n```jldoctest\njulia> unsigned(-2)\n0xfffffffffffffffe\n\njulia> unsigned(2)\n0x0000000000000002\n\njulia> signed(unsigned(-2))\n-2\n```\n"}],"Base.big":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" big(T::Type)\n\nCompute the type that represents the numeric type `T` with arbitrary precision.\nEquivalent to `typeof(big(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> big(Rational)\nRational{BigInt}\n\njulia> big(Float64)\nBigFloat\n\njulia> big(Complex{Int})\nComplex{BigInt}\n```\n"}],"Base.=>":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.copy!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" copy!(dst, src) -> dst\n\nIn-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing\nelements in `dst`.\nIf `dst` and `src` are of the same type, `dst == src` should hold after\nthe call. If `dst` and `src` are multidimensional arrays, they must have\nequal [`axes`](@ref).\nSee also [`copyto!`](@ref).\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 this method\n is available from the `Future` standard library as `Future.copy!`.\n"}],"Base.seek":[{"Tuple{IOStream,Integer}":" seek(s, pos)\n\nSeek a stream to the given position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n```\n"}],"Base.evalfile":[{"Union{Tuple{AbstractString}, Tuple{AbstractString,Array{String,1}}}":" evalfile(path::AbstractString, args::Vector{String}=String[])\n\nLoad the file using [`include`](@ref), evaluate all expressions,\nand return the value of the last one.\n"}],"Base.decode_overlong":[{"Union{}":" decode_overlong(c::AbstractChar) -> Integer\n\nWhen [`isoverlong(c)`](@ref) is `true`, `decode_overlong(c)` returns\nthe Unicode codepoint value of `c`. `AbstractChar` implementations\nthat support overlong encodings should implement `Base.decode_overlong`.\n"}],"Base.eachline":[{"Union{Tuple{}, Tuple{IO}}":" eachline(io::IO=stdin; keep::Bool=false)\n eachline(filename::AbstractString; keep::Bool=false)\n\nCreate an iterable `EachLine` object that will yield each line from an I/O stream\nor a file. Iteration calls [`readline`](@ref) on the stream argument repeatedly with\n`keep` passed through, determining whether trailing end-of-line characters are\nretained. When called with a file name, the file is opened once at the beginning of\niteration and closed at the end. If iteration is interrupted, the file will be\nclosed when the `EachLine` object is garbage collected.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\n It has many members.\\n\");\n end;\n\njulia> for line in eachline(\"my_file.txt\")\n print(line)\n end\nJuliaLang is a GitHub organization. It has many members.\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.divrem":[{"Tuple{Any,Any}":" divrem(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient and remainder from Euclidean division.\nEquivalent to `(div(x,y,r), rem(x,y,r))`. Equivalently, with the the default\nvalue of `r`, this call is equivalent to `(x÷y, x%y)`.\n\n# Examples\n```jldoctest\njulia> divrem(3,7)\n(0, 3)\n\njulia> divrem(7,3)\n(2, 1)\n```\n"}],"Base.cis":[{"Tuple{Complex}":" cis(z)\n\nReturn ``\\exp(iz)``.\n\n# Examples\n```jldoctest\njulia> cis(π) ≈ -1\ntrue\n```\n"}],"Base.cumprod!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" cumprod!(y::AbstractVector, x::AbstractVector)\n\nCumulative product of a vector `x`, storing the result in `y`.\nSee also [`cumprod`](@ref).\n"},{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumprod!(B, A; dims::Integer)\n\nCumulative product of `A` along the dimension `dims`, storing the result in `B`.\nSee also [`cumprod`](@ref).\n"}],"Base.isoverlong":[{"Tuple{AbstractChar}":" isoverlong(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents an overlong UTF-8 sequence. Defaults\nto `false` for non-`Char` types. See also [`decode_overlong`](@ref)\nand [`show_invalid`](@ref).\n"}],"Base.unsafe_convert":[{"Union{}":" unsafe_convert(T, x)\n\nConvert `x` to a C argument of type `T`\nwhere the input `x` must be the return value of `cconvert(T, ...)`.\n\nIn cases where [`convert`](@ref) would need to take a Julia object\nand turn it into a `Ptr`, this function should be used to define and perform\nthat conversion.\n\nBe careful to ensure that a Julia reference to `x` exists as long as the result of this\nfunction will be used. Accordingly, the argument `x` to this function should never be an\nexpression, only a variable name or field reference. For example, `x=a.b.c` is acceptable,\nbut `x=[a,b,c]` is not.\n\nThe `unsafe` prefix on this function indicates that using the result of this function after\nthe `x` argument to this function is no longer accessible to the program may cause undefined\nbehavior, including program corruption or segfaults, at any later time.\n\nSee also [`cconvert`](@ref)\n"}],"Base.Cuint":[{"Union{}":" Cuint\n\nEquivalent to the native `unsigned int` c-type ([`UInt32`](@ref)).\n"}],"Base.MissingException":[{"Union{}":" MissingException(msg)\n\nException thrown when a [`missing`](@ref) value is encountered in a situation\nwhere it is not supported. The error message, in the `msg` field\nmay provide more specific details.\n"}],"Base.structdiff":[{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,Union{Type{NamedTuple{bn,T} where T<:Tuple}, NamedTuple{bn,T} where T<:Tuple}}} where bn where an":" structdiff(a::NamedTuple{an}, b::Union{NamedTuple{bn},Type{NamedTuple{bn}}}) where {an,bn}\n\nConstruct a copy of named tuple `a`, except with fields that exist in `b` removed.\n`b` can be a named tuple, or a type of the form `NamedTuple{field_names}`.\n"}],"Base.put!":[{"Union{Tuple{T}, Tuple{Channel{T},Any}} where T":" put!(c::Channel, v)\n\nAppend an item `v` to the channel `c`. Blocks if the channel is full.\n\nFor unbuffered channels, blocks until a [`take!`](@ref) is performed by a different\ntask.\n\n!!! compat \"Julia 1.1\"\n `v` now gets converted to the channel's type with [`convert`](@ref) as `put!` is called.\n"}],"Base.Culonglong":[{"Union{}":" Culonglong\n\nEquivalent to the native `unsigned long long` c-type ([`UInt64`](@ref)).\n"}],"Base.cumsum!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumsum!(B, A; dims::Integer)\n\nCumulative sum of `A` along the dimension `dims`, storing the result in `B`. See also [`cumsum`](@ref).\n"}],"Base.>":[{"Tuple{Any}":" >(x)\n\nCreate a function that compares its argument to `x` using [`>`](@ref), i.e.\na function equivalent to `y -> y > x`.\nThe returned function is of type `Base.Fix2{typeof(>)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >(x, y)\n\nGreater-than comparison operator. Falls back to `y < x`.\n\n# Implementation\nGenerally, new types should implement [`<`](@ref) instead of this function,\nand rely on the fallback definition `>(x, y) = y < x`.\n\n# Examples\n```jldoctest\njulia> 'a' > 'b'\nfalse\n\njulia> 7 > 3 > 1\ntrue\n\njulia> \"abc\" > \"abd\"\nfalse\n\njulia> 5 > 3\ntrue\n```\n"}],"Base.SecretBuffer":[{"Union{}":" Base.SecretBuffer()\n\nAn [`IOBuffer`](@ref)-like object where the contents will be securely wiped when garbage collected.\n\nIt is considered best practice to wipe the buffer using `Base.shred!(::SecretBuffer)` as\nsoon as the secure data are no longer required. When initializing with existing data, the\n`SecretBuffer!` method is highly recommended to securely zero the passed argument. Avoid\ninitializing with and converting to `String`s as they are unable to be securely zeroed.\n\n# Examples\n```jldoctest\njulia> s = Base.SecretBuffer()\nSecretBuffer(\"*******\")\n\njulia> write(s, 's', 'e', 'c', 'r', 'e', 't')\n6\n\njulia> seek(s, 0); Char(read(s, UInt8))\n's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)\n\njulia> Base.shred!(s)\nSecretBuffer(\"*******\")\n\njulia> eof(s)\ntrue\n```\n"},{"Tuple{AbstractString}":" SecretBuffer(str::AbstractString)\n\nA convenience constructor to initialize a `SecretBuffer` from a non-secret string.\n\nStrings are bad at keeping secrets because they are unable to be securely\nzeroed or destroyed. Therefore, avoid using this constructor with secret data.\nInstead of starting with a string, either construct the `SecretBuffer`\nincrementally with `SecretBuffer()` and [`write`](@ref), or use a `Vector{UInt8}` with\nthe `Base.SecretBuffer!(::Vector{UInt8})` constructor.\n"}],"Base.ImmutableDict":[{"Union{}":" ImmutableDict\n\nImmutableDict is a Dictionary implemented as an immutable linked list,\nwhich is optimal for small dictionaries that are constructed over many individual insertions\nNote that it is not possible to remove a value, although it can be partially overridden and hidden\nby inserting a new value with the same key\n\n ImmutableDict(KV::Pair)\n\nCreate a new entry in the Immutable Dictionary for the key => value pair\n\n - use `(key => value) in dict` to see if this particular combination is in the properties set\n - use `get(dict, key, default)` to retrieve the most recent value for a particular key\n\n"}],"Base.@inline":[{"Tuple{Any}":" @inline\n\nGive a hint to the compiler that this function is worth inlining.\n\nSmall functions typically do not need the `@inline` annotation,\nas the compiler does it automatically. By using `@inline` on bigger functions,\nan extra nudge can be given to the compiler to inline it.\nThis is shown in the following example:\n\n```julia\n@inline function bigfunction(x)\n #=\n Function Definition\n =#\nend\n```\n"}],"Base.step":[{"Tuple{StepRange}":" step(r)\n\nGet the step size of an [`AbstractRange`](@ref) object.\n\n# Examples\n```jldoctest\njulia> step(1:10)\n1\n\njulia> step(1:2:10)\n2\n\njulia> step(2.5:0.3:10.9)\n0.3\n\njulia> step(range(2.5, stop=10.9, length=85))\n0.1\n```\n"}],"Base.conj":[{"Tuple{Complex}":" conj(z)\n\nCompute the complex conjugate of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> conj(1 + 3im)\n1 - 3im\n```\n"}],"Base.last":[{"Tuple{Any}":" last(coll)\n\nGet the last element of an ordered collection, if it can be computed in O(1) time. This is\naccomplished by calling [`lastindex`](@ref) to get the last index. Return the end\npoint of an [`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> last(1:2:10)\n9\n\njulia> last([1; 2; 3; 4])\n4\n```\n"},{"Tuple{AbstractString,Integer}":" last(s::AbstractString, n::Integer)\n\nGet a string consisting of the last `n` characters of `s`.\n\n```jldoctest\njulia> last(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 1)\n\"0\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 3)\n\"²>0\"\n```\n"}],"Base.fetch":[{"Tuple{Task}":" fetch(t::Task)\n\nWait for a Task to finish, then return its result value.\nIf the task fails with an exception, a `TaskFailedException` (which wraps the failed task)\nis thrown.\n"},{"Tuple{Channel}":" fetch(c::Channel)\n\nWait for and get the first available item from the channel. Does not\nremove the item. `fetch` is unsupported on an unbuffered (0-size) channel.\n"}],"Base.DenseVecOrMat":[{"Union{}":" DenseVecOrMat{T}\n\nUnion type of [`DenseVector{T}`](@ref) and [`DenseMatrix{T}`](@ref).\n"}],"Base.isreadable":[{"Union{}":" isreadable(io) -> Bool\n\nReturn `true` if the specified IO object is readable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n isreadable(io)\n end\nfalse\n\njulia> open(\"myfile.txt\", \"r\") do io\n isreadable(io)\n end\ntrue\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.Set":[{"Tuple{Any}":" Set([itr])\n\nConstruct a [`Set`](@ref) of the values generated by the given iterable object, or an\nempty set. Should be used instead of [`BitSet`](@ref) for sparse integer sets, or\nfor sets of arbitrary objects.\n"}],"Base.minmax":[{"Tuple{Any,Any}":" minmax(x, y)\n\nReturn `(min(x,y), max(x,y))`. See also: [`extrema`](@ref) that returns `(minimum(x), maximum(x))`.\n\n# Examples\n```jldoctest\njulia> minmax('c','b')\n('b', 'c')\n```\n"}],"Base.rotl90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotl90(A, k)\n\nLeft-rotate matrix `A` 90 degrees counterclockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a,1)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotl90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotl90(a,3)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotl90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotl90(A)\n\nRotate matrix `A` left 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n```\n"}],"Base.⊆":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.oftype":[{"Tuple{Any,Any}":" oftype(x, y)\n\nConvert `y` to the type of `x` (`convert(typeof(x), y)`).\n\n# Examples\n```jldoctest\njulia> x = 4;\n\njulia> y = 3.;\n\njulia> oftype(x, y)\n3\n\njulia> oftype(y, x)\n4.0\n```\n"}],"Base.isequal":[{"Tuple{Any}":" isequal(x)\n\nCreate a function that compares its argument to `x` using [`isequal`](@ref), i.e.\na function equivalent to `y -> isequal(y, x)`.\n\nThe returned function is of type `Base.Fix2{typeof(isequal)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" isequal(x, y)\n\nSimilar to [`==`](@ref), except for the treatment of floating point numbers\nand of missing values. `isequal` treats all floating-point `NaN` values as equal\nto each other, treats `-0.0` as unequal to `0.0`, and [`missing`](@ref) as equal\nto `missing`. Always returns a `Bool` value.\n\n# Implementation\nThe default implementation of `isequal` calls `==`, so a type that does not involve\nfloating-point values generally only needs to define `==`.\n\n`isequal` is the comparison function used by hash tables (`Dict`). `isequal(x,y)` must imply\nthat `hash(x) == hash(y)`.\n\nThis typically means that types for which a custom `==` or `isequal` method exists must\nimplement a corresponding `hash` method (and vice versa). Collections typically implement\n`isequal` by calling `isequal` recursively on all contents.\n\nScalar types generally do not need to implement `isequal` separate from `==`, unless they\nrepresent floating-point numbers amenable to a more efficient implementation than that\nprovided as a generic fallback (based on `isnan`, `signbit`, and `==`).\n\n# Examples\n```jldoctest\njulia> isequal([1., NaN], [1., NaN])\ntrue\n\njulia> [1., NaN] == [1., NaN]\nfalse\n\njulia> 0.0 == -0.0\ntrue\n\njulia> isequal(0.0, -0.0)\nfalse\n```\n"}],"Base.^":[{"Tuple{Number,Number}":" ^(x, y)\n\nExponentiation operator. If `x` is a matrix, computes matrix exponentiation.\n\nIf `y` is an `Int` literal (e.g. `2` in `x^2` or `-3` in `x^-3`), the Julia code\n`x^y` is transformed by the compiler to `Base.literal_pow(^, x, Val(y))`, to\nenable compile-time specialization on the value of the exponent.\n(As a default fallback we have `Base.literal_pow(^, x, Val(y)) = ^(x,y)`,\nwhere usually `^ == Base.^` unless `^` has been defined in the calling\nnamespace.)\n\n```jldoctest\njulia> 3^5\n243\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> A^3\n2×2 Array{Int64,2}:\n 37 54\n 81 118\n```\n"},{"Tuple{Regex,Integer}":" ^(s::Regex, n::Integer)\n\nRepeat a regex `n` times.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> r\"Test \"^2\nr\"(?:Test ){2}\"\n\njulia> match(r\"Test \"^2, \"Test Test \")\nRegexMatch(\"Test Test \")\n```\n"},{"Tuple{Union{AbstractChar, AbstractString},Integer}":" ^(s::Union{AbstractString,AbstractChar}, n::Integer)\n\nRepeat a string or character `n` times. This can also be written as `repeat(s, n)`.\n\nSee also: [`repeat`](@ref)\n\n# Examples\n```jldoctest\njulia> \"Test \"^3\n\"Test Test Test \"\n```\n"}],"Base.print_matrix_vdots":[{"Union{Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer}, Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer,Bool}}":"`print_matrix_vdots` is used to show a series of vertical ellipsis instead\nof a bunch of rows for long matrices. Not only is the string vdots shown\nbut it also repeated every M elements if desired.\n"}],"Base.redirect_stdout":[{"Union{}":" redirect_stdout([stream]) -> (rd, wr)\n\nCreate a pipe to which all C and Julia level [`stdout`](@ref) output\nwill be redirected.\nReturns a tuple `(rd, wr)` representing the pipe ends.\nData written to [`stdout`](@ref) may now be read from the `rd` end of\nthe pipe. The `wr` end is given for convenience in case the old\n[`stdout`](@ref) object was cached by the user and needs to be replaced\nelsewhere.\n\nIf called with the optional `stream` argument, then returns `stream` itself.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdout(f::Function, stream)\n\nRun the function `f` while redirecting [`stdout`](@ref) to `stream`.\nUpon completion, [`stdout`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.fldmod1":[{"Tuple{Any,Any}":" fldmod1(x, y)\n\nReturn `(fld1(x,y), mod1(x,y))`.\n\nSee also: [`fld1`](@ref), [`mod1`](@ref).\n"}],"Base.@__MODULE__":[{"Tuple{}":" @__MODULE__ -> Module\n\nGet the `Module` of the toplevel eval,\nwhich is the `Module` code is currently being read from.\n"}],"Base.accumulate!":[{"Tuple{Any,Any,Any}":" accumulate!(op, B, A; [dims], [init])\n\nCumulative operation `op` on `A` along the dimension `dims`, storing the result in `B`.\nProviding `dims` is optional for vectors. If the keyword argument `init` is given, its\nvalue is used to instantiate the accumulation. See also [`accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 0, 2, 0, 3];\n\njulia> y = [0, 0, 0, 0, 0];\n\njulia> accumulate!(+, y, x);\n\njulia> y\n5-element Array{Int64,1}:\n 1\n 1\n 3\n 3\n 6\n\njulia> A = [1 2; 3 4];\n\njulia> B = [0 0; 0 0];\n\njulia> accumulate!(-, B, A, dims=1);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 2\n -2 -2\n\njulia> accumulate!(-, B, A, dims=2);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 -1\n 3 -1\n```\n"}],"Base.redirect_stdin":[{"Union{}":" redirect_stdin([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stdin`](@ref).\nNote that the order of the return tuple is still `(rd, wr)`,\ni.e. data to be read from [`stdin`](@ref) may be written to `wr`.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdin(f::Function, stream)\n\nRun the function `f` while redirecting [`stdin`](@ref) to `stream`.\nUpon completion, [`stdin`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.Cptrdiff_t":[{"Union{}":" Cptrdiff_t\n\nEquivalent to the native `ptrdiff_t` c-type (`Int`).\n"}],"Base.findfirst":[{"Tuple{Any}":" findfirst(A)\n\nReturn the index or key of the first `true` value in `A`.\nReturn `nothing` if no such value is found.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findfirst(A)\n3\n\njulia> findfirst(falses(3)) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findfirst(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findfirst(predicate::Function, A)\n\nReturn the index or key of the first element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2]\n4-element Array{Int64,1}:\n 1\n 4\n 2\n 2\n\njulia> findfirst(iseven, A)\n2\n\njulia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL\n\njulia> findfirst(isequal(4), A)\n2\n\njulia> A = [1 4; 2 2]\n2×2 Array{Int64,2}:\n 1 4\n 2 2\n\njulia> findfirst(iseven, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findfirst(pattern::AbstractString, string::AbstractString)\n findfirst(pattern::Regex, string::String)\n\nFind the first occurrence of `pattern` in `string`. Equivalent to\n[`findnext(pattern, string, firstindex(s))`](@ref).\n\n# Examples\n```jldoctest\njulia> findfirst(\"z\", \"Hello to the world\") # returns nothing, but not printed in the REPL\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findfirst(ch::AbstractChar, string::AbstractString)\n\nFind the first occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findfirst('a', \"happy\")\n2\n\njulia> findfirst('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.notnothing":[{"Tuple{Any}":" notnothing(x)\n\nThrow an error if `x === nothing`, and return `x` if not.\n"}],"Base.Cwchar_t":[{"Union{}":" Cwchar_t\n\nEquivalent to the native `wchar_t` c-type ([`Int32`](@ref)).\n"}],"Base.fieldname":[{"Tuple{DataType,Integer}":" fieldname(x::DataType, i::Integer)\n\nGet the name of field `i` of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldname(Rational, 1)\n:num\n\njulia> fieldname(Rational, 2)\n:den\n```\n"}],"Base.nextfloat":[{"Tuple{Union{Float16, Float32, Float64},Integer}":" nextfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `nextfloat` to `x` if `n >= 0`, or `-n`\napplications of `prevfloat` if `n < 0`.\n"},{"Tuple{AbstractFloat}":" nextfloat(x::AbstractFloat)\n\nReturn the smallest floating point number `y` of the same type as `x` such `x < y`. If no\nsuch `y` exists (e.g. if `x` is `Inf` or `NaN`), then return `x`.\n"}],"Base.prevind":[{"Tuple{AbstractString,Integer,Integer}":" prevind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts before index `i`. In other words, if `i` is the start of a\n character, return the start of the previous character; if `i` is not the start\n of a character, rewind until the start of a character and return that index.\n If `i` is equal to `1` return `0`.\n If `i` is equal to `ncodeunits(str)+1` return `lastindex(str)`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `prevind` for `n==1`. The only difference\n is that if `n` is so large that applying `prevind` would reach `0` then each remaining\n iteration decreases the returned value by `1`.\n This means that in this case `prevind` can return a negative value.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `str` or is equal to `ncodeunits(str)+1`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> prevind(\"α\", 3)\n1\n\njulia> prevind(\"α\", 1)\n0\n\njulia> prevind(\"α\", 0)\nERROR: BoundsError: attempt to access String\n at index [0]\n[...]\n\njulia> prevind(\"α\", 2, 2)\n0\n\njulia> prevind(\"α\", 2, 3)\n-1\n```\n"}],"Base.<<":[{"Tuple{BitArray{1},Int64}":" <<(B::BitVector, n) -> BitVector\n\nLeft bit shift operator, `B << n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions backwards, filling with `false`\nvalues. If `n < 0`, elements are shifted forwards. Equivalent to\n`B >> -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B << 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n\njulia> B << -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n```\n"},{"Tuple{Integer,Integer}":" <<(x, n)\n\nLeft bit shift operator, `x << n`. For `n >= 0`, the result is `x` shifted left\nby `n` bits, filling with `0`s. This is equivalent to `x * 2^n`. For `n < 0`,\nthis is equivalent to `x >> -n`.\n\n# Examples\n```jldoctest\njulia> Int8(3) << 2\n12\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> bitstring(Int8(12))\n\"00001100\"\n```\nSee also [`>>`](@ref), [`>>>`](@ref).\n"}],"Base.fill":[{"Union{}":" fill(x, dims::Tuple)\n fill(x, dims...)\n\nCreate an array filled with the value `x`. For example, `fill(1.0, (5,5))` returns a 5×5\narray of floats, with each element initialized to `1.0`.\n\n`dims` may be specified as either a tuple or a sequence of arguments. For example,\nthe common idiom `fill(x)` creates a zero-dimensional array containing the single value `x`.\n\n# Examples\n```jldoctest\njulia> fill(1.0, (5,5))\n5×5 Array{Float64,2}:\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n\njulia> fill(0.5, 1, 2)\n1×2 Array{Float64,2}:\n 0.5 0.5\n\njulia> fill(42)\n0-dimensional Array{Int64,0}:\n42\n```\n\nIf `x` is an object reference, all elements will refer to the same object. `fill(Foo(),\ndims)` will return an array filled with the result of evaluating `Foo()` once.\n"}],"Base.BitSet":[{"Tuple{Any}":" BitSet([itr])\n\nConstruct a sorted set of `Int`s generated by the given iterable object, or an\nempty set. Implemented as a bit string, and therefore designed for dense integer sets.\nIf the set will be sparse (for example, holding a few\nvery large integers), use [`Set`](@ref) instead.\n"}],"Base.LinRange":[{"Union{}":" LinRange{T}\n\nA range with `len` linearly spaced elements between its `start` and `stop`.\nThe size of the spacing is controlled by `len`, which must\nbe an `Int`.\n\n# Examples\n```jldoctest\njulia> LinRange(1.5, 5.5, 9)\n9-element LinRange{Float64}:\n 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5\n```\n"}],"Base.signbit":[{"Tuple{Real}":" signbit(x)\n\nReturns `true` if the value of the sign of `x` is negative, otherwise `false`.\n\n# Examples\n```jldoctest\njulia> signbit(-4)\ntrue\n\njulia> signbit(5)\nfalse\n\njulia> signbit(5.5)\nfalse\n\njulia> signbit(-4.1)\ntrue\n```\n"}],"Base.empty":[{"Tuple{AbstractDict}":" empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])\n\nCreate an empty `AbstractDict` container which can accept indices of type `index_type` and\nvalues of type `value_type`. The second and third arguments are optional and default to the\ninput's `keytype` and `valtype`, respectively. (If only one of the two types is specified,\nit is assumed to be the `value_type`, and the `index_type` we default to `keytype(a)`).\n\nCustom `AbstractDict` subtypes may choose which specific dictionary type is best suited to\nreturn for the given index and value types, by specializing on the three-argument signature.\nThe default is to return an empty `Dict`.\n"},{"Tuple{Tuple}":" empty(x::Tuple)\n\nReturns an empty tuple, `()`.\n"},{"Union{Tuple{AbstractArray{T,1}}, Tuple{U}, Tuple{T}, Tuple{AbstractArray{T,1},Type{U}}} where U where T":" empty(v::AbstractVector, [eltype])\n\nCreate an empty vector similar to `v`, optionally changing the `eltype`.\n\n# Examples\n\n```jldoctest\njulia> empty([1.0, 2.0, 3.0])\n0-element Array{Float64,1}\n\njulia> empty([1.0, 2.0, 3.0], String)\n0-element Array{String,1}\n```\n"}],"Base.symdiff":[{"Tuple{Any,Vararg{Any,N} where N}":" symdiff(s, itrs...)\n\nConstruct the symmetric difference of elements in the passed in sets.\nWhen `s` is not an `AbstractSet`, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n\n# Examples\n```jldoctest\njulia> symdiff([1,2,3], [3,4,5], [4,5,6])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> symdiff([1,2,1], [2, 1, 2])\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> symdiff(unique([1,2,1]), unique([2, 1, 2]))\n0-element Array{Int64,1}\n```\n"}],"Base.may_invoke_generator":[{"Tuple{Core.MethodInstance}":" may_invoke_generator(method, atypes, sparams)\n\nComputes whether or not we may invoke the generator for the given `method` on\nthe given atypes and sparams. For correctness, all generated function are\nrequired to return monotonic answers. However, since we don't expect users to\nbe able to successfully implement this criterion, we only call generated\nfunctions on concrete types. The one exception to this is that we allow calling\ngenerators with abstract types if the generator does not use said abstract type\n(and thus cannot incorrectly use it to break monotonicity). This function\ncomputes whether we are in either of these cases.\n\nUnlike normal functions, the compilation heuristics still can't generate good dispatch\nin some cases, but this may still allow inference not to fall over in some limited cases.\n"}],"Base.@locals":[{"Tuple{}":" @locals()\n\nConstruct a dictionary of the names (as symbols) and values of all local\nvariables defined as of the call site.\n\n!!! compat \"Julia 1.1\"\n This macro requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> let x = 1, y = 2\n Base.@locals\n end\nDict{Symbol,Any} with 2 entries:\n :y => 2\n :x => 1\n\njulia> function f(x)\n local y\n show(Base.@locals); println()\n for i = 1:1\n show(Base.@locals); println()\n end\n y = 2\n show(Base.@locals); println()\n nothing\n end;\n\njulia> f(42)\nDict{Symbol,Any}(:x => 42)\nDict{Symbol,Any}(:i => 1,:x => 42)\nDict{Symbol,Any}(:y => 2,:x => 42)\n```\n"}],"Base.!":[{"Tuple{Bool}":" !(x)\n\nBoolean not. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if `x` is `missing`.\n\n# Examples\n```jldoctest\njulia> !true\nfalse\n\njulia> !false\ntrue\n\njulia> !missing\nmissing\n\njulia> .![true false true]\n1×3 BitArray{2}:\n 0 1 0\n```\n"},{"Tuple{Function}":" !f::Function\n\nPredicate function negation: when the argument of `!` is a function, it returns a\nfunction which computes the boolean negation of `f`.\n\n# Examples\n```jldoctest\njulia> str = \"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\njulia> filter(isletter, str)\n\"εδxyδfxfyε\"\n\njulia> filter(!isletter, str)\n\"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < \"\n```\n"}],"Base.stride":[{"Tuple{AbstractArray,Integer}":" stride(A, k::Integer)\n\nReturn the distance in memory (in number of elements) between adjacent elements in dimension `k`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> stride(A,2)\n3\n\njulia> stride(A,3)\n12\n```\n"}],"Base.IdentityUnitRange":[{"Union{}":" IdentityUnitRange(range::AbstractUnitRange)\n\nRepresent an AbstractUnitRange `range` as an offset vector such that `range[i] == i`.\n\n`IdentityUnitRange`s are frequently used as axes for offset arrays.\n"}],"Base.ARGS":[{"Union{}":" ARGS\n\nAn array of the command line arguments passed to Julia, as strings.\n"}],"Base.disable_sigint":[{"Tuple{Function}":" disable_sigint(f::Function)\n\nDisable Ctrl-C handler during execution of a function on the current task,\nfor calling external code that may call julia code that is not interrupt safe.\nIntended to be called using `do` block syntax as follows:\n\n disable_sigint() do\n # interrupt-unsafe code\n ...\n end\n\nThis is not needed on worker threads (`Threads.threadid() != 1`) since the\n`InterruptException` will only be delivered to the master thread.\nExternal functions that do not call julia code or julia runtime\nautomatically disable sigint during their execution.\n"}],"Base.LogicalIndex":[{"Union{}":" LogicalIndex(mask)\n\nThe `LogicalIndex` type is a special vector that simply contains all indices I\nwhere `mask[I]` is true. This specialized type does not support indexing\ndirectly as doing so would require O(n) lookup time. `AbstractArray{Bool}` are\nwrapped with `LogicalIndex` upon calling [`to_indices`](@ref).\n"}],"Base.shell_escape_posixly":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape_posixly(args::Union{Cmd,AbstractString...})\n\nThe unexported `shell_escape_posixly` function\ntakes a string or command object and escapes any special characters in such a way that\nit is safe to pass it as an argument to a posix shell.\n\n# Examples\n```jldoctest\njulia> Base.shell_escape_posixly(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' '&&' echo done\"\n\njulia> Base.shell_escape_posixly(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this '&&' that\"\n```\n"}],"Base.IndexStyle":[{"Tuple{AbstractArray}":" IndexStyle(A)\n IndexStyle(typeof(A))\n\n`IndexStyle` specifies the \"native indexing style\" for array `A`. When\nyou define a new [`AbstractArray`](@ref) type, you can choose to implement\neither linear indexing (with [`IndexLinear`](@ref)) or cartesian indexing.\nIf you decide to only implement linear indexing, then you must set this trait for your array\ntype:\n\n Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()\n\nThe default is [`IndexCartesian()`](@ref).\n\nJulia's internal indexing machinery will automatically (and invisibly)\nrecompute all indexing operations into the preferred style. This allows users\nto access elements of your array using any indexing style, even when explicit\nmethods have not been provided.\n\nIf you define both styles of indexing for your `AbstractArray`, this\ntrait can be used to select the most performant indexing style. Some\nmethods check this trait on their inputs, and dispatch to different\nalgorithms depending on the most efficient access pattern. In\nparticular, [`eachindex`](@ref) creates an iterator whose type depends\non the setting of this trait.\n"}],"Base.iszero":[{"Tuple{Any}":" iszero(x)\n\nReturn `true` if `x == zero(x)`; if `x` is an array, this checks whether\nall of the elements of `x` are zero.\n\n# Examples\n```jldoctest\njulia> iszero(0.0)\ntrue\n\njulia> iszero([1, 9, 0])\nfalse\n\njulia> iszero([false, 0, 0])\ntrue\n```\n"}],"Base.promote":[{"Union{}":" promote(xs...)\n\nConvert all arguments to a common type, and return them all (as a tuple).\nIf no arguments can be converted, an error is raised.\n\n# Examples\n```jldoctest\njulia> promote(Int8(1), Float16(4.5), Float32(4.1))\n(1.0f0, 4.5f0, 4.1f0)\n```\n"}],"Base.findprev":[{"Tuple{Function,Any,Any}":" findprev(predicate::Function, A, i)\n\nFind the previous index before or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [4, 6, 1, 2]\n4-element Array{Int64,1}:\n 4\n 6\n 1\n 2\n\njulia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL\n\njulia> findprev(isodd, A, 3)\n3\n\njulia> A = [4 6; 1 2]\n2×2 Array{Int64,2}:\n 4 6\n 1 2\n\njulia> findprev(isodd, A, CartesianIndex(1, 2))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Any,Any}":" findprev(A, i)\n\nFind the previous index before or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, true]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 1\n\njulia> findprev(A, 3)\n3\n\njulia> findprev(A, 1) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true true]\n2×2 Array{Bool,2}:\n 0 0\n 1 1\n\njulia> findprev(A, CartesianIndex(2, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findprev(pattern::AbstractString, string::AbstractString, start::Integer)\n\nFind the previous occurrence of `pattern` in `string` starting at position `start`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findprev(x, s, i)] == x`:\n\n`findprev(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `stop <= i`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findprev(\"z\", \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev(\"o\", \"Hello to the world\", 18)\n15:15\n\njulia> findprev(\"Julia\", \"JuliaLang\", 6)\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findprev(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the previous occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findprev('z', \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev('o', \"Hello to the world\", 18)\n15\n```\n"}],"Base.findmin":[{"Tuple{Any}":" findmin(itr) -> (x, index)\n\nReturn the minimum element of the collection `itr` and its index. If there are multiple\nminimal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `min`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmin([8,0.1,-9,pi])\n(-9.0, 3)\n\njulia> findmin([7,1,1,6])\n(1, 2)\n\njulia> findmin([7,1,1,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmin(A; dims) -> (minval, index)\n\nFor an array input, returns the value and index of the minimum over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmin(A, dims=1)\n([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])\n\njulia> findmin(A, dims=2)\n([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])\n```\n"}],"Base.LOAD_PATH":[{"Union{}":" LOAD_PATH\n\nAn array of paths for `using` and `import` statements to consider as project\nenvironments or package directories when loading code. It is populated based on\nthe [`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH) environment variable if set;\notherwise it defaults to `[\"@\", \"@v#.#\", \"@stdlib\"]`. Entries starting with `@`\nhave special meanings:\n\n- `@` refers to the \"current active environment\", the initial value of which is\n initially determined by the [`JULIA_PROJECT`](@ref JULIA_PROJECT) environment\n variable or the `--project` command-line option.\n\n- `@stdlib` expands to the absolute path of the current Julia installation's\n standard library directory.\n\n- `@name` refers to a named environment, which are stored in depots (see\n [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)) under the `environments`\n subdirectory. The user's named environments are stored in\n `~/.julia/environments` so `@name` would refer to the environment in\n `~/.julia/environments/name` if it exists and contains a `Project.toml` file.\n If `name` contains `#` characters, then they are replaced with the major, minor\n and patch components of the Julia version number. For example, if you are\n running Julia 1.2 then `@v#.#` expands to `@v1.2` and will look for an\n environment by that name, typically at `~/.julia/environments/v1.2`.\n\nThe fully expanded value of `LOAD_PATH` that is searched for projects and packages\ncan be seen by calling the `Base.load_path()` function.\n\nSee also:\n[`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH),\n[`JULIA_PROJECT`](@ref JULIA_PROJECT),\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.match":[{"Union{}":" match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])\n\nSearch for the first match of the regular expression `r` in `s` and return a `RegexMatch`\nobject containing the match, or nothing if the match failed. The matching substring can be\nretrieved by accessing `m.match` and the captured sequences can be retrieved by accessing\n`m.captures` The optional `idx` argument specifies an index at which to start the search.\n\n# Examples\n```jldoctest\njulia> rx = r\"a(.)a\"\nr\"a(.)a\"\n\njulia> m = match(rx, \"cabac\")\nRegexMatch(\"aba\", 1=\"b\")\n\njulia> m.captures\n1-element Array{Union{Nothing, SubString{String}},1}:\n \"b\"\n\njulia> m.match\n\"aba\"\n\njulia> match(rx, \"cabac\", 3) === nothing\ntrue\n```\n"}],"Base.rsplit":[{"Union{}":" rsplit(s::AbstractString; limit::Integer=0, keepempty::Bool=false)\n rsplit(s::AbstractString, chars; limit::Integer=0, keepempty::Bool=true)\n\nSimilar to [`split`](@ref), but starting from the end of the string.\n\n# Examples\n```jldoctest\njulia> a = \"M.a.r.c.h\"\n\"M.a.r.c.h\"\n\njulia> rsplit(a,\".\")\n5-element Array{SubString{String},1}:\n \"M\"\n \"a\"\n \"r\"\n \"c\"\n \"h\"\n\njulia> rsplit(a,\".\";limit=1)\n1-element Array{SubString{String},1}:\n \"M.a.r.c.h\"\n\njulia> rsplit(a,\".\";limit=2)\n2-element Array{SubString{String},1}:\n \"M.a.r.c\"\n \"h\"\n```\n"}],"Base.isodd":[{"Tuple{Integer}":" isodd(x::Integer) -> Bool\n\nReturn `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isodd(9)\ntrue\n\njulia> isodd(10)\nfalse\n```\n"}],"Base.operator_associativity":[{"Tuple{Symbol}":" operator_associativity(s::Symbol)\n\nReturn a symbol representing the associativity of operator `s`. Left- and right-associative\noperators return `:left` and `:right`, respectively. Return `:none` if `s` is non-associative\nor an invalid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_associativity(:-), Base.operator_associativity(:+), Base.operator_associativity(:^)\n(:left, :none, :right)\n\njulia> Base.operator_associativity(:⊗), Base.operator_associativity(:sin), Base.operator_associativity(:→)\n(:left, :none, :right)\n```\n"}],"Base.setdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff!(s, itrs...)\n\nRemove from set `s` (in-place) each element of each iterable from `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> setdiff!(a, 1:2:6);\n\njulia> a\nSet{Int64} with 1 element:\n 4\n```\n"}],"Base.ispow2":[{"Tuple{Integer}":" ispow2(n::Integer) -> Bool\n\nTest whether `n` is a power of two.\n\n# Examples\n```jldoctest\njulia> ispow2(4)\ntrue\n\njulia> ispow2(5)\nfalse\n```\n"}],"Base.hcat":[{"Tuple":" hcat(A...)\n\nConcatenate along dimension 2.\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3; 4; 5]\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> b = [6 7; 8 9; 10 11; 12 13; 14 15]\n5×2 Array{Int64,2}:\n 6 7\n 8 9\n 10 11\n 12 13\n 14 15\n\njulia> hcat(a,b)\n5×3 Array{Int64,2}:\n 1 6 7\n 2 8 9\n 3 10 11\n 4 12 13\n 5 14 15\n\njulia> c = ([1; 2; 3], [4; 5; 6])\n([1, 2, 3], [4, 5, 6])\n\njulia> hcat(c...)\n3×2 Array{Int64,2}:\n 1 4\n 2 5\n 3 6\n```\n"}],"Base.showarg":[{"Union{Tuple{T}, Tuple{IO,Type{T},Any}} where T":" showarg(io::IO, x, toplevel)\n\nShow `x` as if it were an argument to a function. This function is\nused by [`summary`](@ref) to display type information in terms of sequences of\nfunction calls on objects. `toplevel` is `true` if this is\nthe direct call from `summary` and `false` for nested (recursive) calls.\n\nThe fallback definition is to print `x` as \"::\\$(typeof(x))\",\nrepresenting argument `x` in terms of its type. (The double-colon is\nomitted if `toplevel=true`.) However, you can\nspecialize this function for specific types to customize printing.\n\n# Example\n\nA SubArray created as `view(a, :, 3, 2:5)`, where `a` is a\n3-dimensional Float64 array, has type\n\n SubArray{Float64,2,Array{Float64,3},Tuple{Colon,Int64,UnitRange{Int64}},false}\n\nThe default `show` printing would display this full type.\nHowever, the summary for SubArrays actually prints as\n\n 2×4 view(::Array{Float64,3}, :, 3, 2:5) with eltype Float64\n\nbecause of a definition similar to\n\n function Base.showarg(io::IO, v::SubArray, toplevel)\n print(io, \"view(\")\n showarg(io, parent(v), false)\n print(io, \", \", join(v.indices, \", \"))\n print(io, ')')\n toplevel && print(io, \" with eltype \", eltype(v))\n end\n\nNote that we're calling `showarg` recursively for the parent array\ntype, indicating that any recursed calls are not at the top level.\nPrinting the parent as `::Array{Float64,3}` is the fallback (non-toplevel)\nbehavior, because no specialized method for `Array` has been defined.\n"}],"Base.isapprox":[{"Tuple{Number,Number}":" isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)\n\nInexact equality comparison: `true` if `norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))`. The\ndefault `atol` is zero and the default `rtol` depends on the types of `x` and `y`. The keyword\nargument `nans` determines whether or not NaN values are considered equal (defaults to false).\n\nFor real or complex floating-point values, if an `atol > 0` is not specified, `rtol` defaults to\nthe square root of [`eps`](@ref) of the type of `x` or `y`, whichever is bigger (least precise).\nThis corresponds to requiring equality of about half of the significand digits. Otherwise,\ne.g. for integer arguments or if an `atol > 0` is supplied, `rtol` defaults to zero.\n\n`x` and `y` may also be arrays of numbers, in which case `norm` defaults to the usual\n`norm` function in LinearAlgebra, but\nmay be changed by passing a `norm::Function` keyword argument. (For numbers, `norm` is the\nsame thing as `abs`.) When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`\nor `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are\napproximately equal component-wise.\n\nThe binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`\nis equivalent to `!isapprox(x,y)`.\n\nNote that `x ≈ 0` (i.e., comparing to zero with the default tolerances) is\nequivalent to `x == 0` since the default `atol` is `0`. In such cases, you should either\nsupply an appropriate `atol` (or use `norm(x) ≤ atol`) or rearrange your code (e.g.\nuse `x ≈ y` rather than `x - y ≈ 0`). It is not possible to pick a nonzero `atol`\nautomatically because it depends on the overall scaling (the \"units\") of your problem:\nfor example, in `x - y ≈ 0`, `atol=1e-9` is an absurdly small tolerance if `x` is the\n[radius of the Earth](https://en.wikipedia.org/wiki/Earth_radius) in meters,\nbut an absurdly large tolerance if `x` is the\n[radius of a Hydrogen atom](https://en.wikipedia.org/wiki/Bohr_radius) in meters.\n\n\n# Examples\n```jldoctest\njulia> 0.1 ≈ (0.1 - 1e-10)\ntrue\n\njulia> isapprox(10, 11; atol = 2)\ntrue\n\njulia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])\ntrue\n\njulia> 1e-10 ≈ 0\nfalse\n\njulia> isapprox(1e-10, 0, atol=1e-8)\ntrue\n```\n"}],"Base.summary":[{"Tuple{IO,Any}":" summary(io::IO, x)\n str = summary(x)\n\nPrint to a stream `io`, or return a string `str`, giving a brief description of\na value. By default returns `string(typeof(x))`, e.g. [`Int64`](@ref).\n\nFor arrays, returns a string of size and type info,\ne.g. `10-element Array{Int64,1}`.\n\n# Examples\n```jldoctest\njulia> summary(1)\n\"Int64\"\n\njulia> summary(zeros(2))\n\"2-element Array{Float64,1}\"\n```\n"}],"Base.keytype":[{"Tuple{AbstractArray}":" keytype(T::Type{<:AbstractArray})\n keytype(A::AbstractArray)\n\nReturn the key type of an array. This is equal to the\n`eltype` of the result of `keys(...)`, and is provided\nmainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> keytype([1, 2, 3]) == Int\ntrue\n\njulia> keytype([1 2; 3 4])\nCartesianIndex{2}\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"},{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" keytype(type)\n\nGet the key type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> keytype(Dict(Int32(1) => \"foo\"))\nInt32\n```\n"}],"Base.intersect!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nIntersect all passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n"}],"Base.unaliascopy":[{"Tuple{Array}":" Base.unaliascopy(A)\n\nMake a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against\nanother array in order to preserve consistent semantics as that other array is mutated.\n\nThis must return an object of the same type as `A` to preserve optimal performance in the\nmuch more common case where aliasing does not occur. By default,\n`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where\n`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of\n`Base.unaliascopy(A)`.\n"}],"Base.bitstring":[{"Union{}":" bitstring(n)\n\nA string giving the literal bit representation of a number.\n\n# Examples\n```jldoctest\njulia> bitstring(4)\n\"0000000000000000000000000000000000000000000000000000000000000100\"\n\njulia> bitstring(2.2)\n\"0100000000000001100110011001100110011001100110011001100110011010\"\n```\n"}],"Base.to_index":[{"Tuple{Any,Any}":" to_index(A, i)\n\nConvert index `i` to an `Int` or array of indices to be used as an index into array `A`.\n\nCustom array types may specialize `to_index(::CustomArray, i)` to provide\nspecial indexing behaviors. Note that some index types (like `Colon`) require\nmore context in order to transform them into an array of indices; those get\nconverted in the more complicated `to_indices` function. By default, this\nsimply calls the generic `to_index(i)`. This must return either an `Int` or an\n`AbstractArray` of scalar indices that are supported by `A`.\n"},{"Tuple{Integer}":" to_index(i)\n\nConvert index `i` to an `Int` or array of `Int`s to be used as an index for all arrays.\n\nCustom index types may specialize `to_index(::CustomIndex)` to provide special\nindexing behaviors. This must return either an `Int` or an `AbstractArray` of\n`Int`s.\n"}],"Base.floatmin":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmin(T)\n\nThe smallest in absolute value non-subnormal value representable by the given\nfloating-point DataType `T`.\n"}],"Base.@static":[{"Tuple{Any}":" @static\n\nPartially evaluate an expression at parse time.\n\nFor example, `@static Sys.iswindows() ? foo : bar` will evaluate `Sys.iswindows()` and insert\neither `foo` or `bar` into the expression.\nThis is useful in cases where a construct would be invalid on other platforms,\nsuch as a `ccall` to a non-existent function.\n`@static if Sys.isapple() foo end` and `@static foo <&&,||> bar` are also valid syntax.\n"}],"Base.notify":[{"Tuple{Base.GenericCondition,Any}":" notify(condition, val=nothing; all=true, error=false)\n\nWake up tasks waiting for a condition, passing them `val`. If `all` is `true` (the default),\nall waiting tasks are woken, otherwise only one is. If `error` is `true`, the passed value\nis raised as an exception in the woken tasks.\n\nReturn the count of tasks woken up. Return 0 if no tasks are waiting on `condition`.\n"}],"Base.schedule":[{"Tuple{Task,Any}":" schedule(t::Task, [val]; error=false)\n\nAdd a [`Task`](@ref) to the scheduler's queue. This causes the task to run constantly when the system\nis otherwise idle, unless the task performs a blocking operation such as [`wait`](@ref).\n\nIf a second argument `val` is provided, it will be passed to the task (via the return value of\n[`yieldto`](@ref)) when it runs again. If `error` is `true`, the value is raised as an exception in\nthe woken task.\n\n# Examples\n```jldoctest\njulia> a5() = sum(i for i in 1:1000);\n\njulia> b = Task(a5);\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskstarted(b)\ntrue\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.channeled_tasks":[{"Tuple{Int64,Vararg{Any,N} where N}":" channeled_tasks(n::Int, funcs...; ctypes=fill(Any,n), csizes=fill(0,n))\n\nA convenience method to create `n` channels and bind them to tasks started\nfrom the provided functions in a single call. Each `func` must accept `n` arguments\nwhich are the created channels. Channel types and sizes may be specified via\nkeyword arguments `ctypes` and `csizes` respectively. If unspecified, all channels are\nof type `Channel{Any}(0)`.\n\nReturns a tuple, `(Array{Channel}, Array{Task})`, of the created channels and tasks.\n"}],"Base.startswith":[{"Tuple{AbstractString,Regex}":" startswith(s::AbstractString, prefix::Regex)\n\nReturn `true` if `s` starts with the regex pattern, `prefix`.\n\n!!! note\n `startswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"^...\", s)` is faster than `startswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`endswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", r\"Julia|Romeo\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" startswith(s::AbstractString, prefix::AbstractString)\n\nReturn `true` if `s` starts with `prefix`. If `prefix` is a vector or set\nof characters, test whether the first character of `s` belongs to that set.\n\nSee also [`endswith`](@ref).\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", \"Julia\")\ntrue\n```\n"}],"Base.WeakKeyDict":[{"Union{}":" WeakKeyDict([itr])\n\n`WeakKeyDict()` constructs a hash table where the keys are weak\nreferences to objects which may be garbage collected even when\nreferenced in a hash table.\n\nSee [`Dict`](@ref) for further help. Note, unlike [`Dict`](@ref),\n`WeakKeyDict` does not convert keys on insertion.\n"}],"Base.setdiff":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff(s, itrs...)\n\nConstruct the set of elements in `s` but not in any of the iterables in `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> setdiff([1,2,3], [3,4,5])\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.lock":[{"Tuple{Any,Base.AbstractLock}":" lock(f::Function, lock)\n\nAcquire the `lock`, execute `f` with the `lock` held, and release the `lock` when `f`\nreturns. If the lock is already locked by a different task/thread, wait for it to become\navailable.\n\nWhen this function returns, the `lock` has been released, so the caller should\nnot attempt to `unlock` it.\n"},{"Tuple{ReentrantLock}":" lock(lock)\n\nAcquire the `lock` when it becomes available.\nIf the lock is already locked by a different task/thread,\nwait for it to become available.\n\nEach `lock` must be matched by an [`unlock`](@ref).\n"}],"Base.Vector":[{"Union{}":" Vector{T} <: AbstractVector{T}\n\nOne-dimensional dense array with elements of type `T`, often used to represent\na mathematical vector. Alias for [`Array{T,1}`](@ref).\n"}],"Base.lpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" lpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the left with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> lpad(\"March\", 10)\n\" March\"\n```\n"}],"Base.invperm":[{"Tuple{AbstractArray{T,1} where T}":" invperm(v)\n\nReturn the inverse permutation of `v`.\nIf `B = A[v]`, then `A == B[invperm(v)]`.\n\n# Examples\n```jldoctest\njulia> v = [2; 4; 3; 1];\n\njulia> invperm(v)\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 2\n\njulia> A = ['a','b','c','d'];\n\njulia> B = A[v]\n4-element Array{Char,1}:\n 'b'\n 'd'\n 'c'\n 'a'\n\njulia> B[invperm(v)]\n4-element Array{Char,1}:\n 'a'\n 'b'\n 'c'\n 'd'\n```\n"}],"Base.unsafe_pointer_to_objref":[{"Tuple{Ptr}":" unsafe_pointer_to_objref(p::Ptr)\n\nConvert a `Ptr` to an object reference. Assumes the pointer refers to a valid heap-allocated\nJulia object. If this is not the case, undefined behavior results, hence this function is\nconsidered \"unsafe\" and should be used with care.\n\nSee also: [`pointer_from_objref`](@ref).\n"}],"Base.readlines":[{"Tuple{AbstractString}":" readlines(io::IO=stdin; keep::Bool=false)\n readlines(filename::AbstractString; keep::Bool=false)\n\nRead all lines of an I/O stream or a file as a vector of strings. Behavior is\nequivalent to saving the result of reading [`readline`](@ref) repeatedly with the same\narguments and saving the resulting lines as a vector of strings.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readlines(\"my_file.txt\")\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\"\n \"It has many members.\"\n\njulia> readlines(\"my_file.txt\", keep=true)\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\\n\"\n \"It has many members.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.promote_type":[{"Union{}":" promote_type(type1, type2)\n\nPromotion refers to converting values of mixed types to a single common type.\n`promote_type` represents the default promotion behavior in Julia when\noperators (usually mathematical) are given arguments of differing types.\n`promote_type` generally tries to return a type which can at least approximate\nmost values of either input type without excessively widening. Some loss is\ntolerated; for example, `promote_type(Int64, Float64)` returns\n[`Float64`](@ref) even though strictly, not all [`Int64`](@ref) values can be\nrepresented exactly as `Float64` values.\n\n```jldoctest\njulia> promote_type(Int64, Float64)\nFloat64\n\njulia> promote_type(Int32, Int64)\nInt64\n\njulia> promote_type(Float32, BigInt)\nBigFloat\n\njulia> promote_type(Int16, Float16)\nFloat16\n\njulia> promote_type(Int64, Float16)\nFloat16\n\njulia> promote_type(Int8, UInt16)\nUInt16\n```\n"}],"Base.@polly":[{"Tuple{Any}":" @polly\n\nTells the compiler to apply the polyhedral optimizer Polly to a function.\n"}],"Base.ReinterpretArray":[{"Union{}":"Gives a reinterpreted view (of element type T) of the underlying array (of element type S).\nIf the size of `T` differs from the size of `S`, the array will be compressed/expanded in\nthe first dimension.\n"}],"Base.binomial":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" binomial(n::Integer, k::Integer)\n\nThe _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in\nthe polynomial expansion of ``(1+x)^n``.\n\nIf ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items:\n```math\n\\binom{n}{k} = \\frac{n!}{k! (n-k)!}\n```\nwhere ``n!`` is the [`factorial`](@ref) function.\n\nIf ``n`` is negative, then it is defined in terms of the identity\n```math\n\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k}\n```\n\n# Examples\n```jldoctest\njulia> binomial(5, 3)\n10\n\njulia> factorial(5) ÷ (factorial(5-3) * factorial(3))\n10\n\njulia> binomial(-5, 3)\n-35\n```\n\n# See also\n* [`factorial`](@ref)\n\n# External links\n* [Binomial coeffient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia.\n"}],"Base.TwicePrecision":[{"Union{}":" TwicePrecision{T}(hi::T, lo::T)\n TwicePrecision{T}((num, denom))\n\nA number with twice the precision of `T`, e.g., quad-precision if `T =\nFloat64`. `hi` represents the high bits (most significant bits) and\n`lo` the low bits (least significant bits). Rational values\n`num//denom` can be approximated conveniently using the syntax\n`TwicePrecision{T}((num, denom))`.\n\nWhen used with `T<:Union{Float16,Float32,Float64}` to construct an \"exact\"\n`StepRangeLen`, `ref` should be the range element with smallest\nmagnitude and `offset` set to the corresponding index. For\nefficiency, multiplication of `step` by the index is not performed at\ntwice precision: `step.hi` should have enough trailing zeros in its\n`bits` representation that `(0:len-1)*step.hi` is exact (has no\nroundoff error). If `step` has an exact rational representation\n`num//denom`, then you can construct `step` using\n\n step = TwicePrecision{T}((num, denom), nb)\n\nwhere `nb` is the number of trailing zero bits of `step.hi`. For\nranges, you can set `nb = ceil(Int, log2(len-1))`.\n"}],"Base.copysign":[{"Tuple{Real,Real}":" copysign(x, y) -> z\n\nReturn `z` which has the magnitude of `x` and the same sign as `y`.\n\n# Examples\n```jldoctest\njulia> copysign(1, -2)\n-1\n\njulia> copysign(-1, 2)\n1\n```\n"}],"Base.permute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" permute!(v, p)\n\nPermute vector `v` in-place, according to permutation `p`. No checking is done\nto verify that `p` is a permutation.\n\nTo return a new permutation, use `v[p]`. Note that this is generally faster than\n`permute!(v,p)` for large vectors.\n\nSee also [`invpermute!`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> permute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 1\n 4\n 3\n 1\n```\n"}],"Base._show_nonempty":[{"Tuple{IO,AbstractArray{T,2} where T,String}":"`_show_nonempty(io, X::AbstractMatrix, prefix)` prints matrix X with opening and closing square brackets,\npreceded by `prefix`, supposed to encode the type of the elements.\n"}],"Base.lstrip":[{"Tuple{Any,AbstractString}":" lstrip([pred=isspace,] str::AbstractString) -> SubString\n lstrip(str::AbstractString, chars) -> SubString\n\nRemove leading characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = lpad(\"March\", 20)\n\" March\"\n\njulia> lstrip(a)\n\"March\"\n```\n"}],"Base.filter":[{"Tuple{Any,AbstractDict}":" filter(f, d::AbstractDict)\n\nReturn a copy of `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Examples\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\")\nDict{Int64,String} with 2 entries:\n 2 => \"b\"\n 1 => \"a\"\n\njulia> filter(p->isodd(p.first), d)\nDict{Int64,String} with 1 entry:\n 1 => \"a\"\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{Any,Array{T,N}}} where N where T":" filter(f, a::AbstractArray)\n\nReturn a copy of `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> a = 1:10\n1:10\n\njulia> filter(isodd, a)\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"},{"Tuple{Any,Base.SkipMissing{#s662} where #s662<:AbstractArray}":" filter(f, itr::SkipMissing{<:AbstractArray})\n\nReturn a vector similar to the array wrapped by the given `SkipMissing` iterator\nbut with all missing elements and those for which `f` returns `false` removed.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> x = [1 2; missing 4]\n2×2 Array{Union{Missing, Int64},2}:\n 1 2\n missing 4\n\njulia> filter(isodd, skipmissing(x))\n1-element Array{Int64,1}:\n 1\n```\n"}],"Base.Semaphore":[{"Union{}":" Semaphore(sem_size)\n\nCreate a counting semaphore that allows at most `sem_size`\nacquires to be in use at any time.\nEach acquire must be matched with a release.\n"}],"Base.SubstitutionString":[{"Union{}":" SubstitutionString(substr)\n\nStores the given string `substr` as a `SubstitutionString`, for use in regular expression\nsubstitutions. Most commonly constructed using the [`@s_str`](@ref) macro.\n\n```jldoctest\njulia> SubstitutionString(\"Hello \\\\g, it's \\\\1\")\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> subst = s\"Hello \\g, it's \\1\"\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> typeof(subst)\nSubstitutionString{String}\n\n```\n\n"}],"Base.CodeUnits":[{"Union{}":" CodeUnits(s::AbstractString)\n\nWrap a string (without copying) in an immutable vector-like object that accesses the code units\nof the string's representation.\n"}],"Base.isready":[{"Tuple{Channel}":" isready(c::Channel)\n\nDetermine whether a [`Channel`](@ref) has a value stored to it. Returns\nimmediately, does not block.\n\nFor unbuffered channels returns `true` if there are tasks waiting\non a [`put!`](@ref).\n"}],"Base.count_ones":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" count_ones(x::Integer) -> Integer\n\nNumber of ones in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_ones(7)\n3\n```\n"}],"Base.@elapsed":[{"Tuple{Any}":" @elapsed\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\nnumber of seconds it took to execute as a floating-point number.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@allocated`](@ref).\n\n```julia-repl\njulia> @elapsed sleep(0.3)\n0.301391426\n```\n"}],"Base.bytes2hex":[{"Union{}":" bytes2hex(a::AbstractArray{UInt8}) -> String\n bytes2hex(io::IO, a::AbstractArray{UInt8})\n\nConvert an array `a` of bytes to its hexadecimal string representation, either\nreturning a `String` via `bytes2hex(a)` or writing the string to an `io` stream\nvia `bytes2hex(io, a)`. The hexadecimal characters are all lowercase.\n\n# Examples\n```jldoctest\njulia> a = string(12345, base = 16)\n\"3039\"\n\njulia> b = hex2bytes(a)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> bytes2hex(b)\n\"3039\"\n```\n"}],"Base.isbinaryoperator":[{"Tuple{Symbol}":" isbinaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a binary (infix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isbinaryoperator(:-), Base.isbinaryoperator(:√), Base.isbinaryoperator(:f)\n(true, false, false)\n```\n"}],"Base.KeyError":[{"Union{}":" KeyError(key)\n\nAn indexing operation into an `AbstractDict` (`Dict`) or `Set` like object tried to access or\ndelete a non-existent element.\n"}],"Base.isless":[{"Union{}":" isless(x, y)\n\nTest whether `x` is less than `y`, according to a fixed total order.\n`isless` is not defined on all pairs of values `(x, y)`. However, if it\nis defined, it is expected to satisfy the following:\n- If `isless(x, y)` is defined, then so is `isless(y, x)` and `isequal(x, y)`,\n and exactly one of those three yields `true`.\n- The relation defined by `isless` is transitive, i.e.,\n `isless(x, y) && isless(y, z)` implies `isless(x, z)`.\n\nValues that are normally unordered, such as `NaN`,\nare ordered in an arbitrary but consistent fashion.\n[`missing`](@ref) values are ordered last.\n\nThis is the default comparison used by [`sort`](@ref).\n\n# Implementation\nNon-numeric types with a total order should implement this function.\nNumeric types only need to implement it if they have special values such as `NaN`.\nTypes with a partial order should implement [`<`](@ref).\n"},{"Tuple{Tuple,Tuple}":" isless(t1::Tuple, t2::Tuple)\n\nReturns true when t1 is less than t2 in lexicographic order.\n"},{"Tuple{AbstractString,AbstractString}":" isless(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether string `a` comes before string `b` in alphabetical order\n(technically, in lexicographical order by Unicode code points).\n\n# Examples\n```jldoctest\njulia> isless(\"a\", \"b\")\ntrue\n\njulia> isless(\"β\", \"α\")\nfalse\n\njulia> isless(\"a\", \"a\")\nfalse\n```\n"}],"Base.IdDict":[{"Union{}":" IdDict([itr])\n\n`IdDict{K,V}()` constructs a hash table using object-id as hash and\n`===` as equality with keys of type `K` and values of type `V`.\n\nSee [`Dict`](@ref) for further help.\n"}],"Base.@b_str":[{"Tuple{Any}":" @b_str\n\nCreate an immutable byte (`UInt8`) vector using string syntax.\n\n# Examples\n```jldoctest\njulia> v = b\"12\\x01\\x02\"\n4-element Base.CodeUnits{UInt8,String}:\n 0x31\n 0x32\n 0x01\n 0x02\n\njulia> v[2]\n0x32\n```\n"}],"Base.strip":[{"Tuple{AbstractString}":" strip([pred=isspace,] str::AbstractString) -> SubString\n strip(str::AbstractString, chars) -> SubString\n\nRemove leading and trailing characters from `str`, either those specified by `chars` or\nthose for which the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, vector or set of characters.\n\n!!! compat \"Julia 1.2\"\n The method which accepts a predicate function requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> strip(\"{3, 5}\\n\", ['{', '}', '\\n'])\n\"3, 5\"\n```\n"}],"Base.promote_typejoin":[{"Tuple{Any,Any}":" promote_typejoin(T, S)\n\nCompute a type that contains both `T` and `S`, which could be\neither a parent of both types, or a `Union` if appropriate.\nFalls back to [`typejoin`](@ref).\n"}],"Base.DimensionMismatch":[{"Union{}":" DimensionMismatch([msg])\n\nThe objects called do not have matching dimensionality. Optional argument `msg` is a\ndescriptive error string.\n"}],"Base.AbstractRange":[{"Union{}":" AbstractRange{T}\n\nSupertype for ranges with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.IndexLinear":[{"Union{}":" IndexLinear()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by one linear index.\n\nA linear indexing style uses one integer index to describe the position in the array\n(even if it's a multidimensional array) and column-major\nordering is used to efficiently access the elements. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexLinear` will return\na simple one-dimensional range, even if it is multidimensional.\n\nA custom array that reports its `IndexStyle` as `IndexLinear` only needs\nto implement indexing (and indexed assignment) with a single `Int` index;\nall other indexing expressions — including multidimensional accesses — will\nbe recomputed to the linear index. For example, if `A` were a `2×3` custom\nmatrix with linear indexing, and we referenced `A[1, 3]`, this would be\nrecomputed to the equivalent linear index and call `A[5]` since `2*1 + 3 = 5`.\n\nSee also [`IndexCartesian`](@ref).\n"}],"Base.append!":[{"Tuple{Array{T,1} where T,AbstractArray{T,1} where T}":" append!(collection, collection2) -> collection.\n\nFor an ordered container `collection`, add the elements of `collection2` to the end of it.\n\n# Examples\n```jldoctest\njulia> append!([1],[2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> append!([1, 2, 3], [4, 5, 6])\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nUse [`push!`](@ref) to add individual items to `collection` which are not already\nthemselves in another collection. The result of the preceding example is equivalent to\n`push!([1, 2, 3], 4, 5, 6)`.\n"}],"Base.countlines":[{"Tuple{IO}":" countlines(io::IO; eol::AbstractChar = '\\n')\n\nRead `io` until the end of the stream/file and count the number of lines. To specify a file\npass the filename as the first argument. EOL markers other than `'\\n'` are supported by\npassing them as the second argument. The last non-empty line of `io` is counted even if it does not\nend with the EOL, matching the length returned by [`eachline`](@ref) and [`readlines`](@ref).\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\\n\");\n\njulia> countlines(io)\n1\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> countlines(io)\n1\n\njulia> countlines(io, eol = '.')\n0\n```\n"}],"Base.shell_escape_winsomely":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escaped_winsomely(args::Union{Cmd,AbstractString...})::String\n\nConvert the collection of strings `args` into single string suitable for passing as the argument\nstring for a Windows command line. Windows passes the entire command line as a single string to\nthe application (unlike POSIX systems, where the list of arguments are passed separately).\nMany Windows API applications (including julia.exe), use the conventions of the [Microsoft C\nruntime](https://docs.microsoft.com/en-us/cpp/c-language/parsing-c-command-line-arguments) to\nsplit that command line into a list of strings. This function implements the inverse of such a\nC runtime command-line parser. It joins command-line arguments to be passed to a Windows console\napplication into a command line, escaping or quoting meta characters such as space,\ndouble quotes and backslash where needed. This may be useful in concert with the `windows_verbatim`\nflag to [`Cmd`](@ref) when constructing process pipelines.\n\n# Example\n```jldoctest\njulia> println(shell_escaped_winsomely(\"A B\\\", \"C\"))\n\"A B\\\" C\n"}],"Base.CFunction":[{"Union{}":" CFunction struct\n\nGarbage-collection handle for the return value from `@cfunction`\nwhen the first argument is annotated with '\\$'.\nLike all `cfunction` handles, it should be passed to `ccall` as a `Ptr{Cvoid}`,\nand will be converted automatically at the call site to the appropriate type.\n\nSee [`@cfunction`](@ref).\n"}],"Base.fieldindex":[{"Union{Tuple{DataType,Symbol}, Tuple{DataType,Symbol,Bool}}":" Base.fieldindex(T, name::Symbol, err:Bool=true)\n\nGet the index of a named field, throwing an error if the field does not exist (when err==true)\nor returning 0 (when err==false).\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> Base.fieldindex(Foo, :z)\nERROR: type Foo has no field z\nStacktrace:\n[...]\n\njulia> Base.fieldindex(Foo, :z, false)\n0\n```\n"}],"Base.methods":[{"Tuple{Any,Any,Union{Nothing, Module, AbstractArray{Module,N} where N}}":" methods(f, [types], [module])\n\nReturn the method table for `f`.\n\nIf `types` is specified, return an array of methods whose types match.\nIf `module` is specified, return an array of methods defined in that module.\nA list of modules can also be specified as an array.\n\n!!! compat \"Julia 1.4\"\n At least Julia 1.4 is required for specifying a module.\n"}],"Base.PipeBuffer":[{"Union{Tuple{}, Tuple{Array{UInt8,1}}}":" PipeBuffer(data::Vector{UInt8}=UInt8[]; maxsize::Integer = typemax(Int))\n\nAn [`IOBuffer`](@ref) that allows reading and performs writes by appending.\nSeeking and truncating are not supported.\nSee [`IOBuffer`](@ref) for the available constructors.\nIf `data` is given, creates a `PipeBuffer` to operate on a data vector,\noptionally specifying a size beyond which the underlying `Array` may not be grown.\n"}],"Base.Cuchar":[{"Union{}":" Cuchar\n\nEquivalent to the native `unsigned char` c-type ([`UInt8`](@ref)).\n"}],"Base.count":[{"Tuple{Union{Regex, AbstractString},AbstractString}":" count(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn the number of matches for `pattern` in `string`. This is equivalent to\ncalling `length(findall(pattern, string))` but more efficient.\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Any,Any}":" count(p, itr) -> Integer\n count(itr) -> Integer\n\nCount the number of elements in `itr` for which predicate `p` returns `true`.\nIf `p` is omitted, counts the number of `true` elements in `itr` (which\nshould be a collection of boolean values).\n\n# Examples\n```jldoctest\njulia> count(i->(4<=i<=6), [2,3,4,5,6])\n3\n\njulia> count([true, false, true, true])\n3\n```\n"}],"Base.@assert":[{"Tuple{Any,Vararg{Any,N} where N}":" @assert cond [text]\n\nThrow an [`AssertionError`](@ref) if `cond` is `false`. Preferred syntax for writing assertions.\nMessage `text` is optionally displayed upon assertion failure.\n\n!!! warning\n An assert might be disabled at various optimization levels.\n Assert should therefore only be used as a debugging tool\n and not used for authentication verification (e.g., verifying passwords),\n nor should side effects needed for the function to work correctly\n be used inside of asserts.\n\n# Examples\n```jldoctest\njulia> @assert iseven(3) \"3 is an odd number!\"\nERROR: AssertionError: 3 is an odd number!\n\njulia> @assert isodd(3) \"What even are numbers?\"\n```\n"}],"Base.@show":[{"Tuple":" @show\n\nShow an expression and result, returning the result. See also [`show`](@ref).\n"}],"Base.readuntil":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" readuntil(stream::IO, delim; keep::Bool = false)\n readuntil(filename::AbstractString, delim; keep::Bool = false)\n\nRead a string from an I/O stream or a file, up to the given delimiter.\nThe delimiter can be a `UInt8`, `AbstractChar`, string, or vector.\nKeyword argument `keep` controls whether the delimiter is included in the result.\nThe text is assumed to be encoded in UTF-8.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readuntil(\"my_file.txt\", 'L')\n\"Julia\"\n\njulia> readuntil(\"my_file.txt\", '.', keep = true)\n\"JuliaLang is a GitHub organization.\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.reduce_empty":[{"Tuple{Any,Any}":" Base.reduce_empty(op, T)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref) or [`foldr`](@ref)\nwith reduction `op` over an empty array with element type of `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.ndims":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" ndims(A::AbstractArray) -> Integer\n\nReturn the number of dimensions of `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> ndims(A)\n3\n```\n"}],"Base.yield":[{"Tuple{Task,Any}":" yield(t::Task, arg = nothing)\n\nA fast, unfair-scheduling version of `schedule(t, arg); yield()` which\nimmediately yields to `t` before calling the scheduler.\n"},{"Tuple{}":" yield()\n\nSwitch to the scheduler to allow another scheduled task to run. A task that calls this\nfunction is still runnable, and will be restarted immediately if there are no other runnable\ntasks.\n"}],"Base.download":[{"Tuple{Any,Any}":" download(url::AbstractString, [localfile::AbstractString])\n\nDownload a file from the given url, optionally renaming it to the given local file name. If\nno filename is given this will download into a randomly-named file in your temp directory.\nNote that this function relies on the availability of external tools such as `curl`, `wget`\nor `fetch` to download the file and is provided for convenience. For production use or\nsituations in which more options are needed, please use a package that provides the desired\nfunctionality instead.\n\nReturns the filename of the downloaded file.\n"}],"Base.isqrt":[{"Tuple{Integer}":" isqrt(n::Integer)\n\nInteger square root: the largest integer `m` such that `m*m <= n`.\n\n```jldoctest\njulia> isqrt(5)\n2\n```\n"}],"Base.parse":[{"Tuple{Type,Any}":" parse(type, str; base)\n\nParse a string as a number. For `Integer` types, a base can be specified\n(the default is 10). For floating-point types, the string is parsed as a decimal\nfloating-point number. `Complex` types are parsed from decimal strings\nof the form `\"R±Iim\"` as a `Complex(R,I)` of the requested type; `\"i\"` or `\"j\"` can also be\nused instead of `\"im\"`, and `\"R\"` or `\"Iim\"` are also permitted.\nIf the string does not contain a valid number, an error is raised.\n\n!!! compat \"Julia 1.1\"\n `parse(Bool, str)` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> parse(Int, \"1234\")\n1234\n\njulia> parse(Int, \"1234\", base = 5)\n194\n\njulia> parse(Int, \"afc\", base = 16)\n2812\n\njulia> parse(Float64, \"1.2e-3\")\n0.0012\n\njulia> parse(Complex{Float64}, \"3.2e-1 + 4.5im\")\n0.32 + 4.5im\n```\n"}],"Base.esc":[{"Tuple{Any}":" esc(e)\n\nOnly valid in the context of an [`Expr`](@ref) returned from a macro. Prevents the macro hygiene\npass from turning embedded variables into gensym variables. See the [Macros](@ref man-macros)\nsection of the Metaprogramming chapter of the manual for more details and examples.\n"}],"Base.prod!":[{"Tuple{Any,Any}":" prod!(r, A)\n\nMultiply elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 12\n\njulia> prod!([1 1], A)\n1×2 Array{Int64,2}:\n 3 8\n```\n"}],"Base.\\":[{"Tuple{Any,Any}":" \\(x, y)\n\nLeft division operator: multiplication of `y` by the inverse of `x` on the left. Gives\nfloating-point results for integer arguments.\n\n# Examples\n```jldoctest\njulia> 3 \\ 6\n2.0\n\njulia> inv(3) * 6\n2.0\n\njulia> A = [4 3; 2 1]; x = [5, 6];\n\njulia> A \\ x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n\njulia> inv(A) * x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n```\n"}],"Base.SubString":[{"Union{}":" SubString(s::AbstractString, i::Integer, j::Integer=lastindex(s))\n SubString(s::AbstractString, r::UnitRange{<:Integer})\n\nLike [`getindex`](@ref), but returns a view into the parent string `s`\nwithin range `i:j` or `r` respectively instead of making a copy.\n\n# Examples\n```jldoctest\njulia> SubString(\"abc\", 1, 2)\n\"ab\"\n\njulia> SubString(\"abc\", 1:2)\n\"ab\"\n\njulia> SubString(\"abc\", 2)\n\"bc\"\n```\n"}],"Base.eachmatch":[{"Tuple{Regex,AbstractString}":" eachmatch(r::Regex, s::AbstractString; overlap::Bool=false)\n\nSearch for all matches of a the regular expression `r` in `s` and return a iterator over the\nmatches. If overlap is `true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from distinct character ranges.\n\n# Examples\n```jldoctest\njulia> rx = r\"a.a\"\nr\"a.a\"\n\njulia> m = eachmatch(rx, \"a1a2a3a\")\nBase.RegexMatchIterator(r\"a.a\", \"a1a2a3a\", false)\n\njulia> collect(m)\n2-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a3a\")\n\njulia> collect(eachmatch(rx, \"a1a2a3a\", overlap = true))\n3-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a2a\")\n RegexMatch(\"a3a\")\n```\n"}],"Base.print_matrix":[{"Union{Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer,Integer}}":" print_matrix(io::IO, mat, pre, sep, post, hdots, vdots, ddots, hmod, vmod)\n\nPrints a matrix with limited output size. If `io` sets `:limit` to true,\nthen only the corners of the matrix are printed, separated with vertical,\nhorizontal, and diagonal ellipses as appropriate.\nOptional arguments are string pre (printed before the matrix, e.g. an opening bracket)\nwhich will cause a corresponding same-size indent on following rows, and\nstring post (printed at the end of the last row of the matrix).\nAlso options to use different ellipsis characters hdots, vdots, ddots.\nThese are repeated every hmod or vmod elements.\n"}],"Base.pkgdir":[{"Tuple{Module}":" pkgdir(m::Module)\n\nReturn the root directory of the package that imported module `m`,\nor `nothing` if `m` was not imported from a package.\n"}],"Base.union":[{"Union{}":" union(s, itrs...)\n ∪(s, itrs...)\n\nConstruct the union of sets. Maintain order with arrays.\n\n# Examples\n```jldoctest\njulia> union([1, 2], [3, 4])\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> union([1, 2], [2, 4])\n3-element Array{Int64,1}:\n 1\n 2\n 4\n\njulia> union([4, 2], 1:2)\n3-element Array{Int64,1}:\n 4\n 2\n 1\n\njulia> union(Set([1, 2]), 2:3)\nSet{Int64} with 3 elements:\n 2\n 3\n 1\n```\n"}],"Base.falses":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" falses(dims)\n\nCreate a `BitArray` with all values set to `false`.\n\n# Examples\n```jldoctest\njulia> falses(2,3)\n2×3 BitArray{2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.skipchars":[{"Tuple{Any,IO}":" skipchars(predicate, io::IO; linecomment=nothing)\n\nAdvance the stream `io` such that the next-read character will be the first remaining for\nwhich `predicate` returns `false`. If the keyword argument `linecomment` is specified, all\ncharacters from that character until the start of the next line are ignored.\n\n# Examples\n```jldoctest\njulia> buf = IOBuffer(\" text\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=1, mark=-1)\n\njulia> skipchars(isspace, buf)\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=5, mark=-1)\n\njulia> String(readavailable(buf))\n\"text\"\n```\n"}],"Base.checkindex":[{"Tuple{Type{Bool},AbstractUnitRange,Any}":" checkindex(Bool, inds::AbstractUnitRange, index)\n\nReturn `true` if the given `index` is within the bounds of\n`inds`. Custom types that would like to behave as indices for all\narrays can extend this method in order to provide a specialized bounds\nchecking implementation.\n\n# Examples\n```jldoctest\njulia> checkindex(Bool, 1:20, 8)\ntrue\n\njulia> checkindex(Bool, 1:20, 21)\nfalse\n```\n"}],"Base.fld":[{"Tuple{Any,Any}":" fld(x, y)\n\nLargest integer less than or equal to `x/y`. Equivalent to `div(x, y, RoundDown)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> fld(7.3,5.5)\n1.0\n```\n"}],"Base.dump":[{"Tuple{Any}":" dump(x; maxdepth=8)\n\nShow every part of the representation of a value.\nThe depth of the output is truncated at `maxdepth`.\n\n# Examples\n```jldoctest\njulia> struct MyStruct\n x\n y\n end\n\njulia> x = MyStruct(1, (2,3));\n\njulia> dump(x)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n 1: Int64 2\n 2: Int64 3\n\njulia> dump(x; maxdepth = 1)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n```\n"}],"Base.reenable_sigint":[{"Tuple{Function}":" reenable_sigint(f::Function)\n\nRe-enable Ctrl-C handler during execution of a function.\nTemporarily reverses the effect of [`disable_sigint`](@ref).\n"}],"Base.real":[{"Tuple{Complex}":" real(z)\n\nReturn the real part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> real(1 + 3im)\n1\n```\n"},{"Tuple{Type}":" real(T::Type)\n\nReturn the type that represents the real part of a value of type `T`.\ne.g: for `T == Complex{R}`, returns `R`.\nEquivalent to `typeof(real(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> real(Complex{Int})\nInt64\n\njulia> real(Float64)\nFloat64\n```\n"}],"Base.string":[{"Tuple":" string(xs...)\n\nCreate a string from any values, except `nothing`, using the [`print`](@ref) function.\n\n`string` should usually not be defined directly. Instead, define a method\n`print(io::IO, x::MyType)`. If `string(x)` for a certain type needs to be\nhighly efficient, then it may make sense to add a method to `string` and\ndefine `print(io::IO, x::MyType) = print(io, string(x))` to ensure the\nfunctions are consistent.\n\n# Examples\n```jldoctest\njulia> string(\"a\", 1, true)\n\"a1true\"\n```\n"},{"Tuple{Integer}":" string(n::Integer; base::Integer = 10, pad::Integer = 1)\n\nConvert an integer `n` to a string in the given `base`,\noptionally specifying a number of digits to pad to.\n\n```jldoctest\njulia> string(5, base = 13, pad = 4)\n\"0005\"\n\njulia> string(13, base = 5, pad = 4)\n\"0023\"\n```\n"}],"Base.indentation":[{"Tuple{AbstractString}":" indentation(str::AbstractString; tabwidth=8) -> (Int, Bool)\n\nCalculate the width of leading white space. Return the width and a flag to indicate\nif the string is empty.\n\n# Examples\n```jldoctest\njulia> Base.indentation(\"\")\n(0, true)\n\njulia> Base.indentation(\" a\")\n(2, false)\n\njulia> Base.indentation(\"\\ta\"; tabwidth=3)\n(3, false)\n```\n"}],"Base.@timev":[{"Tuple{Any}":" @timev\n\nThis is a verbose version of the `@time` macro. It first prints the same information as\n`@time`, then any non-zero memory allocation counters, and then returns the value of the\nexpression.\n\nSee also [`@time`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> @timev rand(10^6);\n 0.001006 seconds (7 allocations: 7.630 MiB)\nelapsed time (ns): 1005567\nbytes allocated: 8000256\npool allocs: 6\nmalloc() calls: 1\n```\n"}],"Base.⊊":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.sprint":[{"Tuple{Function,Vararg{Any,N} where N}":" sprint(f::Function, args...; context=nothing, sizehint=0)\n\nCall the given function with an I/O stream and the supplied extra arguments.\nEverything written to this I/O stream is returned as a string.\n`context` can be either an [`IOContext`](@ref) whose properties will be used,\nor a `Pair` specifying a property and its value. `sizehint` suggests the capacity\nof the buffer (in bytes).\n\nThe optional keyword argument `context` can be set to `:key=>value` pair\nor an `IO` or [`IOContext`](@ref) object whose attributes are used for the I/O\nstream passed to `f`. The optional `sizehint` is a suggested size (in bytes)\nto allocate for the buffer used to write the string.\n\n# Examples\n```jldoctest\njulia> sprint(show, 66.66666; context=:compact => true)\n\"66.6667\"\n\njulia> sprint(showerror, BoundsError([1], 100))\n\"BoundsError: attempt to access 1-element Array{Int64,1} at index [100]\"\n```\n"}],"Base.something":[{"Union{}":" something(x, y...)\n\nReturn the first value in the arguments which is not equal to [`nothing`](@ref),\nif any. Otherwise throw an error.\nArguments of type [`Some`](@ref) are unwrapped.\n\nSee also [`coalesce`](@ref).\n\n# Examples\n```jldoctest\njulia> something(nothing, 1)\n1\n\njulia> something(Some(1), nothing)\n1\n\njulia> something(missing, nothing)\nmissing\n\njulia> something(nothing, nothing)\nERROR: ArgumentError: No value arguments present\n```\n"}],"Base.@__LINE__":[{"Tuple{}":" @__LINE__ -> Int\n\nExpand to the line number of the location of the macrocall.\nReturn `0` if the line number could not be determined.\n"}],"Base.fieldtypes":[{"Tuple{Type}":" fieldtypes(T::Type)\n\nThe declared types of all fields in a composite DataType `T` as a tuple.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> fieldtypes(Foo)\n(Int64, String)\n```\n"}],"Base.AbstractDict":[{"Union{}":" AbstractDict{K, V}\n\nSupertype for dictionary-like types with keys of type `K` and values of type `V`.\n[`Dict`](@ref), [`IdDict`](@ref) and other types are subtypes of this.\nAn `AbstractDict{K, V}` should be an iterator of `Pair{K, V}`.\n"}],"Base.div":[{"Union{}":" div(x, y)\n ÷(x, y)\n\nThe quotient from Euclidean division. Computes `x/y`, truncated to an integer.\n\n# Examples\n```jldoctest\njulia> 9 ÷ 4\n2\n\njulia> -5 ÷ 3\n-1\n\njulia> 5.0 ÷ 2\n2.0\n```\n"},{"Tuple{Any,Any,RoundingMode}":" div(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient from Euclidean division. Computes x/y, rounded to an integer according\nto the rounding mode `r`. In other words, the quantity\n\n round(x/y,r)\n\nwithout any intermediate rounding.\n\nSee also: [`fld`](@ref), [`cld`](@ref) which are special cases of this function\n\n# Examples:\n```jldoctest\njulia> div(4, 3, RoundDown) # Matches fld(4, 3)\n1\njulia> div(4, 3, RoundUp) # Matches cld(4, 3)\n2\njulia> div(5, 2, RoundNearest)\n2\njulia> div(5, 2, RoundNearestTiesAway)\n3\njulia> div(-5, 2, RoundNearest)\n-2\njulia> div(-5, 2, RoundNearestTiesAway)\n-3\njulia> div(-5, 2, RoundNearestTiesUp)\n-2\n```\n"}],"Base.copyto!":[{"Tuple{AbstractArray,CartesianIndices,AbstractArray,CartesianIndices}":" copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest\n\nCopy the block of `src` in the range of `Rsrc` to the block of `dest`\nin the range of `Rdest`. The sizes of the two regions must match.\n"},{"Tuple{Any,Any}":" copyto!(dest::AbstractArray, src) -> dest\n\n\nCopy all elements from collection `src` to array `dest`, whose length must be greater than\nor equal to the length `n` of `src`. The first `n` elements of `dest` are overwritten,\nthe other elements are left untouched.\n\n# Examples\n```jldoctest\njulia> x = [1., 0., 3., 0., 5.];\n\njulia> y = zeros(7);\n\njulia> copyto!(y, x);\n\njulia> y\n7-element Array{Float64,1}:\n 1.0\n 0.0\n 3.0\n 0.0\n 5.0\n 0.0\n 0.0\n```\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Integer,Array{T,N} where N,Integer,Integer}} where T":" copyto!(dest, do, src, so, N)\n\nCopy `N` elements from collection `src` starting at offset `so`, to array `dest` starting at\noffset `do`. Return `dest`.\n"}],"Base.isbitstype":[{"Tuple{Type}":" isbitstype(T)\n\nReturn `true` if type `T` is a \"plain data\" type,\nmeaning it is immutable and contains no references to other values,\nonly `primitive` types and other `isbitstype` types.\nTypical examples are numeric types such as [`UInt8`](@ref),\n[`Float64`](@ref), and [`Complex{Float64}`](@ref).\nThis category of types is significant since they are valid as type parameters,\nmay not track [`isdefined`](@ref) / [`isassigned`](@ref) status,\nand have a defined layout that is compatible with C.\n\n# Examples\n```jldoctest\njulia> isbitstype(Complex{Float64})\ntrue\n\njulia> isbitstype(Complex)\nfalse\n```\n"}],"Base.repr":[{"Tuple{Any}":" repr(x; context=nothing)\n\nCreate a string from any value using the [`show`](@ref) function.\nYou should not add methods to `repr`; define a `show` method instead.\n\nThe optional keyword argument `context` can be set to an `IO` or [`IOContext`](@ref)\nobject whose attributes are used for the I/O stream passed to `show`.\n\nNote that `repr(x)` is usually similar to how the value of `x` would\nbe entered in Julia. See also [`repr(MIME(\"text/plain\"), x)`](@ref) to instead\nreturn a \"pretty-printed\" version of `x` designed more for human consumption,\nequivalent to the REPL display of `x`.\n\n# Examples\n```jldoctest\njulia> repr(1)\n\"1\"\n\njulia> repr(zeros(3))\n\"[0.0, 0.0, 0.0]\"\n\njulia> repr(big(1/3))\n\"0.333333333333333314829616256247390992939472198486328125\"\n\njulia> repr(big(1/3), context=:compact => true)\n\"0.333333\"\n\n```\n"}],"Base.promote_rule":[{"Union{}":" promote_rule(type1, type2)\n\nSpecifies what type should be used by [`promote`](@ref) when given values of types `type1` and\n`type2`. This function should not be called directly, but should have definitions added to\nit for new types as appropriate.\n"}],"Base.print_matrix_row":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,Array{T,1} where T,Integer,AbstractArray{T,1} where T,AbstractString}":"`print_matrix_row(io, X, A, i, cols, sep)` produces the aligned output for\na single matrix row X[i, cols] where the desired list of columns is given.\nThe corresponding alignment A is used, and the separation between elements\nis specified as string sep.\n`print_matrix_row` will also respect compact output for elements.\n"}],"Base.unsafe_load":[{"Union{Tuple{Ptr}, Tuple{Ptr,Integer}}":" unsafe_load(p::Ptr{T}, i::Integer=1)\n\nLoad a value of type `T` from the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1]`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may segfault your program or return\ngarbage answers, in the same manner as C.\n"}],"Base.LinearIndices":[{"Union{}":" LinearIndices(A::AbstractArray)\n\nReturn a `LinearIndices` array with the same shape and [`axes`](@ref) as `A`,\nholding the linear index of each entry in `A`. Indexing this array with\ncartesian indices allows mapping them to linear indices.\n\nFor arrays with conventional indexing (indices start at 1), or any multidimensional\narray, linear indices range from 1 to `length(A)`. However, for `AbstractVector`s\nlinear indices are `axes(A, 1)`, and therefore do not start at 1 for vectors with\nunconventional indexing.\n\nCalling this function is the \"safe\" way to write algorithms that\nexploit linear indexing.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> b = LinearIndices(A);\n\njulia> extrema(b)\n(1, 210)\n```\n\n LinearIndices(inds::CartesianIndices) -> R\n LinearIndices(sz::Dims) -> R\n LinearIndices((istart:istop, jstart:jstop, ...)) -> R\n\nReturn a `LinearIndices` array with the specified shape or [`axes`](@ref).\n\n# Example\n\nThe main purpose of this constructor is intuitive conversion\nfrom cartesian to linear indexing:\n\n```jldoctest\njulia> linear = LinearIndices((1:3, 1:2))\n3×2 LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}:\n 1 4\n 2 5\n 3 6\n\njulia> linear[1,2]\n4\n```\n"}],"Base.min":[{"Tuple{Any,Any}":" min(x, y, ...)\n\nReturn the minimum of the arguments. See also the [`minimum`](@ref) function\nto take the minimum element from a collection.\n\n# Examples\n```jldoctest\njulia> min(2, 5, 1)\n1\n```\n"}],"Base.SystemError":[{"Union{}":" SystemError(prefix::AbstractString, [errno::Int32])\n\nA system call failed with an error code (in the `errno` global variable).\n"}],"Base.julia_cmd":[{"Union{Tuple{}, Tuple{Any}}":" Base.julia_cmd(juliapath=joinpath(Sys.BINDIR::String, julia_exename()))\n\nReturn a julia command similar to the one of the running process.\nPropagates any of the `--cpu-target`, `--sysimage`, `--compile`, `--sysimage-native-code`,\n`--compiled-modules`, `--inline`, `--check-bounds`, `--optimize`, `-g`,\n`--code-coverage`, and `--depwarn`\ncommand line arguments that are not at their default values.\n\nAmong others, `--math-mode`, `--warn-overwrite`, and `--trace-compile` are notably not propagated currently.\n\n!!! compat \"Julia 1.1\"\n Only the `--cpu-target`, `--sysimage`, `--depwarn`, `--compile` and `--check-bounds` flags were propagated before Julia 1.1.\n"}],"Base.isconcretetype":[{"Tuple{Any}":" isconcretetype(T)\n\nDetermine whether type `T` is a concrete type, meaning it could have direct instances\n(values `x` such that `typeof(x) === T`).\n\n# Examples\n```jldoctest\njulia> isconcretetype(Complex)\nfalse\n\njulia> isconcretetype(Complex{Float32})\ntrue\n\njulia> isconcretetype(Vector{Complex})\ntrue\n\njulia> isconcretetype(Vector{Complex{Float32}})\ntrue\n\njulia> isconcretetype(Union{})\nfalse\n\njulia> isconcretetype(Union{Int,String})\nfalse\n```\n"}],"Base.trailing_ones":[{"Tuple{Integer}":" trailing_ones(x::Integer) -> Integer\n\nNumber of ones trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_ones(3)\n2\n```\n"}],"Base.*":[{"Tuple{Union{AbstractChar, AbstractString},Vararg{Union{AbstractChar, AbstractString},N} where N}":" *(s::Union{AbstractString, AbstractChar}, t::Union{AbstractString, AbstractChar}...) -> AbstractString\n\nConcatenate strings and/or characters, producing a [`String`](@ref). This is equivalent\nto calling the [`string`](@ref) function on the arguments. Concatenation of built-in\nstring types always produces a value of type `String` but other string types may choose\nto return a string of a different type as appropriate.\n\n# Examples\n```jldoctest\njulia> \"Hello \" * \"world\"\n\"Hello world\"\n\njulia> 'j' * \"ulia\"\n\"julia\"\n```\n"},{"Tuple{Union{Regex, AbstractChar, AbstractString},Vararg{Union{Regex, AbstractChar, AbstractString},N} where N}":" *(s::Regex, t::Union{Regex,AbstractString,AbstractChar}) -> Regex\n *(s::Union{Regex,AbstractString,AbstractChar}, t::Regex) -> Regex\n\nConcatenate regexes, strings and/or characters, producing a [`Regex`](@ref).\nString and character arguments must be matched exactly in the resulting regex,\nmeaning that the contained characters are devoid of any special meaning\n(they are quoted with \"\\Q\" and \"\\E\").\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> match(r\"Hello|Good bye\" * ' ' * \"world\", \"Hello world\")\nRegexMatch(\"Hello world\")\n\njulia> r = r\"a|b\" * \"c|d\"\nr\"(?:a|b)\\Qc|d\\E\"\n\njulia> match(r, \"ac\") == nothing\ntrue\n\njulia> match(r, \"ac|d\")\nRegexMatch(\"ac|d\")\n```\n"}],"Base.pairs":[{"Tuple{Any}":" pairs(collection)\n\nReturn an iterator over `key => value` pairs for any\ncollection that maps a set of keys to a set of values.\nThis includes arrays, where the keys are the array indices.\n"}],"Base.pipeline":[{"Tuple{Base.AbstractCmd}":" pipeline(command; stdin, stdout, stderr, append=false)\n\nRedirect I/O to or from the given `command`. Keyword arguments specify which of the\ncommand's streams should be redirected. `append` controls whether file output appends to the\nfile. This is a more general version of the 2-argument `pipeline` function.\n`pipeline(from, to)` is equivalent to `pipeline(from, stdout=to)` when `from` is a command,\nand to `pipeline(to, stdin=from)` when `from` is another kind of data source.\n\n**Examples**:\n\n```julia\nrun(pipeline(`dothings`, stdout=\"out.txt\", stderr=\"errs.txt\"))\nrun(pipeline(`update`, stdout=\"log.txt\", append=true))\n```\n"},{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" pipeline(from, to, ...)\n\nCreate a pipeline from a data source to a destination. The source and destination can be\ncommands, I/O streams, strings, or results of other `pipeline` calls. At least one argument\nmust be a command. Strings refer to filenames. When called with more than two arguments,\nthey are chained together from left to right. For example, `pipeline(a,b,c)` is equivalent to\n`pipeline(pipeline(a,b),c)`. This provides a more concise way to specify multi-stage\npipelines.\n\n**Examples**:\n\n```julia\nrun(pipeline(`ls`, `grep xyz`))\nrun(pipeline(`ls`, \"out.txt\"))\nrun(pipeline(\"out.txt\", `grep xyz`))\n```\n"}],"Base.reverse!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse!(v [, start=1 [, stop=length(v) ]]) -> v\n\nIn-place version of [`reverse`](@ref).\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse!(A);\n\njulia> A\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.error":[{"Tuple{AbstractString}":" error(message::AbstractString)\n\nRaise an `ErrorException` with the given message.\n"},{"Union{Tuple{Vararg{Any,N}}, Tuple{N}} where N":" error(msg...)\n\nRaise an `ErrorException` with the given message.\n"}],"Base.runtests":[{"Union{Tuple{}, Tuple{Any}}":" Base.runtests(tests=[\"all\"]; ncores=ceil(Int, Sys.CPU_THREADS / 2),\n exit_on_error=false, [seed])\n\nRun the Julia unit tests listed in `tests`, which can be either a string or an array of\nstrings, using `ncores` processors. If `exit_on_error` is `false`, when one test\nfails, all remaining tests in other files will still be run; they are otherwise discarded,\nwhen `exit_on_error == true`.\nIf a seed is provided via the keyword argument, it is used to seed the\nglobal RNG in the context where the tests are run; otherwise the seed is chosen randomly.\n"}],"Base.isone":[{"Tuple{Any}":" isone(x)\n\nReturn `true` if `x == one(x)`; if `x` is an array, this checks whether\n`x` is an identity matrix.\n\n# Examples\n```jldoctest\njulia> isone(1.0)\ntrue\n\njulia> isone([1 0; 0 2])\nfalse\n\njulia> isone([1 0; 0 true])\ntrue\n```\n"}],"Base.deepcopy":[{"Tuple{Any}":" deepcopy(x)\n\nCreate a deep copy of `x`: everything is copied recursively, resulting in a fully\nindependent object. For example, deep-copying an array produces a new array whose elements\nare deep copies of the original elements. Calling `deepcopy` on an object should generally\nhave the same effect as serializing and then deserializing it.\n\nAs a special case, functions can only be actually deep-copied if they are anonymous,\notherwise they are just copied. The difference is only relevant in the case of closures,\ni.e. functions which may contain hidden internal references.\n\nWhile it isn't normally necessary, user-defined types can override the default `deepcopy`\nbehavior by defining a specialized version of the function\n`deepcopy_internal(x::T, dict::IdDict)` (which shouldn't otherwise be used),\nwhere `T` is the type to be specialized for, and `dict` keeps track of objects copied\nso far within the recursion. Within the definition, `deepcopy_internal` should be used\nin place of `deepcopy`, and the `dict` variable should be\nupdated as appropriate before returning.\n"}],"Base.@__FILE__":[{"Tuple{}":" @__FILE__ -> AbstractString\n\nExpand to a string with the path to the file containing the\nmacrocall, or an empty string if evaluated by `julia -e `.\nReturn `nothing` if the macro was missing parser source information.\nAlternatively see [`PROGRAM_FILE`](@ref).\n"}],"Base.precision":[{"Union{}":" precision(num::AbstractFloat)\n\nGet the precision of a floating point number, as defined by the effective number of bits in\nthe mantissa.\n"}],"Base.isnothing":[{"Tuple{Any}":" isnothing(x)\n\nReturn `true` if `x === nothing`, and return `false` if not.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.eps":[{"Tuple{Type{#s662} where #s662<:AbstractFloat}":" eps(::Type{T}) where T<:AbstractFloat\n eps()\n\nReturn the *machine epsilon* of the floating point type `T` (`T = Float64` by\ndefault). This is defined as the gap between 1 and the next largest value representable by\n`typeof(one(T))`, and is equivalent to `eps(one(T))`. (Since `eps(T)` is a\nbound on the *relative error* of `T`, it is a \"dimensionless\" quantity like [`one`](@ref).)\n\n# Examples\n```jldoctest\njulia> eps()\n2.220446049250313e-16\n\njulia> eps(Float32)\n1.1920929f-7\n\njulia> 1.0 + eps()\n1.0000000000000002\n\njulia> 1.0 + eps()/2\n1.0\n```\n"},{"Tuple{AbstractFloat}":" eps(x::AbstractFloat)\n\nReturn the *unit in last place* (ulp) of `x`. This is the distance between consecutive\nrepresentable floating point values at `x`. In most cases, if the distance on either side\nof `x` is different, then the larger of the two is taken, that is\n\n eps(x) == max(x-prevfloat(x), nextfloat(x)-x)\n\nThe exceptions to this rule are the smallest and largest finite values\n(e.g. `nextfloat(-Inf)` and `prevfloat(Inf)` for [`Float64`](@ref)), which round to the\nsmaller of the values.\n\nThe rationale for this behavior is that `eps` bounds the floating point rounding\nerror. Under the default `RoundNearest` rounding mode, if ``y`` is a real number and ``x``\nis the nearest floating point number to ``y``, then\n\n```math\n|y-x| \\leq \\operatorname{eps}(x)/2.\n```\n\n# Examples\n```jldoctest\njulia> eps(1.0)\n2.220446049250313e-16\n\njulia> eps(prevfloat(2.0))\n2.220446049250313e-16\n\njulia> eps(2.0)\n4.440892098500626e-16\n\njulia> x = prevfloat(Inf) # largest finite Float64\n1.7976931348623157e308\n\njulia> x + eps(x)/2 # rounds up\nInf\n\njulia> x + prevfloat(eps(x)/2) # rounds down\n1.7976931348623157e308\n```\n"}],"Base.get":[{"Tuple{Function,Any,Any}":" get(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, return\n`f()`. Use [`get!`](@ref) to also store the default value in the dictionary.\n\nThis is intended to be called using `do` block syntax\n\n```julia\nget(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get(collection, key, default)\n\nReturn the value stored for the given key, or the given default value if no mapping for the\nkey is present.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> get(d, \"a\", 3)\n1\n\njulia> get(d, \"c\", 3)\n3\n```\n"}],"Base.identity":[{"Tuple{Any}":" identity(x)\n\nThe identity function. Returns its argument.\n\n# Examples\n```jldoctest\njulia> identity(\"Well, what did you expect?\")\n\"Well, what did you expect?\"\n```\n"}],"Base.IOStream":[{"Union{}":" IOStream\n\nA buffered IO stream wrapping an OS file descriptor.\nMostly used to represent files returned by [`open`](@ref).\n"}],"Base.im":[{"Union{}":" im\n\nThe imaginary unit.\n\n# Examples\n```jldoctest\njulia> im * im\n-1 + 0im\n```\n"}],"Base.typemax":[{"Union{}":" typemax(T)\n\nThe highest value representable by the given (real) numeric `DataType`.\n\n# Examples\n```jldoctest\njulia> typemax(Int8)\n127\n\njulia> typemax(UInt32)\n0xffffffff\n```\n"}],"Base.atreplinit":[{"Tuple{Function}":" atreplinit(f)\n\nRegister a one-argument function to be called before the REPL interface is initialized in\ninteractive sessions; this is useful to customize the interface. The argument of `f` is the\nREPL object. This function should be called from within the `.julia/config/startup.jl`\ninitialization file.\n"}],"Base.size":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" size(A::AbstractArray, [dim])\n\nReturn a tuple containing the dimensions of `A`. Optionally you can specify a\ndimension to just get the length of that dimension.\n\nNote that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)\nmay be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (2,3,4));\n\njulia> size(A)\n(2, 3, 4)\n\njulia> size(A, 2)\n3\n```\n"}],"Base.backtrace":[{"Tuple{}":" backtrace()\n\nGet a backtrace object for the current program point.\n"}],"Base.filter!":[{"Tuple{Any,AbstractDict}":" filter!(f, d::AbstractDict)\n\nUpdate `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Example\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\", 3=>\"c\")\nDict{Int64,String} with 3 entries:\n 2 => \"b\"\n 3 => \"c\"\n 1 => \"a\"\n\njulia> filter!(p->isodd(p.first), d)\nDict{Int64,String} with 2 entries:\n 3 => \"c\"\n 1 => \"a\"\n```\n"},{"Tuple{Any,AbstractArray{T,1} where T}":" filter!(f, a::AbstractVector)\n\nUpdate `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> filter!(isodd, Vector(1:10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"}],"Base.codeunits":[{"Tuple{AbstractString}":" codeunits(s::AbstractString)\n\nObtain a vector-like object containing the code units of a string.\nReturns a `CodeUnits` wrapper by default, but `codeunits` may optionally be defined\nfor new string types if necessary.\n"}],"Base.<":[{"Tuple{Any}":" <(x)\n\nCreate a function that compares its argument to `x` using [`<`](@ref), i.e.\na function equivalent to `y -> y < x`.\nThe returned function is of type `Base.Fix2{typeof(<)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <(x, y)\n\nLess-than comparison operator. Falls back to [`isless`](@ref).\nBecause of the behavior of floating-point NaN values, this operator implements\na partial order.\n\n# Implementation\nNew numeric types with a canonical partial order should implement this function for\ntwo arguments of the new type.\nTypes with a canonical total order should implement [`isless`](@ref) instead.\n(x < y) | (x == y)\n\n# Examples\n```jldoctest\njulia> 'a' < 'b'\ntrue\n\njulia> \"abc\" < \"abd\"\ntrue\n\njulia> 5 < 3\nfalse\n```\n"}],"Base.haskey":[{"Tuple{Dict,Any}":" haskey(collection, key) -> Bool\n\nDetermine whether a collection has a mapping for a given `key`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> haskey(D, 'a')\ntrue\n\njulia> haskey(D, 'c')\nfalse\n```\n"}],"Base.circshift":[{"Tuple{AbstractArray,Any}":" circshift(A, shifts)\n\nCircularly shift, i.e. rotate, the data in an array. The second argument is a tuple or\nvector giving the amount to shift in each dimension, or an integer to shift only in the\nfirst dimension.\n\n# Examples\n```jldoctest\njulia> b = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> circshift(b, (0,2))\n4×4 Array{Int64,2}:\n 9 13 1 5\n 10 14 2 6\n 11 15 3 7\n 12 16 4 8\n\njulia> circshift(b, (-1,0))\n4×4 Array{Int64,2}:\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n 1 5 9 13\n\njulia> a = BitArray([true, true, false, false, true])\n5-element BitArray{1}:\n 1\n 1\n 0\n 0\n 1\n\njulia> circshift(a, 1)\n5-element BitArray{1}:\n 1\n 1\n 1\n 0\n 0\n\njulia> circshift(a, -1)\n5-element BitArray{1}:\n 1\n 0\n 0\n 1\n 1\n```\n\nSee also [`circshift!`](@ref).\n"}],"Base.acquire":[{"Tuple{Base.Semaphore}":" acquire(s::Semaphore)\n\nWait for one of the `sem_size` permits to be available,\nblocking until one can be acquired.\n"}],"Base.mod":[{"Tuple{Integer,Base.OneTo}":" mod(x::Integer, r::AbstractUnitRange)\n\nFind `y` in the range `r` such that ``x ≡ y (mod n)``, where `n = length(r)`,\ni.e. `y = mod(x - first(r), n) + first(r)`.\n\nSee also: [`mod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod(0, Base.OneTo(3))\n3\n\njulia> mod(3, 0:2)\n0\n```\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"},{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" mod(x, y)\n rem(x, y, RoundDown)\n\nThe reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored\ndivision by `y`, i.e. `x - y*fld(x,y)` if computed without intermediate rounding.\n\nThe result will have the same sign as `y`, and magnitude less than `abs(y)` (with some\nexceptions, see note below).\n\n!!! note\n\n When used with floating point values, the exact result may not be representable by the\n type, and so rounding error may occur. In particular, if the exact result is very\n close to `y`, then it may be rounded to `y`.\n\n```jldoctest\njulia> mod(8, 3)\n2\n\njulia> mod(9, 3)\n0\n\njulia> mod(8.9, 3)\n2.9000000000000004\n\njulia> mod(eps(), 3)\n2.220446049250313e-16\n\njulia> mod(-eps(), 3)\n3.0\n```\n"}],"Base.mapfoldl":[{"Tuple{Any,Any,Any}":" mapfoldl(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed left associativity, as in [`foldl`](@ref).\nIf provided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.MappingRF":[{"Union{}":" MappingRF(f, rf) -> rf′\n\nCreate a mapping reducing function `rf′(acc, x) = rf(acc, f(x))`.\n"}],"Base.float":[{"Tuple{Any}":" float(x)\n\nConvert a number or array to a floating point data type.\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" float(T::Type)\n\nReturn an appropriate type to represent a value of type `T` as a floating point value.\nEquivalent to `typeof(float(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> float(Complex{Int})\nComplex{Float64}\n\njulia> float(Int)\nFloat64\n```\n"}],"Base.asyncmap":[{"Tuple{Any,Vararg{Any,N} where N}":" asyncmap(f, c...; ntasks=0, batch_size=nothing)\n\nUses multiple concurrent tasks to map `f` over a collection (or multiple\nequal length collections). For multiple collection arguments, `f` is\napplied elementwise.\n\n`ntasks` specifies the number of tasks to run concurrently.\nDepending on the length of the collections, if `ntasks` is unspecified,\nup to 100 tasks will be used for concurrent mapping.\n\n`ntasks` can also be specified as a zero-arg function. In this case, the\nnumber of tasks to run in parallel is checked before processing every element and a new\ntask started if the value of `ntasks_func` is less than the current number\nof tasks.\n\nIf `batch_size` is specified, the collection is processed in batch mode. `f` must\nthen be a function that must accept a `Vector` of argument tuples and must\nreturn a vector of results. The input vector will have a length of `batch_size` or less.\n\nThe following examples highlight execution in different tasks by returning\nthe `objectid` of the tasks in which the mapping function is executed.\n\nFirst, with `ntasks` undefined, each element is processed in a different task.\n```\njulia> tskoid() = objectid(current_task());\n\njulia> asyncmap(x->tskoid(), 1:5)\n5-element Array{UInt64,1}:\n 0x6e15e66c75c75853\n 0x440f8819a1baa682\n 0x9fb3eeadd0c83985\n 0xebd3e35fe90d4050\n 0x29efc93edce2b961\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5)))\n5\n```\n\nWith `ntasks=2` all elements are processed in 2 tasks.\n```\njulia> asyncmap(x->tskoid(), 1:5; ntasks=2)\n5-element Array{UInt64,1}:\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))\n2\n```\n\nWith `batch_size` defined, the mapping function needs to be changed to accept an array\nof argument tuples and return an array of results. `map` is used in the modified mapping\nfunction to achieve this.\n```\njulia> batch_func(input) = map(x->string(\"args_tuple: \", x, \", element_val: \", x[1], \", task: \", tskoid()), input)\nbatch_func (generic function with 1 method)\n\njulia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)\n5-element Array{String,1}:\n \"args_tuple: (1,), element_val: 1, task: 9118321258196414413\"\n \"args_tuple: (2,), element_val: 2, task: 4904288162898683522\"\n \"args_tuple: (3,), element_val: 3, task: 9118321258196414413\"\n \"args_tuple: (4,), element_val: 4, task: 4904288162898683522\"\n \"args_tuple: (5,), element_val: 5, task: 9118321258196414413\"\n```\n\n!!! note\n Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently,\n `asyncmap` is beneficial only when the mapping function involves any I/O - disk, network, remote\n worker invocation, etc.\n\n"}],"Base.fullname":[{"Tuple{Module}":" fullname(m::Module)\n\nGet the fully-qualified name of a module as a tuple of symbols. For example,\n\n# Examples\n```jldoctest\njulia> fullname(Base.Iterators)\n(:Base, :Iterators)\n\njulia> fullname(Main)\n(:Main,)\n```\n"}],"Base.stderr":[{"Union{}":" stderr\n\nGlobal variable referring to the standard error stream.\n"}],"Base.sizehint!":[{"Union{}":" sizehint!(s, n)\n\nSuggest that collection `s` reserve capacity for at least `n` elements. This can improve performance.\n"}],"Base.reshape":[{"Union{}":" reshape(A, dims...) -> AbstractArray\n reshape(A, dims) -> AbstractArray\n\nReturn an array with the same data as `A`, but with different\ndimension sizes or number of dimensions. The two arrays share the same\nunderlying data, so that the result is mutable if and only if `A` is\nmutable, and setting elements of one alters the values of the other.\n\nThe new dimensions may be specified either as a list of arguments or\nas a shape tuple. At most one dimension may be specified with a `:`,\nin which case its length is computed such that its product with all\nthe specified dimensions is equal to the length of the original array\n`A`. The total number of elements must not change.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:16)\n16-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n 7\n 8\n 9\n 10\n 11\n 12\n 13\n 14\n 15\n 16\n\njulia> reshape(A, (4, 4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reshape(A, 2, :)\n2×8 Array{Int64,2}:\n 1 3 5 7 9 11 13 15\n 2 4 6 8 10 12 14 16\n\njulia> reshape(1:6, 2, 3)\n2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:\n 1 3 5\n 2 4 6\n```\n"}],"Base.wait":[{"Tuple{Base.GenericCondition}":" wait([x])\n\nBlock the current task until some event occurs, depending on the type of the argument:\n\n* [`Channel`](@ref): Wait for a value to be appended to the channel.\n* [`Condition`](@ref): Wait for [`notify`](@ref) on a condition.\n* `Process`: Wait for a process or process chain to exit. The `exitcode` field of a process\n can be used to determine success or failure.\n* [`Task`](@ref): Wait for a `Task` to finish. If the task fails with an exception, a\n `TaskFailedException` (which wraps the failed task) is thrown.\n* [`RawFD`](@ref): Wait for changes on a file descriptor (see the `FileWatching` package).\n\nIf no argument is passed, the task blocks for an undefined period. A task can only be\nrestarted by an explicit call to [`schedule`](@ref) or [`yieldto`](@ref).\n\nOften `wait` is called within a `while` loop to ensure a waited-for condition is met before\nproceeding.\n"}],"Base.run":[{"Tuple{Base.AbstractCmd,Vararg{Any,N} where N}":" run(command, args...; wait::Bool = true)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual). Throws an error if anything goes wrong, including the process\nexiting with a non-zero status (when `wait` is true).\n\nIf `wait` is false, the process runs asynchronously. You can later wait for it and check\nits exit status by calling `success` on the returned process object.\n\nWhen `wait` is false, the process' I/O streams are directed to `devnull`.\nWhen `wait` is true, I/O streams are shared with the parent process.\nUse [`pipeline`](@ref) to control I/O redirection.\n"}],"Base.isnan":[{"Tuple{AbstractFloat}":" isnan(f) -> Bool\n\nTest whether a number value is a NaN, an indeterminate value which is neither an infinity\nnor a finite number (\"not a number\").\n"}],"Base.hasproperty":[{"Tuple{Any,Symbol}":" hasproperty(x, s::Symbol)\n\nReturn a boolean indicating whether the object `x` has `s` as one of its own properties.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.isbits":[{"Tuple{Any}":" isbits(x)\n\nReturn `true` if `x` is an instance of an `isbitstype` type.\n"}],"Base.eltype":[{"Tuple{Type}":" eltype(type)\n\nDetermine the type of the elements generated by iterating a collection of the given `type`.\nFor dictionary types, this will be a `Pair{KeyType,ValType}`. The definition\n`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed\ninstead of types. However the form that accepts a type argument should be defined for new\ntypes.\n\n# Examples\n```jldoctest\njulia> eltype(fill(1f0, (2,2)))\nFloat32\n\njulia> eltype(fill(0x1, (2,2)))\nUInt8\n```\n"}],"Base.retry":[{"Tuple{Any}":" retry(f; delays=ExponentialBackOff(), check=nothing) -> Function\n\nReturn an anonymous function that calls function `f`. If an exception arises,\n`f` is repeatedly called again, each time `check` returns `true`, after waiting the\nnumber of seconds specified in `delays`. `check` should input `delays`'s\ncurrent state and the `Exception`.\n\n!!! compat \"Julia 1.2\"\n Before Julia 1.2 this signature was restricted to `f::Function`.\n\n# Examples\n```julia\nretry(f, delays=fill(5.0, 3))\nretry(f, delays=rand(5:10, 2))\nretry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))\nretry(http_get, check=(s,e)->e.status == \"503\")(url)\nretry(read, check=(s,e)->isa(e, IOError))(io, 128; all=false)\n```\n"}],"Base.reinterpret":[{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" reinterpret(type, A)\n\nChange the type-interpretation of a block of memory.\nFor arrays, this constructs a view of the array with the same binary data as the given\narray, but with the specified element type.\nFor example,\n`reinterpret(Float32, UInt32(7))` interprets the 4 bytes corresponding to `UInt32(7)` as a\n[`Float32`](@ref).\n\n# Examples\n```jldoctest\njulia> reinterpret(Float32, UInt32(7))\n1.0f-44\n\njulia> reinterpret(Float32, UInt32[1 2 3 4 5])\n1×5 reinterpret(Float32, ::Array{UInt32,2}):\n 1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45\n```\n"}],"Base.@irrational":[{"Tuple{Any,Any,Any}":"\t@irrational sym val def\n\t@irrational(sym, val, def)\n\nDefine a new `Irrational` value, `sym`, with pre-computed `Float64` value `val`,\nand arbitrary-precision definition in terms of `BigFloat`s given be the expression `def`.\n"}],"Base.NaN32":[{"Union{}":" NaN32\n\nA not-a-number value of type [`Float32`](@ref).\n"}],"Base.deleteat!":[{"Tuple{Array{T,1} where T,Integer}":" deleteat!(a::Vector, i::Integer)\n\nRemove the item at the given `i` and return the modified `a`. Subsequent items\nare shifted to fill the resulting gap.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 2)\n5-element Array{Int64,1}:\n 6\n 4\n 3\n 2\n 1\n```\n"},{"Tuple{Array{T,1} where T,Any}":" deleteat!(a::Vector, inds)\n\nRemove the items at the indices given by `inds`, and return the modified `a`.\nSubsequent items are shifted to fill the resulting gap.\n\n`inds` can be either an iterator or a collection of sorted and unique integer indices,\nor a boolean vector of the same length as `a` with `true` indicating entries to delete.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))\nERROR: ArgumentError: indices must be unique and sorted\nStacktrace:\n[...]\n```\n"}],"Base.selectdim":[{"Tuple{AbstractArray,Integer,Any}":" selectdim(A, d::Integer, i)\n\nReturn a view of all the data of `A` where the index for dimension `d` equals `i`.\n\nEquivalent to `view(A,:,:,...,i,:,:,...)` where `i` is in position `d`.\n\n# Examples\n```jldoctest\njulia> A = [1 2 3 4; 5 6 7 8]\n2×4 Array{Int64,2}:\n 1 2 3 4\n 5 6 7 8\n\njulia> selectdim(A, 2, 3)\n2-element view(::Array{Int64,2}, :, 3) with eltype Int64:\n 3\n 7\n```\n"}],"Base.hasfield":[{"Union{Tuple{T}, Tuple{Type{T},Symbol}} where T":" hasfield(T::Type, name::Symbol)\n\nReturn a boolean indicating whether `T` has `name` as one of its own fields.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.pop!":[{"Tuple{Array{T,1} where T}":" pop!(collection) -> item\n\nRemove an item in `collection` and return it. If `collection` is an\nordered container, the last item is returned.\n\n# Examples\n```jldoctest\njulia> A=[1, 2, 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> pop!(A)\n3\n\njulia> A\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> S = Set([1, 2])\nSet{Int64} with 2 elements:\n 2\n 1\n\njulia> pop!(S)\n2\n\njulia> S\nSet{Int64} with 1 element:\n 1\n\njulia> pop!(Dict(1=>2))\n1 => 2\n```\n"},{"Tuple{Any,Any,Any}":" pop!(collection, key[, default])\n\nDelete and return the mapping for `key` if it exists in `collection`, otherwise return\n`default`, or throw an error if `default` is not specified.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> pop!(d, \"a\")\n1\n\njulia> pop!(d, \"d\")\nERROR: KeyError: key \"d\" not found\nStacktrace:\n[...]\n\njulia> pop!(d, \"e\", 4)\n4\n```\n"}],"Base.intersect":[{"Tuple{AbstractSet,Any,Vararg{Any,N} where N}":" intersect(s, itrs...)\n ∩(s, itrs...)\n\nConstruct the intersection of sets.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> intersect([1, 2, 3], [3, 4, 5])\n1-element Array{Int64,1}:\n 3\n\njulia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])\n2-element Array{Int64,1}:\n 4\n 6\n\njulia> intersect(Set([1, 2]), BitSet([2, 3]))\nSet{Int64} with 1 element:\n 2\n```\n"}],"Base.isimmutable":[{"Tuple{Any}":" isimmutable(v) -> Bool\n\nReturn `true` iff value `v` is immutable. See [Mutable Composite Types](@ref)\nfor a discussion of immutability. Note that this function works on values, so if you give it\na type, it will tell you that a value of `DataType` is mutable.\n\n# Examples\n```jldoctest\njulia> isimmutable(1)\ntrue\n\njulia> isimmutable([1,2])\nfalse\n```\n"}],"Base.denominator":[{"Tuple{Integer}":" denominator(x)\n\nDenominator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> denominator(2//3)\n3\n\njulia> denominator(4)\n1\n```\n"}],"Base.@goto":[{"Tuple{Symbol}":" @goto name\n\n`@goto name` unconditionally jumps to the statement at the location [`@label name`](@ref).\n\n`@label` and `@goto` cannot create jumps to different top-level statements. Attempts cause an\nerror. To still use `@goto`, enclose the `@label` and `@goto` in a block.\n"}],"Base.bitsunionsize":[{"Tuple{Union}":" Base.bitsunionsize(U::Union)\n\nFor a `Union` of [`isbitstype`](@ref) types, return the size of the largest type; assumes `Base.isbitsunion(U) == true`.\n\n# Examples\n```jldoctest\njulia> Base.bitsunionsize(Union{Float64, UInt8})\n0x0000000000000008\n\njulia> Base.bitsunionsize(Union{Float64, UInt8, Int128})\n0x0000000000000010\n```\n"}],"Base.unsafe_wrap":[{"Union{Tuple{N}, Tuple{T}, Tuple{Union{Type{Array}, Type{Array{T,N} where N}, Type{Array{T,N}}},Ptr{T},Tuple{Vararg{Int64,N}}}} where N where T":" unsafe_wrap(Array, pointer::Ptr{T}, dims; own = false)\n\nWrap a Julia `Array` object around the data at the address given by `pointer`,\nwithout making a copy. The pointer element type `T` determines the array\nelement type. `dims` is either an integer (for a 1d array) or a tuple of the array dimensions.\n`own` optionally specifies whether Julia should take ownership of the memory,\ncalling `free` on the pointer when the array is no longer referenced.\n\nThis function is labeled \"unsafe\" because it will crash if `pointer` is not\na valid memory address to data of the requested length.\n"}],"Base.nextpow":[{"Tuple{Real,Real}":" nextpow(a, x)\n\nThe smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be\ngreater than 1, and `x` must be greater than 0.\n\n# Examples\n```jldoctest\njulia> nextpow(2, 7)\n8\n\njulia> nextpow(2, 9)\n16\n\njulia> nextpow(5, 20)\n25\n\njulia> nextpow(4, 16)\n16\n```\n\nSee also [`prevpow`](@ref).\n"}],"Base.all!":[{"Tuple{Any,Any}":" all!(r, A)\n\nTest whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> all!([1; 1], A)\n2-element Array{Int64,1}:\n 0\n 0\n\njulia> all!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.map":[{"Tuple{Any,Any}":" map(f, c...) -> collection\n\nTransform collection `c` by applying `f` to each element. For multiple collection arguments,\napply `f` elementwise.\n\nSee also: [`mapslices`](@ref)\n\n# Examples\n```jldoctest\njulia> map(x -> x * 2, [1, 2, 3])\n3-element Array{Int64,1}:\n 2\n 4\n 6\n\njulia> map(+, [1, 2, 3], [10, 20, 30])\n3-element Array{Int64,1}:\n 11\n 22\n 33\n```\n"}],"Base.∋":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"}],"Base.datatype_haspadding":[{"Tuple{DataType}":" Base.datatype_haspadding(dt::DataType) -> Bool\n\nReturn whether the fields of instances of this type are packed in memory,\nwith no intervening padding bytes.\nCan be called on any `isconcretetype`.\n"}],"Base.hex2bytes":[{"Union{}":" hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})\n\nGiven a string or array `s` of ASCII codes for a sequence of hexadecimal digits, returns a\n`Vector{UInt8}` of bytes corresponding to the binary representation: each successive pair\nof hexadecimal digits in `s` gives the value of one byte in the return vector.\n\nThe length of `s` must be even, and the returned array has half of the length of `s`.\nSee also [`hex2bytes!`](@ref) for an in-place version, and [`bytes2hex`](@ref) for the inverse.\n\n# Examples\n```jldoctest\njulia> s = string(12345, base = 16)\n\"3039\"\n\njulia> hex2bytes(s)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> a = b\"01abEF\"\n6-element Base.CodeUnits{UInt8,String}:\n 0x30\n 0x31\n 0x61\n 0x62\n 0x45\n 0x46\n\njulia> hex2bytes(a)\n3-element Array{UInt8,1}:\n 0x01\n 0xab\n 0xef\n```\n"}],"Base.ENDIAN_BOM":[{"Union{}":" ENDIAN_BOM\n\nThe 32-bit byte-order-mark indicates the native byte order of the host machine.\nLittle-endian machines will contain the value `0x04030201`. Big-endian machines will contain\nthe value `0x01020304`.\n"}],"Base.replace":[{"Tuple{AbstractString,Pair}":" replace(s::AbstractString, pat=>r; [count::Integer])\n\nSearch for the given pattern `pat` in `s`, and replace each occurrence with `r`.\nIf `count` is provided, replace at most `count` occurrences.\n`pat` may be a single character, a vector or a set of characters, a string,\nor a regular expression.\nIf `r` is a function, each occurrence is replaced with `r(s)`\nwhere `s` is the matched substring (when `pat` is a `Regex` or `AbstractString`) or\ncharacter (when `pat` is an `AbstractChar` or a collection of `AbstractChar`).\nIf `pat` is a regular expression and `r` is a [`SubstitutionString`](@ref), then capture group\nreferences in `r` are replaced with the corresponding matched text.\nTo remove instances of `pat` from `string`, set `r` to the empty `String` (`\"\"`).\n\n# Examples\n```jldoctest\njulia> replace(\"Python is a programming language.\", \"Python\" => \"Julia\")\n\"Julia is a programming language.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"slow\", count=1)\n\"The slow foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"\", count=1)\n\"The foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", r\"fox(es)?\" => s\"bus\\1\")\n\"The quick buses run quickly.\"\n```\n"},{"Tuple{Union{Function, Type},Any}":" replace(new::Function, A; [count::Integer])\n\nReturn a copy of `A` where each value `x` in `A` is replaced by `new(x)`\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace(A, old_new::Pair...; [count::Integer])\n\nReturn a copy of collection `A` where, for each pair `old=>new` in `old_new`,\nall occurrences of `old` are replaced by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\n\nThe element type of the result is chosen using promotion (see [`promote_type`](@ref))\nbased on the element type of `A` and on the types of the `new` values in pairs.\nIf `count` is omitted and the element type of `A` is a `Union`, the element type\nof the result will not include singleton types which are replaced with values of\na different type: for example, `Union{T,Missing}` will become `T` if `missing` is\nreplaced.\n\nSee also [`replace!`](@ref).\n\n# Examples\n```jldoctest\njulia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace([1, missing], missing=>0)\n2-element Array{Int64,1}:\n 1\n 0\n```\n"}],"Base.|":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" |(x, y)\n\nBitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `false`.\n\n# Examples\n```jldoctest\njulia> 4 | 10\n14\n\njulia> 4 | 1\n5\n\njulia> true | missing\ntrue\n\njulia> false | missing\nmissing\n```\n"}],"Base.fld1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" fld1(x, y)\n\nFlooring division, returning a value consistent with `mod1(x,y)`\n\nSee also: [`mod1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> fld1(x, y)\n4\n\njulia> x == fld(x, y) * y + mod(x, y)\ntrue\n\njulia> x == (fld1(x, y) - 1) * y + mod1(x, y)\ntrue\n```\n"}],"Base.ismarked":[{"Tuple{IO}":" ismarked(s)\n\nReturn `true` if stream `s` is marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`reset`](@ref).\n"}],"Base.trylock":[{"Tuple{ReentrantLock}":" trylock(lock) -> Success (Boolean)\n\nAcquire the lock if it is available,\nand return `true` if successful.\nIf the lock is already locked by a different task/thread,\nreturn `false`.\n\nEach successful `trylock` must be matched by an [`unlock`](@ref).\n"}],"Base.release":[{"Tuple{Base.Semaphore}":" release(s::Semaphore)\n\nReturn one permit to the pool,\npossibly allowing another task to acquire it\nand resume execution.\n"}],"Base.Cmd":[{"Union{}":" Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)\n\nConstruct a new `Cmd` object, representing an external program and arguments, from `cmd`,\nwhile changing the settings of the optional keyword arguments:\n\n* `ignorestatus::Bool`: If `true` (defaults to `false`), then the `Cmd` will not throw an\n error if the return code is nonzero.\n* `detach::Bool`: If `true` (defaults to `false`), then the `Cmd` will be run in a new\n process group, allowing it to outlive the `julia` process and not have Ctrl-C passed to\n it.\n* `windows_verbatim::Bool`: If `true` (defaults to `false`), then on Windows the `Cmd` will\n send a command-line string to the process with no quoting or escaping of arguments, even\n arguments containing spaces. (On Windows, arguments are sent to a program as a single\n \"command-line\" string, and programs are responsible for parsing it into arguments. By\n default, empty arguments and arguments with spaces or tabs are quoted with double quotes\n `\"` in the command line, and `\\` or `\"` are preceded by backslashes.\n `windows_verbatim=true` is useful for launching programs that parse their command line in\n nonstandard ways.) Has no effect on non-Windows systems.\n* `windows_hide::Bool`: If `true` (defaults to `false`), then on Windows no new console\n window is displayed when the `Cmd` is executed. This has no effect if a console is\n already open or on non-Windows systems.\n* `env`: Set environment variables to use when running the `Cmd`. `env` is either a\n dictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, an\n array or tuple of `\"var\"=>val` pairs, or `nothing`. In order to modify (rather than\n replace) the existing environment, create `env` by `copy(ENV)` and then set\n `env[\"var\"]=val` as desired.\n* `dir::AbstractString`: Specify a working directory for the command (instead\n of the current directory).\n\nFor any keywords that are not specified, the current settings from `cmd` are used. Normally,\nto create a `Cmd` object in the first place, one uses backticks, e.g.\n\n Cmd(`echo \"Hello world\"`, ignorestatus=true, detach=false)\n"}],"Base.FilteringRF":[{"Union{}":" FilteringRF(f, rf) -> rf′\n\nCreate a filtering reducing function `rf′(acc, x) = f(x) ? rf(acc, x) : acc`.\n"}],"Base.typejoin":[{"Tuple{}":" typejoin(T, S)\n\n\nReturn the closest common ancestor of `T` and `S`, i.e. the narrowest type from which\nthey both inherit.\n"}],"Base.IOBuffer":[{"Tuple{String}":" IOBuffer(string::String)\n\nCreate a read-only `IOBuffer` on the data underlying the given string.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"Haho\");\n\njulia> String(take!(io))\n\"Haho\"\n\njulia> String(take!(io))\n\"Haho\"\n```\n"},{"Tuple{AbstractArray{UInt8,1}}":" IOBuffer([data::AbstractVector{UInt8}]; keywords...) -> IOBuffer\n\nCreate an in-memory I/O stream, which may optionally operate on a pre-existing array.\n\nIt may take optional keyword arguments:\n- `read`, `write`, `append`: restricts operations to the buffer; see `open` for details.\n- `truncate`: truncates the buffer size to zero length.\n- `maxsize`: specifies a size beyond which the buffer may not be grown.\n- `sizehint`: suggests a capacity of the buffer (`data` must implement `sizehint!(data, size)`).\n\nWhen `data` is not given, the buffer will be both readable and writable by default.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> io = IOBuffer(b\"JuliaLang is a GitHub organization.\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=35, maxsize=Inf, ptr=1, mark=-1)\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization.\"\n\njulia> write(io, \"This isn't writable.\")\nERROR: ArgumentError: ensureroom failed, IOBuffer is not writeable\n\njulia> io = IOBuffer(UInt8[], read=true, write=true, maxsize=34)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=34, ptr=1, mark=-1)\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n34\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization\"\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=false)))\n4\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=true)))\n0\n```\n"}],"Base.argmax":[{"Tuple{Any}":" argmax(itr) -> Integer\n\nReturn the index of the maximum element in a collection. If there are multiple maximal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmax([8,0.1,-9,pi])\n1\n\njulia> argmax([1,7,7,6])\n2\n\njulia> argmax([1,7,7,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmax(A; dims) -> indices\n\nFor an array input, return the indices of the maximum elements over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmax(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(2, 1) CartesianIndex(2, 2)\n\njulia> argmax(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n```\n"}],"Base.isperm":[{"Tuple{Any}":" isperm(v) -> Bool\n\nReturn `true` if `v` is a valid permutation.\n\n# Examples\n```jldoctest\njulia> isperm([1; 2])\ntrue\n\njulia> isperm([1; 3])\nfalse\n```\n"}],"Base.Cushort":[{"Union{}":" Cushort\n\nEquivalent to the native `unsigned short` c-type ([`UInt16`](@ref)).\n"}],"Base.allunique":[{"Tuple{Any}":" allunique(itr) -> Bool\n\nReturn `true` if all values from `itr` are distinct when compared with [`isequal`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> allunique([a, a])\nfalse\n```\n"}],"Base.AlwaysLockedST":[{"Union{}":" AlwaysLockedST\n\nThis struct does not implement a real lock, but instead\npretends to be always locked on the original thread it was allocated on,\nand simply ignores all other interactions.\nIt also does not synchronize tasks; for that use a real lock such as [`RecursiveLock`](@ref).\nThis can be used in the place of a real lock to, instead, simply and cheaply assert\nthat the operation is only occurring on a single cooperatively-scheduled thread.\nIt is thus functionally equivalent to allocating a real, recursive, task-unaware lock\nimmediately calling `lock` on it, and then never calling a matching `unlock`,\nexcept that calling `lock` from another thread will throw a concurrency violation exception.\n"}],"Base.circcopy!":[{"Tuple{Any,Any}":" circcopy!(dest, src)\n\nCopy `src` to `dest`, indexing each dimension modulo its length.\n`src` and `dest` must have the same size, but can be offset in\ntheir indices; any offset results in a (circular) wraparound. If the\narrays have overlapping indices, then on the domain of the overlap\n`dest` agrees with `src`.\n\n# Examples\n```julia-repl\njulia> src = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> dest = OffsetArray{Int}(undef, (0:3,2:5))\n\njulia> circcopy!(dest, src)\nOffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:\n 8 12 16 4\n 5 9 13 1\n 6 10 14 2\n 7 11 15 3\n\njulia> dest[1:3,2:4] == src[1:3,2:4]\ntrue\n```\n"}],"Base.@propagate_inbounds":[{"Tuple{Any}":" @propagate_inbounds\n\nTells the compiler to inline a function while retaining the caller's inbounds context.\n"}],"Base.splat":[{"Tuple{Any}":" splat(f)\n\nDefined as\n```julia\n splat(f) = args->f(args...)\n```\ni.e. given a function returns a new function that takes one argument and splats\nits argument into the original function. This is useful as an adaptor to pass\na multi-argument function in a context that expects a single argument, but\npasses a tuple as that single argument.\n\n# Example usage:\n```jldoctest\njulia> map(Base.splat(+), zip(1:3,4:6))\n3-element Array{Int64,1}:\n 5\n 7\n 9\n```\n"}],"Base.truncate":[{"Tuple{IOStream,Integer}":" truncate(file, n)\n\nResize the file or buffer given by the first argument to exactly `n` bytes, filling\npreviously unallocated space with '\\0' if the file or buffer is grown.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n35\n\njulia> truncate(io, 15)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=15, maxsize=Inf, ptr=16, mark=-1)\n\njulia> String(take!(io))\n\"JuliaLang is a \"\n\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\");\n\njulia> truncate(io, 40);\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization.\\0\\0\\0\\0\\0\"\n```\n"}],"Base.ascii":[{"Tuple{AbstractString}":" ascii(s::AbstractString)\n\nConvert a string to `String` type and check that it contains only ASCII data, otherwise\nthrowing an `ArgumentError` indicating the position of the first non-ASCII byte.\n\n# Examples\n```jldoctest\njulia> ascii(\"abcdeγfgh\")\nERROR: ArgumentError: invalid ASCII at index 6 in \"abcdeγfgh\"\nStacktrace:\n[...]\n\njulia> ascii(\"abcdefgh\")\n\"abcdefgh\"\n```\n"}],"Base.hvcat":[{"Tuple{Tuple{Vararg{Int64,N} where N},Vararg{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,N} where N}":" hvcat(rows::Tuple{Vararg{Int}}, values...)\n\nHorizontal and vertical concatenation in one call. This function is called for block matrix\nsyntax. The first argument specifies the number of arguments to concatenate in each block\nrow.\n\n# Examples\n```jldoctest\njulia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6\n(1, 2, 3, 4, 5, 6)\n\njulia> [a b c; d e f]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> hvcat((3,3), a,b,c,d,e,f)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> [a b;c d; e f]\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n\njulia> hvcat((2,2,2), a,b,c,d,e,f)\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n```\n\nIf the first argument is a single integer `n`, then all block rows are assumed to have `n`\nblock columns.\n"}],"Base.fd":[{"Tuple{IOStream}":" fd(stream)\n\nReturn the file descriptor backing the stream or file. Note that this function only applies\nto synchronous `File`'s and `IOStream`'s not to any of the asynchronous streams.\n"}],"Base.accumulate":[{"Tuple{Any,Any}":" accumulate(op, A; dims::Integer, [init])\n\nCumulative operation `op` along the dimension `dims` of `A` (providing `dims` is optional\nfor vectors). An initial value `init` may optionally be provided by a keyword argument. See\nalso [`accumulate!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow). For common operations\nthere are specialized variants of `accumulate`, see: [`cumsum`](@ref), [`cumprod`](@ref)\n\n# Examples\n```jldoctest\njulia> accumulate(+, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 3\n 6\n\njulia> accumulate(*, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> accumulate(+, [1,2,3]; init=100)\n3-element Array{Int64,1}:\n 101\n 103\n 106\n\njulia> accumulate(min, [1,2,-1]; init=0)\n3-element Array{Int64,1}:\n 0\n 0\n -1\n\njulia> accumulate(+, fill(1, 3, 3), dims=1)\n3×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n\njulia> accumulate(+, fill(1, 3, 3), dims=2)\n3×3 Array{Int64,2}:\n 1 2 3\n 1 2 3\n 1 2 3\n```\n"}],"Base.TaskFailedException":[{"Union{}":" TaskFailedException\n\nThis exception is thrown by a `wait(t)` call when task `t` fails.\n`TaskFailedException` wraps the failed task `t`.\n"}],"Base.print":[{"Tuple{IO,Any}":" print([io::IO], xs...)\n\nWrite to `io` (or to the default output stream [`stdout`](@ref)\nif `io` is not given) a canonical (un-decorated) text representation.\nThe representation used by `print` includes minimal formatting and tries to\navoid Julia-specific details.\n\n`print` falls back to calling `show`, so most types should just define\n`show`. Define `print` if your type has a separate \"plain\" representation.\nFor example, `show` displays strings with quotes, and `print` displays strings\nwithout quotes.\n\n[`string`](@ref) returns the output of `print` as a string.\n\n# Examples\n```jldoctest\njulia> print(\"Hello World!\")\nHello World!\njulia> io = IOBuffer();\n\njulia> print(io, \"Hello\", ' ', :World!)\n\njulia> String(take!(io))\n\"Hello World!\"\n```\n"}],"Base.atexit":[{"Tuple{Function}":" atexit(f)\n\nRegister a zero-argument function `f()` to be called at process exit. `atexit()` hooks are\ncalled in last in first out (LIFO) order and run before object finalizers.\n\nExit hooks are allowed to call `exit(n)`, in which case Julia will exit with\nexit code `n` (instead of the original exit code). If more than one exit hook\ncalls `exit(n)`, then Julia will exit with the exit code corresponding to the\nlast called exit hook that calls `exit(n)`. (Because exit hooks are called in\nLIFO order, \"last called\" is equivalent to \"first registered\".)\n"}],"Base.BitVector":[{"Tuple{Tuple{Vararg{Bool,N} where N}}":" BitVector(nt::Tuple{Vararg{Bool}})\n\nConstruct a `BitVector` from a tuple of `Bool`.\n# Examples\n```julia-repl\njulia> nt = (true, false, true, false)\n(true, false, true, false)\n\njulia> BitVector(nt)\n4-element BitArray{1}:\n 1\n 0\n 1\n 0\n```\n"}],"Base.replace_with_centered_mark":[{"Tuple{AbstractString}":"Unexported convenience function used in body of `replace_in_print_matrix`\nmethods. By default returns a string of the same width as original with a\ncentered cdot, used in printing of structural zeros of structured matrices.\nAccept keyword args `c` for alternate single character marker.\n"}],"Base.all":[{"Tuple{Any}":" all(itr) -> Bool\n\nTest whether all elements of a boolean collection are `true`, returning `false` as\nsoon as the first `false` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> all(a)\nfalse\n\njulia> all((println(i); v) for (i, v) in enumerate(a))\n1\n2\nfalse\n\njulia> all([missing, false])\nfalse\n\njulia> all([true, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" all(A; dims)\n\nTest whether all values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true true]\n2×2 Array{Bool,2}:\n 1 0\n 1 1\n\njulia> all(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> all(A, dims=2)\n2×1 Array{Bool,2}:\n 0\n 1\n```\n"},{"Tuple{Any,Any}":" all(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for all elements of `itr`, returning\n`false` as soon as the first item in `itr` for which `p` returns `false` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> all(i->(4<=i<=6), [4,5,6])\ntrue\n\njulia> all(i -> (println(i); i < 3), 1:10)\n1\n2\n3\nfalse\n\njulia> all(i -> i > 0, [1, missing])\nmissing\n\njulia> all(i -> i > 0, [-1, missing])\nfalse\n\njulia> all(i -> i > 0, [1, 2])\ntrue\n```\n"}],"Base.rot180":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rot180(A, k)\n\nRotate matrix `A` 180 degrees an integer `k` number of times.\nIf `k` is even, this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a,1)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rot180(a,2)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rot180(A)\n\nRotate matrix `A` 180 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n```\n"}],"Base.compilecache":[{"Tuple{Base.PkgId}":" Base.compilecache(module::PkgId)\n\nCreates a precompiled cache file for a module and all of its dependencies.\nThis can be used to reduce package load times. Cache files are stored in\n`DEPOT_PATH[1]/compiled`. See [Module initialization and precompilation](@ref)\nfor important notes.\n"}],"Base.zero":[{"Tuple{Number}":" zero(x)\n\nGet the additive identity element for the type of `x` (`x` can also specify the type itself).\n\n# Examples\n```jldoctest\njulia> zero(1)\n0\n\njulia> zero(big\"2.0\")\n0.0\n\njulia> zero(rand(2,2))\n2×2 Array{Float64,2}:\n 0.0 0.0\n 0.0 0.0\n```\n"}],"Base.bswap":[{"Tuple{Union{Int8, UInt8}}":" bswap(n)\n\nReverse the byte order of `n`.\n\n(See also [`ntoh`](@ref) and [`hton`](@ref) to convert between the current native byte order and big-endian order.)\n\n# Examples\n```jldoctest\njulia> a = bswap(0x10203040)\n0x40302010\n\njulia> bswap(a)\n0x10203040\n\njulia> string(1, base = 2)\n\"1\"\n\njulia> string(bswap(1), base = 2)\n\"100000000000000000000000000000000000000000000000000000000\"\n```\n"}],"Base.timedwait":[{"Tuple{Function,Float64}":" timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)\n\nWaits until `testcb` returns `true` or for `secs` seconds, whichever is earlier.\n`testcb` is polled every `pollint` seconds.\n\nReturns :ok, :timed_out, or :error\n"}],"Base.issubnormal":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" issubnormal(f) -> Bool\n\nTest whether a floating point number is subnormal.\n"}],"Base.eachrow":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachrow(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the first dimension of vector or matrix `A`,\nreturning the rows as views.\n\nSee also [`eachcol`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.view":[{"Union{Tuple{N}, Tuple{AbstractArray,Vararg{Any,N}}} where N":" view(A, inds...)\n\nLike [`getindex`](@ref), but returns a view into the parent array `A` with the\ngiven indices instead of making a copy. Calling [`getindex`](@ref) or\n[`setindex!`](@ref) on the returned `SubArray` computes the\nindices to the parent array on the fly without checking bounds.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = view(A, :, 1)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A # Note A has changed even though we modified b\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.strides":[{"Union{}":" strides(A)\n\nReturn a tuple of the memory strides in each dimension.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> strides(A)\n(1, 3, 12)\n```\n"}],"Base.supertype":[{"Tuple{DataType}":" supertype(T::DataType)\n\nReturn the supertype of DataType `T`.\n\n# Examples\n```jldoctest\njulia> supertype(Int32)\nSigned\n```\n"}],"Base.current_task":[{"Tuple{}":" current_task()\n\nGet the currently running [`Task`](@ref).\n"}],"Base.dropdims":[{"Tuple{Any}":" dropdims(A; dims)\n\nRemove the dimensions specified by `dims` from array `A`.\nElements of `dims` must be unique and within the range `1:ndims(A)`.\n`size(A,i)` must equal 1 for all `i` in `dims`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:4),(2,2,1,1))\n2×2×1×1 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\njulia> dropdims(a; dims=3)\n2×2×1 Array{Int64,3}:\n[:, :, 1] =\n 1 3\n 2 4\n```\n"}],"Base.replace!":[{"Tuple{Union{Function, Type},Any}":" replace!(new::Function, A; [count::Integer])\n\nReplace each element `x` in collection `A` by `new(x)`.\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace!(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n\njulia> replace!(x->2x, Set([3, 6]))\nSet{Int64} with 2 elements:\n 6\n 12\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace!(A, old_new::Pair...; [count::Integer])\n\nFor each pair `old=>new` in `old_new`, replace all occurrences\nof `old` in collection `A` by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\nSee also [`replace`](@ref replace(A, old_new::Pair...)).\n\n# Examples\n```jldoctest\njulia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace!(Set([1, 2, 3]), 1=>0)\nSet{Int64} with 3 elements:\n 0\n 2\n 3\n```\n"}],"Base.@cfunction":[{"Tuple{Any,Any,Any}":" @cfunction(callable, ReturnType, (ArgumentTypes...,)) -> Ptr{Cvoid}\n @cfunction($callable, ReturnType, (ArgumentTypes...,)) -> CFunction\n\nGenerate a C-callable function pointer from the Julia function `callable`\nfor the given type signature.\nTo pass the return value to a `ccall`, use the argument type `Ptr{Cvoid}` in the signature.\n\nNote that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression\n(although it can include a splat expression). And that these arguments will be evaluated in global scope\nduring compile-time (not deferred until runtime).\nAdding a '\\$' in front of the function argument changes this to instead create a runtime closure\nover the local variable `callable` (this is not supported on all architectures).\n\nSee [manual section on ccall and cfunction usage](@ref Calling-C-and-Fortran-Code).\n\n# Examples\n```julia-repl\njulia> function foo(x::Int, y::Int)\n return x + y\n end\n\njulia> @cfunction(foo, Int, (Int, Int))\nPtr{Cvoid} @0x000000001b82fcd0\n```\n"}],"Base.code_typed":[{"Tuple{Any,Any}":" code_typed(f, types; optimize=true, debuginfo=:default)\n\nReturns an array of type-inferred lowered form (IR) for the methods matching the given\ngeneric function and type signature. The keyword argument `optimize` controls whether\nadditional optimizations, such as inlining, are also applied.\nThe keyword `debuginfo` controls the amount of code metadata present in the output,\npossible options are `:source` or `:none`.\n"}],"Base.@timed":[{"Tuple{Any}":" @timed\n\nA macro to execute an expression, and return the value of the expression, elapsed time,\ntotal bytes allocated, garbage collection time, and an object with various memory allocation\ncounters.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> val, t, bytes, gctime, memallocs = @timed rand(10^6);\n\njulia> t\n0.006634834\n\njulia> bytes\n8000256\n\njulia> gctime\n0.0055765\n\njulia> fieldnames(typeof(memallocs))\n(:allocd, :malloc, :realloc, :poolalloc, :bigalloc, :freecall, :total_time, :pause, :full_sweep)\n\njulia> memallocs.total_time\n5576500\n```\n"}],"Base.issingletontype":[{"Tuple{Any}":" Base.issingletontype(T)\n\nDetermine whether type `T` has exactly one possible instance; for example, a\nstruct type with no fields.\n"}],"Base.Complex":[{"Union{}":" Complex{T<:Real} <: Number\n\nComplex number type with real and imaginary part of type `T`.\n\n`ComplexF16`, `ComplexF32` and `ComplexF64` are aliases for\n`Complex{Float16}`, `Complex{Float32}` and `Complex{Float64}` respectively.\n"}],"Base.AbstractMatrix":[{"Union{}":" AbstractMatrix{T}\n\nSupertype for two-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,2}`](@ref).\n"}],"Base.widen":[{"Union{Tuple{T}, Tuple{T}} where T":" widen(x)\n\nIf `x` is a type, return a \"larger\" type, defined so that arithmetic operations\n`+` and `-` are guaranteed not to overflow nor lose precision for any combination\nof values that type `x` can hold.\n\nFor fixed-size integer types less than 128 bits, `widen` will return a type with\ntwice the number of bits.\n\nIf `x` is a value, it is converted to `widen(typeof(x))`.\n\n# Examples\n```jldoctest\njulia> widen(Int32)\nInt64\n\njulia> widen(1.5f0)\n1.5\n```\n"}],"Base.@eval":[{"Tuple{Any}":" @eval [mod,] ex\n\nEvaluate an expression with values interpolated into it using `eval`.\nIf two arguments are provided, the first is the module to evaluate in.\n"}],"Base.seekend":[{"Tuple{IOStream}":" seekend(s)\n\nSeek a stream to its end.\n"}],"Base.pointer_from_objref":[{"Tuple{Any}":" pointer_from_objref(x)\n\nGet the memory address of a Julia object as a `Ptr`. The existence of the resulting `Ptr`\nwill not protect the object from garbage collection, so you must ensure that the object\nremains referenced for the whole time that the `Ptr` will be used.\n\nThis function may not be called on immutable objects, since they do not have\nstable memory addresses.\n\nSee also: [`unsafe_pointer_to_objref`](@ref).\n"}],"Base.mapslices":[{"Tuple{Any,AbstractArray}":" mapslices(f, A; dims)\n\nTransform the given dimensions of array `A` using function `f`. `f` is called on each slice\nof `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the\ncolons go in this expression. The results are concatenated along the remaining dimensions.\nFor example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]`\nfor all `i` and `j`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16),(2,2,2,2))\n2×2×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\n[:, :, 2, 1] =\n 5 7\n 6 8\n\n[:, :, 1, 2] =\n 9 11\n 10 12\n\n[:, :, 2, 2] =\n 13 15\n 14 16\n\njulia> mapslices(sum, a, dims = [1,2])\n1×1×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 10\n\n[:, :, 2, 1] =\n 26\n\n[:, :, 1, 2] =\n 42\n\n[:, :, 2, 2] =\n 58\n```\n"}],"Base.text_colors":[{"Union{}":"Dictionary of color codes for the terminal.\n\nAvailable colors are: `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow` as well as the integers 0 to 255 inclusive.\n\nThe color `:default` will print text in the default color while the color `:normal`\nwill print text with all text properties (like boldness) reset.\nPrinting with the color `:nothing` will print the string without modifications.\n"}],"Base.thisind":[{"Tuple{AbstractString,Integer}":" thisind(s::AbstractString, i::Integer) -> Int\n\nIf `i` is in bounds in `s` return the index of the start of the character whose\nencoding code unit `i` is part of. In other words, if `i` is the start of a\ncharacter, return `i`; if `i` is not the start of a character, rewind until the\nstart of a character and return that index. If `i` is equal to 0 or `ncodeunits(s)+1`\nreturn `i`. In all other cases throw `BoundsError`.\n\n# Examples\n```jldoctest\njulia> thisind(\"α\", 0)\n0\n\njulia> thisind(\"α\", 1)\n1\n\njulia> thisind(\"α\", 2)\n1\n\njulia> thisind(\"α\", 3)\n3\n\njulia> thisind(\"α\", 4)\nERROR: BoundsError: attempt to access String\n at index [4]\n[...]\n\njulia> thisind(\"α\", -1)\nERROR: BoundsError: attempt to access String\n at index [-1]\n[...]\n```\n"}],"Base.yieldto":[{"Tuple{Task,Any}":" yieldto(t::Task, arg = nothing)\n\nSwitch to the given task. The first time a task is switched to, the task's function is\ncalled with no arguments. On subsequent switches, `arg` is returned from the task's last\ncall to `yieldto`. This is a low-level call that only switches tasks, not considering states\nor scheduling in any way. Its use is discouraged.\n"}],"Base.NaN":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.Fix2":[{"Union{}":" Fix2(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the second argument fixed to the value \"x\". In other words,\n`Fix2(f, x)` behaves similarly to `y->f(y, x)`.\n"}],"Base.foreach":[{"Tuple{Any}":" foreach(f, c...) -> Nothing\n\nCall function `f` on each element of iterable `c`.\nFor multiple iterable arguments, `f` is called elementwise.\n`foreach` should be used instead of `map` when the results of `f` are not\nneeded, for example in `foreach(println, array)`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:7;\n\njulia> foreach(x -> println(x^2), a)\n1\n16\n49\n```\n"}],"Base.@gensym":[{"Tuple":" @gensym\n\nGenerates a gensym symbol for a variable. For example, `@gensym x y` is transformed into\n`x = gensym(\"x\"); y = gensym(\"y\")`.\n"}],"Base.StepRange":[{"Union{}":" StepRange{T, S} <: OrdinalRange{T, S}\n\nRanges with elements of type `T` with spacing of type `S`. The step\nbetween each element is constant, and the range is defined in terms\nof a `start` and `stop` of type `T` and a `step` of type `S`. Neither\n`T` nor `S` should be floating point types. The syntax `a:b:c` with `b > 1`\nand `a`, `b`, and `c` all integers creates a `StepRange`.\n\n# Examples\n```jldoctest\njulia> collect(StepRange(1, Int8(2), 10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n\njulia> typeof(StepRange(1, Int8(2), 10))\nStepRange{Int64,Int8}\n\njulia> typeof(1:3:6)\nStepRange{Int64,Int64}\n```\n"}],"Base.print_range":[{"Union{Tuple{IO,AbstractRange}, Tuple{IO,AbstractRange,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString,AbstractString}}":"`print_range(io, r)` prints out a nice looking range r in terms of its elements\nas if it were `collect(r)`, dependent on the size of the\nterminal, and taking into account whether compact numbers should be shown.\nIt figures out the width in characters of each element, and if they\nend up too wide, it shows the first and last elements separated by a\nhorizontal ellipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`.\n\n`print_range(io, r, pre, sep, post, hdots)` uses optional\nparameters `pre` and `post` characters for each printed row,\n`sep` separator string between printed elements,\n`hdots` string for the horizontal ellipsis.\n"}],"Base.repeat":[{"Tuple{AbstractString,Integer}":" repeat(s::AbstractString, r::Integer)\n\nRepeat a string `r` times. This can be written as `s^r`.\n\nSee also: [`^`](@ref)\n\n# Examples\n```jldoctest\njulia> repeat(\"ha\", 3)\n\"hahaha\"\n```\n"},{"Tuple{AbstractArray}":" repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))\n\nConstruct an array by repeating the entries of `A`. The i-th element of `inner` specifies\nthe number of times that the individual entries of the i-th dimension of `A` should be\nrepeated. The i-th element of `outer` specifies the number of times that a slice along the\ni-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition\nis performed.\n\n# Examples\n```jldoctest\njulia> repeat(1:2, inner=2)\n4-element Array{Int64,1}:\n 1\n 1\n 2\n 2\n\njulia> repeat(1:2, outer=2)\n4-element Array{Int64,1}:\n 1\n 2\n 1\n 2\n\njulia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))\n4×6 Array{Int64,2}:\n 1 2 1 2 1 2\n 1 2 1 2 1 2\n 3 4 3 4 3 4\n 3 4 3 4 3 4\n```\n"},{"Tuple{AbstractChar,Integer}":" repeat(c::AbstractChar, r::Integer) -> String\n\nRepeat a character `r` times. This can equivalently be accomplished by calling [`c^r`](@ref ^).\n\n# Examples\n```jldoctest\njulia> repeat('A', 3)\n\"AAA\"\n```\n"},{"Tuple{AbstractArray,Vararg{Integer,N} where N}":" repeat(A::AbstractArray, counts::Integer...)\n\nConstruct an array by repeating array `A` a given number of times in each dimension, specified by `counts`.\n\n# Examples\n```jldoctest\njulia> repeat([1, 2, 3], 2)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 1\n 2\n 3\n\njulia> repeat([1, 2, 3], 2, 3)\n6×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n 1 1 1\n 2 2 2\n 3 3 3\n```\n"}],"Base.foldl":[{"Tuple{Any,Any}":" foldl(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed left associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldl(=>, 1:4)\n((1 => 2) => 3) => 4\n\njulia> foldl(=>, 1:4; init=0)\n(((0 => 1) => 2) => 3) => 4\n```\n"}],"Base.mapreduce":[{"Tuple{Any,Any,Any}":" mapreduce(f, op, itrs...; [init])\n\nApply function `f` to each element(s) in `itrs`, and then reduce the result using the binary\nfunction `op`. If provided, `init` must be a neutral element for `op` that will be returned\nfor empty collections. It is unspecified whether `init` is used for non-empty collections.\nIn general, it will be necessary to provide `init` to work with empty collections.\n\n[`mapreduce`](@ref) is functionally equivalent to calling\n`reduce(op, map(f, itr); init=init)`, but will in general execute faster since no\nintermediate collection needs to be created. See documentation for [`reduce`](@ref) and\n[`map`](@ref).\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9\n14\n```\n\nThe associativity of the reduction is implementation-dependent. Additionally, some\nimplementations may reuse the return value of `f` for elements that appear multiple times in\n`itr`. Use [`mapfoldl`](@ref) or [`mapfoldr`](@ref) instead for\nguaranteed left or right associativity and invocation of `f` for every value.\n"},{"Tuple{Any,Any,AbstractArray}":" mapreduce(f, op, A::AbstractArray...; dims=:, [init])\n\nEvaluates to the same as `reduce(op, map(f, A); dims=dims, init=init)`, but is generally\nfaster because the intermediate array is avoided.\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> mapreduce(isodd, *, a, dims=1)\n1×4 Array{Bool,2}:\n 0 0 0 0\n\njulia> mapreduce(isodd, |, a, dims=1)\n1×4 Array{Bool,2}:\n 1 1 1 1\n```\n"}],"Base.diff":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" diff(A::AbstractVector)\n diff(A::AbstractArray; dims::Integer)\n\nFinite difference operator on a vector or a multidimensional array `A`. In the\nlatter case the dimension to operate on needs to be specified with the `dims`\nkeyword argument.\n\n!!! compat \"Julia 1.1\"\n `diff` for arrays with dimension higher than 2 requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> a = [2 4; 6 16]\n2×2 Array{Int64,2}:\n 2 4\n 6 16\n\njulia> diff(a, dims=2)\n2×1 Array{Int64,2}:\n 2\n 10\n\njulia> diff(vec(a))\n3-element Array{Int64,1}:\n 4\n -2\n 12\n```\n"}],"Base.alignment":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractArray{T,1} where T,AbstractArray{T,1} where T,Integer,Integer,Integer}":"`alignment(X, rows, cols, cols_if_complete, cols_otherwise, sep)` returns the\nalignment for specified parts of array `X`, returning the (left,right) info.\nIt will look in X's `rows`, `cols` (both lists of indices)\nand figure out what's needed to be fully aligned, for example looking all\nthe way down a column and finding out the maximum size of each element.\nParameter `sep::Integer` is number of spaces to put between elements.\n`cols_if_complete` and `cols_otherwise` indicate screen width to use.\nAlignment is reported as a vector of (left,right) tuples, one for each\ncolumn going across the screen.\n"},{"Tuple{IO,Integer}":"`alignment(42)` yields (2,0)"},{"Tuple{IO,Any}":"`alignment(X)` returns a tuple (left,right) showing how many characters are\nneeded on either side of an alignment feature such as a decimal point.\n"},{"Tuple{IO,Real}":"`alignment(4.23)` yields (1,3) for `4` and `.23`"},{"Tuple{IO,Complex}":"`alignment(1 + 10im)` yields (3,5) for `1 +` and `_10im` (plus sign on left, space on right)"}],"Base.AbstractIrrational":[{"Union{}":" AbstractIrrational <: Real\n\nNumber type representing an exact irrational value.\n"}],"Base.isdone":[{"Tuple{Any,Vararg{Any,N} where N}":" isdone(itr, state...) -> Union{Bool, Missing}\n\nThis function provides a fast-path hint for iterator completion.\nThis is useful for mutable iterators that want to avoid having elements\nconsumed, if they are not going to be exposed to the user (e.g. to check\nfor done-ness in `isempty` or `zip`). Mutable iterators that want to\nopt into this feature should define an isdone method that returns\ntrue/false depending on whether the iterator is done or not. Stateless\niterators need not implement this function. If the result is `missing`,\ncallers may go ahead and compute `iterate(x, state...) === nothing` to\ncompute a definite answer.\n"}],"Base.sum":[{"Tuple{Any}":" sum(itr)\n\nReturns the sum of all elements in a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(1:20)\n210\n```\n"},{"Tuple{AbstractArray}":" sum(A::AbstractArray; dims)\n\nSum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum(A, dims=1)\n1×2 Array{Int64,2}:\n 4 6\n\njulia> sum(A, dims=2)\n2×1 Array{Int64,2}:\n 3\n 7\n```\n"},{"Tuple{Any,Any}":" sum(f, itr)\n\nSum the results of calling function `f` on each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(abs2, [2; 3; 4])\n29\n```\n\nNote the important difference between `sum(A)` and `reduce(+, A)` for arrays\nwith small integer eltype:\n\n```jldoctest\njulia> sum(Int8[100, 28])\n128\n\njulia> reduce(+, Int8[100, 28])\n-128\n```\n\nIn the former case, the integers are widened to system word size and therefore\nthe result is 128. In the latter case, no such widening happens and integer\noverflow results in -128.\n"}],"Base.unsafe_copyto!":[{"Union{Tuple{T}, Tuple{Ptr{T},Ptr{T},Any}} where T":" unsafe_copyto!(dest::Ptr{T}, src::Ptr{T}, N)\n\nCopy `N` elements from a source pointer to a destination, with no checking. The size of an\nelement is determined by the type of the pointers.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointers `dest` and `src` to ensure that they are valid. Incorrect usage may corrupt or\nsegfault your program, in the same manner as C.\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Any,Array{T,N} where N,Any,Any}} where T":" unsafe_copyto!(dest::Array, do, src::Array, so, N)\n\nCopy `N` elements from a source array to a destination, starting at offset `so` in the\nsource and `do` in the destination (1-indexed).\n\nThe `unsafe` prefix on this function indicates that no validation is performed to ensure\nthat N is inbounds on either array. Incorrect usage may corrupt or segfault your program, in\nthe same manner as C.\n"}],"Base.functionloc":[{"Tuple{Method}":" functionloc(m::Method)\n\nReturns a tuple `(filename,line)` giving the location of a `Method` definition.\n"},{"Tuple{Any,Any}":" functionloc(f::Function, types)\n\nReturns a tuple `(filename,line)` giving the location of a generic `Function` definition.\n"}],"Base.@isdefined":[{"Tuple{Symbol}":" @isdefined s -> Bool\n\nTests whether variable `s` is defined in the current scope.\n\nSee also [`isdefined`](@ref).\n\n# Examples\n```jldoctest\njulia> function f()\n println(@isdefined x)\n x = 3\n println(@isdefined x)\n end\nf (generic function with 1 method)\n\njulia> f()\nfalse\ntrue\n```\n"}],"Base.isunaryoperator":[{"Tuple{Symbol}":" isunaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a unary (prefix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isunaryoperator(:-), Base.isunaryoperator(:√), Base.isunaryoperator(:f)\n(true, true, false)\n```\n"}],"Base.Irrational":[{"Union{}":" Irrational{sym} <: AbstractIrrational\n\nNumber type representing an exact irrational value denoted by the\nsymbol `sym`.\n"}],"Base.unescape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" unescape_string(str::AbstractString, keep = ())::AbstractString\n unescape_string(io, s::AbstractString, keep = ())::Nothing\n\nGeneral unescaping of traditional C and Unicode escape sequences. The first form returns\nthe escaped string, the second prints the result to `io`.\nThe argument `keep` specifies a collection of characters which (along with backlashes) are\nto be kept as they are.\n\nThe following escape sequences are recognised:\n - Escaped backslash (`\\\\`)\n - Escaped double-quote (`\\\"`)\n - Standard C escape sequences (`\\a`, `\\b`, `\\t`, `\\n`, `\\v`, `\\f`, `\\r`, `\\e`)\n - Unicode BMP code points (`\\u` with 1-4 trailing hex digits)\n - All Unicode code points (`\\U` with 1-8 trailing hex digits; max value = 0010ffff)\n - Hex bytes (`\\x` with 1-2 trailing hex digits)\n - Octal bytes (`\\` with 1-3 trailing octal digits)\n\n# Examples\n```jldoctest\njulia> unescape_string(\"aaa\\\\nbbb\") # C escape sequence\n\"aaa\\nbbb\"\n\njulia> unescape_string(\"\\\\u03c0\") # unicode\n\"π\"\n\njulia> unescape_string(\"\\\\101\") # octal\n\"A\"\n\njulia> unescape_string(\"aaa \\\\g \\\\n\", ['g']) # using `keep` argument\n\"aaa \\\\g \\n\"\n```\n\n## See also\n[`escape_string`](@ref).\n"}],"Base.show":[{"Tuple{Any}":" show(x)\n\nWrite an informative text representation of a value to the current output stream. New types\nshould overload `show(io::IO, x)` where the first argument is a stream. The representation used\nby `show` generally includes Julia-specific formatting and type information.\n\n[`repr`](@ref) returns the output of `show` as a string.\n\nSee also [`print`](@ref), which writes un-decorated representations.\n\n# Examples\n```jldoctest\njulia> show(\"Hello World!\")\n\"Hello World!\"\njulia> print(\"Hello World!\")\nHello World!\n```\n"}],"Base.iswritable":[{"Union{}":" iswritable(io) -> Bool\n\nReturn `true` if the specified IO object is writable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n iswritable(io)\n end\ntrue\n\njulia> open(\"myfile.txt\", \"r\") do io\n iswritable(io)\n end\nfalse\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.maxintfloat":[{"Union{Tuple{T}, Tuple{S}, Tuple{Type{S},Type{T}}} where T<:Integer where S<:AbstractFloat":" maxintfloat(T, S)\n\nThe largest consecutive integer representable in the given floating-point type `T` that\nalso does not exceed the maximum integer representable by the integer type `S`. Equivalently,\nit is the minimum of `maxintfloat(T)` and [`typemax(S)`](@ref).\n"},{"Tuple{Type{Float64}}":" maxintfloat(T=Float64)\n\nThe largest consecutive integer-valued floating-point number that is exactly represented in\nthe given floating-point type `T` (which defaults to `Float64`).\n\nThat is, `maxintfloat` returns the smallest positive integer-valued floating-point number\n`n` such that `n+1` is *not* exactly representable in the type `T`.\n\nWhen an `Integer`-type value is needed, use `Integer(maxintfloat(T))`.\n"}],"Base.checkbounds":[{"Tuple{Type{Bool},AbstractArray,Vararg{Any,N} where N}":" checkbounds(Bool, A, I...)\n\nReturn `true` if the specified indices `I` are in bounds for the given\narray `A`. Subtypes of `AbstractArray` should specialize this method\nif they need to provide custom bounds checking behaviors; however, in\nmany cases one can rely on `A`'s indices and [`checkindex`](@ref).\n\nSee also [`checkindex`](@ref).\n\n# Examples\n```jldoctest\njulia> A = rand(3, 3);\n\njulia> checkbounds(Bool, A, 2)\ntrue\n\njulia> checkbounds(Bool, A, 3, 4)\nfalse\n\njulia> checkbounds(Bool, A, 1:3)\ntrue\n\njulia> checkbounds(Bool, A, 1:3, 2:4)\nfalse\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" checkbounds(A, I...)\n\nThrow an error if the specified indices `I` are not in bounds for the given array `A`.\n"}],"Base.skipmissing":[{"Tuple{Any}":" skipmissing(itr)\n\nReturn an iterator over the elements in `itr` skipping [`missing`](@ref) values.\nThe returned object can be indexed using indices of `itr` if the latter is indexable.\nIndices corresponding to missing values are not valid: they are skipped by [`keys`](@ref)\nand [`eachindex`](@ref), and a `MissingException` is thrown when trying to use them.\n\nUse [`collect`](@ref) to obtain an `Array` containing the non-`missing` values in\n`itr`. Note that even if `itr` is a multidimensional array, the result will always\nbe a `Vector` since it is not possible to remove missings while preserving dimensions\nof the input.\n\n# Examples\n```jldoctest\njulia> x = skipmissing([1, missing, 2])\nBase.SkipMissing{Array{Union{Missing, Int64},1}}(Union{Missing, Int64}[1, missing, 2])\n\njulia> sum(x)\n3\n\njulia> x[1]\n1\n\njulia> x[2]\nERROR: MissingException: the value at index (2,) is missing\n[...]\n\njulia> argmax(x)\n3\n\njulia> collect(keys(x))\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> collect(skipmissing([1, missing, 2]))\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> collect(skipmissing([1 missing; 2 missing]))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.BitArray":[{"Union{}":" BitArray{N} <: AbstractArray{Bool, N}\n\nSpace-efficient `N`-dimensional boolean array, using just one bit for each boolean value.\n\n`BitArray`s pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency\nover `Array{Bool, N}` and allowing some operations to work on 64 values at once.\n\nBy default, Julia returns `BitArrays` from [broadcasting](@ref Broadcasting) operations\nthat generate boolean elements (including dotted-comparisons like `.==`) as well as from\nthe functions [`trues`](@ref) and [`falses`](@ref).\n"},{"Tuple{Any}":" BitArray(itr)\n\nConstruct a [`BitArray`](@ref) generated by the given iterable object.\nThe shape is inferred from the `itr` object.\n\n# Examples\n```jldoctest\njulia> BitArray([1 0; 0 1])\n2×2 BitArray{2}:\n 1 0\n 0 1\n\njulia> BitArray(x+y == 3 for x = 1:2, y = 1:3)\n2×3 BitArray{2}:\n 0 1 0\n 1 0 0\n\njulia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)\n6-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"},{"Tuple{UndefInitializer,Vararg{Integer,N} where N}":" BitArray(undef, dims::Integer...)\n BitArray{N}(undef, dims::NTuple{N,Int})\n\nConstruct an undef [`BitArray`](@ref) with the given dimensions.\nBehaves identically to the [`Array`](@ref) constructor. See [`undef`](@ref).\n\n# Examples\n```julia-repl\njulia> BitArray(undef, 2, 2)\n2×2 BitArray{2}:\n 0 0\n 0 0\n\njulia> BitArray(undef, (3, 1))\n3×1 BitArray{2}:\n 0\n 0\n 0\n```\n"}],"Base.mul_prod":[{"Tuple{Any,Any}":" Base.mul_prod(x, y)\n\nThe reduction operator used in `prod`. The main difference from [`*`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.isinteractive":[{"Tuple{}":" isinteractive() -> Bool\n\nDetermine whether Julia is running an interactive session.\n"}],"Base.nextprod":[{"Tuple{Array{Int64,1},Any}":" nextprod([k_1, k_2,...], n)\n\nNext integer greater than or equal to `n` that can be written as ``\\prod k_i^{p_i}`` for integers\n``p_1``, ``p_2``, etc.\n\n# Examples\n```jldoctest\njulia> nextprod([2, 3], 105)\n108\n\njulia> 2^2 * 3^3\n108\n```\n"}],"Base.eachcol":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachcol(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the second dimension of matrix `A`, returning the\ncolumns as views.\n\nSee also [`eachrow`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.reset":[{"Union{Tuple{T}, Tuple{T}} where T<:IO":" reset(s)\n\nReset a stream `s` to a previously marked position, and remove the mark. Return the\npreviously marked position. Throw an error if the stream is not marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`ismarked`](@ref).\n"}],"Base.argmin":[{"Tuple{Any}":" argmin(itr) -> Integer\n\nReturn the index of the minimum element in a collection. If there are multiple minimal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmin([8,0.1,-9,pi])\n3\n\njulia> argmin([7,1,1,6])\n2\n\njulia> argmin([7,1,1,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmin(A; dims) -> indices\n\nFor an array input, return the indices of the minimum elements over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmin(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1) CartesianIndex(1, 2)\n\njulia> argmin(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n```\n"}],"Base.mapfoldr":[{"Tuple{Any,Any,Any}":" mapfoldr(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed right associativity, as in [`foldr`](@ref). If\nprovided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.AbstractSet":[{"Union{}":" AbstractSet{T}\n\nSupertype for set-like types whose elements are of type `T`.\n[`Set`](@ref), [`BitSet`](@ref) and other types are subtypes of this.\n"}],"Base.isiterable":[{"Tuple{Any}":" isiterable(T) -> Bool\n\nTest if type `T` is an iterable collection type or not,\nthat is whether it has an `iterate` method or not.\n"}],"Base.Missing":[{"Union{}":" Missing\n\nA type with no fields whose singleton instance [`missing`](@ref) is used\nto represent missing values.\n"}],"Base.flipsign":[{"Tuple{Real,Real}":" flipsign(x, y)\n\nReturn `x` with its sign flipped if `y` is negative. For example `abs(x) = flipsign(x,x)`.\n\n# Examples\n```jldoctest\njulia> flipsign(5, 3)\n5\n\njulia> flipsign(5, -3)\n-5\n```\n"}],"Base.finalizer":[{"Tuple{Any,Any}":" finalizer(f, x)\n\nRegister a function `f(x)` to be called when there are no program-accessible references to\n`x`, and return `x`. The type of `x` must be a `mutable struct`, otherwise the behavior of\nthis function is unpredictable.\n\n`f` must not cause a task switch, which excludes most I/O operations such as `println`.\n`@schedule println(\"message\")` or `ccall(:jl_, Cvoid, (Any,), \"message\")` may be helpful for\ndebugging purposes.\n"}],"Base.summarysize":[{"Tuple{Any}":" Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int\n\nCompute the amount of memory, in bytes, used by all unique objects reachable from the argument.\n\n# Keyword Arguments\n- `exclude`: specifies the types of objects to exclude from the traversal.\n- `chargeall`: specifies the types of objects to always charge the size of all of their\n fields, even if those fields would normally be excluded.\n"}],"Base.isprimitivetype":[{"Tuple{Type}":" isprimitivetype(T) -> Bool\n\nDetermine whether type `T` was declared as a primitive type\n(i.e. using the `primitive` keyword).\n"}],"Base.trues":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" trues(dims)\n\nCreate a `BitArray` with all values set to `true`.\n\n# Examples\n```jldoctest\njulia> trues(2,3)\n2×3 BitArray{2}:\n 1 1 1\n 1 1 1\n```\n"}],"Base.sleep":[{"Tuple{Real}":" sleep(seconds)\n\nBlock the current task for a specified number of seconds. The minimum sleep time is 1\nmillisecond or input of `0.001`.\n"}],"Base.fieldnames":[{"Tuple{DataType}":" fieldnames(x::DataType)\n\nGet a tuple with the names of the fields of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldnames(Rational)\n(:num, :den)\n```\n"}],"Base.digits":[{"Tuple{Integer}":" digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)\n\nReturn an array with element type `T` (default `Int`) of the digits of `n` in the given\nbase, optionally padded with zeros to a specified size. More significant digits are at\nhigher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`.\n\n# Examples\n```jldoctest\njulia> digits(10, base = 10)\n2-element Array{Int64,1}:\n 0\n 1\n\njulia> digits(10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits(10, base = 2, pad = 6)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.prevfloat":[{"Tuple{AbstractFloat}":" prevfloat(x::AbstractFloat)\n\nReturn the largest floating point number `y` of the same type as `x` such `y < x`. If no\nsuch `y` exists (e.g. if `x` is `-Inf` or `NaN`), then return `x`.\n"},{"Tuple{AbstractFloat,Integer}":" prevfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `prevfloat` to `x` if `n >= 0`, or `-n`\napplications of `nextfloat` if `n < 0`.\n"}],"Base.digits!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,1},Integer}} where T<:Integer":" digits!(array, n::Integer; base::Integer = 10)\n\nFills an array of the digits of `n` in the given base. More significant digits are at higher\nindices. If the array length is insufficient, the least significant digits are filled up to\nthe array length. If the array length is excessive, the excess portion is filled with zeros.\n\n# Examples\n```jldoctest\njulia> digits!([2,2,2,2], 10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits!([2,2,2,2,2,2], 10, base = 2)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.signed":[{"Tuple{Any}":" signed(x)\n\nConvert a number to a signed integer. If the argument is unsigned, it is reinterpreted as\nsigned without checking for overflow.\n"}],"Base.∉":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.conj!":[{"Tuple{AbstractArray{#s662,N} where N where #s662<:Number}":" conj!(A)\n\nTransform an array to its complex conjugate in-place.\n\nSee also [`conj`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1+im 2-im; 2+2im 3+im]\n2×2 Array{Complex{Int64},2}:\n 1+1im 2-1im\n 2+2im 3+1im\n\njulia> conj!(A);\n\njulia> A\n2×2 Array{Complex{Int64},2}:\n 1-1im 2+1im\n 2-2im 3-1im\n```\n"}],"Base.>>>":[{"Tuple{BitArray{1},Int64}":" >>>(B::BitVector, n) -> BitVector\n\nUnsigned right bitshift operator, `B >>> n`. Equivalent to `B >> n`. See [`>>`](@ref) for\ndetails and examples.\n"},{"Tuple{Integer,Integer}":" >>>(x, n)\n\nUnsigned right bit shift operator, `x >>> n`. For `n >= 0`, the result is `x`\nshifted right by `n` bits, where `n >= 0`, filling with `0`s. For `n < 0`, this\nis equivalent to `x << -n`.\n\nFor [`Unsigned`](@ref) integer types, this is equivalent to [`>>`](@ref). For\n[`Signed`](@ref) integer types, this is equivalent to `signed(unsigned(x) >> n)`.\n\n# Examples\n```jldoctest\njulia> Int8(-14) >>> 2\n60\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(60))\n\"00111100\"\n```\n\n[`BigInt`](@ref)s are treated as if having infinite size, so no filling is required and this\nis equivalent to [`>>`](@ref).\n\nSee also [`>>`](@ref), [`<<`](@ref).\n"}],"Base.parent":[{"Tuple{AbstractArray}":" parent(A)\n\nReturns the \"parent array\" of an array view type (e.g., `SubArray`), or the array itself if\nit is not a view.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> V = view(A, 1:2, :)\n2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64:\n 1 2\n 3 4\n\njulia> parent(V)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"}],"Base.widemul":[{"Tuple{Number,Number}":" widemul(x, y)\n\nMultiply `x` and `y`, giving the result as a larger type.\n\n# Examples\n```jldoctest\njulia> widemul(Float32(3.), 4.)\n12.0\n```\n"}],"Base.Dims":[{"Union{}":" Dims{N}\n\nAn `NTuple` of `N` `Int`s used to represent the dimensions\nof an [`AbstractArray`](@ref).\n"}],"Base.code_lowered":[{"Tuple{Any,Any}":" code_lowered(f, types; generated=true, debuginfo=:default)\n\nReturn an array of the lowered forms (IR) for the methods matching the given generic function\nand type signature.\n\nIf `generated` is `false`, the returned `CodeInfo` instances will correspond to fallback\nimplementations. An error is thrown if no fallback implementation exists.\nIf `generated` is `true`, these `CodeInfo` instances will correspond to the method bodies\nyielded by expanding the generators.\n\nThe keyword debuginfo controls the amount of code metadata present in the output.\n\nNote that an error will be thrown if `types` are not leaf types when `generated` is\n`true` and any of the corresponding methods are an `@generated` method.\n"}],"Base.reverseind":[{"Tuple{AbstractString,Integer}":" reverseind(v, i)\n\nGiven an index `i` in [`reverse(v)`](@ref), return the corresponding index in\n`v` so that `v[reverseind(v,i)] == reverse(v)[i]`. (This can be nontrivial in\ncases where `v` contains non-ASCII characters.)\n\n# Examples\n```jldoctest\njulia> r = reverse(\"Julia\")\n\"ailuJ\"\n\njulia> for i in 1:length(r)\n print(r[reverseind(\"Julia\", i)])\n end\nJulia\n```\n"}],"Base.fma":[{"Union{}":" fma(x, y, z)\n\nComputes `x*y+z` without rounding the intermediate result `x*y`. On some systems this is\nsignificantly more expensive than `x*y+z`. `fma` is used to improve accuracy in certain\nalgorithms. See [`muladd`](@ref).\n"}],"Base.require":[{"Tuple{Module,Symbol}":" require(into::Module, module::Symbol)\n\nThis function is part of the implementation of [`using`](@ref) / [`import`](@ref), if a module is not\nalready defined in `Main`. It can also be called directly to force reloading a module,\nregardless of whether it has been loaded before (for example, when interactively developing\nlibraries).\n\nLoads a source file, in the context of the `Main` module, on every active node, searching\nstandard locations for files. `require` is considered a top-level operation, so it sets the\ncurrent `include` path but does not use it to search for files (see help for [`include`](@ref)).\nThis function is typically used to load library code, and is implicitly called by `using` to\nload packages.\n\nWhen searching for files, `require` first looks for package code in the global array\n[`LOAD_PATH`](@ref). `require` is case-sensitive on all platforms, including those with\ncase-insensitive filesystems like macOS and Windows.\n\nFor more details regarding code loading, see the manual sections on [modules](@ref modules) and\n[parallel computing](@ref code-availability).\n"}],"Base.write":[{"Union{}":" write(io::IO, x)\n write(filename::AbstractString, x)\n\nWrite the canonical binary representation of a value to the given I/O stream or file.\nReturn the number of bytes written into the stream. See also [`print`](@ref) to\nwrite a text representation (with an encoding that may depend upon `io`).\n\nYou can write multiple values with the same `write` call. i.e. the following are equivalent:\n\n write(io, x, y...)\n write(io, x) + write(io, y...)\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> write(io, \"Sometimes those members\") + write(io, \" write documentation.\")\n44\n\njulia> String(take!(io))\n\"Sometimes those members write documentation.\"\n```\nUser-defined plain-data types without `write` methods can be written when wrapped in a `Ref`:\n```jldoctest\njulia> struct MyStruct; x::Float64; end\n\njulia> io = IOBuffer()\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=Inf, ptr=1, mark=-1)\n\njulia> write(io, Ref(MyStruct(42.0)))\n8\n\njulia> seekstart(io); read!(io, Ref(MyStruct(NaN)))\nBase.RefValue{MyStruct}(MyStruct(42.0))\n```\n"}],"Base.axes":[{"Tuple{Any}":" axes(A)\n\nReturn the tuple of valid indices for array `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A)\n(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" axes(A, d)\n\nReturn the valid range of indices for array `A` along dimension `d`.\n\nSee also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A, 2)\nBase.OneTo(6)\n```\n"}],"Base.ReentrantLock":[{"Union{}":" ReentrantLock()\n\nCreates a re-entrant lock for synchronizing [`Task`](@ref)s.\nThe same task can acquire the lock as many times as required.\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n"}],"Base.position":[{"Tuple{IOStream}":" position(s)\n\nGet the current position of a stream.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> position(io)\n5\n\njulia> skip(io, 10);\n\njulia> position(io)\n15\n\njulia> seekend(io);\n\njulia> position(io)\n35\n```\n"}],"Base.readline":[{"Tuple{AbstractString}":" readline(io::IO=stdin; keep::Bool=false)\n readline(filename::AbstractString; keep::Bool=false)\n\nRead a single line of text from the given I/O stream or file (defaults to `stdin`).\nWhen reading from a file, the text is assumed to be encoded in UTF-8. Lines in the\ninput end with `'\\n'` or `\"\\r\\n\"` or the end of an input stream. When `keep` is\nfalse (as it is by default), these trailing newline characters are removed from the\nline before it is returned. When `keep` is true, they are returned as part of the\nline.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readline(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\"\n\njulia> readline(\"my_file.txt\", keep=true)\n\"JuliaLang is a GitHub organization.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.kill":[{"Tuple{Base.Process,Integer}":" kill(p::Process, signum=Base.SIGTERM)\n\nSend a signal to a process. The default is to terminate the process.\nReturns successfully if the process has already exited, but throws an\nerror if killing the process failed for other reasons (e.g. insufficient\npermissions).\n"}],"Base.circshift!":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any,Tuple{Vararg{Integer,N}} where N}} where N where T":" circshift!(dest, src, shifts)\n\nCircularly shift, i.e. rotate, the data in `src`, storing the result in\n`dest`. `shifts` specifies the amount to shift in each dimension.\n\nThe `dest` array must be distinct from the `src` array (they cannot\nalias each other).\n\nSee also [`circshift`](@ref).\n"}],"Base.⊇":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.@label":[{"Tuple{Symbol}":" @label name\n\nLabels a statement with the symbolic label `name`. The label marks the end-point\nof an unconditional jump with [`@goto name`](@ref).\n"}],"Base.AsyncCondition":[{"Union{}":" AsyncCondition()\n\nCreate a async condition that wakes up tasks waiting for it\n(by calling [`wait`](@ref) on the object)\nwhen notified from C by a call to `uv_async_send`.\nWaiting tasks are woken with an error when the object is closed (by [`close`](@ref).\nUse [`isopen`](@ref) to check whether it is still active.\n"},{"Tuple{Function}":" AsyncCondition(callback::Function)\n\nCreate a async condition that calls the given `callback` function. The `callback` is passed one argument,\nthe async condition object itself.\n"}],"Base.!==":[{"Tuple{Any,Any}":" !==(x, y)\n ≢(x,y)\n\nAlways gives the opposite answer as [`===`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1, 2]; b = [1, 2];\n\njulia> a ≢ b\ntrue\n\njulia> a ≢ a\nfalse\n```\n"}],"Base.isbitsunion":[{"Tuple{Union}":" Base.isbitsunion(::Type{T})\n\nReturn whether a type is an \"is-bits\" Union type, meaning each type included in a Union is [`isbitstype`](@ref).\n\n# Examples\n```jldoctest\njulia> Base.isbitsunion(Union{Float64, UInt8})\ntrue\n\njulia> Base.isbitsunion(Union{Float64, String})\nfalse\n```\n"}],"Base.⊈":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.DenseVector":[{"Union{}":" DenseVector{T}\n\nOne-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,1}`.\n"}],"Base.@time":[{"Tuple{Any}":" @time\n\nA macro to execute an expression, printing the time it took to execute, the number of\nallocations, and the total number of bytes its execution caused to be allocated, before\nreturning the value of the expression.\n\nSee also [`@timev`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n!!! note\n For more serious benchmarking, consider the `@btime` macro from the BenchmarkTools.jl\n package which among other things evaluates the function multiple times in order to\n reduce noise.\n\n```julia-repl\njulia> @time rand(10^6);\n 0.001525 seconds (7 allocations: 7.630 MiB)\n\njulia> @time begin\n sleep(0.3)\n 1+1\n end\n 0.301395 seconds (8 allocations: 336 bytes)\n2\n```\n"}],"Base.bytesavailable":[{"Tuple{Base.AbstractPipe}":" bytesavailable(io)\n\nReturn the number of bytes available for reading before a read from this stream or buffer will block.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> bytesavailable(io)\n34\n```\n"}],"Base.replace_ref_end!":[{"Tuple{Any}":" replace_ref_end!(ex)\n\nRecursively replace occurrences of the symbol :end in a \"ref\" expression (i.e. A[...]) `ex`\nwith the appropriate function calls (`lastindex` or `size`). Replacement uses\nthe closest enclosing ref, so\n\n A[B[end]]\n\nshould transform to\n\n A[B[lastindex(B)]]\n\n"}],"Base.systemerror":[{"Tuple{Any,Bool}":" systemerror(sysfunc[, errno::Cint=Libc.errno()])\n systemerror(sysfunc, iftrue::Bool)\n\nRaises a `SystemError` for `errno` with the descriptive string `sysfunc` if `iftrue` is `true`\n"}],"Base.padding":[{"Tuple{Any}":" Compute the location of padding in a type.\n"}],"Base.parentindices":[{"Tuple{AbstractArray}":" parentindices(A)\n\nReturn the indices in the [`parent`](@ref) which correspond to the array view `A`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> V = view(A, 1, :)\n2-element view(::Array{Int64,2}, 1, :) with eltype Int64:\n 1\n 2\n\njulia> parentindices(V)\n(1, Base.Slice(Base.OneTo(2)))\n```\n"}],"Base.missing":[{"Union{}":" missing\n\nThe singleton instance of type [`Missing`](@ref) representing a missing value.\n"}],"Base.tryparse":[{"Union{Tuple{T}, Tuple{Type{T},AbstractString}} where T<:Integer":" tryparse(type, str; base)\n\nLike [`parse`](@ref), but returns either a value of the requested type,\nor [`nothing`](@ref) if the string does not contain a valid number.\n"}],"Base.mod1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" mod1(x, y)\n\nModulus after flooring division, returning a value `r` such that `mod(r, y) == mod(x, y)`\nin the range ``(0, y]`` for positive `y` and in the range ``[y,0)`` for negative `y`.\n\nSee also: [`fld1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod1(4, 2)\n2\n\njulia> mod1(4, 3)\n1\n```\n"}],"Base.AsyncCollector":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing) -> iterator\n\nReturn an iterator which applies `f` to each element of `c` asynchronously\nand collects output into `results`.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `iterate(::AsyncCollector, state) -> (nothing, state)`. A successful return\n from `iterate` indicates that the next element from the input collection is\n being processed asynchronously. It blocks until a free worker task becomes\n available.\n\n!!! note\n `for _ in AsyncCollector(f, results, c...; ntasks=1) end` is equivalent to\n `map!(f, results, c...)`.\n"}],"Base.add12":[{"Union{Tuple{T}, Tuple{T,T}} where T":" zhi, zlo = add12(x, y)\n\nA high-precision representation of `x + y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x + y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nBecause of the way floating-point numbers are printed, `lo` may not\nlook the way you might expect from the standpoint of decimal\nrepresentation, even though it is exact from the standpoint of binary\nrepresentation.\n\nExample:\n```julia\njulia> 1.0 + 1.0001e-15\n1.000000000000001\n\njulia> big(1.0) + big(1.0001e-15)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n\njulia> hi, lo = Base.add12(1.0, 1.0001e-15)\n(1.000000000000001, -1.1012302462515652e-16)\n\njulia> big(hi) + big(lo)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n```\n\n`lo` differs from 1.0e-19 because `hi` is not exactly equal to\nthe first 16 decimal digits of the answer.\n"}],"Base.trailing_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" trailing_zeros(x::Integer) -> Integer\n\nNumber of zeros trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_zeros(2)\n1\n```\n"}],"Base.vect":[{"Tuple":" vect(X...)\n\nCreate a [`Vector`](@ref) with element type computed from the `promote_typeof` of the argument,\ncontaining the argument list.\n\n# Examples\n```jldoctest\njulia> a = Base.vect(UInt8(1), 2.5, 1//2)\n3-element Array{Float64,1}:\n 1.0\n 2.5\n 0.5\n```\n"}],"Base.time_ns":[{"Tuple{}":" time_ns()\n\nGet the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.\n"}],"Base.parameter_upper_bound":[{"Tuple{UnionAll,Any}":" Base.parameter_upper_bound(t::UnionAll, idx)\n\nDetermine the upper bound of a type parameter in the underlying datatype.\nThis method should generally not be relied upon:\ncode instead should usually use static parameters in dispatch to extract these values.\n\n# Examples\n```jldoctest\njulia> struct Foo{T<:AbstractFloat, N}\n x::Tuple{T, N}\n end\n\njulia> Base.parameter_upper_bound(Foo, 1)\nAbstractFloat\n\njulia> Base.parameter_upper_bound(Foo, 2)\nAny\n```\n"}],"Base.rpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" rpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the right with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> rpad(\"March\", 20)\n\"March \"\n```\n"}],"Base.redirect_stderr":[{"Union{}":" redirect_stderr([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stderr`](@ref).\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stderr(f::Function, stream)\n\nRun the function `f` while redirecting [`stderr`](@ref) to `stream`.\nUpon completion, [`stderr`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.first":[{"Tuple{Any}":" first(coll)\n\nGet the first element of an iterable collection. Return the start point of an\n[`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> first(2:2:10)\n2\n\njulia> first([1; 2; 3; 4])\n1\n```\n"},{"Tuple{AbstractString,Integer}":" first(s::AbstractString, n::Integer)\n\nGet a string consisting of the first `n` characters of `s`.\n\n```jldoctest\njulia> first(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 1)\n\"∀\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 3)\n\"∀ϵ≠\"\n```\n"}],"Base.fill!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" fill!(A, x)\n\nFill array `A` with the value `x`. If `x` is an object reference, all elements will refer to\nthe same object. `fill!(A, Foo())` will return `A` filled with the result of evaluating\n`Foo()` once.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,3)\n2×3 Array{Float64,2}:\n 0.0 0.0 0.0\n 0.0 0.0 0.0\n\njulia> fill!(A, 2.)\n2×3 Array{Float64,2}:\n 2.0 2.0 2.0\n 2.0 2.0 2.0\n\njulia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A\n3-element Array{Array{Int64,1},1}:\n [2, 1, 1]\n [2, 1, 1]\n [2, 1, 1]\n\njulia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())\n3-element Array{Int64,1}:\n 1\n 1\n 1\n```\n"}],"Base.close":[{"Union{}":" close(stream)\n\nClose an I/O stream. Performs a [`flush`](@ref) first.\n"},{"Union{Tuple{Channel}, Tuple{Channel,Exception}}":" close(c::Channel[, excp::Exception])\n\nClose a channel. An exception (optionally given by `excp`), is thrown by:\n\n* [`put!`](@ref) on a closed channel.\n* [`take!`](@ref) and [`fetch`](@ref) on an empty, closed channel.\n"}],"Base.@task":[{"Tuple{Any}":" @task\n\nWrap an expression in a [`Task`](@ref) without executing it, and return the [`Task`](@ref). This only\ncreates a task, and does not run it.\n\n# Examples\n```jldoctest\njulia> a1() = sum(i for i in 1:1000);\n\njulia> b = @task a1();\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.oneunit":[{"Union{Tuple{T}, Tuple{T}} where T":" oneunit(x::T)\n oneunit(T::Type)\n\nReturns `T(one(x))`, where `T` is either the type of the argument or\n(if a type is passed) the argument. This differs from [`one`](@ref) for\ndimensionful quantities: `one` is dimensionless (a multiplicative identity)\nwhile `oneunit` is dimensionful (of the same type as `x`, or of type `T`).\n\n# Examples\n```jldoctest\njulia> oneunit(3.7)\n1.0\n\njulia> import Dates; oneunit(Dates.Day)\n1 day\n```\n"}],"Base.sizeof":[{"Tuple{Any}":" sizeof(T::DataType)\n sizeof(obj)\n\nSize, in bytes, of the canonical binary representation of the given `DataType` `T`, if any.\nSize, in bytes, of object `obj` if it is not `DataType`.\n\n# Examples\n```jldoctest\njulia> sizeof(Float32)\n4\n\njulia> sizeof(ComplexF64)\n16\n\njulia> sizeof(1.0)\n8\n\njulia> sizeof([1.0:10.0;])\n80\n```\n\nIf `DataType` `T` does not have a specific size, an error is thrown.\n\n```jldoctest\njulia> sizeof(AbstractArray)\nERROR: Abstract type AbstractArray does not have a definite size.\nStacktrace:\n[...]\n```\n"},{"Tuple{AbstractString}":" sizeof(str::AbstractString)\n\nSize, in bytes, of the string `str`. Equal to the number of code units in `str` multiplied by\nthe size, in bytes, of one code unit in `str`.\n\n# Examples\n```jldoctest\njulia> sizeof(\"\")\n0\n\njulia> sizeof(\"∀\")\n3\n```\n"}],"Base.isinteger":[{"Tuple{Integer}":" isinteger(x) -> Bool\n\nTest whether `x` is numerically equal to some integer.\n\n# Examples\n```jldoctest\njulia> isinteger(4.0)\ntrue\n```\n"}],"Base.Cchar":[{"Union{}":" Cchar\n\nEquivalent to the native `char` c-type.\n"}],"Base.datatype_pointerfree":[{"Tuple{DataType}":" Base.datatype_pointerfree(dt::DataType) -> Bool\n\nReturn whether instances of this type can contain references to gc-managed memory.\nCan be called on any `isconcretetype`.\n"}],"Base.uabs":[{"Tuple{Integer}":" uabs(x::Integer)\n\nReturn the absolute value of `x`, possibly returning a different type should the\noperation be susceptible to overflow. This typically arises when `x` is a two's complement\nsigned integer, so that `abs(typemin(x)) == typemin(x) < 0`, in which case the result of\n`uabs(x)` will be an unsigned integer of the same size.\n"}],"Base.hasmethod":[{"Tuple{Any,Any}":" hasmethod(f, t::Type{<:Tuple}[, kwnames]; world=typemax(UInt)) -> Bool\n\nDetermine whether the given generic function has a method matching the given\n`Tuple` of argument types with the upper bound of world age given by `world`.\n\nIf a tuple of keyword argument names `kwnames` is provided, this also checks\nwhether the method of `f` matching `t` has the given keyword argument names.\nIf the matching method accepts a variable number of keyword arguments, e.g.\nwith `kwargs...`, any names given in `kwnames` are considered valid. Otherwise\nthe provided names must be a subset of the method's keyword arguments.\n\nSee also [`applicable`](@ref).\n\n!!! compat \"Julia 1.2\"\n Providing keyword argument names requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> hasmethod(length, Tuple{Array})\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:dims,))\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:apples, :bananas))\nfalse\n\njulia> g(; xs...) = 4;\n\njulia> hasmethod(g, Tuple{}, (:a, :b, :c, :d)) # g accepts arbitrary kwargs\ntrue\n```\n"}],"Base.isdispatchtuple":[{"Tuple{Any}":" isdispatchtuple(T)\n\nDetermine whether type `T` is a tuple \"leaf type\",\nmeaning it could appear as a type signature in dispatch\nand has no subtypes (or supertypes) which could appear in a call.\n"}],"Base.process_exited":[{"Tuple{Base.Process}":" process_exited(p::Process)\n\nDetermine whether a process has exited.\n"}],"Base.Val":[{"Union{}":" Val(c)\n\nReturn `Val{c}()`, which contains no run-time data. Types like this can be used to\npass the information between functions through the value `c`, which must be an `isbits`\nvalue. The intent of this construct is to be able to dispatch on constants directly (at\ncompile time) without having to test the value of the constant at run time.\n\n# Examples\n```jldoctest\njulia> f(::Val{true}) = \"Good\"\nf (generic function with 1 method)\n\njulia> f(::Val{false}) = \"Bad\"\nf (generic function with 2 methods)\n\njulia> f(Val(true))\n\"Good\"\n```\n"}],"Base.minimum":[{"Tuple{Any}":" minimum(itr)\n\nReturns the smallest element in a collection.\n\n# Examples\n```jldoctest\njulia> minimum(-20.5:10)\n-20.5\n\njulia> minimum([1,2,3])\n1\n```\n"},{"Tuple{AbstractArray}":" minimum(A::AbstractArray; dims)\n\nCompute the minimum value of an array over the given dimensions. See also the\n[`min(a,b)`](@ref) function to take the minimum of two or more arguments,\nwhich can be applied elementwise to arrays via `min.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum(A, dims=1)\n1×2 Array{Int64,2}:\n 1 2\n\njulia> minimum(A, dims=2)\n2×1 Array{Int64,2}:\n 1\n 3\n```\n"},{"Tuple{Any,Any}":" minimum(f, itr)\n\nReturns the smallest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> minimum(length, [\"Julion\", \"Julia\", \"Jule\"])\n4\n```\n"}],"Base.rethrow":[{"Tuple{}":" rethrow()\n\nRethrow the current exception from within a `catch` block. The rethrown\nexception will continue propagation as if it had not been caught.\n\n!!! note\n The alternative form `rethrow(e)` allows you to associate an alternative\n exception object `e` with the current backtrace. However this misrepresents\n the program state at the time of the error so you're encouraged to instead\n throw a new exception using `throw(e)`. In Julia 1.1 and above, using\n `throw(e)` will preserve the root cause exception on the stack, as\n described in [`catch_stack`](@ref).\n"}],"Base.hasfastin":[{"Tuple{Type}":" hasfastin(T)\n\nDetermine whether the computation `x ∈ collection` where `collection::T` can be considered\nas a \"fast\" operation (typically constant or logarithmic complexity).\nThe definition `hasfastin(x) = hasfastin(typeof(x))` is provided for convenience so that instances\ncan be passed instead of types.\nHowever the form that accepts a type argument should be defined for new types.\n"}],"Base.add_sum":[{"Tuple{Any,Any}":" Base.add_sum(x, y)\n\nThe reduction operator used in `sum`. The main difference from [`+`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.Channel":[{"Union{}":" Channel{T=Any}(size::Int=0)\n\nConstructs a `Channel` with an internal buffer that can hold a maximum of `size` objects\nof type `T`.\n[`put!`](@ref) calls on a full channel block until an object is removed with [`take!`](@ref).\n\n`Channel(0)` constructs an unbuffered channel. `put!` blocks until a matching `take!` is called.\nAnd vice-versa.\n\nOther constructors:\n\n* `Channel()`: default constructor, equivalent to `Channel{Any}(0)`\n* `Channel(Inf)`: equivalent to `Channel{Any}(typemax(Int))`\n* `Channel(sz)`: equivalent to `Channel{Any}(sz)`\n\n!!! compat \"Julia 1.3\"\n The default constructor `Channel()` and default `size=0` were added in Julia 1.3.\n"},{"Union{Tuple{Function}, Tuple{T}, Tuple{Function,Any}} where T":" Channel{T=Any}(func::Function, size=0; taskref=nothing, spawn=false)\n\nCreate a new task from `func`, bind it to a new channel of type\n`T` and size `size`, and schedule the task, all in a single call.\n\n`func` must accept the bound channel as its only argument.\n\nIf you need a reference to the created task, pass a `Ref{Task}` object via\nthe keyword argument `taskref`.\n\nIf `spawn = true`, the Task created for `func` may be scheduled on another thread\nin parallel, equivalent to creating a task via [`Threads.@spawn`](@ref).\n\nReturn a `Channel`.\n\n# Examples\n```jldoctest\njulia> chnl = Channel() do ch\n foreach(i -> put!(ch, i), 1:4)\n end;\n\njulia> typeof(chnl)\nChannel{Any}\n\njulia> for i in chnl\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n```\n\nReferencing the created task:\n\n```jldoctest\njulia> taskref = Ref{Task}();\n\njulia> chnl = Channel(taskref=taskref) do ch\n println(take!(ch))\n end;\n\njulia> istaskdone(taskref[])\nfalse\n\njulia> put!(chnl, \"Hello\");\nHello\n\njulia> istaskdone(taskref[])\ntrue\n```\n\n!!! compat \"Julia 1.3\"\n The `spawn=` parameter was added in Julia 1.3. This constructor was added in Julia 1.3.\n In earlier versions of Julia, Channel used keyword arguments to set `size` and `T`, but\n those constructors are deprecated.\n\n```jldoctest\njulia> chnl = Channel{Char}(1, spawn=true) do ch\n for c in \"hello world\"\n put!(ch, c)\n end\n end\nChannel{Char}(sz_max:1,sz_curr:1)\n\njulia> String(collect(chnl))\n\"hello world\"\n```\n"}],"Base.VERSION":[{"Union{}":" VERSION\n\nA `VersionNumber` object describing which version of Julia is in use. For details see\n[Version Number Literals](@ref man-version-number-literals).\n"}],"Base.union!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" union!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the union of passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> union!(a, 1:2:8);\n\njulia> a\nSet{Int64} with 5 elements:\n 7\n 4\n 3\n 5\n 1\n```\n"}],"Base.findlast":[{"Tuple{Any}":" findlast(A)\n\nReturn the index or key of the last `true` value in `A`.\nReturn `nothing` if there is no `true` value in `A`.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, true, false]\n4-element Array{Bool,1}:\n 1\n 0\n 1\n 0\n\njulia> findlast(A)\n3\n\njulia> A = falses(2,2);\n\njulia> findlast(A) # returns nothing, but not printed in the REPL\n\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> findlast(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findlast(predicate::Function, A)\n\nReturn the index or key of the last element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4]\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> findlast(isodd, A)\n3\n\njulia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> findlast(isodd, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findlast(pattern::AbstractString, string::AbstractString)\n\nFind the last occurrence of `pattern` in `string`. Equivalent to\n[`findprev(pattern, string, lastindex(string))`](@ref).\n\n# Examples\n```jldoctest\njulia> findlast(\"o\", \"Hello to the world\")\n15:15\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findlast(ch::AbstractChar, string::AbstractString)\n\nFind the last occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findlast('p', \"happy\")\n4\n\njulia> findlast('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.Event":[{"Union{}":" Event()\n\nCreate a level-triggered event source. Tasks that call [`wait`](@ref) on an\n`Event` are suspended and queued until `notify` is called on the `Event`.\nAfter `notify` is called, the `Event` remains in a signaled state and\ntasks will no longer block when waiting for it.\n\n!!! compat \"Julia 1.1\"\n This functionality requires at least Julia 1.1.\n"}],"Base.NaN16":[{"Union{}":" NaN16\n\nA not-a-number value of type [`Float16`](@ref).\n"}],"Base.>=":[{"Tuple{Any}":" >=(x)\n\nCreate a function that compares its argument to `x` using [`>=`](@ref), i.e.\na function equivalent to `y -> y >= x`.\nThe returned function is of type `Base.Fix2{typeof(>=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >=(x, y)\n ≥(x,y)\n\nGreater-than-or-equals comparison operator. Falls back to `y <= x`.\n\n# Examples\n```jldoctest\njulia> 'a' >= 'b'\nfalse\n\njulia> 7 ≥ 7 ≥ 3\ntrue\n\njulia> \"abc\" ≥ \"abc\"\ntrue\n\njulia> 5 >= 3\ntrue\n```\n"}],"Base.unique":[{"Tuple{Any}":" unique(itr)\n\nReturn an array containing only the unique elements of collection `itr`,\nas determined by [`isequal`](@ref), in the order that the first of each\nset of equivalent elements originally appears. The element type of the\ninput is preserved.\n\n# Examples\n```jldoctest\njulia> unique([1, 2, 6, 2])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> unique(Real[1, 1.0, 2])\n2-element Array{Real,1}:\n 1\n 2\n```\n"},{"Tuple{AbstractArray}":" unique(A::AbstractArray; dims::Int)\n\nReturn unique regions of `A` along dimension `dims`.\n\n# Examples\n```jldoctest\njulia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))\n2×2×2 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n\n[:, :, 2] =\n 1 1\n 0 0\n\njulia> unique(A)\n2-element Array{Bool,1}:\n 1\n 0\n\njulia> unique(A, dims=2)\n2×1×2 Array{Bool,3}:\n[:, :, 1] =\n 1\n 0\n\n[:, :, 2] =\n 1\n 0\n\njulia> unique(A, dims=3)\n2×2×1 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n```\n"},{"Tuple{Any,Any}":" unique(f, itr)\n\nReturns an array containing one value from `itr` for each unique value produced by `f`\napplied to elements of `itr`.\n\n# Examples\n```jldoctest\njulia> unique(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n```\n"}],"Base.getindex":[{"Union{}":" getindex(collection, key...)\n\nRetrieve the value(s) stored at the given key or index within a collection. The syntax\n`a[i,j,...]` is converted by the compiler to `getindex(a, i, j, ...)`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> getindex(A, \"a\")\n1\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" getindex(A, inds...)\n\nReturn a subset of array `A` as specified by `inds`, where each `ind` may be an\n`Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref). See the manual section on\n[array indexing](@ref man-array-indexing) for details.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> getindex(A, 1)\n1\n\njulia> getindex(A, [2, 1])\n2-element Array{Int64,1}:\n 3\n 1\n\njulia> getindex(A, 2:4)\n3-element Array{Int64,1}:\n 3\n 2\n 4\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Vararg{Any,N} where N}} where T":" getindex(type[, elements...])\n\nConstruct a 1-d array of the specified type. This is usually called with the syntax\n`Type[]`. Element values can be specified using `Type[a,b,c,...]`.\n\n# Examples\n```jldoctest\njulia> Int8[1, 2, 3]\n3-element Array{Int8,1}:\n 1\n 2\n 3\n\njulia> getindex(Int8, 1, 2, 3)\n3-element Array{Int8,1}:\n 1\n 2\n 3\n```\n"}],"Base.ones":[{"Union{}":" ones([T=Float64,] dims::Tuple)\n ones([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all ones with size specified by `dims`.\nSee also: [`fill`](@ref), [`zeros`](@ref).\n\n# Examples\n```jldoctest\njulia> ones(1,2)\n1×2 Array{Float64,2}:\n 1.0 1.0\n\njulia> ones(ComplexF64, 2, 3)\n2×3 Array{Complex{Float64},2}:\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n```\n"}],"Base.iterate":[{"Union{}":" iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}\n\nAdvance the iterator to obtain the next element. If no elements\nremain, `nothing` should be returned. Otherwise, a 2-tuple of the\nnext element and the new iteration state should be returned.\n"},{"Tuple{AbstractString,Integer}":" iterate(s::AbstractString, i::Integer) -> Union{Tuple{<:AbstractChar, Int}, Nothing}\n\nReturn a tuple of the character in `s` at index `i` with the index of the start\nof the following character in `s`. This is the key method that allows strings to\nbe iterated, yielding a sequences of characters. If `i` is out of bounds in `s`\nthen a bounds error is raised. The `iterate` function, as part of the iteration\nprotocol may assume that `i` is the start of a character in `s`.\n\nSee also: [`getindex`](@ref), [`checkbounds`](@ref)\n"}],"Base.readavailable":[{"Union{}":" readavailable(stream)\n\nRead all available data on the stream, blocking the task only if no data is available. The\nresult is a `Vector{UInt8,1}`.\n"}],"Base.fieldoffset":[{"Tuple{DataType,Integer}":" fieldoffset(type, i)\n\nThe byte offset of field `i` of a type relative to the data start. For example, we could\nuse it in the following manner to summarize information about a struct:\n\n```jldoctest\njulia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i = 1:fieldcount(T)];\n\njulia> structinfo(Base.Filesystem.StatStruct)\n12-element Array{Tuple{UInt64,Symbol,DataType},1}:\n (0x0000000000000000, :device, UInt64)\n (0x0000000000000008, :inode, UInt64)\n (0x0000000000000010, :mode, UInt64)\n (0x0000000000000018, :nlink, Int64)\n (0x0000000000000020, :uid, UInt64)\n (0x0000000000000028, :gid, UInt64)\n (0x0000000000000030, :rdev, UInt64)\n (0x0000000000000038, :size, Int64)\n (0x0000000000000040, :blksize, Int64)\n (0x0000000000000048, :blocks, Int64)\n (0x0000000000000050, :mtime, Float64)\n (0x0000000000000058, :ctime, Float64)\n```\n"}],"Base.one":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" one(x)\n one(T::type)\n\nReturn a multiplicative identity for `x`: a value such that\n`one(x)*x == x*one(x) == x`. Alternatively `one(T)` can\ntake a type `T`, in which case `one` returns a multiplicative\nidentity for any `x` of type `T`.\n\nIf possible, `one(x)` returns a value of the same type as `x`,\nand `one(T)` returns a value of type `T`. However, this may\nnot be the case for types representing dimensionful quantities\n(e.g. time in days), since the multiplicative\nidentity must be dimensionless. In that case, `one(x)`\nshould return an identity value of the same precision\n(and shape, for matrices) as `x`.\n\nIf you want a quantity that is of the same type as `x`, or of type `T`,\neven if `x` is dimensionful, use [`oneunit`](@ref) instead.\n\n# Examples\n```jldoctest\njulia> one(3.7)\n1.0\n\njulia> one(Int)\n1\n\njulia> import Dates; one(Dates.Day(1))\n1\n```\n"}],"Base.IteratorSize":[{"Tuple{Any}":" IteratorSize(itertype::Type) -> IteratorSize\n\nGiven the type of an iterator, return one of the following values:\n\n* `SizeUnknown()` if the length (number of elements) cannot be determined in advance.\n* `HasLength()` if there is a fixed, finite length.\n* `HasShape{N}()` if there is a known length plus a notion of multidimensional shape (as for an array).\n In this case `N` should give the number of dimensions, and the [`axes`](@ref) function is valid\n for the iterator.\n* `IsInfinite()` if the iterator yields values forever.\n\nThe default value (for iterators that do not define this function) is `HasLength()`.\nThis means that most iterators are assumed to implement [`length`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate space for their\nresult, and algorithms that resize their result incrementally.\n\n```jldoctest\njulia> Base.IteratorSize(1:5)\nBase.HasShape{1}()\n\njulia> Base.IteratorSize((2,3))\nBase.HasLength()\n```\n"}],"Base.convert":[{"Union{}":" convert(T, x)\n\nConvert `x` to a value of type `T`.\n\nIf `T` is an [`Integer`](@ref) type, an [`InexactError`](@ref) will be raised if `x`\nis not representable by `T`, for example if `x` is not integer-valued, or is outside the\nrange supported by `T`.\n\n# Examples\n```jldoctest\njulia> convert(Int, 3.0)\n3\n\njulia> convert(Int, 3.5)\nERROR: InexactError: Int64(3.5)\nStacktrace:\n[...]\n```\n\nIf `T` is a [`AbstractFloat`](@ref) or [`Rational`](@ref) type,\nthen it will return the closest value to `x` representable by `T`.\n\n```jldoctest\njulia> x = 1/3\n0.3333333333333333\n\njulia> convert(Float32, x)\n0.33333334f0\n\njulia> convert(Rational{Int32}, x)\n1//3\n\njulia> convert(Rational{Int64}, x)\n6004799503160661//18014398509481984\n```\n\nIf `T` is a collection type and `x` a collection, the result of\n`convert(T, x)` may alias all or part of `x`.\n```jldoctest\njulia> x = Int[1, 2, 3];\n\njulia> y = convert(Vector{Int}, x);\n\njulia> y === x\ntrue\n```\n"}],"Base.displaysize":[{"Tuple{IO}":" displaysize([io::IO]) -> (lines, columns)\n\nReturn the nominal size of the screen that may be used for rendering output to\nthis `IO` object.\nIf no input is provided, the environment variables `LINES` and `COLUMNS` are read.\nIf those are not set, a default size of `(24, 80)` is returned.\n\n# Examples\n```jldoctest\njulia> withenv(\"LINES\" => 30, \"COLUMNS\" => 100) do\n displaysize()\n end\n(30, 100)\n```\n\nTo get your TTY size,\n\n```julia\njulia> displaysize(stdout)\n(34, 147)\n```\n"}],"Base.extrema":[{"Tuple{Any,AbstractArray}":" extrema(f, A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum of `f` applied to each element in the given dimensions\nof `A`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n"},{"Tuple{Any}":" extrema(itr) -> Tuple\n\nCompute both the minimum and maximum element in a single pass, and return them as a 2-tuple.\n\n# Examples\n```jldoctest\njulia> extrema(2:10)\n(2, 10)\n\njulia> extrema([9,pi,4.5])\n(3.141592653589793, 9.0)\n```\n"},{"Tuple{AbstractArray}":" extrema(A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = reshape(Vector(1:2:16), (2,2,2))\n2×2×2 Array{Int64,3}:\n[:, :, 1] =\n 1 5\n 3 7\n\n[:, :, 2] =\n 9 13\n 11 15\n\njulia> extrema(A, dims = (1,2))\n1×1×2 Array{Tuple{Int64,Int64},3}:\n[:, :, 1] =\n (1, 7)\n\n[:, :, 2] =\n (9, 15)\n```\n"},{"Tuple{Any,Any}":" extrema(f, itr) -> Tuple\n\nCompute both the minimum and maximum of `f` applied to each element in `itr` and return\nthem as a 2-tuple. Only one pass is made over `itr`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> extrema(sin, 0:π)\n(0.0, 0.9092974268256817)\n```\n"}],"Base.istaskfailed":[{"Tuple{Task}":" istaskfailed(t::Task) -> Bool\n\nDetermine whether a task has exited because an exception was thrown.\n\n# Examples\n```jldoctest\njulia> a4() = error(\"task failed\");\n\njulia> b = Task(a4);\n\njulia> istaskfailed(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskfailed(b)\ntrue\n```\n"}],"Base.map!":[{"Tuple{Any,Base.ValueIterator}":" map!(f, values(dict::AbstractDict))\n\nModifies `dict` by transforming each value from `val` to `f(val)`.\nNote that the type of `dict` cannot be changed: if `f(val)` is not an instance of the value type\nof `dict` then it will be converted to the value type if possible and otherwise raise an error.\n\n# Examples\n```jldoctest\njulia> d = Dict(:a => 1, :b => 2)\nDict{Symbol,Int64} with 2 entries:\n :a => 1\n :b => 2\n\njulia> map!(v -> v-1, values(d))\nBase.ValueIterator for a Dict{Symbol,Int64} with 2 entries. Values:\n 0\n 1\n```\n"},{"Union{Tuple{F}, Tuple{F,AbstractArray,Vararg{AbstractArray,N} where N}} where F":" map!(function, destination, collection...)\n\nLike [`map`](@ref), but stores the result in `destination` rather than a new\ncollection. `destination` must be at least as large as the first collection.\n\n# Examples\n```jldoctest\njulia> a = zeros(3);\n\njulia> map!(x -> x * 2, a, [1, 2, 3]);\n\njulia> a\n3-element Array{Float64,1}:\n 2.0\n 4.0\n 6.0\n```\n"}],"Base.@inbounds":[{"Tuple{Any}":" @inbounds(blk)\n\nEliminates array bounds checking within expressions.\n\nIn the example below the in-range check for referencing\nelement `i` of array `A` is skipped to improve performance.\n\n```julia\nfunction sum(A::AbstractArray)\n r = zero(eltype(A))\n for i = 1:length(A)\n @inbounds r += A[i]\n end\n return r\nend\n```\n\n!!! warning\n\n Using `@inbounds` may return incorrect results/crashes/corruption\n for out-of-bounds indices. The user is responsible for checking it manually.\n Only use `@inbounds` when it is certain from the information locally available\n that all accesses are in bounds.\n"}],"Base.showerror":[{"Tuple{IO,Any}":" showerror(io, e)\n\nShow a descriptive representation of an exception object `e`.\nThis method is used to display the exception after a call to [`throw`](@ref).\n\n# Examples\n```jldoctest\njulia> struct MyException <: Exception\n msg::AbstractString\n end\n\njulia> function Base.showerror(io::IO, err::MyException)\n print(io, \"MyException: \")\n print(io, err.msg)\n end\n\njulia> err = MyException(\"test exception\")\nMyException(\"test exception\")\n\njulia> sprint(showerror, err)\n\"MyException: test exception\"\n\njulia> throw(MyException(\"test exception\"))\nERROR: MyException: test exception\n```\n"}],"Base.islocked":[{"Tuple{ReentrantLock}":" islocked(lock) -> Status (Boolean)\n\nCheck whether the `lock` is held by any task/thread.\nThis should not be used for synchronization (see instead [`trylock`](@ref)).\n"}],"Base.AbstractUnitRange":[{"Union{}":" AbstractUnitRange{T} <: OrdinalRange{T, T}\n\nSupertype for ranges with a step size of [`oneunit(T)`](@ref) with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.Slice":[{"Union{}":" Slice(indices)\n\nRepresent an AbstractUnitRange of indices as a vector of the indices themselves,\nwith special handling to signal they represent a complete slice of a dimension (:).\n\nUpon calling `to_indices`, Colons are converted to Slice objects to represent\nthe indices over which the Colon spans. Slice objects are themselves unit\nranges with the same indices as those they wrap. This means that indexing into\nSlice objects with an integer always returns that exact integer, and they\niterate over all the wrapped indices, even supporting offset indices.\n"}],"Base.IndexCartesian":[{"Union{}":" IndexCartesian()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by a Cartesian index. This is the default\nfor new custom [`AbstractArray`](@ref) subtypes.\n\nA Cartesian indexing style uses multiple integer indices to describe the position in\na multidimensional array, with exactly one index per dimension. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexCartesian` will return\na range of [`CartesianIndices`](@ref).\n\nA `N`-dimensional custom array that reports its `IndexStyle` as `IndexCartesian` needs\nto implement indexing (and indexed assignment) with exactly `N` `Int` indices;\nall other indexing expressions — including linear indexing — will\nbe recomputed to the equivalent Cartesian location. For example, if `A` were a `2×3` custom\nmatrix with cartesian indexing, and we referenced `A[5]`, this would be\nrecomputed to the equivalent Cartesian index and call `A[1, 3]` since `5 = 2*1 + 3`.\n\nIt is significantly more expensive to compute Cartesian indices from a linear index than it is\nto go the other way. The former operation requires division — a very costly operation — whereas\nthe latter only uses multiplication and addition and is essentially free. This asymmetry means it\nis far more costly to use linear indexing with an `IndexCartesian` array than it is to use\nCartesian indexing with an `IndexLinear` array.\n\nSee also [`IndexLinear`](@ref).\n"}],"Base.DenseMatrix":[{"Union{}":" DenseMatrix{T}\n\nTwo-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,2}`.\n"}],"Base.!=":[{"Tuple{Any}":" !=(x)\n\nCreate a function that compares its argument to `x` using [`!=`](@ref), i.e.\na function equivalent to `y -> y != x`.\nThe returned function is of type `Base.Fix2{typeof(!=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" !=(x, y)\n ≠(x,y)\n\nNot-equals comparison operator. Always gives the opposite answer as [`==`](@ref).\n\n# Implementation\nNew types should generally not implement this, and rely on the fallback definition\n`!=(x,y) = !(x==y)` instead.\n\n# Examples\n```jldoctest\njulia> 3 != 2\ntrue\n\njulia> \"foo\" ≠ \"foo\"\nfalse\n```\n"}],"Base.@generated":[{"Tuple{Any}":" @generated f\n @generated(f)\n`@generated` is used to annotate a function which will be generated.\nIn the body of the generated function, only types of arguments can be read\n(not the values). The function returns a quoted expression evaluated when the\nfunction is called. The `@generated` macro should not be used on functions mutating\nthe global scope or depending on mutable elements.\n\nSee [Metaprogramming](@ref) for further details.\n\n## Example:\n```julia\njulia> @generated function bar(x)\n if x <: Integer\n return :(x ^ 2)\n else\n return :(x)\n end\n end\nbar (generic function with 1 method)\n\njulia> bar(4)\n16\n\njulia> bar(\"baz\")\n\"baz\"\n```\n"}],"Base.maximum!":[{"Tuple{Any,Any}":" maximum!(r, A)\n\nCompute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 4\n\njulia> maximum!([1 1], A)\n1×2 Array{Int64,2}:\n 3 4\n```\n"}],"Base.~":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" ~(x)\n\nBitwise not.\n\n# Examples\n```jldoctest\njulia> ~4\n-5\n\njulia> ~10\n-11\n\njulia> ~true\nfalse\n```\n"}],"Base.isvalid":[{"Tuple{AbstractString,Integer}":" isvalid(s::AbstractString, i::Integer) -> Bool\n\nPredicate indicating whether the given index is the start of the encoding of a\ncharacter in `s` or not. If `isvalid(s, i)` is true then `s[i]` will return the\ncharacter whose encoding starts at that index, if it's false, then `s[i]` will\nraise an invalid index error or a bounds error depending on if `i` is in bounds.\nIn order for `isvalid(s, i)` to be an O(1) function, the encoding of `s` must be\n[self-synchronizing](https://en.wikipedia.org/wiki/Self-synchronizing_code) this\nis a basic assumption of Julia's generic string support.\n\nSee also: [`getindex`](@ref), [`iterate`](@ref), [`thisind`](@ref),\n[`nextind`](@ref), [`prevind`](@ref), [`length`](@ref)\n\n# Examples\n\n```jldoctest\njulia> str = \"αβγdef\";\n\njulia> isvalid(str, 1)\ntrue\n\njulia> str[1]\n'α': Unicode U+03B1 (category Ll: Letter, lowercase)\n\njulia> isvalid(str, 2)\nfalse\n\njulia> str[2]\nERROR: StringIndexError(\"αβγdef\", 2)\nStacktrace:\n[...]\n```\n"}],"Base.resize!":[{"Tuple{Array{T,1} where T,Integer}":" resize!(a::Vector, n::Integer) -> Vector\n\nResize `a` to contain `n` elements. If `n` is smaller than the current collection\nlength, the first `n` elements will be retained. If `n` is larger, the new elements are not\nguaranteed to be initialized.\n\n# Examples\n```jldoctest\njulia> resize!([6, 5, 4, 3, 2, 1], 3)\n3-element Array{Int64,1}:\n 6\n 5\n 4\n\njulia> a = resize!([6, 5, 4, 3, 2, 1], 8);\n\njulia> length(a)\n8\n\njulia> a[1:6]\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.@kwdef":[{"Tuple{Any}":" @kwdef typedef\n\nThis is a helper macro that automatically defines a keyword-based constructor for the type\ndeclared in the expression `typedef`, which must be a `struct` or `mutable struct`\nexpression. The default argument is supplied by declaring fields of the form `field::T =\ndefault` or `field = default`. If no default is provided then the keyword argument becomes\na required keyword argument in the resulting type constructor.\n\nInner constructors can still be defined, but at least one should accept arguments in the\nsame form as the default inner constructor (i.e. one positional argument per field) in\norder to function correctly with the keyword outer constructor.\n\n!!! compat \"Julia 1.1\"\n `Base.@kwdef` for parametric structs, and structs with supertypes\n requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> Base.@kwdef struct Foo\n a::Int = 1 # specified default\n b::String # required keyword\n end\nFoo\n\njulia> Foo(b=\"hi\")\nFoo(1, \"hi\")\n\njulia> Foo()\nERROR: UndefKeywordError: keyword argument b not assigned\nStacktrace:\n[...]\n```\n"}],"Base.ltoh":[{"Tuple{Any}":" ltoh(x)\n\nConvert the endianness of a value from Little-endian to that used by the Host.\n"}],"Base.@__DIR__":[{"Tuple{}":" @__DIR__ -> AbstractString\n\nExpand to a string with the absolute path to the directory of the file\ncontaining the macrocall.\nReturn the current working directory if run from a REPL or if evaluated by `julia -e `.\n"}],"Base.precompile":[{"Tuple{Any,Tuple}":" precompile(f, args::Tuple{Vararg{Any}})\n\nCompile the given function `f` for the argument tuple (of types) `args`, but do not execute it.\n"}],"Base.leading_ones":[{"Tuple{Integer}":" leading_ones(x::Integer) -> Integer\n\nNumber of ones leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_ones(UInt32(2 ^ 32 - 2))\n31\n```\n"}],"Base.read!":[{"Union{}":" read!(stream::IO, array::AbstractArray)\n read!(filename::AbstractString, array::AbstractArray)\n\nRead binary data from an I/O stream or file, filling in `array`.\n"}],"Base.prompt":[{"Tuple{IO,IO,AbstractString}":" prompt(message; default=\"\") -> Union{String, Nothing}\n\nDisplays the `message` then waits for user input. Input is terminated when a newline (\\n)\nis encountered or EOF (^D) character is entered on a blank line. If a `default` is provided\nthen the user can enter just a newline character to select the `default`.\n\nSee also `Base.getpass` and `Base.winprompt` for secure entry of passwords.\n"}],"Base.istaskdone":[{"Tuple{Task}":" istaskdone(t::Task) -> Bool\n\nDetermine whether a task has exited.\n\n# Examples\n```jldoctest\njulia> a2() = sum(i for i in 1:1000);\n\njulia> b = Task(a2);\n\njulia> istaskdone(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.AsyncGenerator":[{"Union{}":" AsyncGenerator(f, c...; ntasks=0, batch_size=nothing) -> iterator\n\nApply `f` to each element of `c` using at most `ntasks` asynchronous tasks.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `collect(AsyncGenerator(f, c...; ntasks=1))` is equivalent to\n `map(f, c...)`.\n"}],"Base.@async":[{"Tuple{Any}":" @async\n\nWrap an expression in a [`Task`](@ref) and add it to the local machine's scheduler queue.\n\nValues can be interpolated into `@async` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.open_flags":[{"Tuple{}":" open_flags(; keywords...) -> NamedTuple\n\nCompute the `read`, `write`, `create`, `truncate`, `append` flag value for\na given set of keyword arguments to [`open`](@ref) a [`NamedTuple`](@ref).\n"}],"Base.transcode":[{"Union{}":" transcode(T, src)\n\nConvert string data between Unicode encodings. `src` is either a\n`String` or a `Vector{UIntXX}` of UTF-XX code units, where\n`XX` is 8, 16, or 32. `T` indicates the encoding of the return value:\n`String` to return a (UTF-8 encoded) `String` or `UIntXX`\nto return a `Vector{UIntXX}` of UTF-`XX` data. (The alias [`Cwchar_t`](@ref)\ncan also be used as the integer type, for converting `wchar_t*` strings\nused by external C libraries.)\n\nThe `transcode` function succeeds as long as the input data can be\nreasonably represented in the target encoding; it always succeeds for\nconversions between UTF-XX encodings, even for invalid Unicode data.\n\nOnly conversion to/from UTF-8 is currently supported.\n"}],"Base.round":[{"Tuple{Type,Any}":" round([T,] x, [r::RoundingMode])\n round(x, [r::RoundingMode]; digits::Integer=0, base = 10)\n round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)\n\nRounds the number `x`.\n\nWithout keyword arguments, `x` is rounded to an integer value, returning a value of type\n`T`, or of the same type of `x` if no `T` is provided. An [`InexactError`](@ref) will be\nthrown if the value is not representable by `T`, similar to [`convert`](@ref).\n\nIf the `digits` keyword argument is provided, it rounds to the specified number of digits\nafter the decimal place (or before if negative), in base `base`.\n\nIf the `sigdigits` keyword argument is provided, it rounds to the specified number of\nsignificant digits, in base `base`.\n\nThe [`RoundingMode`](@ref) `r` controls the direction of the rounding; the default is\n[`RoundNearest`](@ref), which rounds to the nearest integer, with ties (fractional values\nof 0.5) being rounded to the nearest even integer. Note that `round` may give incorrect\nresults if the global rounding mode is changed (see [`rounding`](@ref)).\n\n# Examples\n```jldoctest\njulia> round(1.7)\n2.0\n\njulia> round(Int, 1.7)\n2\n\njulia> round(1.5)\n2.0\n\njulia> round(2.5)\n2.0\n\njulia> round(pi; digits=2)\n3.14\n\njulia> round(pi; digits=3, base=2)\n3.125\n\njulia> round(123.456; sigdigits=2)\n120.0\n\njulia> round(357.913; sigdigits=4, base=2)\n352.0\n```\n\n!!! note\n Rounding to specified digits in bases other than 2 can be inexact when\n operating on binary floating point numbers. For example, the [`Float64`](@ref)\n value represented by `1.15` is actually *less* than 1.15, yet will be\n rounded to 1.2.\n\n # Examples\n ```jldoctest; setup = :(using Printf)\n julia> x = 1.15\n 1.15\n\n julia> @sprintf \"%.20f\" x\n \"1.14999999999999991118\"\n\n julia> x < 115//100\n true\n\n julia> round(x, digits=1)\n 1.2\n ```\n\n# Extensions\n\nTo extend `round` to new numeric types, it is typically sufficient to define `Base.round(x::NewType, r::RoundingMode)`.\n"},{"Union{Tuple{Complex}, Tuple{Complex,RoundingMode}, Tuple{Complex,RoundingMode,RoundingMode}}":" round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10)\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)\n\nReturn the nearest integral value of the same type as the complex-valued `z` to `z`,\nbreaking ties using the specified [`RoundingMode`](@ref)s. The first\n[`RoundingMode`](@ref) is used for rounding the real components while the\nsecond is used for rounding the imaginary components.\n\n# Example\n```jldoctest\njulia> round(3.14 + 4.5im)\n3.0 + 4.0im\n```\n"}],"Base.invpermute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" invpermute!(v, p)\n\nLike [`permute!`](@ref), but the inverse of the given permutation is applied.\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> invpermute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 1\n```\n"}],"Base.withenv":[{"Union{Tuple{T}, Tuple{Function,Vararg{Pair{T,B} where B,N} where N}} where T<:AbstractString":" withenv(f::Function, kv::Pair...)\n\nExecute `f` in an environment that is temporarily modified (not replaced as in `setenv`)\nby zero or more `\"var\"=>val` arguments `kv`. `withenv` is generally used via the\n`withenv(kv...) do ... end` syntax. A value of `nothing` can be used to temporarily unset an\nenvironment variable (if it is set). When `withenv` returns, the original environment has\nbeen restored.\n"}],"Base.Rational":[{"Union{}":" Rational{T<:Integer} <: Real\n\nRational number type, with numerator and denominator of type `T`.\nRationals are checked for overflow.\n"}],"Base.unlock":[{"Tuple{ReentrantLock}":" unlock(lock)\n\nReleases ownership of the `lock`.\n\nIf this is a recursive lock which has been acquired before, decrement an\ninternal counter and return immediately.\n"}],"Base.@boundscheck":[{"Tuple{Any}":" @boundscheck(blk)\n\nAnnotates the expression `blk` as a bounds checking block, allowing it to be elided by [`@inbounds`](@ref).\n\n!!! note\n The function in which `@boundscheck` is written must be inlined into\n its caller in order for `@inbounds` to have effect.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> @inline function g(A, i)\n @boundscheck checkbounds(A, i)\n return \"accessing ($A)[$i]\"\n end;\n\njulia> f1() = return g(1:2, -1);\n\njulia> f2() = @inbounds return g(1:2, -1);\n\njulia> f1()\nERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]\nStacktrace:\n [1] throw_boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:455\n [2] checkbounds at ./abstractarray.jl:420 [inlined]\n [3] g at ./none:2 [inlined]\n [4] f1() at ./none:1\n [5] top-level scope\n\njulia> f2()\n\"accessing (1:2)[-1]\"\n```\n\n!!! warning\n\n The `@boundscheck` annotation allows you, as a library writer, to opt-in to\n allowing *other code* to remove your bounds checks with [`@inbounds`](@ref).\n As noted there, the caller must verify—using information they can access—that\n their accesses are valid before using `@inbounds`. For indexing into your\n [`AbstractArray`](@ref) subclasses, for example, this involves checking the\n indices against its [`size`](@ref). Therefore, `@boundscheck` annotations\n should only be added to a [`getindex`](@ref) or [`setindex!`](@ref)\n implementation after you are certain its behavior is correct.\n"}],"Base.isreadonly":[{"Tuple{Any}":" isreadonly(io) -> Bool\n\nDetermine whether a stream is read-only.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> isreadonly(io)\ntrue\n\njulia> io = IOBuffer();\n\njulia> isreadonly(io)\nfalse\n```\n"}],"Base.rstrip":[{"Tuple{Any,AbstractString}":" rstrip([pred=isspace,] str::AbstractString) -> SubString\n rstrip(str::AbstractString, chars) -> SubString\n\nRemove trailing characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove trailing whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = rpad(\"March\", 20)\n\"March \"\n\njulia> rstrip(a)\n\"March\"\n```\n"}],"Base.escape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" escape_string(str::AbstractString[, esc])::AbstractString\n escape_string(io, str::AbstractString[, esc::])::Nothing\n\nGeneral escaping of traditional C and Unicode escape sequences. The first form returns the\nescaped string, the second prints the result to `io`.\n\nBackslashes (`\\`) are escaped with a double-backslash (`\"\\\\\"`). Non-printable\ncharacters are escaped either with their standard C escape codes, `\"\\0\"` for NUL (if\nunambiguous), unicode code point (`\"\\u\"` prefix) or hex (`\"\\x\"` prefix).\n\nThe optional `esc` argument specifies any additional characters that should also be\nescaped by a prepending backslash (`\"` is also escaped by default in the first form).\n\n# Examples\n```jldoctest\njulia> escape_string(\"aaa\\nbbb\")\n\"aaa\\\\nbbb\"\n\njulia> escape_string(\"\\xfe\\xff\") # invalid utf-8\n\"\\\\xfe\\\\xff\"\n\njulia> escape_string(string('\\u2135','\\0')) # unambiguous\n\"ℵ\\\\0\"\n\njulia> escape_string(string('\\u2135','\\0','0')) # \\0 would be ambiguous\n\"ℵ\\\\x000\"\n```\n\n## See also\n[`unescape_string`](@ref) for the reverse operation.\n"}],"Base.insert!":[{"Union{Tuple{T}, Tuple{Array{T,1},Integer,Any}} where T":" insert!(a::Vector, index::Integer, item)\n\nInsert an `item` into `a` at the given `index`. `index` is the index of `item` in\nthe resulting `a`.\n\n# Examples\n```jldoctest\njulia> insert!([6, 5, 4, 2, 1], 4, 3)\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.unique!":[{"Tuple{Any,AbstractArray{T,1} where T}":" unique!(f, A::AbstractVector)\n\nSelects one value from `A` for each unique value produced by `f` applied to\nelements of `A` , then return the modified A.\n\n!!! compat \"Julia 1.1\"\n This method is available as of Julia 1.1.\n\n# Examples\n```jldoctest\njulia> unique!(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])\n3-element Array{Int64,1}:\n 5\n 1\n 9\n\njulia> unique!(iseven, [2, 3, 5, 7, 9])\n2-element Array{Int64,1}:\n 2\n 3\n```\n"},{"Tuple{Union{AbstractArray{#s662,1} where #s662<:Real, AbstractArray{#s661,1} where #s661<:AbstractString, AbstractArray{#s660,1} where #s660<:Symbol}}":" unique!(A::AbstractVector)\n\nRemove duplicate items as determined by [`isequal`](@ref), then return the modified `A`.\n`unique!` will return the elements of `A` in the order that they occur. If you do not care\nabout the order of the returned data, then calling `(sort!(A); unique!(A))` will be much\nmore efficient as long as the elements of `A` can be sorted.\n\n# Examples\n```jldoctest\njulia> unique!([1, 1, 1])\n1-element Array{Int64,1}:\n 1\n\njulia> A = [7, 3, 2, 3, 7, 5];\n\njulia> unique!(A)\n4-element Array{Int64,1}:\n 7\n 3\n 2\n 5\n\njulia> B = [7, 6, 42, 6, 7, 42];\n\njulia> sort!(B); # unique! is able to process sorted data much more efficiently.\n\njulia> unique!(B)\n3-element Array{Int64,1}:\n 6\n 7\n 42\n```\n"}],"Base.isreal":[{"Tuple{Real}":" isreal(x) -> Bool\n\nTest whether `x` or all its elements are numerically equal to some real number\nincluding infinities and NaNs. `isreal(x)` is true if `isequal(x, real(x))`\nis true.\n\n# Examples\n```jldoctest\njulia> isreal(5.)\ntrue\n\njulia> isreal(Inf + 0im)\ntrue\n\njulia> isreal([4.; complex(0,1)])\nfalse\n```\n"}],"Base.fieldcount":[{"Tuple{Any}":" fieldcount(t::Type)\n\nGet the number of fields that an instance of the given type would have.\nAn error is thrown if the type is too abstract to determine this.\n"}],"Base.Clong":[{"Union{}":" Clong\n\nEquivalent to the native `signed long` c-type.\n"}],"Base.which":[{"Tuple{Any,Any}":" which(f, types)\n\nReturns the method of `f` (a `Method` object) that would be called for arguments of the given `types`.\n\nIf `types` is an abstract type, then the method that would be called by `invoke` is returned.\n"},{"Tuple{Module,Symbol}":" which(module, symbol)\n\nReturn the module in which the binding for the variable referenced by `symbol` in `module` was created.\n"}],"Base.finalize":[{"Tuple{Any}":" finalize(x)\n\nImmediately run finalizers registered for object `x`.\n"}],"Base.prepend!":[{"Union{}":" prepend!(a::Vector, items) -> collection\n\nInsert the elements of `items` to the beginning of `a`.\n\n# Examples\n```jldoctest\njulia> prepend!([3],[1,2])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.IteratorEltype":[{"Tuple{Any}":" IteratorEltype(itertype::Type) -> IteratorEltype\n\nGiven the type of an iterator, return one of the following values:\n\n* `EltypeUnknown()` if the type of elements yielded by the iterator is not known in advance.\n* `HasEltype()` if the element type is known, and [`eltype`](@ref) would return a meaningful value.\n\n`HasEltype()` is the default, since iterators are assumed to implement [`eltype`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate a specific\ntype of result, and algorithms that pick a result type based on the types of yielded\nvalues.\n\n```jldoctest\njulia> Base.IteratorEltype(1:5)\nBase.HasEltype()\n```\n"}],"Base.indexin":[{"Tuple{Any,AbstractArray}":" indexin(a, b)\n\nReturn an array containing the first index in `b` for\neach value in `a` that is a member of `b`. The output\narray contains `nothing` wherever `a` is not a member of `b`.\n\n# Examples\n```jldoctest\njulia> a = ['a', 'b', 'c', 'b', 'd', 'a'];\n\njulia> b = ['a', 'b', 'c'];\n\njulia> indexin(a, b)\n6-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n 2\n nothing\n 1\n\njulia> indexin(b, a)\n3-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n```\n"}],"Base.reim":[{"Tuple{Any}":" reim(z)\n\nReturn both the real and imaginary parts of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> reim(1 + 3im)\n(1, 3)\n```\n"}],"Base.AbstractVecOrMat":[{"Union{}":" AbstractVecOrMat{T}\n\nUnion type of [`AbstractVector{T}`](@ref) and [`AbstractMatrix{T}`](@ref).\n"}],"Base.GenericCondition":[{"Union{}":" GenericCondition\n\nAbstract implementation of a condition object\nfor synchonizing tasks objects with a given lock.\n"}],"Base.SecretBuffer!":[{"Tuple{Array{UInt8,1}}":" SecretBuffer!(data::Vector{UInt8})\n\nInitialize a new `SecretBuffer` from `data`, securely zeroing `data` afterwards.\n"}],"Base.Cintmax_t":[{"Union{}":" Cintmax_t\n\nEquivalent to the native `intmax_t` c-type ([`Int64`](@ref)).\n"}],"Base.Inf32":[{"Union{}":" Inf32\n\nPositive infinity of type [`Float32`](@ref).\n"}],"Base.@sync":[{"Tuple{Any}":" @sync\n\nWait until all lexically-enclosed uses of `@async`, `@spawn`, `@spawnat` and `@distributed`\nare complete. All exceptions thrown by enclosed async operations are collected and thrown as\na `CompositeException`.\n"}],"Base.securezero!":[{"Union{}":" securezero!(o)\n\n`securezero!` fills the memory associated with an object `o` with zeros.\nUnlike `fill!(o,0)` and similar code, which might be optimized away by\nthe compiler for objects about to be discarded, the `securezero!` function\nwill always be called.\n"}],"Base.Regex":[{"Union{}":" Regex(pattern[, flags])\n\nA type representing a regular expression. `Regex` objects can be used to match strings\nwith [`match`](@ref).\n\n`Regex` objects can be created using the [`@r_str`](@ref) string macro. The\n`Regex(pattern[, flags])` constructor is usually used if the `pattern` string needs\nto be interpolated. See the documentation of the string macro for details on flags.\n"}],"Base.reduce_first":[{"Tuple{Any,Any}":" Base.reduce_first(op, x)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref`) or\n[`foldr`](@ref) with reduction `op` over an iterator which contains a single element\n`x`. This value may also used to initialise the recursion, so that `reduce(op, [x, y])`\nmay call `op(reduce_first(op, x), y)`.\n\nThe default is `x` for most types. The main purpose is to ensure type stability, so\nadditional methods should only be defined for cases where `op` gives a result with\ndifferent types than its inputs.\n"}],"Base.dataids":[{"Tuple{AbstractArray}":" Base.dataids(A::AbstractArray)\n\nReturn a tuple of `UInt`s that represent the mutable data segments of an array.\n\nCustom arrays that would like to opt-in to aliasing detection of their component\nparts can specialize this method to return the concatenation of the `dataids` of\ntheir component parts. A typical definition for an array that wraps a parent is\n`Base.dataids(C::CustomArray) = dataids(C.parent)`.\n"}],"Base.unindent":[{"Tuple{AbstractString,Int64}":" unindent(str::AbstractString, indent::Int; tabwidth=8)\n\nRemove leading indentation from string.\n\n# Examples\n```jldoctest\njulia> Base.unindent(\" a\\n b\", 2)\n\" a\\n b\"\n\njulia> Base.unindent(\"\\ta\\n\\tb\", 2, tabwidth=8)\n\" a\\n b\"\n```\n"}],"Base.empty!":[{"Union{Tuple{Dict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" empty!(collection) -> collection\n\nRemove all elements from a `collection`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> empty!(A);\n\njulia> A\nDict{String,Int64} with 0 entries\n```\n"}],"Base.findmax":[{"Tuple{Any}":" findmax(itr) -> (x, index)\n\nReturn the maximum element of the collection `itr` and its index. If there are multiple\nmaximal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `max`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmax([8,0.1,-9,pi])\n(8.0, 1)\n\njulia> findmax([1,7,7,6])\n(7, 2)\n\njulia> findmax([1,7,7,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmax(A; dims) -> (maxval, index)\n\nFor an array input, returns the value and index of the maximum over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmax(A, dims=1)\n([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])\n\njulia> findmax(A, dims=2)\n([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])\n```\n"}],"Base.isabstracttype":[{"Tuple{Any}":" isabstracttype(T)\n\nDetermine whether type `T` was declared as an abstract type\n(i.e. using the `abstract` keyword).\n\n# Examples\n```jldoctest\njulia> isabstracttype(AbstractArray)\ntrue\n\njulia> isabstracttype(Vector)\nfalse\n```\n"}],"Base.include_string":[{"Tuple{Module,String,String}":" include_string(m::Module, code::AbstractString, filename::AbstractString=\"string\")\n\nLike [`include`](@ref), except reads code from the given string rather than from a file.\n"}],"Base.cld":[{"Tuple{Any,Any}":" cld(x, y)\n\nSmallest integer larger than or equal to `x/y`. Equivalent to `div(x, y, RoundUp)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> cld(5.5,2.2)\n3.0\n```\n"}],"Base.@views":[{"Tuple{Any}":" @views expression\n\nConvert every array-slicing operation in the given expression\n(which may be a `begin`/`end` block, loop, function, etc.)\nto return a view. Scalar indices, non-array types, and\nexplicit [`getindex`](@ref) calls (as opposed to `array[...]`) are\nunaffected.\n\n!!! note\n The `@views` macro only affects `array[...]` expressions\n that appear explicitly in the given `expression`, not array slicing that\n occurs in functions called by that code.\n\n# Examples\n```jldoctest\njulia> A = zeros(3, 3);\n\njulia> @views for row in 1:3\n b = A[row, :]\n b[:] .= row\n end\n\njulia> A\n3×3 Array{Float64,2}:\n 1.0 1.0 1.0\n 2.0 2.0 2.0\n 3.0 3.0 3.0\n```\n"}],"Base.eachindex":[{"Tuple{AbstractArray}":" eachindex(A...)\n\nCreate an iterable object for visiting each index of an `AbstractArray` `A` in an efficient\nmanner. For array types that have opted into fast linear indexing (like `Array`), this is\nsimply the range `1:length(A)`. For other array types, return a specialized Cartesian\nrange to efficiently index into the array with indices specified for every dimension. For\nother iterables, including strings and dictionaries, return an iterator object\nsupporting arbitrary index types (e.g. unevenly spaced or non-integer indices).\n\nIf you supply more than one `AbstractArray` argument, `eachindex` will create an\niterable object that is fast for all arguments (a [`UnitRange`](@ref)\nif all inputs have fast linear indexing, a [`CartesianIndices`](@ref)\notherwise).\nIf the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception\nwill be thrown.\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> for i in eachindex(A) # linear indexing\n println(i)\n end\n1\n2\n3\n4\n\njulia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing\n println(i)\n end\nCartesianIndex(1, 1)\nCartesianIndex(2, 1)\n```\n"}],"Base.macroexpand":[{"Tuple{Module,Any}":" macroexpand(m::Module, x; recursive=true)\n\nTake the expression `x` and return an equivalent expression with all macros removed (expanded)\nfor executing in module `m`.\nThe `recursive` keyword controls whether deeper levels of nested macros are also expanded.\nThis is demonstrated in the example below:\n```julia-repl\njulia> module M\n macro m1()\n 42\n end\n macro m2()\n :(@m1())\n end\n end\nM\n\njulia> macroexpand(M, :(@m2()), recursive=true)\n42\n\njulia> macroexpand(M, :(@m2()), recursive=false)\n:(#= REPL[16]:6 =# M.@m1)\n```\n"}],"Base.stdout":[{"Union{}":" stdout\n\nGlobal variable referring to the standard out stream.\n"}],"Base.copyfirst!":[{"Tuple{AbstractArray,AbstractArray}":"Extract first entry of slices of array A into existing array R.\n"}],"Base.Cfloat":[{"Union{}":" Cfloat\n\nEquivalent to the native `float` c-type ([`Float32`](@ref)).\n"}],"Base.mapreduce_empty":[{"Tuple{Any,Any,Any}":" Base.mapreduce_empty(f, op, T)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an empty array with element type\nof `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.ProcessFailedException":[{"Union{}":" ProcessFailedException\n\nIndicates problematic exit status of a process.\nWhen running commands or pipelines, this is thrown to indicate\na nonzero exit code was returned (i.e. that the invoked process failed).\n"}],"Base.valtype":[{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" valtype(type)\n\nGet the value type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> valtype(Dict(Int32(1) => \"foo\"))\nString\n```\n"},{"Tuple{Type{#s662} where #s662<:AbstractArray}":" valtype(T::Type{<:AbstractArray})\n valtype(A::AbstractArray)\n\nReturn the value type of an array. This is identical to `eltype` and is\nprovided mainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> valtype([\"one\", \"two\", \"three\"])\nString\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"}],"Base.take!":[{"Tuple{Base.GenericIOBuffer}":" take!(b::IOBuffer)\n\nObtain the contents of an `IOBuffer` as an array, without copying. Afterwards, the\n`IOBuffer` is reset to its initial state.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n```\n"},{"Tuple{Channel}":" take!(c::Channel)\n\nRemove and return a value from a [`Channel`](@ref). Blocks until data is available.\n\nFor unbuffered channels, blocks until a [`put!`](@ref) is performed by a different\ntask.\n"}],"Base.RangeStepStyle":[{"Union{}":" RangeStepStyle(instance)\n RangeStepStyle(T::Type)\n\nIndicate whether an instance or a type supports constructing a range with\na perfectly regular step or not. A regular step means that\n[`step`](@ref) will always be exactly equal to the difference between two\nsubsequent elements in a range, i.e. for a range `r::AbstractRange{T}`:\n```julia\nall(diff(r) .== step(r))\n```\n\nWhen a type `T` always leads to ranges with regular steps, it should\ndefine the following method:\n```julia\nBase.RangeStepStyle(::Type{<:AbstractRange{<:T}}) = Base.RangeStepRegular()\n```\nThis will allow [`hash`](@ref) to use an O(1) algorithm for `AbstractRange{T}`\nobjects instead of the default O(N) algorithm (with N the length of the range).\n\nIn some cases, whether the step will be regular depends not only on the\nelement type `T`, but also on the type of the step `S`. In that case, more\nspecific methods should be defined:\n```julia\nBase.RangeStepStyle(::Type{<:OrdinalRange{<:T, <:S}}) = Base.RangeStepRegular()\n```\n\nBy default, all range types are assumed to be `RangeStepIrregular`, except\nranges with an element type which is a subtype of `Integer`.\n"}],"Base.println":[{"Tuple{IO,Vararg{Any,N} where N}":" println([io::IO], xs...)\n\nPrint (using [`print`](@ref)) `xs` followed by a newline.\nIf `io` is not supplied, prints to [`stdout`](@ref).\n\n# Examples\n```jldoctest\njulia> println(\"Hello, world\")\nHello, world\n\njulia> io = IOBuffer();\n\njulia> println(io, \"Hello, world\")\n\njulia> String(take!(io))\n\"Hello, world\\n\"\n```\n"}],"Base.promote_op":[{"Tuple{Any,Vararg{Type,N} where N}":" promote_op(f, argtypes...)\n\nGuess what an appropriate container eltype would be for storing results of\n`f(::argtypes...)`. The guess is in part based on type inference, so can change any time.\n\n!!! warning\n Due to its fragility, use of `promote_op` should be avoided. It is preferable to base\n the container eltype on the type of the actual elements. Only in the absence of any\n elements (for an empty result container), it may be unavoidable to call `promote_op`.\n"}],"Base.readbytes!":[{"Union{Tuple{IO,AbstractArray{UInt8,N} where N}, Tuple{IO,AbstractArray{UInt8,N} where N,Any}}":" readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n"},{"Union{Tuple{IOStream,Array{UInt8,N} where N}, Tuple{IOStream,Array{UInt8,N} where N,Any}}":" readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"}],"Base.any":[{"Tuple{Any}":" any(itr) -> Bool\n\nTest whether any elements of a boolean collection are `true`, returning `true` as\nsoon as the first `true` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> any(a)\ntrue\n\njulia> any((println(i); v) for (i, v) in enumerate(a))\n1\ntrue\n\njulia> any([missing, true])\ntrue\n\njulia> any([false, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" any(A; dims)\n\nTest whether any values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> any(A, dims=2)\n2×1 Array{Bool,2}:\n 1\n 1\n```\n"},{"Tuple{Any,Any}":" any(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for any elements of `itr`, returning\n`true` as soon as the first item in `itr` for which `p` returns `true` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> any(i->(4<=i<=6), [3,5,7])\ntrue\n\njulia> any(i -> (println(i); i > 3), 1:10)\n1\n2\n3\n4\ntrue\n\njulia> any(i -> i > 0, [1, missing])\ntrue\n\njulia> any(i -> i > 0, [-1, missing])\nmissing\n\njulia> any(i -> i > 0, [-1, 0])\nfalse\n```\n"}],"Base.ndigits":[{"Tuple{Integer}":" ndigits(n::Integer; base::Integer=10, pad::Integer=1)\n\nCompute the number of digits in integer `n` written in base `base`\n(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros\nto a specified size (the result will never be less than `pad`).\n\n# Examples\n```jldoctest\njulia> ndigits(12345)\n5\n\njulia> ndigits(1022, base=16)\n3\n\njulia> string(1022, base=16)\n\"3fe\"\n\njulia> ndigits(123, pad=5)\n5\n```\n"}],"Base.StringIndexError":[{"Union{}":" StringIndexError(str, i)\n\nAn error occurred when trying to access `str` at index `i` that is not valid.\n"}],"Base.nonmissingtype":[{"Union{Tuple{Type{T}}, Tuple{T}} where T":" nonmissingtype(T::Type)\n\nIf `T` is a union of types containing `Missing`, return a new type with\n`Missing` removed.\n\n# Examples\n```jldoctest\njulia> nonmissingtype(Union{Int64,Missing})\nInt64\n\njulia> nonmissingtype(Any)\nAny\n```\n\n!!! compat \"Julia 1.3\"\n This function is exported as of Julia 1.3.\n"}],"Base.prod":[{"Tuple{Any}":" prod(itr)\n\nReturns the product of all elements of a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(1:20)\n2432902008176640000\n```\n"},{"Tuple{AbstractArray}":" prod(A::AbstractArray; dims)\n\nMultiply elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod(A, dims=1)\n1×2 Array{Int64,2}:\n 3 8\n\njulia> prod(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 12\n```\n"},{"Tuple{Any,Any}":" prod(f, itr)\n\nReturns the product of `f` applied to each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(abs2, [2; 3; 4])\n576\n```\n"}],"Base.range":[{"Tuple{Any}":" range(start[, stop]; length, stop, step=1)\n\nGiven a starting value, construct a range either by length or from `start` to `stop`,\noptionally with a given step (defaults to 1, a [`UnitRange`](@ref)).\nOne of `length` or `stop` is required. If `length`, `stop`, and `step` are all specified, they must agree.\n\nIf `length` and `stop` are provided and `step` is not, the step size will be computed\nautomatically such that there are `length` linearly spaced elements in the range (a [`LinRange`](@ref)).\n\nIf `step` and `stop` are provided and `length` is not, the overall range length will be computed\nautomatically such that the elements are `step` spaced (a [`StepRange`](@ref)).\n\n`stop` may be specified as either a positional or keyword argument.\n\n!!! compat \"Julia 1.1\"\n `stop` as a positional argument requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> range(1, length=100)\n1:100\n\njulia> range(1, stop=100)\n1:100\n\njulia> range(1, step=5, length=100)\n1:5:496\n\njulia> range(1, step=5, stop=100)\n1:5:96\n\njulia> range(1, 10, length=101)\n1.0:0.09:10.0\n\njulia> range(1, 100, step=5)\n1:5:96\n```\n"}],"Base.cat":[{"Tuple":" cat(A...; dims=dims)\n\nConcatenate the input arrays along the specified dimensions in the iterable `dims`. For\ndimensions not in `dims`, all input arrays should have the same size, which will also be the\nsize of the output array along that dimension. For dimensions in `dims`, the size of the\noutput array is the sum of the sizes of the input arrays along that dimension. If `dims` is\na single number, the different arrays are tightly stacked along that dimension. If `dims` is\nan iterable containing several dimensions, this allows one to construct block diagonal\nmatrices and their higher-dimensional analogues by simultaneously increasing several\ndimensions for every new input array and putting zero blocks elsewhere. For example,\n`cat(matrices...; dims=(1,2))` builds a block diagonal matrix, i.e. a block matrix with\n`matrices[1]`, `matrices[2]`, ... as diagonal blocks and matching zero blocks away from the\ndiagonal.\n"}],"Base.Cwstring":[{"Union{}":" Cwstring\n\nA C-style string composed of the native wide character type\n[`Cwchar_t`](@ref)s. `Cwstring`s are NUL-terminated. For\nC-style strings composed of the native character\ntype, see [`Cstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n\n"}],"Base.coalesce":[{"Union{}":" coalesce(x, y...)\n\nReturn the first value in the arguments which is not equal to [`missing`](@ref),\nif any. Otherwise return `missing`.\n\nSee also [`something`](@ref).\n\n# Examples\n\n```jldoctest\njulia> coalesce(missing, 1)\n1\n\njulia> coalesce(1, missing)\n1\n\njulia> coalesce(nothing, 1) # returns `nothing`\n\njulia> coalesce(missing, missing)\nmissing\n```\n"}],"Base.keys":[{"Union{}":" keys(iterator)\n\nFor an iterator or collection that has keys and values (e.g. arrays and dictionaries),\nreturn an iterator over the keys.\n"},{"Tuple{AbstractDict}":" keys(a::AbstractDict)\n\nReturn an iterator over all keys in a dictionary.\n`collect(keys(a))` returns an array of keys.\nWhen the keys are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(keys(D))\n2-element Array{Char,1}:\n 'a'\n 'b'\n```\n"}],"Base.findmax!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmax!(rval, rind, A) -> (maxval, index)\n\nFind the maximum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as greater than all other values.\n"}],"Base.>>":[{"Tuple{Integer,Integer}":" >>(x, n)\n\nRight bit shift operator, `x >> n`. For `n >= 0`, the result is `x` shifted\nright by `n` bits, where `n >= 0`, filling with `0`s if `x >= 0`, `1`s if `x <\n0`, preserving the sign of `x`. This is equivalent to `fld(x, 2^n)`. For `n <\n0`, this is equivalent to `x << -n`.\n\n# Examples\n```jldoctest\njulia> Int8(13) >> 2\n3\n\njulia> bitstring(Int8(13))\n\"00001101\"\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> Int8(-14) >> 2\n-4\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(-4))\n\"11111100\"\n```\nSee also [`>>>`](@ref), [`<<`](@ref).\n"},{"Tuple{BitArray{1},Union{Int64, UInt64}}":" >>(B::BitVector, n) -> BitVector\n\nRight bit shift operator, `B >> n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions forward, filling with `false`\nvalues. If `n < 0`, elements are shifted backwards. Equivalent to\n`B << -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B >> 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n\njulia> B >> -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n```\n"}],"Base.copy":[{"Union{}":" copy(x)\n\nCreate a shallow copy of `x`: the outer structure is copied, but not all internal values.\nFor example, copying an array produces a new array with identically-same elements as the\noriginal.\n"}],"Base.has_bottom_parameter":[{"Tuple{DataType}":" has_bottom_parameter(t) -> Bool\n\nDetermine whether `t` is a Type for which one or more of its parameters is `Union{}`.\n"}],"Base.datatype_fielddesc_type":[{"Tuple{DataType}":" Base.datatype_fielddesc_type(dt::DataType) -> Int\n\nReturn the size in bytes of each field-description entry in the layout array,\nlocated at `(dt.layout + sizeof(DataTypeLayout))`.\nCan be called on any `isconcretetype`.\n\nSee also [`fieldoffset`](@ref).\n"}],"Base.@allocated":[{"Tuple{Any}":" @allocated\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\ntotal number of bytes allocated during evaluation of the expression.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@elapsed`](@ref).\n\n```julia-repl\njulia> @allocated rand(10^6)\n8000080\n```\n"}],"Base.names":[{"Tuple{Module}":" names(x::Module; all::Bool = false, imported::Bool = false)\n\nGet an array of the names exported by a `Module`, excluding deprecated names.\nIf `all` is true, then the list also includes non-exported names defined in the module,\ndeprecated names, and compiler-generated names.\nIf `imported` is true, then names explicitly imported from other modules\nare also included.\n\nAs a special case, all names defined in `Main` are considered \"exported\",\nsince it is not idiomatic to explicitly export names from `Main`.\n"}],"Base.hastypemax":[{"Tuple{Union{Type{Int128}, Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt128}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}}":" hastypemax(T::Type) -> Bool\n\nReturn `true` if and only if `typemax(T)` is defined.\n"}],"Base.isinf":[{"Tuple{Real}":" isinf(f) -> Bool\n\nTest whether a number is infinite.\n"}],"Base.DEPOT_PATH":[{"Union{}":" DEPOT_PATH\n\nA stack of \"depot\" locations where the package manager, as well as Julia's code\nloading mechanisms, look for package registries, installed packages, named\nenvironments, repo clones, cached compiled package images, and configuration\nfiles. By default it includes:\n\n1. `~/.julia` where `~` is the user home as appropriate on the system;\n2. an architecture-specific shared system directory, e.g. `/usr/local/share/julia`;\n3. an architecture-independent shared system directory, e.g. `/usr/share/julia`.\n\nSo `DEPOT_PATH` might be:\n```julia\n[joinpath(homedir(), \".julia\"), \"/usr/local/share/julia\", \"/usr/share/julia\"]\n```\nThe first entry is the \"user depot\" and should be writable by and owned by the\ncurrent user. The user depot is where: registries are cloned, new package versions\nare installed, named environments are created and updated, package repos are cloned,\nnewly compiled package image files are saved, log files are written, development\npackages are checked out by default, and global configuration data is saved. Later\nentries in the depot path are treated as read-only and are appropriate for\nregistries, packages, etc. installed and managed by system administrators.\n\n`DEPOT_PATH` is populated based on the [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)\nenvironment variable if set.\n\nSee also:\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.stdin":[{"Union{}":" stdin\n\nGlobal variable referring to the standard input stream.\n"}],"Base.gensym":[{"Tuple{}":" gensym([tag])\n\nGenerates a symbol which will not conflict with other variable names.\n"}],"Base.@v_str":[{"Tuple{Any}":" @v_str\n\nString macro used to parse a string to a [`VersionNumber`](@ref).\n\n# Examples\n```jldoctest\njulia> v\"1.2.3\"\nv\"1.2.3\"\n\njulia> v\"2.0.1-rc1\"\nv\"2.0.1-rc1\"\n```\n"}],"Base.include_dependency":[{"Tuple{AbstractString}":" include_dependency(path::AbstractString)\n\nIn a module, declare that the file specified by `path` (relative or absolute) is a\ndependency for precompilation; that is, the module will need to be recompiled if this file\nchanges.\n\nThis is only needed if your module depends on a file that is not used via [`include`](@ref). It has\nno effect outside of compilation.\n"}],"Base.@deprecate":[{"Union{Tuple{Any,Any}, Tuple{Any,Any,Any}}":" @deprecate old new [ex=true]\n\nThe first argument `old` is the signature of the deprecated method, the second one\n`new` is the call which replaces it. `@deprecate` exports `old` unless the optional\nthird argument is `false`.\n\n# Examples\n```jldoctest\njulia> @deprecate old(x) new(x)\nold (generic function with 1 method)\n\njulia> @deprecate old(x) new(x) false\nold (generic function with 1 method)\n```\n"}],"Base.unsafe_read":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_read(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from the `IO` stream object into `ref` (converted to a pointer).\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.task_local_storage":[{"Tuple{Any}":" task_local_storage(key)\n\nLook up the value of a key in the current task's task-local storage.\n"},{"Tuple{Function,Any,Any}":" task_local_storage(body, key, value)\n\nCall the function `body` with a modified task-local storage, in which `value` is assigned to\n`key`; the previous value of `key`, or lack thereof, is restored afterwards. Useful\nfor emulating dynamic scoping.\n"},{"Tuple{Any,Any}":" task_local_storage(key, value)\n\nAssign a value to a key in the current task's task-local storage.\n"}],"Base.CompositeException":[{"Union{}":" CompositeException\n\nWrap a `Vector` of exceptions thrown by a [`Task`](@ref) (e.g. generated from a remote worker over a channel\nor an asynchronously executing local I/O write or a remote worker under `pmap`) with information about the series of exceptions.\nFor example, if a group of workers are executing several tasks, and multiple workers fail, the resulting `CompositeException` will\ncontain a \"bundle\" of information from each worker indicating where and why the exception(s) occurred.\n"}],"Base.hex2bytes!":[{"Tuple{AbstractArray{UInt8,1},Union{AbstractArray{UInt8,1}, String}}":" hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})\n\nConvert an array `s` of bytes representing a hexadecimal string to its binary\nrepresentation, similar to [`hex2bytes`](@ref) except that the output is written in-place\nin `d`. The length of `s` must be exactly twice the length of `d`.\n"}],"Base.ignorestatus":[{"Tuple{Cmd}":" ignorestatus(command)\n\nMark a command object so that running it will not throw an error if the result code is non-zero.\n"}],"Base.mightalias":[{"Tuple{AbstractArray,AbstractArray}":" Base.mightalias(A::AbstractArray, B::AbstractArray)\n\nPerform a conservative test to check if arrays `A` and `B` might share the same memory.\n\nBy default, this simply checks if either of the arrays reference the same memory\nregions, as identified by their [`Base.dataids`](@ref).\n"}],"Base.PROGRAM_FILE":[{"Union{}":" PROGRAM_FILE\n\nA string containing the script name passed to Julia from the command line. Note that the\nscript name remains unchanged from within included files. Alternatively see\n[`@__FILE__`](@ref).\n"}],"Base.values":[{"Tuple{Any}":" values(iterator)\n\nFor an iterator or collection that has keys and values, return an iterator\nover the values.\nThis function simply returns its argument by default, since the elements\nof a general iterator are normally considered its \"values\".\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> values(d)\nBase.ValueIterator for a Dict{String,Int64} with 2 entries. Values:\n 2\n 1\n\njulia> values([2])\n1-element Array{Int64,1}:\n 2\n```\n"},{"Tuple{AbstractDict}":" values(a::AbstractDict)\n\nReturn an iterator over all values in a collection.\n`collect(values(a))` returns an array of values.\nWhen the values are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(values(D))\n2-element Array{Int64,1}:\n 2\n 3\n```\n"}],"Base.findall":[{"Tuple{Any}":" findall(A)\n\nReturn a vector `I` of the `true` indices or keys of `A`.\nIf there are no such elements of `A`, return an empty array.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, false, true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> findall(A)\n2-element Array{Int64,1}:\n 1\n 4\n\njulia> A = [true false; false true]\n2×2 Array{Bool,2}:\n 1 0\n 0 1\n\njulia> findall(A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 2)\n\njulia> findall(falses(3))\n0-element Array{Int64,1}\n```\n"},{"Tuple{Union{Regex, AbstractString},AbstractString}":" findall(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn a `Vector{UnitRange{Int}}` of all the matches for `pattern` in `string`.\nEach element of the returned vector is a range of indices where the\nmatching sequence is found, like the return value of [`findnext`](@ref).\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Function,Any}":" findall(f::Function, A)\n\nReturn a vector `I` of the indices or keys of `A` where `f(A[I])` returns `true`.\nIf there are no such elements of `A`, return an empty array.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 3, 4]\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> findall(isodd, x)\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> A = [1 2 0; 3 4 0]\n2×3 Array{Int64,2}:\n 1 2 0\n 3 4 0\njulia> findall(isodd, A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n\njulia> findall(!iszero, A)\n4-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n\njulia> d = Dict(:A => 10, :B => -1, :C => 0)\nDict{Symbol,Int64} with 3 entries:\n :A => 10\n :B => -1\n :C => 0\n\njulia> findall(x -> x >= 0, d)\n2-element Array{Symbol,1}:\n :A\n :C\n\n```\n"}],"Base.any!":[{"Tuple{Any,Any}":" any!(r, A)\n\nTest whether any values in `A` along the singleton dimensions of `r` are `true`, and write\nresults to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 1\n\njulia> any!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.show_invalid":[{"Union{}":" show_invalid(io::IO, c::AbstractChar)\n\nCalled by `show(io, c)` when [`isoverlong(c)`](@ref) or\n[`ismalformed(c)`](@ref) return `true`. Subclasses\nof `AbstractChar` should define `Base.show_invalid` methods\nif they support storing invalid character data.\n"}],"Base.hton":[{"Tuple{Any}":" hton(x)\n\nConvert the endianness of a value from that used by the Host to Network byte order (big-endian).\n"}],"Base.AbstractLock":[{"Union{}":" AbstractLock\n\nAbstract supertype describing types that\nimplement the synchronization primitives:\n[`lock`](@ref), [`trylock`](@ref), [`unlock`](@ref), and [`islocked`](@ref).\n"}],"Base.catch_backtrace":[{"Tuple{}":" catch_backtrace()\n\nGet the backtrace of the current exception, for use within `catch` blocks.\n"}],"Base.nameof":[{"Tuple{Module}":" nameof(m::Module) -> Symbol\n\nGet the name of a `Module` as a [`Symbol`](@ref).\n\n# Examples\n```jldoctest\njulia> nameof(Base.Broadcast)\n:Broadcast\n```\n"},{"Tuple{Function}":" nameof(f::Function) -> Symbol\n\nGet the name of a generic `Function` as a symbol. For anonymous functions,\nthis is a compiler-generated name. For explicitly-declared subtypes of\n`Function`, it is the name of the function's type.\n"},{"Tuple{DataType}":" nameof(t::DataType) -> Symbol\n\nGet the name of a (potentially `UnionAll`-wrapped) `DataType` (without its parent module)\nas a symbol.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct S{T}\n end\n end\nFoo\n\njulia> nameof(Foo.S{T} where T)\n:S\n```\n"}],"Base.IOContext":[{"Tuple{IO,Pair,Vararg{Pair,N} where N}":" IOContext(io::IO, KV::Pair...)\n\nCreate an `IOContext` that wraps a given stream, adding the specified `key=>value` pairs to\nthe properties of that stream (note that `io` can itself be an `IOContext`).\n\n - use `(key => value) in io` to see if this particular combination is in the properties set\n - use `get(io, key, default)` to retrieve the most recent value for a particular key\n\nThe following properties are in common use:\n\n - `:compact`: Boolean specifying that small values should be printed more compactly, e.g.\n that numbers should be printed with fewer digits. This is set when printing array\n elements.\n - `:limit`: Boolean specifying that containers should be truncated, e.g. showing `…` in\n place of most elements.\n - `:displaysize`: A `Tuple{Int,Int}` giving the size in rows and columns to use for text\n output. This can be used to override the display size for called functions, but to\n get the size of the screen use the `displaysize` function.\n - `:typeinfo`: a `Type` characterizing the information already printed\n concerning the type of the object about to be displayed. This is mainly useful when\n displaying a collection of objects of the same type, so that redundant type information\n can be avoided (e.g. `[Float16(0)]` can be shown as \"Float16[0.0]\" instead\n of \"Float16[Float16(0.0)]\" : while displaying the elements of the array, the `:typeinfo`\n property will be set to `Float16`).\n - `:color`: Boolean specifying whether ANSI color/escape codes are supported/expected.\n By default, this is determined by whether `io` is a compatible terminal and by any\n `--color` command-line flag when `julia` was launched.\n\n# Examples\n\n```jldoctest\njulia> io = IOBuffer();\n\njulia> printstyled(IOContext(io, :color => true), \"string\", color=:red)\n\njulia> String(take!(io))\n\"\\e[31mstring\\e[39m\"\n\njulia> printstyled(io, \"string\", color=:red)\n\njulia> String(take!(io))\n\"string\"\n```\n\n```jldoctest\njulia> print(IOContext(stdout, :compact => false), 1.12341234)\n1.12341234\njulia> print(IOContext(stdout, :compact => true), 1.12341234)\n1.12341\n```\n\n```jldoctest\njulia> function f(io::IO)\n if get(io, :short, false)\n print(io, \"short\")\n else\n print(io, \"loooooong\")\n end\n end\nf (generic function with 1 method)\n\njulia> f(stdout)\nloooooong\njulia> f(IOContext(stdout, :short => true))\nshort\n```\n"},{"Union{}":" IOContext\n\n`IOContext` provides a mechanism for passing output configuration settings among [`show`](@ref) methods.\n\nIn short, it is an immutable dictionary that is a subclass of `IO`. It supports standard\ndictionary operations such as [`getindex`](@ref), and can also be used as an I/O stream.\n"},{"Tuple{IO,IO}":" IOContext(io::IO, context::IOContext)\n\nCreate an `IOContext` that wraps an alternate `IO` but inherits the properties of `context`.\n"}],"Base.printstyled":[{"Tuple{IO,Vararg{Any,N} where N}":" printstyled([io], xs...; bold::Bool=false, color::Union{Symbol,Int}=:normal)\n\nPrint `xs` in a color specified as a symbol or integer, optionally in bold.\n\n`color` may take any of the values `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow`\nor an integer between 0 and 255 inclusive. Note that not all terminals support 256 colors.\nIf the keyword `bold` is given as `true`, the result will be printed in bold.\n"}],"Base.Inf":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.codepoint":[{"Union{}":" codepoint(c::AbstractChar) -> Integer\n\nReturn the Unicode codepoint (an unsigned integer) corresponding\nto the character `c` (or throw an exception if `c` does not represent\na valid character). For `Char`, this is a `UInt32` value, but\n`AbstractChar` types that represent only a subset of Unicode may\nreturn a different-sized integer (e.g. `UInt8`).\n"}],"Base.endswith":[{"Tuple{AbstractString,Regex}":" endswith(s::AbstractString, suffix::Regex)\n\nReturn `true` if `s` ends with the regex pattern, `suffix`.\n\n!!! note\n `endswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"...$\", s)` is faster than `endswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`startswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> endswith(\"JuliaLang\", r\"Lang|Roberts\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" endswith(s::AbstractString, suffix::AbstractString)\n\nReturn `true` if `s` ends with `suffix`. If `suffix` is a vector or set of\ncharacters, test whether the last character of `s` belongs to that set.\n\nSee also [`startswith`](@ref).\n\n# Examples\n```jldoctest\njulia> endswith(\"Sunday\", \"day\")\ntrue\n```\n"}],"Base.Some":[{"Union{}":" Some{T}\n\nA wrapper type used in `Union{Some{T}, Nothing}` to distinguish between the absence\nof a value ([`nothing`](@ref)) and the presence of a `nothing` value (i.e. `Some(nothing)`).\n\nUse [`something`](@ref) to access the value wrapped by a `Some` object.\n"}],"Base.OneTo":[{"Union{}":" Base.OneTo(n)\n\nDefine an `AbstractUnitRange` that behaves like `1:n`, with the added\ndistinction that the lower limit is guaranteed (by the type system) to\nbe 1.\n"}],"Base.tail":[{"Tuple{Tuple}":" tail(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the first component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.tail((1,2,3))\n(2, 3)\n\njulia> Base.tail(())\nERROR: ArgumentError: Cannot call tail on an empty tuple.\n```\n"}],"Base.ncodeunits":[{"Tuple{Char}":" ncodeunits(c::Char) -> Int\n\nReturn the number of code units required to encode a character as UTF-8.\nThis is the number of bytes which will be printed if the character is written\nto an output stream, or `ncodeunits(string(c))` but computed efficiently.\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 consider\n using `ncodeunits(string(c))`.\n"},{"Tuple{AbstractString}":" ncodeunits(s::AbstractString) -> Int\n\nReturn the number of code units in a string. Indices that are in bounds to\naccess this string must satisfy `1 ≤ i ≤ ncodeunits(s)`. Not all such indices\nare valid – they may not be the start of a character, but they will return a\ncode unit value when calling `codeunit(s,i)`.\n\nSee also: [`codeunit`](@ref), [`checkbounds`](@ref), [`sizeof`](@ref),\n[`length`](@ref), [`lastindex`](@ref)\n"}],"Base.datatype_alignment":[{"Tuple{DataType}":" Base.datatype_alignment(dt::DataType) -> Int\n\nMemory allocation minimum alignment for instances of this type.\nCan be called on any `isconcretetype`.\n"}],"Base.StepRangeLen":[{"Union{}":" StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}\n StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}\n\nA range `r` where `r[i]` produces values of type `T` (in the second\nform, `T` is deduced automatically), parameterized by a `ref`erence\nvalue, a `step`, and the `len`gth. By default `ref` is the starting\nvalue `r[1]`, but alternatively you can supply it as the value of\n`r[offset]` for some other index `1 <= offset <= len`. In conjunction\nwith `TwicePrecision` this can be used to implement ranges that are\nfree of roundoff error.\n"}],"Base.fdio":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Bool}}":" fdio([name::AbstractString, ]fd::Integer[, own::Bool=false]) -> IOStream\n\nCreate an [`IOStream`](@ref) object from an integer file descriptor. If `own` is `true`, closing\nthis object will close the underlying descriptor. By default, an `IOStream` is closed when\nit is garbage collected. `name` allows you to associate the descriptor with a named file.\n"}],"Base.isstructtype":[{"Tuple{Type}":" isstructtype(T) -> Bool\n\nDetermine whether type `T` was declared as a struct type\n(i.e. using the `struct` or `mutable struct` keyword).\n"}],"Base.@pure":[{"Tuple{Any}":" @pure ex\n @pure(ex)\n\n`@pure` gives the compiler a hint for the definition of a pure function,\nhelping for type inference.\n\nA pure function can only depend on immutable information.\nThis also means a `@pure` function cannot use any global mutable state, including\ngeneric functions. Calls to generic functions depend on method tables which are\nmutable global state.\nUse with caution, incorrect `@pure` annotation of a function may introduce\nhard to identify bugs. Double check for calls to generic functions.\nThis macro is intended for internal compiler use and may be subject to changes.\n"}],"Base.==":[{"Tuple{Any}":" ==(x)\n\nCreate a function that compares its argument to `x` using [`==`](@ref), i.e.\na function equivalent to `y -> y == x`.\n\nThe returned function is of type `Base.Fix2{typeof(==)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" ==(x, y)\n\nGeneric equality operator. Falls back to [`===`](@ref).\nShould be implemented for all types with a notion of equality, based on the abstract value\nthat an instance represents. For example, all numeric types are compared by numeric value,\nignoring type. Strings are compared as sequences of characters, ignoring encoding.\nFor collections, `==` is generally called recursively on all contents,\nthough other properties (like the shape for arrays) may also be taken into account.\n\nThis operator follows IEEE semantics for floating-point numbers: `0.0 == -0.0` and\n`NaN != NaN`.\n\nThe result is of type `Bool`, except when one of the operands is [`missing`](@ref),\nin which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic)).\nFor collections, `missing` is returned if at least one of the operands contains\na `missing` value and all non-missing values are equal.\nUse [`isequal`](@ref) or [`===`](@ref) to always get a `Bool` result.\n\n# Implementation\nNew numeric types should implement this function for two arguments of the new type, and\nhandle comparison to other types via promotion rules where possible.\n\n[`isequal`](@ref) falls back to `==`, so new methods of `==` will be used by the\n[`Dict`](@ref) type to compare keys. If your type will be used as a dictionary key, it\nshould therefore also implement [`hash`](@ref).\n"},{"Tuple{AbstractString,AbstractString}":" ==(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether two strings are equal character by character (technically, Unicode\ncode point by code point).\n\n# Examples\n```jldoctest\njulia> \"abc\" == \"abc\"\ntrue\n\njulia> \"abc\" == \"αβγ\"\nfalse\n```\n"}],"Base.@noinline":[{"Tuple{Any}":" @noinline\n\nGive a hint to the compiler that it should not inline a function.\n\nSmall functions are typically inlined automatically.\nBy using `@noinline` on small functions, auto-inlining can be\nprevented. This is shown in the following example:\n\n```julia\n@noinline function smallfunction(x)\n #=\n Function Definition\n =#\nend\n\nIf the function is trivial (for example returning a constant) it might get inlined anyway.\n```\n"}],"Base.fldmod":[{"Tuple{Any,Any}":" fldmod(x, y)\n\nThe floored quotient and modulus after division. A convenience wrapper for\n`divrem(x, y, RoundDown)`. Equivalent to `(fld(x,y), mod(x,y))`.\n"}],"Base.shell_escape":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape(args::Union{Cmd,AbstractString...}; special::AbstractString=\"\")\n\nThe unexported `shell_escape` function is the inverse of the unexported `shell_split` function:\nit takes a string or command object and escapes any special characters in such a way that calling\n`shell_split` on it would give back the array of words in the original command. The `special`\nkeyword argument controls what characters in addition to whitespace, backslashes, quotes and\ndollar signs are considered to be special (default: none).\n\n# Examples\n```jldoctest\njulia> Base.shell_escape(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' && echo done\"\n\njulia> Base.shell_escape(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this && that\"\n```\n"}],"Base.ndigits0z":[{"Tuple{Integer,Integer}":" ndigits0z(n::Integer, b::Integer=10)\n\nReturn 0 if `n == 0`, otherwise compute the number of digits in\ninteger `n` written in base `b` (i.e. equal to `ndigits(n, base=b)`\nin this case).\nThe base `b` must not be in `[-1, 0, 1]`.\n\n# Examples\n```jldoctest\njulia> Base.ndigits0z(0, 16)\n0\n\njulia> Base.ndigits(0, base=16)\n1\n\njulia> Base.ndigits0z(0)\n0\n\njulia> Base.ndigits0z(10, 2)\n4\n\njulia> Base.ndigits0z(10)\n2\n```\n\nSee also [`ndigits`](@ref).\n"}],"Base.Cuintmax_t":[{"Union{}":" Cuintmax_t\n\nEquivalent to the native `uintmax_t` c-type ([`UInt64`](@ref)).\n"}],"Base.cmp":[{"Tuple{Any,Any}":" cmp(x,y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. Uses the total order implemented by `isless`.\n\n# Examples\n```jldoctest\njulia> cmp(1, 2)\n-1\n\njulia> cmp(2, 1)\n1\n\njulia> cmp(2+im, 3-im)\nERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})\n[...]\n```\n"},{"Tuple{Any,Any,Any}":" cmp(<, x, y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. The first argument specifies a less-than comparison function to use.\n"},{"Tuple{AbstractString,AbstractString}":" cmp(a::AbstractString, b::AbstractString) -> Int\n\nCompare two strings. Return `0` if both strings have the same length and the character\nat each index is the same in both strings. Return `-1` if `a` is a prefix of `b`, or if\n`a` comes before `b` in alphabetical order. Return `1` if `b` is a prefix of `a`, or if\n`b` comes before `a` in alphabetical order (technically, lexicographical order by Unicode\ncode points).\n\n# Examples\n```jldoctest\njulia> cmp(\"abc\", \"abc\")\n0\n\njulia> cmp(\"ab\", \"abc\")\n-1\n\njulia> cmp(\"abc\", \"ab\")\n1\n\njulia> cmp(\"ab\", \"ac\")\n-1\n\njulia> cmp(\"ac\", \"ab\")\n1\n\njulia> cmp(\"α\", \"a\")\n1\n\njulia> cmp(\"b\", \"β\")\n-1\n```\n"}],"Base.nextind":[{"Tuple{AbstractString,Integer,Integer}":" nextind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts after index `i`. In other words, if `i` is the start of a\n character, return the start of the next character; if `i` is not the start\n of a character, move forward until the start of a character and return that index.\n If `i` is equal to `0` return `1`.\n If `i` is in bounds but greater or equal to `lastindex(str)` return `ncodeunits(str)+1`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `nextind` for `n==1`. The only difference\n is that if `n` is so large that applying `nextind` would reach `ncodeunits(str)+1` then\n each remaining iteration increases the returned value by `1`. This means that in this\n case `nextind` can return a value greater than `ncodeunits(str)+1`.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `s` or is equal to `0`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> nextind(\"α\", 0)\n1\n\njulia> nextind(\"α\", 1)\n3\n\njulia> nextind(\"α\", 3)\nERROR: BoundsError: attempt to access String\n at index [3]\n[...]\n\njulia> nextind(\"α\", 0, 2)\n3\n\njulia> nextind(\"α\", 1, 2)\n4\n```\n"}],"Base.powermod":[{"Union{Tuple{T}, Tuple{Integer,Integer,T}} where T<:Integer":" powermod(x::Integer, p::Integer, m)\n\nCompute ``x^p \\pmod m``.\n\n# Examples\n```jldoctest\njulia> powermod(2, 6, 5)\n4\n\njulia> mod(2^6, 5)\n4\n\njulia> powermod(5, 2, 20)\n5\n\njulia> powermod(5, 2, 19)\n6\n\njulia> powermod(5, 3, 19)\n11\n```\n"}],"Base.in":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"},{"Tuple{Any}":" in(x)\n\nCreate a function that checks whether its argument is [`in`](@ref) `x`, i.e.\na function equivalent to `y -> y in x`.\n\nThe returned function is of type `Base.Fix2{typeof(in)}`, which can be\nused to implement specialized methods.\n"}],"Base.bind":[{"Tuple{Channel,Task}":" bind(chnl::Channel, task::Task)\n\nAssociate the lifetime of `chnl` with a task.\n`Channel` `chnl` is automatically closed when the task terminates.\nAny uncaught exception in the task is propagated to all waiters on `chnl`.\n\nThe `chnl` object can be explicitly closed independent of task termination.\nTerminating tasks have no effect on already closed `Channel` objects.\n\nWhen a channel is bound to multiple tasks, the first task to terminate will\nclose the channel. When multiple channels are bound to the same task,\ntermination of the task will close all of the bound channels.\n\n# Examples\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async foreach(i->put!(c, i), 1:4);\n\njulia> bind(c,task);\n\njulia> for i in c\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n\njulia> isopen(c)\nfalse\n```\n\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async (put!(c,1);error(\"foo\"));\n\njulia> bind(c,task);\n\njulia> take!(c)\n1\n\njulia> put!(c,1);\nERROR: foo\nStacktrace:\n[...]\n```\n"}],"Base.AbstractChannel":[{"Union{}":" AbstractChannel{T}\n\nRepresentation of a channel passing objects of type `T`.\n"}],"Base.OrdinalRange":[{"Union{}":" OrdinalRange{T, S} <: AbstractRange{T}\n\nSupertype for ordinal ranges with elements of type `T` with\nspacing(s) of type `S`. The steps should be always-exact\nmultiples of [`oneunit`](@ref), and `T` should be a \"discrete\"\ntype, which cannot have values smaller than `oneunit`. For example,\n`Integer` or `Date` types would qualify, whereas `Float64` would not (since this\ntype can represent values smaller than `oneunit(Float64)`.\n[`UnitRange`](@ref), [`StepRange`](@ref), and other types are subtypes of this.\n"}],"Base.chomp":[{"Tuple{AbstractString}":" chomp(s::AbstractString) -> SubString\n\nRemove a single trailing newline from a string.\n\n# Examples\n```jldoctest\njulia> chomp(\"Hello\\n\")\n\"Hello\"\n```\n"}],"Base.BottomRF":[{"Union{}":" BottomRF(rf) -> rf′\n\n\"Bottom\" reducing function. This is a thin wrapper around the `op` argument\npassed to `foldl`-like functions for handling the initial invocation to call\n[`reduce_first`](@ref).\n"}],"Base.operator_precedence":[{"Tuple{Symbol}":" operator_precedence(s::Symbol)\n\nReturn an integer representing the precedence of operator `s`, relative to\nother operators. Higher-numbered operators take precedence over lower-numbered\noperators. Return `0` if `s` is not a valid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)\n(11, 12, 17)\n\njulia> Base.operator_precedence(:sin), Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens on `:(=)`)\n(0, 1, 1)\n```\n"}],"Base.delete_method":[{"Tuple{Method}":" delete_method(m::Method)\n\nMake method `m` uncallable and force recompilation of any methods that use(d) it.\n"}],"Base.merge!":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nSee also [`merge`](@ref).\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 4\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(combine, d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nValues with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(+, d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 6\n\njulia> merge!(-, d1, d1);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 0\n 3 => 0\n 1 => 0\n```\n"}],"Base.invokelatest":[{"Tuple{Any,Vararg{Any,N} where N}":" invokelatest(f, args...; kwargs...)\n\nCalls `f(args...; kwargs...)`, but guarantees that the most recent method of `f`\nwill be executed. This is useful in specialized circumstances,\ne.g. long-running event loops or callback functions that may\ncall obsolete versions of a function `f`.\n(The drawback is that `invokelatest` is somewhat slower than calling\n`f` directly, and the type of the result cannot be inferred by the compiler.)\n"}],"Base.catch_stack":[{"Union{Tuple{}, Tuple{Any}}":" catch_stack(task=current_task(); [inclue_bt=true])\n\nGet the stack of exceptions currently being handled. For nested catch blocks\nthere may be more than one current exception in which case the most recently\nthrown exception is last in the stack. The stack is returned as a Vector of\n`(exception,backtrace)` pairs, or a Vector of exceptions if `include_bt` is\nfalse.\n\nExplicitly passing `task` will return the current exception stack on an\narbitrary task. This is useful for inspecting tasks which have failed due to\nuncaught exceptions.\n\n!!! compat \"Julia 1.1\"\n This function is experimental in Julia 1.1 and will likely be renamed in a\n future release (see https://github.com/JuliaLang/julia/pull/29901).\n"}],"Base.setindex!":[{"Union{}":" setindex!(collection, value, key...)\n\nStore the given value at the given key or index within a collection. The syntax `a[i,j,...] =\nx` is converted by the compiler to `(setindex!(a, x, i, j, ...); x)`.\n"},{"Tuple{AbstractArray,Any,Vararg{Any,N} where N}":" setindex!(A, X, inds...)\n A[inds...] = X\n\nStore values from array `X` within some subset of `A` as specified by `inds`.\nThe syntax `A[inds...] = X` is equivalent to `setindex!(A, X, inds...)`.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,2);\n\njulia> setindex!(A, [10, 20], [1, 2]);\n\njulia> A[[3, 4]] = [30, 40];\n\njulia> A\n2×2 Array{Float64,2}:\n 10.0 30.0\n 20.0 40.0\n```\n"}],"Base.getpass":[{"Union{}":" Base.getpass(message::AbstractString) -> Base.SecretBuffer\n\nDisplay a message and wait for the user to input a secret, returning an `IO`\nobject containing the secret.\n\nNote that on Windows, the secret might be displayed as it is typed; see\n`Base.winprompt` for securely retrieving username/password pairs from a\ngraphical interface.\n"}],"Base.issetequal":[{"Tuple{AbstractSet,AbstractSet}":" issetequal(a, b) -> Bool\n\nDetermine whether `a` and `b` have the same elements. Equivalent\nto `a ⊆ b && b ⊆ a` but more efficient when possible.\n\n# Examples\n```jldoctest\njulia> issetequal([1, 2], [1, 2, 3])\nfalse\n\njulia> issetequal([1, 2], [2, 1])\ntrue\n```\n"}],"Base.abs":[{"Union{}":" abs(x)\n\nThe absolute value of `x`.\n\nWhen `abs` is applied to signed integers, overflow may occur,\nresulting in the return of a negative value. This overflow occurs only\nwhen `abs` is applied to the minimum representable value of a signed\ninteger. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,\nnot `-x` as might be expected.\n\n# Examples\n```jldoctest\njulia> abs(-3)\n3\n\njulia> abs(1 + im)\n1.4142135623730951\n\njulia> abs(typemin(Int64))\n-9223372036854775808\n```\n"}],"Base.Pair":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.has_offset_axes":[{"Tuple{Any}":" has_offset_axes(A)\n has_offset_axes(A, B, ...)\n\nReturn `true` if the indices of `A` start with something other than 1 along any axis.\nIf multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.\n"}],"Base.Cint":[{"Union{}":" Cint\n\nEquivalent to the native `signed int` c-type ([`Int32`](@ref)).\n"}],"Base.checkbounds_indices":[{"Tuple{Type{Bool},Tuple,Tuple}":" checkbounds_indices(Bool, IA, I)\n\nReturn `true` if the \"requested\" indices in the tuple `I` fall within\nthe bounds of the \"permitted\" indices specified by the tuple\n`IA`. This function recursively consumes elements of these tuples,\nusually in a 1-for-1 fashion,\n\n checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &\n checkbounds_indices(Bool, IA, I)\n\nNote that [`checkindex`](@ref) is being used to perform the actual\nbounds-check for a single dimension of the array.\n\nThere are two important exceptions to the 1-1 rule: linear indexing and\nCartesianIndex{N}, both of which may \"consume\" more than one element\nof `IA`.\n\nSee also [`checkbounds`](@ref).\n"}],"Base.isambiguous":[{"Tuple{Method,Method}":" Base.isambiguous(m1, m2; ambiguous_bottom=false) -> Bool\n\nDetermine whether two methods `m1` and `m2` (typically of the same\nfunction) are ambiguous. This test is performed in the context of\nother methods of the same function; in isolation, `m1` and `m2` might\nbe ambiguous, but if a third method resolving the ambiguity has been\ndefined, this returns `false`.\n\nFor parametric types, the `ambiguous_bottom` keyword argument controls whether\n`Union{}` counts as an ambiguous intersection of type parameters – when `true`,\nit is considered ambiguous, when `false` it is not.\n\n# Examples\n```jldoctest\njulia> foo(x::Complex{<:Integer}) = 1\nfoo (generic function with 1 method)\n\njulia> foo(x::Complex{<:Rational}) = 2\nfoo (generic function with 2 methods)\n\njulia> m1, m2 = collect(methods(foo));\n\njulia> typeintersect(m1.sig, m2.sig)\nTuple{typeof(foo),Complex{Union{}}}\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=true)\ntrue\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=false)\nfalse\n```\n"}],"Base.Colon":[{"Union{}":" Colon()\n\nColons (:) are used to signify indexing entire objects or dimensions at once.\n\nVery few operations are defined on Colons directly; instead they are converted\nby [`to_indices`](@ref) to an internal vector type (`Base.Slice`) to represent the\ncollection of indices they span before being used.\n\nThe singleton instance of `Colon` is also a function used to construct ranges;\nsee [`:`](@ref).\n"}],"Base.inv":[{"Tuple{Number}":" inv(x)\n\nReturn the multiplicative inverse of `x`, such that `x*inv(x)` or `inv(x)*x`\nyields [`one(x)`](@ref) (the multiplicative identity) up to roundoff errors.\n\nIf `x` is a number, this is essentially the same as `one(x)/x`, but for\nsome types `inv(x)` may be slightly more efficient.\n\n# Examples\n```jldoctest\njulia> inv(2)\n0.5\n\njulia> inv(1 + 2im)\n0.2 - 0.4im\n\njulia> inv(1 + 2im) * (1 + 2im)\n1.0 + 0.0im\n\njulia> inv(2//3)\n3//2\n```\n\n!!! compat \"Julia 1.2\"\n `inv(::Missing)` requires at least Julia 1.2.\n"}],"Base.SubArray":[{"Union{}":" SubArray{T,N,P,I,L} <: AbstractArray{T,N}\n\n`N`-dimensional view into a parent array (of type `P`) with an element type `T`, restricted by a tuple of indices (of type `I`). `L` is true for types that support fast linear indexing, and `false` otherwise.\n\nConstruct `SubArray`s using the [`view`](@ref) function.\n"}],"Base.prevpow":[{"Tuple{Real,Real}":" prevpow(a, x)\n\nThe largest `a^n` not greater than `x`, where `n` is a non-negative integer.\n`a` must be greater than 1, and `x` must not be less than 1.\n\n# Examples\n```jldoctest\njulia> prevpow(2, 7)\n4\n\njulia> prevpow(2, 9)\n8\n\njulia> prevpow(5, 20)\n5\n\njulia> prevpow(4, 16)\n16\n```\nSee also [`nextpow`](@ref).\n"}],"Base.AbstractVector":[{"Union{}":" AbstractVector{T}\n\nSupertype for one-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,1}`](@ref).\n"}],"Base.//":[{"Tuple{Integer,Integer}":" //(num, den)\n\nDivide two integers or rational numbers, giving a [`Rational`](@ref) result.\n\n# Examples\n```jldoctest\njulia> 3 // 5\n3//5\n\njulia> (3 // 5) // (2 // 1)\n3//10\n```\n"}],"Base.imag":[{"Tuple{Complex}":" imag(z)\n\nReturn the imaginary part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> imag(1 + 3im)\n3\n```\n"}],"Base._xfadjoint":[{"Tuple{Any,Any}":" _xfadjoint(op, itr) -> op′, itr′\n\nGiven a pair of reducing function `op` and an iterator `itr`, return a pair\n`(op′, itr′)` of similar types. If the iterator `itr` is transformed by an\niterator transform `ixf` whose adjoint transducer `xf` is known, `op′ = xf(op)`\nand `itr′ = ixf⁻¹(itr)` is returned. Otherwise, `op` and `itr` are returned\nas-is. For example, transducer `rf -> MappingRF(f, rf)` is the adjoint of\niterator transform `itr -> Generator(f, itr)`.\n\nNested iterator transforms are converted recursively. That is to say,\ngiven `op` and\n\n itr = (ixf₁ ∘ ixf₂ ∘ ... ∘ ixfₙ)(itr′)\n\nwhat is returned is `itr′` and\n\n op′ = (xfₙ ∘ ... ∘ xf₂ ∘ xf₁)(op)\n"}],"Base.objectid":[{"Tuple{Any}":" objectid(x)\n\nGet a hash value for `x` based on object identity. `objectid(x)==objectid(y)` if `x === y`.\n"}],"Base.>:":[{"Union{}":" >:(T1, T2)\n\nSupertype operator, equivalent to `T2 <: T1`.\n"}],"Base.getkey":[{"Union{Tuple{V}, Tuple{K}, Tuple{Dict{K,V},Any,Any}} where V where K":" getkey(collection, key, default)\n\nReturn the key matching argument `key` if one exists in `collection`, otherwise return `default`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> getkey(D, 'a', 1)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> getkey(D, 'd', 'a')\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n```\n"}],"Base.Cstring":[{"Union{}":" Cstring\n\nA C-style string composed of the native character type\n[`Cchar`](@ref)s. `Cstring`s are NUL-terminated. For\nC-style strings composed of the native wide character\ntype, see [`Cwstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n"}],"Base.rotr90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotr90(A, k)\n\nRight-rotate matrix `A` 90 degrees clockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a,1)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotr90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotr90(a,3)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotr90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotr90(A)\n\nRotate matrix `A` right 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n```\n"}],"Base.xor":[{"Tuple{Bool,Bool}":" xor(x, y)\n ⊻(x, y)\n\nBitwise exclusive or of `x` and `y`. Implements\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one of the arguments is `missing`.\n\nThe infix operation `a ⊻ b` is a synonym for `xor(a,b)`, and\n`⊻` can be typed by tab-completing `\\xor` or `\\veebar` in the Julia REPL.\n\n# Examples\n```jldoctest\njulia> xor(true, false)\ntrue\n\njulia> xor(true, true)\nfalse\n\njulia> xor(true, missing)\nmissing\n\njulia> false ⊻ false\nfalse\n\njulia> [true; true; false] .⊻ [true; false; false]\n3-element BitArray{1}:\n 0\n 1\n 0\n```\n"}],"Base.reverse":[{"Tuple{AbstractArray}":" reverse(A; dims::Integer)\n\nReverse `A` in dimension `dims`.\n\n# Examples\n```jldoctest\njulia> b = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> reverse(b, dims=2)\n2×2 Array{Int64,2}:\n 2 1\n 4 3\n```\n"},{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse(v [, start=1 [, stop=length(v) ]] )\n\nReturn a copy of `v` reversed from start to stop. See also [`Iterators.reverse`](@ref)\nfor reverse-order iteration without making a copy.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse(A)\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n\njulia> reverse(A, 1, 4)\n5-element Array{Int64,1}:\n 4\n 3\n 2\n 1\n 5\n\njulia> reverse(A, 3, 5)\n5-element Array{Int64,1}:\n 1\n 2\n 5\n 4\n 3\n```\n"},{"Tuple{Union{SubString{String}, String}}":" reverse(s::AbstractString) -> AbstractString\n\nReverses a string. Technically, this function reverses the codepoints in a string and its\nmain utility is for reversed-order string processing, especially for reversed\nregular-expression searches. See also [`reverseind`](@ref) to convert indices in `s` to\nindices in `reverse(s)` and vice-versa, and `graphemes` from module `Unicode` to\noperate on user-visible \"characters\" (graphemes) rather than codepoints.\nSee also [`Iterators.reverse`](@ref) for\nreverse-order iteration without making a copy. Custom string types must implement the\n`reverse` function themselves and should typically return a string with the same type\nand encoding. If they return a string with a different encoding, they must also override\n`reverseind` for that string type to satisfy `s[reverseind(s,i)] == reverse(s)[i]`.\n\n# Examples\n```jldoctest\njulia> reverse(\"JuliaLang\")\n\"gnaLailuJ\"\n\njulia> reverse(\"ax̂e\") # combining characters can lead to surprising results\n\"êxa\"\n\njulia> using Unicode\n\njulia> join(reverse(collect(graphemes(\"ax̂e\")))) # reverses graphemes\n\"ex̂a\"\n```\n"}],"Base.sortslices":[{"Tuple{AbstractArray}":" sortslices(A; dims, alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)\n\nSort slices of an array `A`. The required keyword argument `dims` must\nbe either an integer or a tuple of integers. It specifies the\ndimension(s) over which the slices are sorted.\n\nE.g., if `A` is a matrix, `dims=1` will sort rows, `dims=2` will sort columns.\nNote that the default comparison function on one dimensional slices sorts\nlexicographically.\n\nFor the remaining keyword arguments, see the documentation of [`sort!`](@ref).\n\n# Examples\n```jldoctest\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1) # Sort rows\n3×3 Array{Int64,2}:\n -1 6 4\n 7 3 5\n 9 -2 8\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, rev=true)\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2) # Sort columns\n3×3 Array{Int64,2}:\n 3 5 7\n -1 -4 6\n -2 8 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 5 3 7\n -4 -1 6\n 8 -2 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, rev=true)\n3×3 Array{Int64,2}:\n 7 5 3\n 6 -4 -1\n 9 8 -2\n```\n\n# Higher dimensions\n\n`sortslices` extends naturally to higher dimensions. E.g., if `A` is a\na 2x2x2 array, `sortslices(A, dims=3)` will sort slices within the 3rd dimension,\npassing the 2x2 slices `A[:, :, 1]` and `A[:, :, 2]` to the comparison function.\nNote that while there is no default order on higher-dimensional slices, you may\nuse the `by` or `lt` keyword argument to specify such an order.\n\nIf `dims` is a tuple, the order of the dimensions in `dims` is\nrelevant and specifies the linear order of the slices. E.g., if `A` is three\ndimensional and `dims` is `(1, 2)`, the orderings of the first two dimensions\nare re-arranged such such that the slices (of the remaining third dimension) are sorted.\nIf `dims` is `(2, 1)` instead, the same slices will be taken,\nbut the result order will be row-major instead.\n\n# Higher dimensional examples\n```\njulia> A = permutedims(reshape([4 3; 2 1; 'A' 'B'; 'C' 'D'], (2, 2, 2)), (1, 3, 2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 4 3\n 2 1\n\n[:, :, 2] =\n 'A' 'B'\n 'C' 'D'\n\njulia> sortslices(A, dims=(1,2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 3\n 2 4\n\n[:, :, 2] =\n 'D' 'B'\n 'C' 'A'\n\njulia> sortslices(A, dims=(2,1))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 2\n 3 4\n\n[:, :, 2] =\n 'D' 'C'\n 'B' 'A'\n\njulia> sortslices(reshape([5; 4; 3; 2; 1], (1,1,5)), dims=3, by=x->x[1,1])\n1×1×5 Array{Int64,3}:\n[:, :, 1] =\n 1\n\n[:, :, 2] =\n 2\n\n[:, :, 3] =\n 3\n\n[:, :, 4] =\n 4\n\n[:, :, 5] =\n 5\n```\n"}],"Base.Culong":[{"Union{}":" Culong\n\nEquivalent to the native `unsigned long` c-type.\n"}],"Base.pathof":[{"Tuple{Module}":" pathof(m::Module)\n\nReturn the path of the `m.jl` file that was used to `import` module `m`,\nor `nothing` if `m` was not imported from a package.\n\nUse [`dirname`](@ref) to get the directory part and [`basename`](@ref)\nto get the file name part of the path.\n"}],"Base.Dict":[{"Union{}":" Dict([itr])\n\n`Dict{K,V}()` constructs a hash table with keys of type `K` and values of type `V`.\nKeys are compared with [`isequal`](@ref) and hashed with [`hash`](@ref).\n\nGiven a single iterable argument, constructs a [`Dict`](@ref) whose key-value pairs\nare taken from 2-tuples `(key,value)` generated by the argument.\n\n# Examples\n```jldoctest\njulia> Dict([(\"A\", 1), (\"B\", 2)])\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n\nAlternatively, a sequence of pair arguments may be passed.\n\n```jldoctest\njulia> Dict(\"A\"=>1, \"B\"=>2)\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n"}],"Base.pushfirst!":[{"Union{Tuple{T}, Tuple{Array{T,1},Any}} where T":" pushfirst!(collection, items...) -> collection\n\nInsert one or more `items` at the beginning of `collection`.\n\n# Examples\n```jldoctest\njulia> pushfirst!([1, 2, 3, 4], 5, 6)\n6-element Array{Int64,1}:\n 5\n 6\n 1\n 2\n 3\n 4\n```\n"}],"Base.@macroexpand":[{"Tuple{Any}":" @macroexpand\n\nReturn equivalent expression with all macros removed (expanded).\n\nThere are differences between `@macroexpand` and [`macroexpand`](@ref).\n\n* While [`macroexpand`](@ref) takes a keyword argument `recursive`, `@macroexpand`\nis always recursive. For a non recursive macro version, see [`@macroexpand1`](@ref).\n\n* While [`macroexpand`](@ref) has an explicit `module` argument, `@macroexpand` always\nexpands with respect to the module in which it is called.\nThis is best seen in the following example:\n```julia-repl\njulia> module M\n macro m()\n 1\n end\n function f()\n (@macroexpand(@m),\n macroexpand(M, :(@m)),\n macroexpand(Main, :(@m))\n )\n end\n end\nM\n\njulia> macro m()\n 2\n end\n@m (macro with 1 method)\n\njulia> M.f()\n(1, 1, 2)\n```\nWith `@macroexpand` the expression expands where `@macroexpand` appears in the code (module `M` in the example).\nWith `macroexpand` the expression expands in the module given as the first argument.\n"}],"Base.sum!":[{"Tuple{Any,Any}":" sum!(r, A)\n\nSum elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum!([1; 1], A)\n2-element Array{Int64,1}:\n 3\n 7\n\njulia> sum!([1 1], A)\n1×2 Array{Int64,2}:\n 4 6\n```\n"}],"Base.abs2":[{"Tuple{Real}":" abs2(x)\n\nSquared absolute value of `x`.\n\n# Examples\n```jldoctest\njulia> abs2(-3)\n9\n```\n"}],"Base.__precompile__":[{"Union{Tuple{}, Tuple{Bool}}":" __precompile__(isprecompilable::Bool)\n\nSpecify whether the file calling this function is precompilable, defaulting to `true`.\nIf a module or file is *not* safely precompilable, it should call `__precompile__(false)` in\norder to throw an error if Julia attempts to precompile it.\n"}],"Base.similar":[{"Union{Tuple{T}, Tuple{Type{T},Vararg{Union{Integer, AbstractUnitRange},N} where N}} where T<:AbstractArray":" similar(storagetype, axes)\n\nCreate an uninitialized mutable array analogous to that specified by\n`storagetype`, but with `axes` specified by the last\nargument. `storagetype` might be a type or a function.\n\n**Examples**:\n\n similar(Array{Int}, axes(A))\n\ncreates an array that \"acts like\" an `Array{Int}` (and might indeed be\nbacked by one), but which is indexed identically to `A`. If `A` has\nconventional indexing, this will be identical to\n`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the\nindices of the result will match `A`.\n\n similar(BitArray, (axes(A, 2),))\n\nwould create a 1-dimensional logical array whose indices match those\nof the columns of `A`.\n"},{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" similar(array, [element_type=eltype(array)], [dims=size(array)])\n\nCreate an uninitialized mutable array with the given element type and size, based upon the\ngiven source array. The second and third arguments are both optional, defaulting to the\ngiven array's `eltype` and `size`. The dimensions may be specified either as a single tuple\nargument or as a series of integer arguments.\n\nCustom AbstractArray subtypes may choose which specific array type is best-suited to return\nfor the given element type and dimensionality. If they do not specialize this method, the\ndefault is an `Array{element_type}(undef, dims...)`.\n\nFor example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are\nneither mutable nor support 2 dimensions:\n\n```julia-repl\njulia> similar(1:10, 1, 4)\n1×4 Array{Int64,2}:\n 4419743872 4374413872 4419743888 0\n```\n\nConversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two\nelements since `BitArray`s are both mutable and can support 1-dimensional arrays:\n\n```julia-repl\njulia> similar(trues(10,10), 2)\n2-element BitArray{1}:\n 0\n 0\n```\n\nSince `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a\ndifferent element type it will create a regular `Array` instead:\n\n```julia-repl\njulia> similar(falses(10), Float64, 2, 4)\n2×4 Array{Float64,2}:\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n```\n\n"}],"Base.EnvDict":[{"Union{}":" EnvDict() -> EnvDict\n\nA singleton of this type provides a hash table interface to environment variables.\n"}],"Base.∘":[{"Tuple{Any,Any}":" f ∘ g\n\nCompose functions: i.e. `(f ∘ g)(args...)` means `f(g(args...))`. The `∘` symbol can be\nentered in the Julia REPL (and most editors, appropriately configured) by typing `\\circ`.\n\nFunction composition also works in prefix form: `∘(f, g)` is the same as `f ∘ g`.\nThe prefix form supports composition of multiple functions: `∘(f, g, h) = f ∘ g ∘ h`\nand splatting `∘(fs...)` for composing an iterable collection of functions.\n\n!!! compat \"Julia 1.4\"\n Multiple function composition requires at least Julia 1.4.\n\n# Examples\n```jldoctest\njulia> map(uppercase∘first, [\"apple\", \"banana\", \"carrot\"])\n3-element Array{Char,1}:\n 'A'\n 'B'\n 'C'\n\njulia> fs = [\n x -> 2x\n x -> x/2\n x -> x-1\n x -> x+1\n ];\n\njulia> ∘(fs...)(3)\n3.0\n```\n"}],"Base.NaN64":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.⊋":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.eachslice":[{"Tuple{AbstractArray}":" eachslice(A::AbstractArray; dims)\n\nCreate a generator that iterates over dimensions `dims` of `A`, returning views that select all\nthe data from the other dimensions in `A`.\n\nOnly a single dimension in `dims` is currently supported. Equivalent to `(view(A,:,:,...,i,:,:\n...)) for i in axes(A, dims))`, where `i` is in position `dims`.\n\nSee also [`eachrow`](@ref), [`eachcol`](@ref), and [`selectdim`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.CyclePadding":[{"Union{}":" CyclePadding(padding, total_size)\n\nCylces an iterator of `Padding` structs, restarting the padding at `total_size`.\nE.g. if `padding` is all the padding in a struct and `total_size` is the total\naligned size of that array, `CyclePadding` will correspond to the padding in an\ninfinite vector of such structs.\n"}],"Base.lcm":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" lcm(x,y)\n\nLeast common (non-negative) multiple.\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> lcm(2,3)\n6\n\njulia> lcm(-2,3)\n6\n```\n"}],"Base.isoperator":[{"Tuple{Union{AbstractString, Symbol}}":" isoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as an operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isoperator(:+), Base.isoperator(:f)\n(true, false)\n```\n"}],"Base.to_indices":[{"Tuple{Any,Tuple}":" to_indices(A, I::Tuple)\n\nConvert the tuple `I` to a tuple of indices for use in indexing into array `A`.\n\nThe returned tuple must only contain either `Int`s or `AbstractArray`s of\nscalar indices that are supported by array `A`. It will error upon encountering\na novel index type that it does not know how to process.\n\nFor simple index types, it defers to the unexported `Base.to_index(A, i)` to\nprocess each index `i`. While this internal function is not intended to be\ncalled directly, `Base.to_index` may be extended by custom array or index types\nto provide custom indexing behaviors.\n\nMore complicated index types may require more context about the dimension into\nwhich they index. To support those cases, `to_indices(A, I)` calls\n`to_indices(A, axes(A), I)`, which then recursively walks through both the\ngiven tuple of indices and the dimensional indices of `A` in tandem. As such,\nnot all index types are guaranteed to propagate to `Base.to_index`.\n"}],"Base.unmark":[{"Tuple{IO}":" unmark(s)\n\nRemove a mark from stream `s`. Return `true` if the stream was marked, `false` otherwise.\n\nSee also [`mark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.eof":[{"Tuple{Base.AbstractPipe}":" eof(stream) -> Bool\n\nTest whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this\nfunction will block to wait for more data if necessary, and then return `false`. Therefore\nit is always safe to read one byte after seeing `eof` return `false`. `eof` will return\n`false` as long as buffered data is still available, even if the remote end of a connection\nis closed.\n"}],"Base.mapreduce_first":[{"Tuple{Any,Any,Any}":" Base.mapreduce_first(f, op, x)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an iterator which contains a\nsingle element `x`. This value may also used to initialise the recursion, so that\n`mapreduce(f, op, [x, y])` may call `op(reduce_first(op, f, x), f(y))`.\n\nThe default is `reduce_first(op, f(x))`.\n"}],"Base.angle":[{"Tuple{Complex}":" angle(z)\n\nCompute the phase angle in radians of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> rad2deg(angle(1 + im))\n45.0\n\njulia> rad2deg(angle(1 - im))\n-45.0\n\njulia> rad2deg(angle(-1 - im))\n-135.0\n```\n"}],"Base.leading_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" leading_zeros(x::Integer) -> Integer\n\nNumber of zeros leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_zeros(Int32(1))\n31\n```\n"}],"Base.occursin":[{"Tuple{Union{AbstractChar, AbstractString},AbstractString}":" occursin(needle::Union{AbstractString,Regex,AbstractChar}, haystack::AbstractString)\n\nDetermine whether the first argument is a substring of the second. If `needle`\nis a regular expression, checks whether `haystack` contains a match.\n\n# Examples\n```jldoctest\njulia> occursin(\"Julia\", \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin('a', \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin(r\"a.a\", \"aba\")\ntrue\n\njulia> occursin(r\"a.a\", \"abba\")\nfalse\n```\n"}],"Base.isopen":[{"Union{}":" isopen(object) -> Bool\n\nDetermine whether an object - such as a stream or timer\n-- is not yet closed. Once an object is closed, it will never produce a new event.\nHowever, since a closed stream may still have data to read in its buffer,\nuse [`eof`](@ref) to check for the ability to read data.\nUse the `FileWatching` package to be notified when a stream might be writable or readable.\n\n# Examples\n```jldoctest\njulia> io = open(\"my_file.txt\", \"w+\");\n\njulia> isopen(io)\ntrue\n\njulia> close(io)\n\njulia> isopen(io)\nfalse\n```\n"}],"Base.Matrix":[{"Union{}":" Matrix{T} <: AbstractMatrix{T}\n\nTwo-dimensional dense array with elements of type `T`, often used to represent\na mathematical matrix. Alias for [`Array{T,2}`](@ref).\n"}],"Base.merge":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge(d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. If the same key is present in another collection, the\nvalue for that key will be the value it has in the last collection listed.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4711.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n\njulia> merge(b, a)\nDict{String,Float64} with 3 entries:\n \"bar\" => 42.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Tuple{NamedTuple,Any}":" merge(a::NamedTuple, iterable)\n\nInterpret an iterable of key-value pairs as a named tuple, and perform a merge.\n\n```jldoctest\njulia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])\n(a = 1, b = 4, c = 3, d = 5)\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge(combine, d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. Values with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(+, a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4753.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,NamedTuple{bn,T} where T<:Tuple}} where bn where an":" merge(a::NamedTuple, bs::NamedTuple...)\n\nConstruct a new named tuple by merging two or more existing ones, in a left-associative\nmanner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields\npresent in both the leftmost and rightmost named tuples take the same position as they are found in the\nleftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that\ncontains that field. Fields present in only the rightmost named tuple of a pair are appended at the end.\nA fallback is implemented for when only a single named tuple is supplied,\nwith signature `merge(a::NamedTuple)`.\n\n!!! compat \"Julia 1.1\"\n Merging 3 or more `NamedTuple` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> merge((a=1, b=2, c=3), (b=4, d=5))\n(a = 1, b = 4, c = 3, d = 5)\n```\n\n```jldoctest\njulia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))\n(a = 1, b = 3, c = (d = 2,))\n```\n"}],"Base.codeunit":[{"Tuple{AbstractString}":" codeunit(s::AbstractString) -> Type{<:Union{UInt8, UInt16, UInt32}}\n\nReturn the code unit type of the given string object. For ASCII, Latin-1, or\nUTF-8 encoded strings, this would be `UInt8`; for UCS-2 and UTF-16 it would be\n`UInt16`; for UTF-32 it would be `UInt32`. The unit code type need not be\nlimited to these three types, but it's hard to think of widely used string\nencodings that don't use one of these units. `codeunit(s)` is the same as\n`typeof(codeunit(s,1))` when `s` is a non-empty string.\n\nSee also: [`ncodeunits`](@ref)\n"},{"Tuple{AbstractString,Integer}":" codeunit(s::AbstractString, i::Integer) -> Union{UInt8, UInt16, UInt32}\n\nReturn the code unit value in the string `s` at index `i`. Note that\n\n codeunit(s, i) :: codeunit(s)\n\nI.e. the value returned by `codeunit(s, i)` is of the type returned by\n`codeunit(s)`.\n\nSee also: [`ncodeunits`](@ref), [`checkbounds`](@ref)\n"}],"Base.@raw_str":[{"Tuple{Any}":" @raw_str -> String\n\nCreate a raw string without interpolation and unescaping.\nThe exception is that quotation marks still must be escaped. Backslashes\nescape both quotation marks and other backslashes, but only when a sequence\nof backslashes precedes a quote character. Thus, 2n backslashes followed by\na quote encodes n backslashes and the end of the literal while 2n+1 backslashes\nfollowed by a quote encodes n backslashes followed by a quote character.\n\n# Examples\n```jldoctest\njulia> println(raw\"\\ $x\")\n\\ $x\n\njulia> println(raw\"\\\"\")\n\"\n\njulia> println(raw\"\\\\\\\"\")\n\\\"\n\njulia> println(raw\"\\\\x \\\\\\\"\")\n\\\\x \\\"\n```\n"}],"Base.firstindex":[{"Tuple{AbstractArray}":" firstindex(collection) -> Integer\n firstindex(collection, d) -> Integer\n\nReturn the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.\n\n# Examples\n```jldoctest\njulia> firstindex([1,2,4])\n1\n\njulia> firstindex(rand(3,4,5), 2)\n1\n```\n"}],"Base.@view":[{"Tuple{Any}":" @view A[inds...]\n\nCreates a `SubArray` from an indexing expression. This can only be applied directly to a\nreference expression (e.g. `@view A[1,2:end]`), and should *not* be used as the target of\nan assignment (e.g. `@view(A[1,2:end]) = ...`). See also [`@views`](@ref)\nto switch an entire block of code to use views for slicing.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = @view A[:, 1]\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.symdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the symmetric difference of the passed in sets, and overwrite `s` with the result.\nWhen `s` is an array, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n"}],"Base.<=":[{"Tuple{Any}":" <=(x)\n\nCreate a function that compares its argument to `x` using [`<=`](@ref), i.e.\na function equivalent to `y -> y <= x`.\nThe returned function is of type `Base.Fix2{typeof(<=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <=(x, y)\n ≤(x,y)\n\nLess-than-or-equals comparison operator. Falls back to `(x < y) | (x == y)`.\n\n# Examples\n```jldoctest\njulia> 'a' <= 'b'\ntrue\n\njulia> 7 ≤ 7 ≤ 9\ntrue\n\njulia> \"abc\" ≤ \"abc\"\ntrue\n\njulia> 5 <= 3\nfalse\n```\n"}],"Base.max":[{"Tuple{Any,Any}":" max(x, y, ...)\n\nReturn the maximum of the arguments. See also the [`maximum`](@ref) function\nto take the maximum element from a collection.\n\n# Examples\n```jldoctest\njulia> max(2, 5, 1)\n5\n```\n"}],"Base.promote_shape":[{"Tuple{Tuple{Vararg{Int64,N}} where N,Tuple{Vararg{Int64,N}} where N}":" promote_shape(s1, s2)\n\nCheck two array shapes for compatibility, allowing trailing singleton dimensions, and return\nwhichever shape has more dimensions.\n\n# Examples\n```jldoctest\njulia> a = fill(1, (3,4,1,1,1));\n\njulia> b = fill(1, (3,4));\n\njulia> promote_shape(a,b)\n(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))\n\njulia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))\n(2, 3, 1, 4, 1)\n```\n"}],"Base.cumprod":[{"Tuple{AbstractArray}":" cumprod(A; dims::Integer)\n\nCumulative product along the dimension `dim`. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumprod(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 10 18\n\njulia> cumprod(a, dims=2)\n2×3 Array{Int64,2}:\n 1 2 6\n 4 20 120\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumprod(x::AbstractVector)\n\nCumulative product of a vector. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumprod(fill(1//2, 3))\n3-element Array{Rational{Int64},1}:\n 1//2\n 1//4\n 1//8\n\njulia> cumprod([fill(1//3, 2, 2) for i in 1:3])\n3-element Array{Array{Rational{Int64},2},1}:\n [1//3 1//3; 1//3 1//3]\n [2//9 2//9; 2//9 2//9]\n [4//27 4//27; 4//27 4//27]\n```\n"}],"Base.minimum!":[{"Tuple{Any,Any}":" minimum!(r, A)\n\nCompute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> minimum!([1 1], A)\n1×2 Array{Int64,2}:\n 1 2\n```\n"}],"Base.complex":[{"Tuple{Complex}":" complex(r, [i])\n\nConvert real numbers or arrays to complex. `i` defaults to zero.\n\n# Examples\n```jldoctest\njulia> complex(7)\n7 + 0im\n\njulia> complex([1, 2, 3])\n3-element Array{Complex{Int64},1}:\n 1 + 0im\n 2 + 0im\n 3 + 0im\n```\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Real":" complex(T::Type)\n\nReturn an appropriate type which can represent a value of type `T` as a complex number.\nEquivalent to `typeof(complex(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> complex(Complex{Int})\nComplex{Int64}\n\njulia> complex(Int)\nComplex{Int64}\n```\n"}],"Base.splitprec":[{"Union{Tuple{F}, Tuple{Type{F},Integer}} where F<:AbstractFloat":" hi, lo = splitprec(F::Type{<:AbstractFloat}, i::Integer)\n\nRepresent an integer `i` as a pair of floating-point numbers `hi` and\n`lo` (of type `F`) such that:\n- `widen(hi) + widen(lo) ≈ i`. It is exact if 1.5 * (number of precision bits in `F`) is greater than the number of bits in `i`.\n- all bits in `hi` are more significant than any of the bits in `lo`\n- `hi` can be exactly multiplied by the `hi` component of another call to `splitprec`.\n\nIn particular, while `convert(Float64, i)` can be lossy since Float64\nhas only 53 bits of precision, `splitprec(Float64, i)` is exact for\nany Int64/UInt64.\n"}],"Base.unalias":[{"Tuple{Any,AbstractArray}":" Base.unalias(dest, A)\n\nReturn either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from\naffecting the returned object. No guarantees are provided.\n\nCustom arrays that wrap or use fields containing arrays that might alias against other\nexternal objects should provide a [`Base.dataids`](@ref) implementation.\n\nThis function must return an object of exactly the same type as `A` for performance and type\nstability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should\nprovide a [`Base.unaliascopy`](@ref) implementation.\n\nSee also [`Base.mightalias`](@ref).\n"}],"Base.rem":[{"Union{}":" rem(x, y)\n %(x, y)\n\nRemainder from Euclidean division, returning a value of the same sign as `x`, and smaller in\nmagnitude than `y`. This value is always exact.\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> x % y\n3\n\njulia> x == div(x, y) * y + rem(x, y)\ntrue\n```\n"},{"Tuple{Any,Any,RoundingMode}":" rem(x, y, r::RoundingMode=RoundToZero)\n\nCompute the remainder of `x` after integer division by `y`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - y*round(x/y,r)\n\nwithout any intermediate rounding.\n\n- if `r == RoundNearest`, then the result is exact, and in the interval\n ``[-|y|/2, |y|/2]``. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero` (default), then the result is exact, and in the interval\n ``[0, |y|)`` if `x` is positive, or ``(-|y|, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, y)`` if `y` is positive, or\n ``(y, 0]`` otherwise. The result may not be exact if `x` and `y` have different signs, and\n `abs(x) < abs(y)`. See also [`RoundDown`](@ref).\n\n- if `r == RoundUp`, then the result is in the interval `(-y,0]` if `y` is positive, or\n `[0,-y)` otherwise. The result may not be exact if `x` and `y` have the same sign, and\n `abs(x) < abs(y)`. See also [`RoundUp`](@ref).\n\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"}],"Base.@threadcall":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @threadcall((cfunc, clib), rettype, (argtypes...), argvals...)\n\nThe `@threadcall` macro is called in the same way as [`ccall`](@ref) but does the work\nin a different thread. This is useful when you want to call a blocking C\nfunction without causing the main `julia` thread to become blocked. Concurrency\nis limited by size of the libuv thread pool, which defaults to 4 threads but\ncan be increased by setting the `UV_THREADPOOL_SIZE` environment variable and\nrestarting the `julia` process.\n\nNote that the called function should never call back into Julia.\n"}],"Base.∌":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.instances":[{"Union{}":" instances(T::Type)\n\nReturn a collection of all instances of the given type, if applicable. Mostly used for\nenumerated types (see `@enum`).\n\n# Example\n```jldoctest\njulia> @enum Color red blue green\n\njulia> instances(Color)\n(red, blue, green)\n```\n"}],"Base.|>":[{"Tuple{Any,Any}":" |>(x, f)\n\nApplies a function to the preceding argument. This allows for easy function chaining.\n\n# Examples\n```jldoctest\njulia> [1:5;] |> x->x.^2 |> sum |> inv\n0.01818181818181818\n```\n"}],"Base.Cdouble":[{"Union{}":" Cdouble\n\nEquivalent to the native `double` c-type ([`Float64`](@ref)).\n"}],"Base.vec":[{"Tuple{AbstractArray}":" vec(a::AbstractArray) -> AbstractVector\n\nReshape the array `a` as a one-dimensional column vector. Return `a` if it is\nalready an `AbstractVector`. The resulting array\nshares the same underlying data as `a`, so it will only be mutable if `a` is\nmutable, in which case modifying one will also modify the other.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> vec(a)\n6-element Array{Int64,1}:\n 1\n 4\n 2\n 5\n 3\n 6\n\njulia> vec(1:3)\n1:3\n```\n\nSee also [`reshape`](@ref).\n"}],"Base.≉":[{"Tuple":" x ≉ y\n\nThis is equivalent to `!isapprox(x,y)` (see [`isapprox`](@ref)).\n"}],"Base.join":[{"Tuple{IO,Any,Any,Any}":" join([io::IO,] strings [, delim [, last]])\n\nJoin an array of `strings` into a single string, inserting the given delimiter (if any) between\nadjacent strings. If `last` is given, it will be used instead of `delim` between the last\ntwo strings. If `io` is given, the result is written to `io` rather than returned as\nas a `String`.\n\n`strings` can be any iterable over elements `x` which are convertible to strings\nvia `print(io::IOBuffer, x)`. `strings` will be printed to `io`.\n\n# Examples\n```jldoctest\njulia> join([\"apples\", \"bananas\", \"pineapples\"], \", \", \" and \")\n\"apples, bananas and pineapples\"\n\njulia> join([1,2,3,4,5])\n\"12345\"\n```\n"}],"Base.front":[{"Tuple{Tuple}":" front(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the last component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.front((1,2,3))\n(1, 2)\n\njulia> Base.front(())\nERROR: ArgumentError: Cannot call front on an empty tuple.\n```\n"}],"Base.UnitRange":[{"Union{}":" UnitRange{T<:Real}\n\nA range parameterized by a `start` and `stop` of type `T`, filled\nwith elements spaced by `1` from `start` until `stop` is exceeded.\nThe syntax `a:b` with `a` and `b` both `Integer`s creates a `UnitRange`.\n\n# Examples\n```jldoctest\njulia> collect(UnitRange(2.3, 5.2))\n3-element Array{Float64,1}:\n 2.3\n 3.3\n 4.3\n\njulia> typeof(1:10)\nUnitRange{Int64}\n```\n"}],"Base.typemin":[{"Union{}":" typemin(T)\n\nThe lowest value representable by the given (real) numeric DataType `T`.\n\n# Examples\n```jldoctest\njulia> typemin(Float16)\n-Inf16\n\njulia> typemin(Float32)\n-Inf32\n```\n"}],"Base.sign":[{"Tuple{Number}":" sign(x)\n\nReturn zero if `x==0` and ``x/|x|`` otherwise (i.e., ±1 for real `x`).\n"}],"Base.exit":[{"Tuple{Any}":" exit(code=0)\n\nStop the program with an exit code. The default exit code is zero, indicating that the\nprogram completed successfully. In an interactive session, `exit()` can be called with\nthe keyboard shortcut `^D`.\n"}],"Base.floor":[{"Union{}":" floor([T,] x)\n floor(x; digits::Integer= [, base = 10])\n floor(x; sigdigits::Integer= [, base = 10])\n\n`floor(x)` returns the nearest integral value of the same type as `x` that is less than or\nequal to `x`.\n\n`floor(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.C_NULL":[{"Union{}":" C_NULL\n\nThe C null pointer constant, sometimes used when calling external code.\n"}],"Base.ENV":[{"Union{}":" ENV\n\nReference to the singleton `EnvDict`, providing a dictionary interface to system environment\nvariables.\n\n(On Windows, system environment variables are case-insensitive, and `ENV` correspondingly converts\nall keys to uppercase for display, iteration, and copying. Portable code should not rely on the\nability to distinguish variables by case, and should beware that setting an ostensibly lowercase\nvariable may result in an uppercase `ENV` key.)\n"}],"Base.vcat":[{"Tuple":" vcat(A...)\n\nConcatenate along dimension 1.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3 4 5]\n1×5 Array{Int64,2}:\n 1 2 3 4 5\n\njulia> b = [6 7 8 9 10; 11 12 13 14 15]\n2×5 Array{Int64,2}:\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> vcat(a,b)\n3×5 Array{Int64,2}:\n 1 2 3 4 5\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> c = ([1 2 3], [4 5 6])\n([1 2 3], [4 5 6])\n\njulia> vcat(c...)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n```\n"}],"Base.typeintersect":[{"Tuple{Any,Any}":" typeintersect(T, S)\n\nCompute a type that contains the intersection of `T` and `S`. Usually this will be the\nsmallest such type or one close to it.\n"}],"Base.isfinite":[{"Tuple{AbstractFloat}":" isfinite(f) -> Bool\n\nTest whether a number is finite.\n\n# Examples\n```jldoctest\njulia> isfinite(5)\ntrue\n\njulia> isfinite(NaN32)\nfalse\n```\n"}],"Base.@macroexpand1":[{"Tuple{Any}":" @macroexpand1\n\nNon recursive version of [`@macroexpand`](@ref).\n"}],"Base.gcd":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcd(x,y)\n\nGreatest common (positive) divisor (or zero if `x` and `y` are both zero).\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcd(6,9)\n3\n\njulia> gcd(6,-9)\n3\n```\n"}],"Base.VersionNumber":[{"Union{}":" VersionNumber\n\nVersion number type which follow the specifications of\n[semantic versioning](https://semver.org/), composed of major, minor\nand patch numeric values, followed by pre-release and build\nalpha-numeric annotations. See also [`@v_str`](@ref).\n\n# Examples\n```jldoctest\njulia> VersionNumber(\"1.2.3\")\nv\"1.2.3\"\n\njulia> VersionNumber(\"2.0.1-rc1\")\nv\"2.0.1-rc1\"\n```\n"}],"Base.EOFError":[{"Union{}":" EOFError()\n\nNo more data was available to read from a file or stream.\n"}],"Base.findnext":[{"Tuple{Function,Any,Any}":" findnext(predicate::Function, A, i)\n\nFind the next index after or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2];\n\njulia> findnext(isodd, A, 1)\n1\n\njulia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL\n\njulia> A = [1 4; 2 2];\n\njulia> findnext(isodd, A, CartesianIndex(1, 1))\nCartesianIndex(1, 1)\n```\n"},{"Tuple{Any,Any}":" findnext(A, i)\n\nFind the next index after or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findnext(A, 1)\n3\n\njulia> findnext(A, 4) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findnext(A, CartesianIndex(1, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findnext(pattern::AbstractString, string::AbstractString, start::Integer)\n findnext(pattern::Regex, string::String, start::Integer)\n\nFind the next occurrence of `pattern` in `string` starting at position `start`.\n`pattern` can be either a string, or a regular expression, in which case `string`\nmust be of type `String`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findnext(x, s, i)] == x`:\n\n`findnext(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `i <= start`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findnext(\"z\", \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext(\"o\", \"Hello to the world\", 6)\n8:8\n\njulia> findnext(\"Lang\", \"JuliaLang\", 2)\n6:9\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findnext(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the next occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findnext('z', \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext('o', \"Hello to the world\", 6)\n8\n```\n"}],"Base.UUID":[{"Union{}":" Represents a Universally Unique Identifier (UUID).\n Can be built from one `UInt128` (all byte values), two `UInt64`, or four `UInt32`.\n Conversion from a string will check the UUID validity.\n"}],"Base.mark":[{"Tuple{IO}":" mark(s)\n\nAdd a mark at the current position of stream `s`. Return the marked position.\n\nSee also [`unmark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.read":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" read(filename::AbstractString, args...)\n\nOpen a file and read its contents. `args` is passed to `read`: this is equivalent to\n`open(io->read(io, args...), filename)`.\n\n read(filename::AbstractString, String)\n\nRead the entire contents of a file as a string.\n"},{"Tuple{Any,Any}":" read(io::IO, T)\n\nRead a single value of type `T` from `io`, in canonical binary representation.\n\n read(io::IO, String)\n\nRead the entirety of `io`, as a `String`.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization\"\n```\n"},{"Union{Tuple{IO}, Tuple{IO,Integer}}":" read(s::IO, nb=typemax(Int))\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n"},{"Tuple{Base.AbstractCmd,Type{String}}":" read(command::Cmd, String)\n\nRun `command` and return the resulting output as a `String`.\n"},{"Tuple{IOStream,Integer}":" read(s::IOStream, nb::Integer; all=true)\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"},{"Tuple{Base.AbstractCmd}":" read(command::Cmd)\n\nRun `command` and return the resulting output as an array of bytes.\n"}],"Base.Inf16":[{"Union{}":" Inf16\n\nPositive infinity of type [`Float16`](@ref).\n"}],"Base.gcdx":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcdx(x,y)\n\nComputes the greatest common (positive) divisor of `x` and `y` and their Bézout\ncoefficients, i.e. the integer coefficients `u` and `v` that satisfy\n``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``.\n\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcdx(12, 42)\n(6, -3, 1)\n\njulia> gcdx(240, 46)\n(2, -9, 47)\n```\n\n!!! note\n Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal\n Bézout coefficients that are computed by the extended Euclidean algorithm.\n (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)\n For signed integers, these coefficients `u` and `v` are minimal in\n the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore,\n the signs of `u` and `v` are chosen so that `d` is positive.\n For unsigned integers, the coefficients `u` and `v` might be near\n their `typemax`, and the identity then holds only via the unsigned\n integers' modulo arithmetic.\n"}],"Base.reduce":[{"Tuple{Any,AbstractArray}":" reduce(f, A; dims=:, [init])\n\nReduce 2-argument function `f` along dimensions of `A`. `dims` is a vector specifying the\ndimensions to reduce, and the keyword argument `init` is the initial value to use in the\nreductions. For `+`, `*`, `max` and `min` the `init` argument is optional.\n\nThe associativity of the reduction is implementation-dependent; if you need a particular\nassociativity, e.g. left-to-right, you should write your own loop or consider using\n[`foldl`](@ref) or [`foldr`](@ref). See documentation for [`reduce`](@ref).\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reduce(max, a, dims=2)\n4×1 Array{Int64,2}:\n 13\n 14\n 15\n 16\n\njulia> reduce(max, a, dims=1)\n1×4 Array{Int64,2}:\n 4 8 12 16\n```\n"},{"Tuple{Any,Any}":" reduce(op, itr; [init])\n\nReduce the given collection `itr` with the given binary operator `op`. If provided, the\ninitial value `init` must be a neutral element for `op` that will be returned for empty\ncollections. It is unspecified whether `init` is used for non-empty collections.\n\nFor empty collections, providing `init` will be necessary, except for some special cases\n(e.g. when `op` is one of `+`, `*`, `max`, `min`, `&`, `|`) when Julia can determine the\nneutral element of `op`.\n\nReductions for certain commonly-used operators may have special implementations, and\nshould be used instead: `maximum(itr)`, `minimum(itr)`, `sum(itr)`, `prod(itr)`,\n `any(itr)`, `all(itr)`.\n\nThe associativity of the reduction is implementation dependent. This means that you can't\nuse non-associative operations like `-` because it is undefined whether `reduce(-,[1,2,3])`\nshould be evaluated as `(1-2)-3` or `1-(2-3)`. Use [`foldl`](@ref) or\n[`foldr`](@ref) instead for guaranteed left or right associativity.\n\nSome operations accumulate error. Parallelism will be easier if the reduction can be\nexecuted in groups. Future versions of Julia might change the algorithm. Note that the\nelements are not reordered if you use an ordered collection.\n\n# Examples\n```jldoctest\njulia> reduce(*, [2; 3; 4])\n24\n\njulia> reduce(*, [2; 3; 4]; init=-1)\n-24\n```\n"}],"Base.Fix1":[{"Union{}":" Fix1(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the first argument fixed to the value \"x\". In other words,\n`Fix1(f, x)` behaves similarly to `y->f(x, y)`.\n"}],"Base.ntuple":[{"Union{Tuple{F}, Tuple{F,Integer}} where F":" ntuple(f::Function, n::Integer)\n\nCreate a tuple of length `n`, computing each element as `f(i)`,\nwhere `i` is the index of the element.\n\n# Examples\n```jldoctest\njulia> ntuple(i -> 2*i, 4)\n(2, 4, 6, 8)\n```\n"}],"Base.setindex":[{"Tuple{NamedTuple,Any,Symbol}":" setindex(nt::NamedTuple, val, key::Symbol)\n\nConstructs a new `NamedTuple` with the key `key` set to `val`.\nIf `key` is already in the keys of `nt`, `val` replaces the old value.\n\n```jldoctest\njulia> nt = (a = 3,)\n(a = 3,)\n\njulia> Base.setindex(nt, 33, :b)\n(a = 3, b = 33)\n\njulia> Base.setindex(nt, 4, :a)\n(a = 4,)\n\njulia> Base.setindex(nt, \"a\", :a)\n(a = \"a\",)\n```\n"},{"Tuple{Tuple,Any,Integer}":" setindex(c::Tuple, v, i::Integer)\n\nCreates a new tuple similar to `x` with the value at index `i` set to `v`.\nThrows a `BoundsError` when out of bounds.\n\n# Examples\n```jldoctest\njulia> Base.setindex((1, 2, 6), 2, 3) == (1, 2, 2)\ntrue\n```\n"}],"Base.parentmodule":[{"Tuple{Any,Any}":" parentmodule(f::Function, types) -> Module\n\nDetermine the module containing a given definition of a generic function.\n"},{"Tuple{Module}":" parentmodule(m::Module) -> Module\n\nGet a module's enclosing `Module`. `Main` is its own parent.\n\n# Examples\n```jldoctest\njulia> parentmodule(Main)\nMain\n\njulia> parentmodule(Base.Broadcast)\nBase\n```\n"},{"Tuple{Function}":" parentmodule(f::Function) -> Module\n\nDetermine the module containing the (first) definition of a generic\nfunction.\n"},{"Tuple{DataType}":" parentmodule(t::DataType) -> Module\n\nDetermine the module containing the definition of a (potentially `UnionAll`-wrapped) `DataType`.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct Int end\n end\nFoo\n\njulia> parentmodule(Int)\nCore\n\njulia> parentmodule(Foo.Int)\nFoo\n```\n"}],"Base.readchomp":[{"Tuple{Any}":" readchomp(x)\n\nRead the entirety of `x` as a string and remove a single trailing newline\nif there is one. Equivalent to `chomp(read(x, String))`.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end;\n\njulia> readchomp(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\\nIt has many members.\"\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.invmod":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" invmod(x,m)\n\nTake the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``,\nwith ``div(x,y) = 0``. This is undefined for ``m = 0``, or if\n``gcd(x,m) \\neq 1``.\n\n# Examples\n```jldoctest\njulia> invmod(2,5)\n3\n\njulia> invmod(2,3)\n2\n\njulia> invmod(5,6)\n5\n```\n"}],"Base.detach":[{"Tuple{Cmd}":" detach(command)\n\nMark a command object so that it will be run in a new process group, allowing it to outlive the julia process, and not have Ctrl-C interrupts passed to it.\n"}],"Base.ExponentialBackOff":[{"Tuple{}":" ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)\n\nA [`Float64`](@ref) iterator of length `n` whose elements exponentially increase at a\nrate in the interval `factor` * (1 ± `jitter`). The first element is\n`first_delay` and all elements are clamped to `max_delay`.\n"}],"Base.ceil":[{"Union{}":" ceil([T,] x)\n ceil(x; digits::Integer= [, base = 10])\n ceil(x; sigdigits::Integer= [, base = 10])\n\n`ceil(x)` returns the nearest integral value of the same type as `x` that is greater than or\nequal to `x`.\n\n`ceil(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not\nrepresentable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.@specialize":[{"Tuple":" @specialize\n\nReset the specialization hint for an argument back to the default.\nFor details, see [`@nospecialize`](@ref).\n"}],"Base.get!":[{"Tuple{Function,Any,Any}":" get!(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => f()`, and return `f()`.\n\nThis is intended to be called using `do` block syntax:\n```julia\nget!(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get!(collection, key, default)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => default`, and return `default`.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> get!(d, \"a\", 5)\n1\n\njulia> get!(d, \"d\", 4)\n4\n\njulia> d\nDict{String,Int64} with 4 entries:\n \"c\" => 3\n \"b\" => 2\n \"a\" => 1\n \"d\" => 4\n```\n"}],"Base.maximum":[{"Tuple{Any}":" maximum(itr)\n\nReturns the largest element in a collection.\n\n# Examples\n```jldoctest\njulia> maximum(-20.5:10)\n9.5\n\njulia> maximum([1,2,3])\n3\n```\n"},{"Tuple{AbstractArray}":" maximum(A::AbstractArray; dims)\n\nCompute the maximum value of an array over the given dimensions. See also the\n[`max(a,b)`](@ref) function to take the maximum of two or more arguments,\nwhich can be applied elementwise to arrays via `max.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum(A, dims=1)\n1×2 Array{Int64,2}:\n 3 4\n\njulia> maximum(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 4\n```\n"},{"Tuple{Any,Any}":" maximum(f, itr)\n\nReturns the largest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> maximum(length, [\"Julion\", \"Julia\", \"Jule\"])\n6\n```\n"}],"Base.:":[{"Union{Tuple{T}, Tuple{T,Any,T}} where T":" (:)(start, [step], stop)\n\nRange operator. `a:b` constructs a range from `a` to `b` with a step size of 1 (a [`UnitRange`](@ref))\n, and `a:s:b` is similar but uses a step size of `s` (a [`StepRange`](@ref)).\n\n`:` is also used in indexing to select whole dimensions\n and for [`Symbol`](@ref) literals, as in e.g. `:hello`.\n"}],"Base.unsafe_trunc":[{"Union{}":" unsafe_trunc(T, x)\n\nReturn the nearest integral value of type `T` whose absolute value is\nless than or equal to `x`. If the value is not representable by `T`, an arbitrary value will\nbe returned.\n"}],"Base.popfirst!":[{"Tuple{Array{T,1} where T}":" popfirst!(collection) -> item\n\nRemove the first `item` from `collection`.\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4, 5, 6]\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n\njulia> popfirst!(A)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 2\n 3\n 4\n 5\n 6\n```\n"}],"Base.isempty":[{"Tuple{Any}":" isempty(collection) -> Bool\n\nDetermine whether a collection is empty (has no elements).\n\n# Examples\n```jldoctest\njulia> isempty([])\ntrue\n\njulia> isempty([1 2 3])\nfalse\n```\n"},{"Tuple{Base.GenericCondition}":" isempty(condition)\n\nReturn `true` if no tasks are waiting on the condition, `false` otherwise.\n"}],"Base.delete!":[{"Tuple{Any,Any}":" delete!(collection, key)\n\nDelete the mapping for the given key in a collection, if any, and return the collection.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> delete!(d, \"b\")\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n\njulia> delete!(d, \"b\") # d is left unchanged\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n```\n"}],"Base.@r_str":[{"Tuple{Any,Vararg{Any,N} where N}":" @r_str -> Regex\n\nConstruct a regex, such as `r\"^[a-z]*$\"`, without interpolation and unescaping (except for\nquotation mark `\"` which still has to be escaped). The regex also accepts one or more flags,\nlisted after the ending quote, to change its behaviour:\n\n- `i` enables case-insensitive matching\n- `m` treats the `^` and `$` tokens as matching the start and end of individual lines, as\n opposed to the whole string.\n- `s` allows the `.` modifier to match newlines.\n- `x` enables \"comment mode\": whitespace is enabled except when escaped with `\\`, and `#`\n is treated as starting a comment.\n- `a` disables `UCP` mode (enables ASCII mode). By default `\\B`, `\\b`, `\\D`, `\\d`, `\\S`,\n `\\s`, `\\W`, `\\w`, etc. match based on Unicode character properties. With this option,\n these sequences only match ASCII characters.\n\nSee `Regex` if interpolation is needed.\n\n# Examples\n```jldoctest\njulia> match(r\"a+.*b+.*?d$\"ism, \"Goodbye,\\nOh, angry,\\nBad world\\n\")\nRegexMatch(\"angry,\\nBad world\")\n```\nThis regex has the first three flags enabled.\n"}],"Base.trunc":[{"Union{}":" trunc([T,] x)\n trunc(x; digits::Integer= [, base = 10])\n trunc(x; sigdigits::Integer= [, base = 10])\n\n`trunc(x)` returns the nearest integral value of the same type as `x` whose absolute value\nis less than or equal to `x`.\n\n`trunc(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.count_zeros":[{"Tuple{Integer}":" count_zeros(x::Integer) -> Integer\n\nNumber of zeros in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_zeros(Int32(2 ^ 16 - 1))\n16\n```\n"}],"Base.gc_live_bytes":[{"Tuple{}":" Base.gc_live_bytes()\n\nReturn the total size (in bytes) of objects currently in memory.\nThis is computed as the total size of live objects after\nthe last garbage collection, plus the number of bytes allocated\nsince then.\n"}],"Base.push!":[{"Union{}":" push!(collection, items...) -> collection\n\nInsert one or more `items` in `collection`. If `collection` is an ordered container,\nthe items are inserted at the end (in the given order).\n\n# Examples\n```jldoctest\njulia> push!([1, 2, 3], 4, 5, 6)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nIf `collection` is ordered, use [`append!`](@ref) to add all the elements of another\ncollection to it. The result of the preceding example is equivalent to `append!([1, 2, 3], [4,\n5, 6])`. For `AbstractSet` objects, [`union!`](@ref) can be used instead.\n"}],"Base.pointer":[{"Union{}":" pointer(array [, index])\n\nGet the native address of an array or string, optionally at a given location `index`.\n\nThis function is \"unsafe\". Be careful to ensure that a Julia reference to\n`array` exists as long as this pointer will be used. The [`GC.@preserve`](@ref)\nmacro should be used to protect the `array` argument from garbage collection\nwithin a given block of code.\n\nCalling [`Ref(array[, index])`](@ref Ref) is generally preferable to this function as it guarantees validity.\n"}],"Base.isassigned":[{"Union{}":" isassigned(array, i) -> Bool\n\nTest whether the given array has a value associated with index `i`. Return `false`\nif the index is out of bounds, or has an undefined reference.\n\n# Examples\n```jldoctest\njulia> isassigned(rand(3, 3), 5)\ntrue\n\njulia> isassigned(rand(3, 3), 3 * 3 + 1)\nfalse\n\njulia> mutable struct Foo end\n\njulia> v = similar(rand(3), Foo)\n3-element Array{Foo,1}:\n #undef\n #undef\n #undef\n\njulia> isassigned(v, 1)\nfalse\n```\n"}],"Base.Clonglong":[{"Union{}":" Clonglong\n\nEquivalent to the native `signed long long` c-type ([`Int64`](@ref)).\n"}],"Base.flush":[{"Tuple{IO}":" flush(stream)\n\nCommit all currently buffered writes to the given stream.\n"}],"Base.cumsum":[{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" cumsum(A; dims::Integer)\n\nCumulative sum along the dimension `dims`. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumsum(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 5 7 9\n\njulia> cumsum(a, dims=2)\n2×3 Array{Int64,2}:\n 1 3 6\n 4 9 15\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumsum(x::AbstractVector)\n\nCumulative sum a vector. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumsum([1, 1, 1])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> cumsum([fill(1, 2) for i in 1:3])\n3-element Array{Array{Int64,1},1}:\n [1, 1]\n [2, 2]\n [3, 3]\n```\n"}],"Base.splice!":[{"Union{Tuple{Array{T,1} where T,UnitRange{#s662} where #s662<:Integer}, Tuple{Array{T,1} where T,UnitRange{#s661} where #s661<:Integer,Any}}":" splice!(a::Vector, range, [replacement]) -> items\n\nRemove items in the specified index range, and return a collection containing\nthe removed items.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered collection will be spliced in\nplace of the removed items.\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n\n# Examples\n```jldoctest\njulia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)\n0-element Array{Int64,1}\n\njulia> A\n8-element Array{Int64,1}:\n -1\n -2\n -3\n 2\n 5\n 4\n 3\n -1\n```\n"},{"Union{Tuple{Array{T,1} where T,Integer}, Tuple{Array{T,1} where T,Integer,Any}}":" splice!(a::Vector, index::Integer, [replacement]) -> item\n\nRemove the item at the given index, and return the removed item.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered\ncollection will be spliced in place of the removed item.\n\n# Examples\n```jldoctest\njulia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)\n2\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 1\n\njulia> splice!(A, 5, -1)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n -1\n\njulia> splice!(A, 1, [-1, -2, -3])\n6\n\njulia> A\n7-element Array{Int64,1}:\n -1\n -2\n -3\n 5\n 4\n 3\n -1\n```\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n"}],"Base.findmin!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmin!(rval, rind, A) -> (minval, index)\n\nFind the minimum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as less than all other values.\n"}],"Base.moduleroot":[{"Tuple{Module}":" moduleroot(m::Module) -> Module\n\nFind the root module of a given module. This is the first module in the chain of\nparent modules of `m` which is either a registered root module or which is its\nown parent module.\n"}],"Base.@s_str":[{"Tuple{Any}":" @s_str -> SubstitutionString\n\nConstruct a substitution string, used for regular expression substitutions. Within the\nstring, sequences of the form `\\N` refer to the Nth capture group in the regex, and\n`\\g` refers to a named capture group with name `groupname`.\n\n```jldoctest\njulia> msg = \"#Hello# from Julia\";\n\njulia> replace(msg, r\"#(.+)# from (?\\w+)\" => s\"FROM: \\g; MESSAGE: \\1\")\n\"FROM: Julia; MESSAGE: Hello\"\n```\n"}],"Base.seekstart":[{"Tuple{IO}":" seekstart(s)\n\nSeek a stream to its beginning.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n\njulia> seekstart(io);\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n```\n"}],"Base.canonicalize2":[{"Tuple{Any,Any}":" hi, lo = canonicalize2(big, little)\n\nGenerate a representation where all the nonzero bits in `hi` are more\nsignificant than any of the nonzero bits in `lo`. `big` must be larger\nin absolute value than `little`.\n"}],"Base.unsafe_store!":[{"Union{Tuple{Ptr{Any},Any}, Tuple{Ptr{Any},Any,Integer}}":" unsafe_store!(p::Ptr{T}, x, i::Integer=1)\n\nStore a value of type `T` to the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1] = x`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may corrupt or segfault your\nprogram, in the same manner as C.\n"}],"Base.propertynames":[{"Tuple{Any}":" propertynames(x, private=false)\n\nGet a tuple or a vector of the properties (`x.property`) of an object `x`.\nThis is typically the same as [`fieldnames(typeof(x))`](@ref), but types\nthat overload [`getproperty`](@ref) should generally overload `propertynames`\nas well to get the properties of an instance of the type.\n\n`propertynames(x)` may return only \"public\" property names that are part\nof the documented interface of `x`. If you want it to also return \"private\"\nfieldnames intended for internal use, pass `true` for the optional second argument.\nREPL tab completion on `x.` shows only the `private=false` properties.\n"}],"Base.numerator":[{"Tuple{Integer}":" numerator(x)\n\nNumerator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> numerator(2//3)\n2\n\njulia> numerator(4)\n4\n```\n"}],"Base.Cshort":[{"Union{}":" Cshort\n\nEquivalent to the native `signed short` c-type ([`Int16`](@ref)).\n"}],"Base.ismissing":[{"Tuple{Any}":" ismissing(x)\n\nIndicate whether `x` is [`missing`](@ref).\n"}],"Base.⊉":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.process_running":[{"Tuple{Base.Process}":" process_running(p::Process)\n\nDetermine whether a process is currently running.\n"}],"Base.split":[{"Union{}":" split(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true)\n split(str::AbstractString; limit::Integer=0, keepempty::Bool=false)\n\nSplit `str` into an array of substrings on occurrences of the delimiter(s) `dlm`. `dlm`\ncan be any of the formats allowed by [`findnext`](@ref)'s first argument (i.e. as a\nstring, regular expression or a function), or as a single character or collection of\ncharacters.\n\nIf `dlm` is omitted, it defaults to [`isspace`](@ref).\n\nThe optional keyword arguments are:\n - `limit`: the maximum size of the result. `limit=0` implies no maximum (default)\n - `keepempty`: whether empty fields should be kept in the result. Default is `false` without\n a `dlm` argument, `true` with a `dlm` argument.\n\nSee also [`rsplit`](@ref).\n\n# Examples\n```jldoctest\njulia> a = \"Ma.rch\"\n\"Ma.rch\"\n\njulia> split(a,\".\")\n2-element Array{SubString{String},1}:\n \"Ma\"\n \"rch\"\n```\n"}]} \ No newline at end of file +{"Base.nextind":[{"Tuple{AbstractString,Integer,Integer}":" nextind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts after index `i`. In other words, if `i` is the start of a\n character, return the start of the next character; if `i` is not the start\n of a character, move forward until the start of a character and return that index.\n If `i` is equal to `0` return `1`.\n If `i` is in bounds but greater or equal to `lastindex(str)` return `ncodeunits(str)+1`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `nextind` for `n==1`. The only difference\n is that if `n` is so large that applying `nextind` would reach `ncodeunits(str)+1` then\n each remaining iteration increases the returned value by `1`. This means that in this\n case `nextind` can return a value greater than `ncodeunits(str)+1`.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `s` or is equal to `0`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> nextind(\"α\", 0)\n1\n\njulia> nextind(\"α\", 1)\n3\n\njulia> nextind(\"α\", 3)\nERROR: BoundsError: attempt to access String\n at index [3]\n[...]\n\njulia> nextind(\"α\", 0, 2)\n3\n\njulia> nextind(\"α\", 1, 2)\n4\n```\n"}],"Base.deepcopy":[{"Tuple{Any}":" deepcopy(x)\n\nCreate a deep copy of `x`: everything is copied recursively, resulting in a fully\nindependent object. For example, deep-copying an array produces a new array whose elements\nare deep copies of the original elements. Calling `deepcopy` on an object should generally\nhave the same effect as serializing and then deserializing it.\n\nAs a special case, functions can only be actually deep-copied if they are anonymous,\notherwise they are just copied. The difference is only relevant in the case of closures,\ni.e. functions which may contain hidden internal references.\n\nWhile it isn't normally necessary, user-defined types can override the default `deepcopy`\nbehavior by defining a specialized version of the function\n`deepcopy_internal(x::T, dict::IdDict)` (which shouldn't otherwise be used),\nwhere `T` is the type to be specialized for, and `dict` keeps track of objects copied\nso far within the recursion. Within the definition, `deepcopy_internal` should be used\nin place of `deepcopy`, and the `dict` variable should be\nupdated as appropriate before returning.\n"}],"Base.IndexCartesian":[{"Union{}":" IndexCartesian()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by a Cartesian index. This is the default\nfor new custom [`AbstractArray`](@ref) subtypes.\n\nA Cartesian indexing style uses multiple integer indices to describe the position in\na multidimensional array, with exactly one index per dimension. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexCartesian` will return\na range of [`CartesianIndices`](@ref).\n\nA `N`-dimensional custom array that reports its `IndexStyle` as `IndexCartesian` needs\nto implement indexing (and indexed assignment) with exactly `N` `Int` indices;\nall other indexing expressions — including linear indexing — will\nbe recomputed to the equivalent Cartesian location. For example, if `A` were a `2×3` custom\nmatrix with cartesian indexing, and we referenced `A[5]`, this would be\nrecomputed to the equivalent Cartesian index and call `A[1, 3]` since `5 = 2*1 + 3`.\n\nIt is significantly more expensive to compute Cartesian indices from a linear index than it is\nto go the other way. The former operation requires division — a very costly operation — whereas\nthe latter only uses multiplication and addition and is essentially free. This asymmetry means it\nis far more costly to use linear indexing with an `IndexCartesian` array than it is to use\nCartesian indexing with an `IndexLinear` array.\n\nSee also [`IndexLinear`](@ref).\n"}],"Base.strides":[{"Union{}":" strides(A)\n\nReturn a tuple of the memory strides in each dimension.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> strides(A)\n(1, 3, 12)\n```\n"}],"Base.allunique":[{"Tuple{Any}":" allunique(itr) -> Bool\n\nReturn `true` if all values from `itr` are distinct when compared with [`isequal`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> allunique([a, a])\nfalse\n```\n"}],"Base.shell_escape":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape(args::Union{Cmd,AbstractString...}; special::AbstractString=\"\")\n\nThe unexported `shell_escape` function is the inverse of the unexported `shell_split` function:\nit takes a string or command object and escapes any special characters in such a way that calling\n`shell_split` on it would give back the array of words in the original command. The `special`\nkeyword argument controls what characters in addition to whitespace, backslashes, quotes and\ndollar signs are considered to be special (default: none).\n\n# Examples\n```jldoctest\njulia> Base.shell_escape(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' && echo done\"\n\njulia> Base.shell_escape(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this && that\"\n```\n"}],"Base.values":[{"Tuple{Any}":" values(iterator)\n\nFor an iterator or collection that has keys and values, return an iterator\nover the values.\nThis function simply returns its argument by default, since the elements\nof a general iterator are normally considered its \"values\".\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> values(d)\nBase.ValueIterator for a Dict{String,Int64} with 2 entries. Values:\n 2\n 1\n\njulia> values([2])\n1-element Array{Int64,1}:\n 2\n```\n"},{"Tuple{AbstractDict}":" values(a::AbstractDict)\n\nReturn an iterator over all values in a collection.\n`collect(values(a))` returns an array of values.\nWhen the values are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(values(D))\n2-element Array{Int64,1}:\n 2\n 3\n```\n"}],"Base.iterate":[{"Union{}":" iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}\n\nAdvance the iterator to obtain the next element. If no elements\nremain, `nothing` should be returned. Otherwise, a 2-tuple of the\nnext element and the new iteration state should be returned.\n"},{"Tuple{AbstractString,Integer}":" iterate(s::AbstractString, i::Integer) -> Union{Tuple{<:AbstractChar, Int}, Nothing}\n\nReturn a tuple of the character in `s` at index `i` with the index of the start\nof the following character in `s`. This is the key method that allows strings to\nbe iterated, yielding a sequences of characters. If `i` is out of bounds in `s`\nthen a bounds error is raised. The `iterate` function, as part of the iteration\nprotocol may assume that `i` is the start of a character in `s`.\n\nSee also: [`getindex`](@ref), [`checkbounds`](@ref)\n"}],"Base.MappingRF":[{"Union{}":" MappingRF(f, rf) -> rf′\n\nCreate a mapping reducing function `rf′(acc, x) = rf(acc, f(x))`.\n"}],"Base.parameter_upper_bound":[{"Tuple{UnionAll,Any}":" Base.parameter_upper_bound(t::UnionAll, idx)\n\nDetermine the upper bound of a type parameter in the underlying datatype.\nThis method should generally not be relied upon:\ncode instead should usually use static parameters in dispatch to extract these values.\n\n# Examples\n```jldoctest\njulia> struct Foo{T<:AbstractFloat, N}\n x::Tuple{T, N}\n end\n\njulia> Base.parameter_upper_bound(Foo, 1)\nAbstractFloat\n\njulia> Base.parameter_upper_bound(Foo, 2)\nAny\n```\n"}],"Base.ismissing":[{"Tuple{Any}":" ismissing(x)\n\nIndicate whether `x` is [`missing`](@ref).\n"}],"Base.seekstart":[{"Tuple{IO}":" seekstart(s)\n\nSeek a stream to its beginning.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n\njulia> seekstart(io);\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n```\n"}],"Base.kill":[{"Tuple{Base.Process,Integer}":" kill(p::Process, signum=Base.SIGTERM)\n\nSend a signal to a process. The default is to terminate the process.\nReturns successfully if the process has already exited, but throws an\nerror if killing the process failed for other reasons (e.g. insufficient\npermissions).\n"}],"Base.getindex":[{"Union{}":" getindex(collection, key...)\n\nRetrieve the value(s) stored at the given key or index within a collection. The syntax\n`a[i,j,...]` is converted by the compiler to `getindex(a, i, j, ...)`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> getindex(A, \"a\")\n1\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" getindex(A, inds...)\n\nReturn a subset of array `A` as specified by `inds`, where each `ind` may be an\n`Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref). See the manual section on\n[array indexing](@ref man-array-indexing) for details.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> getindex(A, 1)\n1\n\njulia> getindex(A, [2, 1])\n2-element Array{Int64,1}:\n 3\n 1\n\njulia> getindex(A, 2:4)\n3-element Array{Int64,1}:\n 3\n 2\n 4\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Vararg{Any,N} where N}} where T":" getindex(type[, elements...])\n\nConstruct a 1-d array of the specified type. This is usually called with the syntax\n`Type[]`. Element values can be specified using `Type[a,b,c,...]`.\n\n# Examples\n```jldoctest\njulia> Int8[1, 2, 3]\n3-element Array{Int8,1}:\n 1\n 2\n 3\n\njulia> getindex(Int8, 1, 2, 3)\n3-element Array{Int8,1}:\n 1\n 2\n 3\n```\n"}],"Base.indexin":[{"Tuple{Any,AbstractArray}":" indexin(a, b)\n\nReturn an array containing the first index in `b` for\neach value in `a` that is a member of `b`. The output\narray contains `nothing` wherever `a` is not a member of `b`.\n\n# Examples\n```jldoctest\njulia> a = ['a', 'b', 'c', 'b', 'd', 'a'];\n\njulia> b = ['a', 'b', 'c'];\n\njulia> indexin(a, b)\n6-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n 2\n nothing\n 1\n\njulia> indexin(b, a)\n3-element Array{Union{Nothing, Int64},1}:\n 1\n 2\n 3\n```\n"}],"Base.deleteat!":[{"Tuple{Array{T,1} where T,Integer}":" deleteat!(a::Vector, i::Integer)\n\nRemove the item at the given `i` and return the modified `a`. Subsequent items\nare shifted to fill the resulting gap.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 2)\n5-element Array{Int64,1}:\n 6\n 4\n 3\n 2\n 1\n```\n"},{"Tuple{Array{T,1} where T,Any}":" deleteat!(a::Vector, inds)\n\nRemove the items at the indices given by `inds`, and return the modified `a`.\nSubsequent items are shifted to fill the resulting gap.\n\n`inds` can be either an iterator or a collection of sorted and unique integer indices,\nor a boolean vector of the same length as `a` with `true` indicating entries to delete.\n\n# Examples\n```jldoctest\njulia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])\n3-element Array{Int64,1}:\n 5\n 3\n 1\n\njulia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))\nERROR: ArgumentError: indices must be unique and sorted\nStacktrace:\n[...]\n```\n"}],"Base.channeled_tasks":[{"Tuple{Int64,Vararg{Any,N} where N}":" channeled_tasks(n::Int, funcs...; ctypes=fill(Any,n), csizes=fill(0,n))\n\nA convenience method to create `n` channels and bind them to tasks started\nfrom the provided functions in a single call. Each `func` must accept `n` arguments\nwhich are the created channels. Channel types and sizes may be specified via\nkeyword arguments `ctypes` and `csizes` respectively. If unspecified, all channels are\nof type `Channel{Any}(0)`.\n\nReturns a tuple, `(Array{Channel}, Array{Task})`, of the created channels and tasks.\n"}],"Base.gensym":[{"Tuple{}":" gensym([tag])\n\nGenerates a symbol which will not conflict with other variable names.\n"}],"Base.<":[{"Tuple{Any}":" <(x)\n\nCreate a function that compares its argument to `x` using [`<`](@ref), i.e.\na function equivalent to `y -> y < x`.\nThe returned function is of type `Base.Fix2{typeof(<)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <(x, y)\n\nLess-than comparison operator. Falls back to [`isless`](@ref).\nBecause of the behavior of floating-point NaN values, this operator implements\na partial order.\n\n# Implementation\nNew numeric types with a canonical partial order should implement this function for\ntwo arguments of the new type.\nTypes with a canonical total order should implement [`isless`](@ref) instead.\n(x < y) | (x == y)\n\n# Examples\n```jldoctest\njulia> 'a' < 'b'\ntrue\n\njulia> \"abc\" < \"abd\"\ntrue\n\njulia> 5 < 3\nfalse\n```\n"}],"Base.cconvert":[{"Union{}":" cconvert(T,x)\n\nConvert `x` to a value to be passed to C code as type `T`, typically by calling `convert(T, x)`.\n\nIn cases where `x` cannot be safely converted to `T`, unlike [`convert`](@ref), `cconvert` may\nreturn an object of a type different from `T`, which however is suitable for\n[`unsafe_convert`](@ref) to handle. The result of this function should be kept valid (for the GC)\nuntil the result of [`unsafe_convert`](@ref) is not needed anymore.\nThis can be used to allocate memory that will be accessed by the `ccall`.\nIf multiple objects need to be allocated, a tuple of the objects can be used as return value.\n\nNeither `convert` nor `cconvert` should take a Julia object and turn it into a `Ptr`.\n"}],"Base.asyncmap":[{"Tuple{Any,Vararg{Any,N} where N}":" asyncmap(f, c...; ntasks=0, batch_size=nothing)\n\nUses multiple concurrent tasks to map `f` over a collection (or multiple\nequal length collections). For multiple collection arguments, `f` is\napplied elementwise.\n\n`ntasks` specifies the number of tasks to run concurrently.\nDepending on the length of the collections, if `ntasks` is unspecified,\nup to 100 tasks will be used for concurrent mapping.\n\n`ntasks` can also be specified as a zero-arg function. In this case, the\nnumber of tasks to run in parallel is checked before processing every element and a new\ntask started if the value of `ntasks_func` is less than the current number\nof tasks.\n\nIf `batch_size` is specified, the collection is processed in batch mode. `f` must\nthen be a function that must accept a `Vector` of argument tuples and must\nreturn a vector of results. The input vector will have a length of `batch_size` or less.\n\nThe following examples highlight execution in different tasks by returning\nthe `objectid` of the tasks in which the mapping function is executed.\n\nFirst, with `ntasks` undefined, each element is processed in a different task.\n```\njulia> tskoid() = objectid(current_task());\n\njulia> asyncmap(x->tskoid(), 1:5)\n5-element Array{UInt64,1}:\n 0x6e15e66c75c75853\n 0x440f8819a1baa682\n 0x9fb3eeadd0c83985\n 0xebd3e35fe90d4050\n 0x29efc93edce2b961\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5)))\n5\n```\n\nWith `ntasks=2` all elements are processed in 2 tasks.\n```\njulia> asyncmap(x->tskoid(), 1:5; ntasks=2)\n5-element Array{UInt64,1}:\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n 0xa23d2f80cd7cf157\n 0x027ab1680df7ae94\n\njulia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))\n2\n```\n\nWith `batch_size` defined, the mapping function needs to be changed to accept an array\nof argument tuples and return an array of results. `map` is used in the modified mapping\nfunction to achieve this.\n```\njulia> batch_func(input) = map(x->string(\"args_tuple: \", x, \", element_val: \", x[1], \", task: \", tskoid()), input)\nbatch_func (generic function with 1 method)\n\njulia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)\n5-element Array{String,1}:\n \"args_tuple: (1,), element_val: 1, task: 9118321258196414413\"\n \"args_tuple: (2,), element_val: 2, task: 4904288162898683522\"\n \"args_tuple: (3,), element_val: 3, task: 9118321258196414413\"\n \"args_tuple: (4,), element_val: 4, task: 4904288162898683522\"\n \"args_tuple: (5,), element_val: 5, task: 9118321258196414413\"\n```\n\n!!! note\n Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently,\n `asyncmap` is beneficial only when the mapping function involves any I/O - disk, network, remote\n worker invocation, etc.\n\n"}],"Base.unsafe_store!":[{"Union{Tuple{Ptr{Any},Any}, Tuple{Ptr{Any},Any,Integer}}":" unsafe_store!(p::Ptr{T}, x, i::Integer=1)\n\nStore a value of type `T` to the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1] = x`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may corrupt or segfault your\nprogram, in the same manner as C.\n"}],"Base.findmin":[{"Tuple{Any}":" findmin(itr) -> (x, index)\n\nReturn the minimum element of the collection `itr` and its index. If there are multiple\nminimal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `min`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmin([8,0.1,-9,pi])\n(-9.0, 3)\n\njulia> findmin([7,1,1,6])\n(1, 2)\n\njulia> findmin([7,1,1,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmin(A; dims) -> (minval, index)\n\nFor an array input, returns the value and index of the minimum over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmin(A, dims=1)\n([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])\n\njulia> findmin(A, dims=2)\n([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])\n```\n"}],"Base.promote_shape":[{"Tuple{Tuple{Vararg{Int64,N}} where N,Tuple{Vararg{Int64,N}} where N}":" promote_shape(s1, s2)\n\nCheck two array shapes for compatibility, allowing trailing singleton dimensions, and return\nwhichever shape has more dimensions.\n\n# Examples\n```jldoctest\njulia> a = fill(1, (3,4,1,1,1));\n\njulia> b = fill(1, (3,4));\n\njulia> promote_shape(a,b)\n(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))\n\njulia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))\n(2, 3, 1, 4, 1)\n```\n"}],"Base.eps":[{"Tuple{Type{#s662} where #s662<:AbstractFloat}":" eps(::Type{T}) where T<:AbstractFloat\n eps()\n\nReturn the *machine epsilon* of the floating point type `T` (`T = Float64` by\ndefault). This is defined as the gap between 1 and the next largest value representable by\n`typeof(one(T))`, and is equivalent to `eps(one(T))`. (Since `eps(T)` is a\nbound on the *relative error* of `T`, it is a \"dimensionless\" quantity like [`one`](@ref).)\n\n# Examples\n```jldoctest\njulia> eps()\n2.220446049250313e-16\n\njulia> eps(Float32)\n1.1920929f-7\n\njulia> 1.0 + eps()\n1.0000000000000002\n\njulia> 1.0 + eps()/2\n1.0\n```\n"},{"Tuple{AbstractFloat}":" eps(x::AbstractFloat)\n\nReturn the *unit in last place* (ulp) of `x`. This is the distance between consecutive\nrepresentable floating point values at `x`. In most cases, if the distance on either side\nof `x` is different, then the larger of the two is taken, that is\n\n eps(x) == max(x-prevfloat(x), nextfloat(x)-x)\n\nThe exceptions to this rule are the smallest and largest finite values\n(e.g. `nextfloat(-Inf)` and `prevfloat(Inf)` for [`Float64`](@ref)), which round to the\nsmaller of the values.\n\nThe rationale for this behavior is that `eps` bounds the floating point rounding\nerror. Under the default `RoundNearest` rounding mode, if ``y`` is a real number and ``x``\nis the nearest floating point number to ``y``, then\n\n```math\n|y-x| \\leq \\operatorname{eps}(x)/2.\n```\n\n# Examples\n```jldoctest\njulia> eps(1.0)\n2.220446049250313e-16\n\njulia> eps(prevfloat(2.0))\n2.220446049250313e-16\n\njulia> eps(2.0)\n4.440892098500626e-16\n\njulia> x = prevfloat(Inf) # largest finite Float64\n1.7976931348623157e308\n\njulia> x + eps(x)/2 # rounds up\nInf\n\njulia> x + prevfloat(eps(x)/2) # rounds down\n1.7976931348623157e308\n```\n"}],"Base.valtype":[{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" valtype(type)\n\nGet the value type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> valtype(Dict(Int32(1) => \"foo\"))\nString\n```\n"},{"Tuple{Type{#s662} where #s662<:AbstractArray}":" valtype(T::Type{<:AbstractArray})\n valtype(A::AbstractArray)\n\nReturn the value type of an array. This is identical to `eltype` and is\nprovided mainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> valtype([\"one\", \"two\", \"three\"])\nString\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"}],"Base.lcm":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" lcm(x,y)\n\nLeast common (non-negative) multiple.\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> lcm(2,3)\n6\n\njulia> lcm(-2,3)\n6\n```\n"}],"Base.SecretBuffer!":[{"Tuple{Array{UInt8,1}}":" SecretBuffer!(data::Vector{UInt8})\n\nInitialize a new `SecretBuffer` from `data`, securely zeroing `data` afterwards.\n"}],"Base.isnothing":[{"Tuple{Any}":" isnothing(x)\n\nReturn `true` if `x === nothing`, and return `false` if not.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.OneTo":[{"Union{}":" Base.OneTo(n)\n\nDefine an `AbstractUnitRange` that behaves like `1:n`, with the added\ndistinction that the lower limit is guaranteed (by the type system) to\nbe 1.\n"}],"Base.nonmissingtype":[{"Union{Tuple{Type{T}}, Tuple{T}} where T":" nonmissingtype(T::Type)\n\nIf `T` is a union of types containing `Missing`, return a new type with\n`Missing` removed.\n\n# Examples\n```jldoctest\njulia> nonmissingtype(Union{Int64,Missing})\nInt64\n\njulia> nonmissingtype(Any)\nAny\n```\n\n!!! compat \"Julia 1.3\"\n This function is exported as of Julia 1.3.\n"}],"Base.falses":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" falses(dims)\n\nCreate a `BitArray` with all values set to `false`.\n\n# Examples\n```jldoctest\njulia> falses(2,3)\n2×3 BitArray{2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.first":[{"Tuple{Any}":" first(coll)\n\nGet the first element of an iterable collection. Return the start point of an\n[`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> first(2:2:10)\n2\n\njulia> first([1; 2; 3; 4])\n1\n```\n"},{"Tuple{AbstractString,Integer}":" first(s::AbstractString, n::Integer)\n\nGet a string consisting of the first `n` characters of `s`.\n\n```jldoctest\njulia> first(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 1)\n\"∀\"\n\njulia> first(\"∀ϵ≠0: ϵ²>0\", 3)\n\"∀ϵ≠\"\n```\n"}],"Base.setdiff":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff(s, itrs...)\n\nConstruct the set of elements in `s` but not in any of the iterables in `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> setdiff([1,2,3], [3,4,5])\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.Cstring":[{"Union{}":" Cstring\n\nA C-style string composed of the native character type\n[`Cchar`](@ref)s. `Cstring`s are NUL-terminated. For\nC-style strings composed of the native wide character\ntype, see [`Cwstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n"}],"Base.isiterable":[{"Tuple{Any}":" isiterable(T) -> Bool\n\nTest if type `T` is an iterable collection type or not,\nthat is whether it has an `iterate` method or not.\n"}],"Base.isempty":[{"Tuple{Any}":" isempty(collection) -> Bool\n\nDetermine whether a collection is empty (has no elements).\n\n# Examples\n```jldoctest\njulia> isempty([])\ntrue\n\njulia> isempty([1 2 3])\nfalse\n```\n"},{"Tuple{Base.GenericCondition}":" isempty(condition)\n\nReturn `true` if no tasks are waiting on the condition, `false` otherwise.\n"}],"Base.isbinaryoperator":[{"Tuple{Symbol}":" isbinaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a binary (infix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isbinaryoperator(:-), Base.isbinaryoperator(:√), Base.isbinaryoperator(:f)\n(true, false, false)\n```\n"}],"Base.isless":[{"Union{}":" isless(x, y)\n\nTest whether `x` is less than `y`, according to a fixed total order.\n`isless` is not defined on all pairs of values `(x, y)`. However, if it\nis defined, it is expected to satisfy the following:\n- If `isless(x, y)` is defined, then so is `isless(y, x)` and `isequal(x, y)`,\n and exactly one of those three yields `true`.\n- The relation defined by `isless` is transitive, i.e.,\n `isless(x, y) && isless(y, z)` implies `isless(x, z)`.\n\nValues that are normally unordered, such as `NaN`,\nare ordered in an arbitrary but consistent fashion.\n[`missing`](@ref) values are ordered last.\n\nThis is the default comparison used by [`sort`](@ref).\n\n# Implementation\nNon-numeric types with a total order should implement this function.\nNumeric types only need to implement it if they have special values such as `NaN`.\nTypes with a partial order should implement [`<`](@ref).\n"},{"Tuple{Tuple,Tuple}":" isless(t1::Tuple, t2::Tuple)\n\nReturns true when t1 is less than t2 in lexicographic order.\n"},{"Tuple{AbstractString,AbstractString}":" isless(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether string `a` comes before string `b` in alphabetical order\n(technically, in lexicographical order by Unicode code points).\n\n# Examples\n```jldoctest\njulia> isless(\"a\", \"b\")\ntrue\n\njulia> isless(\"β\", \"α\")\nfalse\n\njulia> isless(\"a\", \"a\")\nfalse\n```\n"}],"Base.pop!":[{"Tuple{Array{T,1} where T}":" pop!(collection) -> item\n\nRemove an item in `collection` and return it. If `collection` is an\nordered container, the last item is returned.\n\n# Examples\n```jldoctest\njulia> A=[1, 2, 3]\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> pop!(A)\n3\n\njulia> A\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> S = Set([1, 2])\nSet{Int64} with 2 elements:\n 2\n 1\n\njulia> pop!(S)\n2\n\njulia> S\nSet{Int64} with 1 element:\n 1\n\njulia> pop!(Dict(1=>2))\n1 => 2\n```\n"},{"Tuple{Any,Any,Any}":" pop!(collection, key[, default])\n\nDelete and return the mapping for `key` if it exists in `collection`, otherwise return\n`default`, or throw an error if `default` is not specified.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> pop!(d, \"a\")\n1\n\njulia> pop!(d, \"d\")\nERROR: KeyError: key \"d\" not found\nStacktrace:\n[...]\n\njulia> pop!(d, \"e\", 4)\n4\n```\n"}],"Base.schedule":[{"Tuple{Task,Any}":" schedule(t::Task, [val]; error=false)\n\nAdd a [`Task`](@ref) to the scheduler's queue. This causes the task to run constantly when the system\nis otherwise idle, unless the task performs a blocking operation such as [`wait`](@ref).\n\nIf a second argument `val` is provided, it will be passed to the task (via the return value of\n[`yieldto`](@ref)) when it runs again. If `error` is `true`, the value is raised as an exception in\nthe woken task.\n\n# Examples\n```jldoctest\njulia> a5() = sum(i for i in 1:1000);\n\njulia> b = Task(a5);\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskstarted(b)\ntrue\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.typeintersect":[{"Tuple{Any,Any}":" typeintersect(T, S)\n\nCompute a type that contains the intersection of `T` and `S`. Usually this will be the\nsmallest such type or one close to it.\n"}],"Base.reverseind":[{"Tuple{AbstractString,Integer}":" reverseind(v, i)\n\nGiven an index `i` in [`reverse(v)`](@ref), return the corresponding index in\n`v` so that `v[reverseind(v,i)] == reverse(v)[i]`. (This can be nontrivial in\ncases where `v` contains non-ASCII characters.)\n\n# Examples\n```jldoctest\njulia> r = reverse(\"Julia\")\n\"ailuJ\"\n\njulia> for i in 1:length(r)\n print(r[reverseind(\"Julia\", i)])\n end\nJulia\n```\n"}],"Base.promote_type":[{"Union{}":" promote_type(type1, type2)\n\nPromotion refers to converting values of mixed types to a single common type.\n`promote_type` represents the default promotion behavior in Julia when\noperators (usually mathematical) are given arguments of differing types.\n`promote_type` generally tries to return a type which can at least approximate\nmost values of either input type without excessively widening. Some loss is\ntolerated; for example, `promote_type(Int64, Float64)` returns\n[`Float64`](@ref) even though strictly, not all [`Int64`](@ref) values can be\nrepresented exactly as `Float64` values.\n\n```jldoctest\njulia> promote_type(Int64, Float64)\nFloat64\n\njulia> promote_type(Int32, Int64)\nInt64\n\njulia> promote_type(Float32, BigInt)\nBigFloat\n\njulia> promote_type(Int16, Float16)\nFloat16\n\njulia> promote_type(Int64, Float16)\nFloat16\n\njulia> promote_type(Int8, UInt16)\nUInt16\n```\n"}],"Base.BitSet":[{"Tuple{Any}":" BitSet([itr])\n\nConstruct a sorted set of `Int`s generated by the given iterable object, or an\nempty set. Implemented as a bit string, and therefore designed for dense integer sets.\nIf the set will be sparse (for example, holding a few\nvery large integers), use [`Set`](@ref) instead.\n"}],"Base.minmax":[{"Tuple{Any,Any}":" minmax(x, y)\n\nReturn `(min(x,y), max(x,y))`. See also: [`extrema`](@ref) that returns `(minimum(x), maximum(x))`.\n\n# Examples\n```jldoctest\njulia> minmax('c','b')\n('b', 'c')\n```\n"}],"Base.asyncmap!":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)\n\nLike [`asyncmap`](@ref), but stores output in `results` rather than\nreturning a collection.\n"}],"Base.any":[{"Tuple{Any}":" any(itr) -> Bool\n\nTest whether any elements of a boolean collection are `true`, returning `true` as\nsoon as the first `true` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> any(a)\ntrue\n\njulia> any((println(i); v) for (i, v) in enumerate(a))\n1\ntrue\n\njulia> any([missing, true])\ntrue\n\njulia> any([false, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" any(A; dims)\n\nTest whether any values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> any(A, dims=2)\n2×1 Array{Bool,2}:\n 1\n 1\n```\n"},{"Tuple{Any,Any}":" any(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for any elements of `itr`, returning\n`true` as soon as the first item in `itr` for which `p` returns `true` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `false` (or equivalently, if the input contains no `true` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> any(i->(4<=i<=6), [3,5,7])\ntrue\n\njulia> any(i -> (println(i); i > 3), 1:10)\n1\n2\n3\n4\ntrue\n\njulia> any(i -> i > 0, [1, missing])\ntrue\n\njulia> any(i -> i > 0, [-1, missing])\nmissing\n\njulia> any(i -> i > 0, [-1, 0])\nfalse\n```\n"}],"Base.permute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" permute!(v, p)\n\nPermute vector `v` in-place, according to permutation `p`. No checking is done\nto verify that `p` is a permutation.\n\nTo return a new permutation, use `v[p]`. Note that this is generally faster than\n`permute!(v,p)` for large vectors.\n\nSee also [`invpermute!`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> permute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 1\n 4\n 3\n 1\n```\n"}],"Base.FilteringRF":[{"Union{}":" FilteringRF(f, rf) -> rf′\n\nCreate a filtering reducing function `rf′(acc, x) = f(x) ? rf(acc, x) : acc`.\n"}],"Base.xor":[{"Tuple{Bool,Bool}":" xor(x, y)\n ⊻(x, y)\n\nBitwise exclusive or of `x` and `y`. Implements\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one of the arguments is `missing`.\n\nThe infix operation `a ⊻ b` is a synonym for `xor(a,b)`, and\n`⊻` can be typed by tab-completing `\\xor` or `\\veebar` in the Julia REPL.\n\n# Examples\n```jldoctest\njulia> xor(true, false)\ntrue\n\njulia> xor(true, true)\nfalse\n\njulia> xor(true, missing)\nmissing\n\njulia> false ⊻ false\nfalse\n\njulia> [true; true; false] .⊻ [true; false; false]\n3-element BitArray{1}:\n 0\n 1\n 0\n```\n"}],"Base.readuntil":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" readuntil(stream::IO, delim; keep::Bool = false)\n readuntil(filename::AbstractString, delim; keep::Bool = false)\n\nRead a string from an I/O stream or a file, up to the given delimiter.\nThe delimiter can be a `UInt8`, `AbstractChar`, string, or vector.\nKeyword argument `keep` controls whether the delimiter is included in the result.\nThe text is assumed to be encoded in UTF-8.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readuntil(\"my_file.txt\", 'L')\n\"Julia\"\n\njulia> readuntil(\"my_file.txt\", '.', keep = true)\n\"JuliaLang is a GitHub organization.\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.Dict":[{"Union{}":" Dict([itr])\n\n`Dict{K,V}()` constructs a hash table with keys of type `K` and values of type `V`.\nKeys are compared with [`isequal`](@ref) and hashed with [`hash`](@ref).\n\nGiven a single iterable argument, constructs a [`Dict`](@ref) whose key-value pairs\nare taken from 2-tuples `(key,value)` generated by the argument.\n\n# Examples\n```jldoctest\njulia> Dict([(\"A\", 1), (\"B\", 2)])\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n\nAlternatively, a sequence of pair arguments may be passed.\n\n```jldoctest\njulia> Dict(\"A\"=>1, \"B\"=>2)\nDict{String,Int64} with 2 entries:\n \"B\" => 2\n \"A\" => 1\n```\n"}],"Base.exit":[{"Tuple{Any}":" exit(code=0)\n\nStop the program with an exit code. The default exit code is zero, indicating that the\nprogram completed successfully. In an interactive session, `exit()` can be called with\nthe keyboard shortcut `^D`.\n"}],"Base.Clonglong":[{"Union{}":" Clonglong\n\nEquivalent to the native `signed long long` c-type ([`Int64`](@ref)).\n"}],"Base.thisind":[{"Tuple{AbstractString,Integer}":" thisind(s::AbstractString, i::Integer) -> Int\n\nIf `i` is in bounds in `s` return the index of the start of the character whose\nencoding code unit `i` is part of. In other words, if `i` is the start of a\ncharacter, return `i`; if `i` is not the start of a character, rewind until the\nstart of a character and return that index. If `i` is equal to 0 or `ncodeunits(s)+1`\nreturn `i`. In all other cases throw `BoundsError`.\n\n# Examples\n```jldoctest\njulia> thisind(\"α\", 0)\n0\n\njulia> thisind(\"α\", 1)\n1\n\njulia> thisind(\"α\", 2)\n1\n\njulia> thisind(\"α\", 3)\n3\n\njulia> thisind(\"α\", 4)\nERROR: BoundsError: attempt to access String\n at index [4]\n[...]\n\njulia> thisind(\"α\", -1)\nERROR: BoundsError: attempt to access String\n at index [-1]\n[...]\n```\n"}],"Base.strip":[{"Tuple{AbstractString}":" strip([pred=isspace,] str::AbstractString) -> SubString\n strip(str::AbstractString, chars) -> SubString\n\nRemove leading and trailing characters from `str`, either those specified by `chars` or\nthose for which the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, vector or set of characters.\n\n!!! compat \"Julia 1.2\"\n The method which accepts a predicate function requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> strip(\"{3, 5}\\n\", ['{', '}', '\\n'])\n\"3, 5\"\n```\n"}],"Base.reshape":[{"Union{}":" reshape(A, dims...) -> AbstractArray\n reshape(A, dims) -> AbstractArray\n\nReturn an array with the same data as `A`, but with different\ndimension sizes or number of dimensions. The two arrays share the same\nunderlying data, so that the result is mutable if and only if `A` is\nmutable, and setting elements of one alters the values of the other.\n\nThe new dimensions may be specified either as a list of arguments or\nas a shape tuple. At most one dimension may be specified with a `:`,\nin which case its length is computed such that its product with all\nthe specified dimensions is equal to the length of the original array\n`A`. The total number of elements must not change.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:16)\n16-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n 7\n 8\n 9\n 10\n 11\n 12\n 13\n 14\n 15\n 16\n\njulia> reshape(A, (4, 4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reshape(A, 2, :)\n2×8 Array{Int64,2}:\n 1 3 5 7 9 11 13 15\n 2 4 6 8 10 12 14 16\n\njulia> reshape(1:6, 2, 3)\n2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:\n 1 3 5\n 2 4 6\n```\n"}],"Base.splitprec":[{"Union{Tuple{F}, Tuple{Type{F},Integer}} where F<:AbstractFloat":" hi, lo = splitprec(F::Type{<:AbstractFloat}, i::Integer)\n\nRepresent an integer `i` as a pair of floating-point numbers `hi` and\n`lo` (of type `F`) such that:\n- `widen(hi) + widen(lo) ≈ i`. It is exact if 1.5 * (number of precision bits in `F`) is greater than the number of bits in `i`.\n- all bits in `hi` are more significant than any of the bits in `lo`\n- `hi` can be exactly multiplied by the `hi` component of another call to `splitprec`.\n\nIn particular, while `convert(Float64, i)` can be lossy since Float64\nhas only 53 bits of precision, `splitprec(Float64, i)` is exact for\nany Int64/UInt64.\n"}],"Base.stdin":[{"Union{}":" stdin\n\nGlobal variable referring to the standard input stream.\n"}],"Base.widemul":[{"Tuple{Number,Number}":" widemul(x, y)\n\nMultiply `x` and `y`, giving the result as a larger type.\n\n# Examples\n```jldoctest\njulia> widemul(Float32(3.), 4.)\n12.0\n```\n"}],"Base.cat":[{"Tuple":" cat(A...; dims=dims)\n\nConcatenate the input arrays along the specified dimensions in the iterable `dims`. For\ndimensions not in `dims`, all input arrays should have the same size, which will also be the\nsize of the output array along that dimension. For dimensions in `dims`, the size of the\noutput array is the sum of the sizes of the input arrays along that dimension. If `dims` is\na single number, the different arrays are tightly stacked along that dimension. If `dims` is\nan iterable containing several dimensions, this allows one to construct block diagonal\nmatrices and their higher-dimensional analogues by simultaneously increasing several\ndimensions for every new input array and putting zero blocks elsewhere. For example,\n`cat(matrices...; dims=(1,2))` builds a block diagonal matrix, i.e. a block matrix with\n`matrices[1]`, `matrices[2]`, ... as diagonal blocks and matching zero blocks away from the\ndiagonal.\n"}],"Base.Pipe":[{"Tuple{}":"Construct an uninitialized Pipe object.\n\nThe appropriate end of the pipe will be automatically initialized if\nthe object is used in process spawning. This can be useful to easily\nobtain references in process pipelines, e.g.:\n\n```\njulia> err = Pipe()\n\n# After this `err` will be initialized and you may read `foo`'s\n# stderr from the `err` pipe.\njulia> run(pipeline(pipeline(`foo`, stderr=err), `cat`), wait=false)\n```\n"}],"Base.htol":[{"Tuple{Any}":" htol(x)\n\nConvert the endianness of a value from that used by the Host to Little-endian.\n"}],"Base.cumprod!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" cumprod!(y::AbstractVector, x::AbstractVector)\n\nCumulative product of a vector `x`, storing the result in `y`.\nSee also [`cumprod`](@ref).\n"},{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumprod!(B, A; dims::Integer)\n\nCumulative product of `A` along the dimension `dims`, storing the result in `B`.\nSee also [`cumprod`](@ref).\n"}],"Base.Timer":[{"Union{}":" Timer(delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object).\n\nWaiting tasks are woken after an initial delay of `delay` seconds, and then repeating with the given\n`interval` in seconds. If `interval` is equal to `0`, the timer is only triggered once. When\nthe timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n"},{"Tuple{Function,Real}":" Timer(callback::Function, delay; interval = 0)\n\nCreate a timer that wakes up tasks waiting for it (by calling [`wait`](@ref) on the timer object) and\ncalls the function `callback`.\n\nWaiting tasks are woken and the function `callback` is called after an initial delay of `delay` seconds,\nand then repeating with the given `interval` in seconds. If `interval` is equal to `0`, the timer\nis only triggered once. The function `callback` is called with a single argument, the timer itself.\nWhen the timer is closed (by [`close`](@ref) waiting tasks are woken with an error. Use [`isopen`](@ref)\nto check whether a timer is still active.\n\n# Examples\n\nHere the first number is printed after a delay of two seconds, then the following numbers are printed quickly.\n\n```julia-repl\njulia> begin\n i = 0\n cb(timer) = (global i += 1; println(i))\n t = Timer(cb, 2, interval=0.2)\n wait(t)\n sleep(0.5)\n close(t)\n end\n1\n2\n3\n```\n"}],"Base.Dims":[{"Union{}":" Dims{N}\n\nAn `NTuple` of `N` `Int`s used to represent the dimensions\nof an [`AbstractArray`](@ref).\n"}],"Base.code_typed":[{"Tuple{Any,Any}":" code_typed(f, types; optimize=true, debuginfo=:default)\n\nReturns an array of type-inferred lowered form (IR) for the methods matching the given\ngeneric function and type signature. The keyword argument `optimize` controls whether\nadditional optimizations, such as inlining, are also applied.\nThe keyword `debuginfo` controls the amount of code metadata present in the output,\npossible options are `:source` or `:none`.\n"}],"Base.KeyError":[{"Union{}":" KeyError(key)\n\nAn indexing operation into an `AbstractDict` (`Dict`) or `Set` like object tried to access or\ndelete a non-existent element.\n"}],"Base.iswritable":[{"Union{}":" iswritable(io) -> Bool\n\nReturn `true` if the specified IO object is writable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n iswritable(io)\n end\ntrue\n\njulia> open(\"myfile.txt\", \"r\") do io\n iswritable(io)\n end\nfalse\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.padding":[{"Tuple{Any}":" Compute the location of padding in a type.\n"}],"Base.require":[{"Tuple{Module,Symbol}":" require(into::Module, module::Symbol)\n\nThis function is part of the implementation of [`using`](@ref) / [`import`](@ref), if a module is not\nalready defined in `Main`. It can also be called directly to force reloading a module,\nregardless of whether it has been loaded before (for example, when interactively developing\nlibraries).\n\nLoads a source file, in the context of the `Main` module, on every active node, searching\nstandard locations for files. `require` is considered a top-level operation, so it sets the\ncurrent `include` path but does not use it to search for files (see help for [`include`](@ref)).\nThis function is typically used to load library code, and is implicitly called by `using` to\nload packages.\n\nWhen searching for files, `require` first looks for package code in the global array\n[`LOAD_PATH`](@ref). `require` is case-sensitive on all platforms, including those with\ncase-insensitive filesystems like macOS and Windows.\n\nFor more details regarding code loading, see the manual sections on [modules](@ref modules) and\n[parallel computing](@ref code-availability).\n"}],"Base.eachrow":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachrow(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the first dimension of vector or matrix `A`,\nreturning the rows as views.\n\nSee also [`eachcol`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.indentation":[{"Tuple{AbstractString}":" indentation(str::AbstractString; tabwidth=8) -> (Int, Bool)\n\nCalculate the width of leading white space. Return the width and a flag to indicate\nif the string is empty.\n\n# Examples\n```jldoctest\njulia> Base.indentation(\"\")\n(0, true)\n\njulia> Base.indentation(\" a\")\n(2, false)\n\njulia> Base.indentation(\"\\ta\"; tabwidth=3)\n(3, false)\n```\n"}],"Base.WeakKeyDict":[{"Union{}":" WeakKeyDict([itr])\n\n`WeakKeyDict()` constructs a hash table where the keys are weak\nreferences to objects which may be garbage collected even when\nreferenced in a hash table.\n\nSee [`Dict`](@ref) for further help. Note, unlike [`Dict`](@ref),\n`WeakKeyDict` does not convert keys on insertion.\n"}],"Base.Cfloat":[{"Union{}":" Cfloat\n\nEquivalent to the native `float` c-type ([`Float32`](@ref)).\n"}],"Base.view":[{"Union{Tuple{N}, Tuple{AbstractArray,Vararg{Any,N}}} where N":" view(A, inds...)\n\nLike [`getindex`](@ref), but returns a view into the parent array `A` with the\ngiven indices instead of making a copy. Calling [`getindex`](@ref) or\n[`setindex!`](@ref) on the returned `SubArray` computes the\nindices to the parent array on the fly without checking bounds.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = view(A, :, 1)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A # Note A has changed even though we modified b\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.@boundscheck":[{"Tuple{Any}":" @boundscheck(blk)\n\nAnnotates the expression `blk` as a bounds checking block, allowing it to be elided by [`@inbounds`](@ref).\n\n!!! note\n The function in which `@boundscheck` is written must be inlined into\n its caller in order for `@inbounds` to have effect.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> @inline function g(A, i)\n @boundscheck checkbounds(A, i)\n return \"accessing ($A)[$i]\"\n end;\n\njulia> f1() = return g(1:2, -1);\n\njulia> f2() = @inbounds return g(1:2, -1);\n\njulia> f1()\nERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]\nStacktrace:\n [1] throw_boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:455\n [2] checkbounds at ./abstractarray.jl:420 [inlined]\n [3] g at ./none:2 [inlined]\n [4] f1() at ./none:1\n [5] top-level scope\n\njulia> f2()\n\"accessing (1:2)[-1]\"\n```\n\n!!! warning\n\n The `@boundscheck` annotation allows you, as a library writer, to opt-in to\n allowing *other code* to remove your bounds checks with [`@inbounds`](@ref).\n As noted there, the caller must verify—using information they can access—that\n their accesses are valid before using `@inbounds`. For indexing into your\n [`AbstractArray`](@ref) subclasses, for example, this involves checking the\n indices against its [`size`](@ref). Therefore, `@boundscheck` annotations\n should only be added to a [`getindex`](@ref) or [`setindex!`](@ref)\n implementation after you are certain its behavior is correct.\n"}],"Base.copyto!":[{"Tuple{AbstractArray,CartesianIndices,AbstractArray,CartesianIndices}":" copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest\n\nCopy the block of `src` in the range of `Rsrc` to the block of `dest`\nin the range of `Rdest`. The sizes of the two regions must match.\n"},{"Tuple{Any,Any}":" copyto!(dest::AbstractArray, src) -> dest\n\n\nCopy all elements from collection `src` to array `dest`, whose length must be greater than\nor equal to the length `n` of `src`. The first `n` elements of `dest` are overwritten,\nthe other elements are left untouched.\n\n# Examples\n```jldoctest\njulia> x = [1., 0., 3., 0., 5.];\n\njulia> y = zeros(7);\n\njulia> copyto!(y, x);\n\njulia> y\n7-element Array{Float64,1}:\n 1.0\n 0.0\n 3.0\n 0.0\n 5.0\n 0.0\n 0.0\n```\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Integer,Array{T,N} where N,Integer,Integer}} where T":" copyto!(dest, do, src, so, N)\n\nCopy `N` elements from collection `src` starting at offset `so`, to array `dest` starting at\noffset `do`. Return `dest`.\n"}],"Base.isambiguous":[{"Tuple{Method,Method}":" Base.isambiguous(m1, m2; ambiguous_bottom=false) -> Bool\n\nDetermine whether two methods `m1` and `m2` (typically of the same\nfunction) are ambiguous. This test is performed in the context of\nother methods of the same function; in isolation, `m1` and `m2` might\nbe ambiguous, but if a third method resolving the ambiguity has been\ndefined, this returns `false`.\n\nFor parametric types, the `ambiguous_bottom` keyword argument controls whether\n`Union{}` counts as an ambiguous intersection of type parameters – when `true`,\nit is considered ambiguous, when `false` it is not.\n\n# Examples\n```jldoctest\njulia> foo(x::Complex{<:Integer}) = 1\nfoo (generic function with 1 method)\n\njulia> foo(x::Complex{<:Rational}) = 2\nfoo (generic function with 2 methods)\n\njulia> m1, m2 = collect(methods(foo));\n\njulia> typeintersect(m1.sig, m2.sig)\nTuple{typeof(foo),Complex{Union{}}}\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=true)\ntrue\n\njulia> Base.isambiguous(m1, m2, ambiguous_bottom=false)\nfalse\n```\n"}],"Base.promote_rule":[{"Union{}":" promote_rule(type1, type2)\n\nSpecifies what type should be used by [`promote`](@ref) when given values of types `type1` and\n`type2`. This function should not be called directly, but should have definitions added to\nit for new types as appropriate.\n"}],"Base.download":[{"Tuple{Any,Any}":" download(url::AbstractString, [localfile::AbstractString])\n\nDownload a file from the given url, optionally renaming it to the given local file name. If\nno filename is given this will download into a randomly-named file in your temp directory.\nNote that this function relies on the availability of external tools such as `curl`, `wget`\nor `fetch` to download the file and is provided for convenience. For production use or\nsituations in which more options are needed, please use a package that provides the desired\nfunctionality instead.\n\nReturns the filename of the downloaded file.\n"}],"Base.notify":[{"Tuple{Base.GenericCondition,Any}":" notify(condition, val=nothing; all=true, error=false)\n\nWake up tasks waiting for a condition, passing them `val`. If `all` is `true` (the default),\nall waiting tasks are woken, otherwise only one is. If `error` is `true`, the passed value\nis raised as an exception in the woken tasks.\n\nReturn the count of tasks woken up. Return 0 if no tasks are waiting on `condition`.\n"}],"Base.checkindex":[{"Tuple{Type{Bool},AbstractUnitRange,Any}":" checkindex(Bool, inds::AbstractUnitRange, index)\n\nReturn `true` if the given `index` is within the bounds of\n`inds`. Custom types that would like to behave as indices for all\narrays can extend this method in order to provide a specialized bounds\nchecking implementation.\n\n# Examples\n```jldoctest\njulia> checkindex(Bool, 1:20, 8)\ntrue\n\njulia> checkindex(Bool, 1:20, 21)\nfalse\n```\n"}],"Base.one":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" one(x)\n one(T::type)\n\nReturn a multiplicative identity for `x`: a value such that\n`one(x)*x == x*one(x) == x`. Alternatively `one(T)` can\ntake a type `T`, in which case `one` returns a multiplicative\nidentity for any `x` of type `T`.\n\nIf possible, `one(x)` returns a value of the same type as `x`,\nand `one(T)` returns a value of type `T`. However, this may\nnot be the case for types representing dimensionful quantities\n(e.g. time in days), since the multiplicative\nidentity must be dimensionless. In that case, `one(x)`\nshould return an identity value of the same precision\n(and shape, for matrices) as `x`.\n\nIf you want a quantity that is of the same type as `x`, or of type `T`,\neven if `x` is dimensionful, use [`oneunit`](@ref) instead.\n\n# Examples\n```jldoctest\njulia> one(3.7)\n1.0\n\njulia> one(Int)\n1\n\njulia> import Dates; one(Dates.Day(1))\n1\n```\n"}],"Base.Slice":[{"Union{}":" Slice(indices)\n\nRepresent an AbstractUnitRange of indices as a vector of the indices themselves,\nwith special handling to signal they represent a complete slice of a dimension (:).\n\nUpon calling `to_indices`, Colons are converted to Slice objects to represent\nthe indices over which the Colon spans. Slice objects are themselves unit\nranges with the same indices as those they wrap. This means that indexing into\nSlice objects with an integer always returns that exact integer, and they\niterate over all the wrapped indices, even supporting offset indices.\n"}],"Base.skipmissing":[{"Tuple{Any}":" skipmissing(itr)\n\nReturn an iterator over the elements in `itr` skipping [`missing`](@ref) values.\nThe returned object can be indexed using indices of `itr` if the latter is indexable.\nIndices corresponding to missing values are not valid: they are skipped by [`keys`](@ref)\nand [`eachindex`](@ref), and a `MissingException` is thrown when trying to use them.\n\nUse [`collect`](@ref) to obtain an `Array` containing the non-`missing` values in\n`itr`. Note that even if `itr` is a multidimensional array, the result will always\nbe a `Vector` since it is not possible to remove missings while preserving dimensions\nof the input.\n\n# Examples\n```jldoctest\njulia> x = skipmissing([1, missing, 2])\nBase.SkipMissing{Array{Union{Missing, Int64},1}}(Union{Missing, Int64}[1, missing, 2])\n\njulia> sum(x)\n3\n\njulia> x[1]\n1\n\njulia> x[2]\nERROR: MissingException: the value at index (2,) is missing\n[...]\n\njulia> argmax(x)\n3\n\njulia> collect(keys(x))\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> collect(skipmissing([1, missing, 2]))\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> collect(skipmissing([1 missing; 2 missing]))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.redirect_stdin":[{"Union{}":" redirect_stdin([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stdin`](@ref).\nNote that the order of the return tuple is still `(rd, wr)`,\ni.e. data to be read from [`stdin`](@ref) may be written to `wr`.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdin(f::Function, stream)\n\nRun the function `f` while redirecting [`stdin`](@ref) to `stream`.\nUpon completion, [`stdin`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.diff":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" diff(A::AbstractVector)\n diff(A::AbstractArray; dims::Integer)\n\nFinite difference operator on a vector or a multidimensional array `A`. In the\nlatter case the dimension to operate on needs to be specified with the `dims`\nkeyword argument.\n\n!!! compat \"Julia 1.1\"\n `diff` for arrays with dimension higher than 2 requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> a = [2 4; 6 16]\n2×2 Array{Int64,2}:\n 2 4\n 6 16\n\njulia> diff(a, dims=2)\n2×1 Array{Int64,2}:\n 2\n 10\n\njulia> diff(vec(a))\n3-element Array{Int64,1}:\n 4\n -2\n 12\n```\n"}],"Base.ProcessFailedException":[{"Union{}":" ProcessFailedException\n\nIndicates problematic exit status of a process.\nWhen running commands or pipelines, this is thrown to indicate\na nonzero exit code was returned (i.e. that the invoked process failed).\n"}],"Base.showerror":[{"Tuple{IO,Any}":" showerror(io, e)\n\nShow a descriptive representation of an exception object `e`.\nThis method is used to display the exception after a call to [`throw`](@ref).\n\n# Examples\n```jldoctest\njulia> struct MyException <: Exception\n msg::AbstractString\n end\n\njulia> function Base.showerror(io::IO, err::MyException)\n print(io, \"MyException: \")\n print(io, err.msg)\n end\n\njulia> err = MyException(\"test exception\")\nMyException(\"test exception\")\n\njulia> sprint(showerror, err)\n\"MyException: test exception\"\n\njulia> throw(MyException(\"test exception\"))\nERROR: MyException: test exception\n```\n"}],"Base.ceil":[{"Union{}":" ceil([T,] x)\n ceil(x; digits::Integer= [, base = 10])\n ceil(x; sigdigits::Integer= [, base = 10])\n\n`ceil(x)` returns the nearest integral value of the same type as `x` that is greater than or\nequal to `x`.\n\n`ceil(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not\nrepresentable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.@inbounds":[{"Tuple{Any}":" @inbounds(blk)\n\nEliminates array bounds checking within expressions.\n\nIn the example below the in-range check for referencing\nelement `i` of array `A` is skipped to improve performance.\n\n```julia\nfunction sum(A::AbstractArray)\n r = zero(eltype(A))\n for i = 1:length(A)\n @inbounds r += A[i]\n end\n return r\nend\n```\n\n!!! warning\n\n Using `@inbounds` may return incorrect results/crashes/corruption\n for out-of-bounds indices. The user is responsible for checking it manually.\n Only use `@inbounds` when it is certain from the information locally available\n that all accesses are in bounds.\n"}],"Base.task_local_storage":[{"Tuple{Any}":" task_local_storage(key)\n\nLook up the value of a key in the current task's task-local storage.\n"},{"Tuple{Function,Any,Any}":" task_local_storage(body, key, value)\n\nCall the function `body` with a modified task-local storage, in which `value` is assigned to\n`key`; the previous value of `key`, or lack thereof, is restored afterwards. Useful\nfor emulating dynamic scoping.\n"},{"Tuple{Any,Any}":" task_local_storage(key, value)\n\nAssign a value to a key in the current task's task-local storage.\n"}],"Base.circshift":[{"Tuple{AbstractArray,Any}":" circshift(A, shifts)\n\nCircularly shift, i.e. rotate, the data in an array. The second argument is a tuple or\nvector giving the amount to shift in each dimension, or an integer to shift only in the\nfirst dimension.\n\n# Examples\n```jldoctest\njulia> b = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> circshift(b, (0,2))\n4×4 Array{Int64,2}:\n 9 13 1 5\n 10 14 2 6\n 11 15 3 7\n 12 16 4 8\n\njulia> circshift(b, (-1,0))\n4×4 Array{Int64,2}:\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n 1 5 9 13\n\njulia> a = BitArray([true, true, false, false, true])\n5-element BitArray{1}:\n 1\n 1\n 0\n 0\n 1\n\njulia> circshift(a, 1)\n5-element BitArray{1}:\n 1\n 1\n 1\n 0\n 0\n\njulia> circshift(a, -1)\n5-element BitArray{1}:\n 1\n 0\n 0\n 1\n 1\n```\n\nSee also [`circshift!`](@ref).\n"}],"Base.show_invalid":[{"Union{}":" show_invalid(io::IO, c::AbstractChar)\n\nCalled by `show(io, c)` when [`isoverlong(c)`](@ref) or\n[`ismalformed(c)`](@ref) return `true`. Subclasses\nof `AbstractChar` should define `Base.show_invalid` methods\nif they support storing invalid character data.\n"}],"Base.min":[{"Tuple{Any,Any}":" min(x, y, ...)\n\nReturn the minimum of the arguments. See also the [`minimum`](@ref) function\nto take the minimum element from a collection.\n\n# Examples\n```jldoctest\njulia> min(2, 5, 1)\n1\n```\n"}],"Base.text_colors":[{"Union{}":"Dictionary of color codes for the terminal.\n\nAvailable colors are: `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow` as well as the integers 0 to 255 inclusive.\n\nThe color `:default` will print text in the default color while the color `:normal`\nwill print text with all text properties (like boldness) reset.\nPrinting with the color `:nothing` will print the string without modifications.\n"}],"Base.Matrix":[{"Union{}":" Matrix{T} <: AbstractMatrix{T}\n\nTwo-dimensional dense array with elements of type `T`, often used to represent\na mathematical matrix. Alias for [`Array{T,2}`](@ref).\n"}],"Base.typemin":[{"Union{}":" typemin(T)\n\nThe lowest value representable by the given (real) numeric DataType `T`.\n\n# Examples\n```jldoctest\njulia> typemin(Float16)\n-Inf16\n\njulia> typemin(Float32)\n-Inf32\n```\n"}],"Base.@macroexpand":[{"Tuple{Any}":" @macroexpand\n\nReturn equivalent expression with all macros removed (expanded).\n\nThere are differences between `@macroexpand` and [`macroexpand`](@ref).\n\n* While [`macroexpand`](@ref) takes a keyword argument `recursive`, `@macroexpand`\nis always recursive. For a non recursive macro version, see [`@macroexpand1`](@ref).\n\n* While [`macroexpand`](@ref) has an explicit `module` argument, `@macroexpand` always\nexpands with respect to the module in which it is called.\nThis is best seen in the following example:\n```julia-repl\njulia> module M\n macro m()\n 1\n end\n function f()\n (@macroexpand(@m),\n macroexpand(M, :(@m)),\n macroexpand(Main, :(@m))\n )\n end\n end\nM\n\njulia> macro m()\n 2\n end\n@m (macro with 1 method)\n\njulia> M.f()\n(1, 1, 2)\n```\nWith `@macroexpand` the expression expands where `@macroexpand` appears in the code (module `M` in the example).\nWith `macroexpand` the expression expands in the module given as the first argument.\n"}],"Base.@assert":[{"Tuple{Any,Vararg{Any,N} where N}":" @assert cond [text]\n\nThrow an [`AssertionError`](@ref) if `cond` is `false`. Preferred syntax for writing assertions.\nMessage `text` is optionally displayed upon assertion failure.\n\n!!! warning\n An assert might be disabled at various optimization levels.\n Assert should therefore only be used as a debugging tool\n and not used for authentication verification (e.g., verifying passwords),\n nor should side effects needed for the function to work correctly\n be used inside of asserts.\n\n# Examples\n```jldoctest\njulia> @assert iseven(3) \"3 is an odd number!\"\nERROR: AssertionError: 3 is an odd number!\n\njulia> @assert isodd(3) \"What even are numbers?\"\n```\n"}],"Base.zero":[{"Tuple{Number}":" zero(x)\n\nGet the additive identity element for the type of `x` (`x` can also specify the type itself).\n\n# Examples\n```jldoctest\njulia> zero(1)\n0\n\njulia> zero(big\"2.0\")\n0.0\n\njulia> zero(rand(2,2))\n2×2 Array{Float64,2}:\n 0.0 0.0\n 0.0 0.0\n```\n"}],"Base.esc":[{"Tuple{Any}":" esc(e)\n\nOnly valid in the context of an [`Expr`](@ref) returned from a macro. Prevents the macro hygiene\npass from turning embedded variables into gensym variables. See the [Macros](@ref man-macros)\nsection of the Metaprogramming chapter of the manual for more details and examples.\n"}],"Base.AsyncCollector":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing) -> iterator\n\nReturn an iterator which applies `f` to each element of `c` asynchronously\nand collects output into `results`.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `iterate(::AsyncCollector, state) -> (nothing, state)`. A successful return\n from `iterate` indicates that the next element from the input collection is\n being processed asynchronously. It blocks until a free worker task becomes\n available.\n\n!!! note\n `for _ in AsyncCollector(f, results, c...; ntasks=1) end` is equivalent to\n `map!(f, results, c...)`.\n"}],"Base.map!":[{"Tuple{Any,Base.ValueIterator}":" map!(f, values(dict::AbstractDict))\n\nModifies `dict` by transforming each value from `val` to `f(val)`.\nNote that the type of `dict` cannot be changed: if `f(val)` is not an instance of the value type\nof `dict` then it will be converted to the value type if possible and otherwise raise an error.\n\n# Examples\n```jldoctest\njulia> d = Dict(:a => 1, :b => 2)\nDict{Symbol,Int64} with 2 entries:\n :a => 1\n :b => 2\n\njulia> map!(v -> v-1, values(d))\nBase.ValueIterator for a Dict{Symbol,Int64} with 2 entries. Values:\n 0\n 1\n```\n"},{"Union{Tuple{F}, Tuple{F,AbstractArray,Vararg{AbstractArray,N} where N}} where F":" map!(function, destination, collection...)\n\nLike [`map`](@ref), but stores the result in `destination` rather than a new\ncollection. `destination` must be at least as large as the first collection.\n\n# Examples\n```jldoctest\njulia> a = zeros(3);\n\njulia> map!(x -> x * 2, a, [1, 2, 3]);\n\njulia> a\n3-element Array{Float64,1}:\n 2.0\n 4.0\n 6.0\n```\n"}],"Base.ignorestatus":[{"Tuple{Cmd}":" ignorestatus(command)\n\nMark a command object so that running it will not throw an error if the result code is non-zero.\n"}],"Base.process_exited":[{"Tuple{Base.Process}":" process_exited(p::Process)\n\nDetermine whether a process has exited.\n"}],"Base.systemerror":[{"Tuple{Any,Bool}":" systemerror(sysfunc[, errno::Cint=Libc.errno()])\n systemerror(sysfunc, iftrue::Bool)\n\nRaises a `SystemError` for `errno` with the descriptive string `sysfunc` if `iftrue` is `true`\n"}],"Base.disable_sigint":[{"Tuple{Function}":" disable_sigint(f::Function)\n\nDisable Ctrl-C handler during execution of a function on the current task,\nfor calling external code that may call julia code that is not interrupt safe.\nIntended to be called using `do` block syntax as follows:\n\n disable_sigint() do\n # interrupt-unsafe code\n ...\n end\n\nThis is not needed on worker threads (`Threads.threadid() != 1`) since the\n`InterruptException` will only be delivered to the master thread.\nExternal functions that do not call julia code or julia runtime\nautomatically disable sigint during their execution.\n"}],"Base.isdispatchtuple":[{"Tuple{Any}":" isdispatchtuple(T)\n\nDetermine whether type `T` is a tuple \"leaf type\",\nmeaning it could appear as a type signature in dispatch\nand has no subtypes (or supertypes) which could appear in a call.\n"}],"Base.ENV":[{"Union{}":" ENV\n\nReference to the singleton `EnvDict`, providing a dictionary interface to system environment\nvariables.\n\n(On Windows, system environment variables are case-insensitive, and `ENV` correspondingly converts\nall keys to uppercase for display, iteration, and copying. Portable code should not rely on the\nability to distinguish variables by case, and should beware that setting an ostensibly lowercase\nvariable may result in an uppercase `ENV` key.)\n"}],"Base.typejoin":[{"Tuple{}":" typejoin(T, S)\n\n\nReturn the closest common ancestor of `T` and `S`, i.e. the narrowest type from which\nthey both inherit.\n"}],"Base.stdout":[{"Union{}":" stdout\n\nGlobal variable referring to the standard out stream.\n"}],"Base.replace_ref_end!":[{"Tuple{Any}":" replace_ref_end!(ex)\n\nRecursively replace occurrences of the symbol :end in a \"ref\" expression (i.e. A[...]) `ex`\nwith the appropriate function calls (`lastindex` or `size`). Replacement uses\nthe closest enclosing ref, so\n\n A[B[end]]\n\nshould transform to\n\n A[B[lastindex(B)]]\n\n"}],"Base.detach":[{"Tuple{Cmd}":" detach(command)\n\nMark a command object so that it will be run in a new process group, allowing it to outlive the julia process, and not have Ctrl-C interrupts passed to it.\n"}],"Base.Rational":[{"Union{}":" Rational{T<:Integer} <: Real\n\nRational number type, with numerator and denominator of type `T`.\nRationals are checked for overflow.\n"}],"Base.isbitstype":[{"Tuple{Type}":" isbitstype(T)\n\nReturn `true` if type `T` is a \"plain data\" type,\nmeaning it is immutable and contains no references to other values,\nonly `primitive` types and other `isbitstype` types.\nTypical examples are numeric types such as [`UInt8`](@ref),\n[`Float64`](@ref), and [`Complex{Float64}`](@ref).\nThis category of types is significant since they are valid as type parameters,\nmay not track [`isdefined`](@ref) / [`isassigned`](@ref) status,\nand have a defined layout that is compatible with C.\n\n# Examples\n```jldoctest\njulia> isbitstype(Complex{Float64})\ntrue\n\njulia> isbitstype(Complex)\nfalse\n```\n"}],"Base.AbstractLock":[{"Union{}":" AbstractLock\n\nAbstract supertype describing types that\nimplement the synchronization primitives:\n[`lock`](@ref), [`trylock`](@ref), [`unlock`](@ref), and [`islocked`](@ref).\n"}],"Base.eachindex":[{"Tuple{AbstractArray}":" eachindex(A...)\n\nCreate an iterable object for visiting each index of an `AbstractArray` `A` in an efficient\nmanner. For array types that have opted into fast linear indexing (like `Array`), this is\nsimply the range `1:length(A)`. For other array types, return a specialized Cartesian\nrange to efficiently index into the array with indices specified for every dimension. For\nother iterables, including strings and dictionaries, return an iterator object\nsupporting arbitrary index types (e.g. unevenly spaced or non-integer indices).\n\nIf you supply more than one `AbstractArray` argument, `eachindex` will create an\niterable object that is fast for all arguments (a [`UnitRange`](@ref)\nif all inputs have fast linear indexing, a [`CartesianIndices`](@ref)\notherwise).\nIf the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception\nwill be thrown.\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> for i in eachindex(A) # linear indexing\n println(i)\n end\n1\n2\n3\n4\n\njulia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing\n println(i)\n end\nCartesianIndex(1, 1)\nCartesianIndex(2, 1)\n```\n"}],"Base.@noinline":[{"Tuple{Any}":" @noinline\n\nGive a hint to the compiler that it should not inline a function.\n\nSmall functions are typically inlined automatically.\nBy using `@noinline` on small functions, auto-inlining can be\nprevented. This is shown in the following example:\n\n```julia\n@noinline function smallfunction(x)\n #=\n Function Definition\n =#\nend\n\nIf the function is trivial (for example returning a constant) it might get inlined anyway.\n```\n"}],"Base.nameof":[{"Tuple{Module}":" nameof(m::Module) -> Symbol\n\nGet the name of a `Module` as a [`Symbol`](@ref).\n\n# Examples\n```jldoctest\njulia> nameof(Base.Broadcast)\n:Broadcast\n```\n"},{"Tuple{Function}":" nameof(f::Function) -> Symbol\n\nGet the name of a generic `Function` as a symbol. For anonymous functions,\nthis is a compiler-generated name. For explicitly-declared subtypes of\n`Function`, it is the name of the function's type.\n"},{"Tuple{DataType}":" nameof(t::DataType) -> Symbol\n\nGet the name of a (potentially `UnionAll`-wrapped) `DataType` (without its parent module)\nas a symbol.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct S{T}\n end\n end\nFoo\n\njulia> nameof(Foo.S{T} where T)\n:S\n```\n"}],"Base.@macroexpand1":[{"Tuple{Any}":" @macroexpand1\n\nNon recursive version of [`@macroexpand`](@ref).\n"}],"Base.isodd":[{"Tuple{Integer}":" isodd(x::Integer) -> Bool\n\nReturn `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isodd(9)\ntrue\n\njulia> isodd(10)\nfalse\n```\n"}],"Base.^":[{"Tuple{Number,Number}":" ^(x, y)\n\nExponentiation operator. If `x` is a matrix, computes matrix exponentiation.\n\nIf `y` is an `Int` literal (e.g. `2` in `x^2` or `-3` in `x^-3`), the Julia code\n`x^y` is transformed by the compiler to `Base.literal_pow(^, x, Val(y))`, to\nenable compile-time specialization on the value of the exponent.\n(As a default fallback we have `Base.literal_pow(^, x, Val(y)) = ^(x,y)`,\nwhere usually `^ == Base.^` unless `^` has been defined in the calling\nnamespace.)\n\n```jldoctest\njulia> 3^5\n243\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> A^3\n2×2 Array{Int64,2}:\n 37 54\n 81 118\n```\n"},{"Tuple{Regex,Integer}":" ^(s::Regex, n::Integer)\n\nRepeat a regex `n` times.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> r\"Test \"^2\nr\"(?:Test ){2}\"\n\njulia> match(r\"Test \"^2, \"Test Test \")\nRegexMatch(\"Test Test \")\n```\n"},{"Tuple{Union{AbstractChar, AbstractString},Integer}":" ^(s::Union{AbstractString,AbstractChar}, n::Integer)\n\nRepeat a string or character `n` times. This can also be written as `repeat(s, n)`.\n\nSee also: [`repeat`](@ref)\n\n# Examples\n```jldoctest\njulia> \"Test \"^3\n\"Test Test Test \"\n```\n"}],"Base.:":[{"Union{Tuple{T}, Tuple{T,Any,T}} where T":" (:)(start, [step], stop)\n\nRange operator. `a:b` constructs a range from `a` to `b` with a step size of 1 (a [`UnitRange`](@ref))\n, and `a:s:b` is similar but uses a step size of `s` (a [`StepRange`](@ref)).\n\n`:` is also used in indexing to select whole dimensions\n and for [`Symbol`](@ref) literals, as in e.g. `:hello`.\n"}],"Base.abs":[{"Union{}":" abs(x)\n\nThe absolute value of `x`.\n\nWhen `abs` is applied to signed integers, overflow may occur,\nresulting in the return of a negative value. This overflow occurs only\nwhen `abs` is applied to the minimum representable value of a signed\ninteger. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,\nnot `-x` as might be expected.\n\n# Examples\n```jldoctest\njulia> abs(-3)\n3\n\njulia> abs(1 + im)\n1.4142135623730951\n\njulia> abs(typemin(Int64))\n-9223372036854775808\n```\n"}],"Base.unsafe_read":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_read(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from the `IO` stream object into `ref` (converted to a pointer).\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.unsafe_load":[{"Union{Tuple{Ptr}, Tuple{Ptr,Integer}}":" unsafe_load(p::Ptr{T}, i::Integer=1)\n\nLoad a value of type `T` from the address of the `i`th element (1-indexed) starting at `p`.\nThis is equivalent to the C expression `p[i-1]`.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointer `p` to ensure that it is valid. Incorrect usage may segfault your program or return\ngarbage answers, in the same manner as C.\n"}],"Base.⊆":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.fieldcount":[{"Tuple{Any}":" fieldcount(t::Type)\n\nGet the number of fields that an instance of the given type would have.\nAn error is thrown if the type is too abstract to determine this.\n"}],"Base.pathof":[{"Tuple{Module}":" pathof(m::Module)\n\nReturn the path of the `m.jl` file that was used to `import` module `m`,\nor `nothing` if `m` was not imported from a package.\n\nUse [`dirname`](@ref) to get the directory part and [`basename`](@ref)\nto get the file name part of the path.\n"}],"Base.issetequal":[{"Tuple{AbstractSet,AbstractSet}":" issetequal(a, b) -> Bool\n\nDetermine whether `a` and `b` have the same elements. Equivalent\nto `a ⊆ b && b ⊆ a` but more efficient when possible.\n\n# Examples\n```jldoctest\njulia> issetequal([1, 2], [1, 2, 3])\nfalse\n\njulia> issetequal([1, 2], [2, 1])\ntrue\n```\n"}],"Base.fieldtypes":[{"Tuple{Type}":" fieldtypes(T::Type)\n\nThe declared types of all fields in a composite DataType `T` as a tuple.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> fieldtypes(Foo)\n(Int64, String)\n```\n"}],"Base.PROGRAM_FILE":[{"Union{}":" PROGRAM_FILE\n\nA string containing the script name passed to Julia from the command line. Note that the\nscript name remains unchanged from within included files. Alternatively see\n[`@__FILE__`](@ref).\n"}],"Base.findnext":[{"Tuple{Function,Any,Any}":" findnext(predicate::Function, A, i)\n\nFind the next index after or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2];\n\njulia> findnext(isodd, A, 1)\n1\n\njulia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL\n\njulia> A = [1 4; 2 2];\n\njulia> findnext(isodd, A, CartesianIndex(1, 1))\nCartesianIndex(1, 1)\n```\n"},{"Tuple{Any,Any}":" findnext(A, i)\n\nFind the next index after or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findnext(A, 1)\n3\n\njulia> findnext(A, 4) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findnext(A, CartesianIndex(1, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findnext(pattern::AbstractString, string::AbstractString, start::Integer)\n findnext(pattern::Regex, string::String, start::Integer)\n\nFind the next occurrence of `pattern` in `string` starting at position `start`.\n`pattern` can be either a string, or a regular expression, in which case `string`\nmust be of type `String`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findnext(x, s, i)] == x`:\n\n`findnext(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `i <= start`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findnext(\"z\", \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext(\"o\", \"Hello to the world\", 6)\n8:8\n\njulia> findnext(\"Lang\", \"JuliaLang\", 2)\n6:9\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findnext(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the next occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findnext('z', \"Hello to the world\", 1) === nothing\ntrue\n\njulia> findnext('o', \"Hello to the world\", 6)\n8\n```\n"}],"Base.LOAD_PATH":[{"Union{}":" LOAD_PATH\n\nAn array of paths for `using` and `import` statements to consider as project\nenvironments or package directories when loading code. It is populated based on\nthe [`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH) environment variable if set;\notherwise it defaults to `[\"@\", \"@v#.#\", \"@stdlib\"]`. Entries starting with `@`\nhave special meanings:\n\n- `@` refers to the \"current active environment\", the initial value of which is\n initially determined by the [`JULIA_PROJECT`](@ref JULIA_PROJECT) environment\n variable or the `--project` command-line option.\n\n- `@stdlib` expands to the absolute path of the current Julia installation's\n standard library directory.\n\n- `@name` refers to a named environment, which are stored in depots (see\n [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)) under the `environments`\n subdirectory. The user's named environments are stored in\n `~/.julia/environments` so `@name` would refer to the environment in\n `~/.julia/environments/name` if it exists and contains a `Project.toml` file.\n If `name` contains `#` characters, then they are replaced with the major, minor\n and patch components of the Julia version number. For example, if you are\n running Julia 1.2 then `@v#.#` expands to `@v1.2` and will look for an\n environment by that name, typically at `~/.julia/environments/v1.2`.\n\nThe fully expanded value of `LOAD_PATH` that is searched for projects and packages\ncan be seen by calling the `Base.load_path()` function.\n\nSee also:\n[`JULIA_LOAD_PATH`](@ref JULIA_LOAD_PATH),\n[`JULIA_PROJECT`](@ref JULIA_PROJECT),\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.size":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" size(A::AbstractArray, [dim])\n\nReturn a tuple containing the dimensions of `A`. Optionally you can specify a\ndimension to just get the length of that dimension.\n\nNote that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)\nmay be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (2,3,4));\n\njulia> size(A)\n(2, 3, 4)\n\njulia> size(A, 2)\n3\n```\n"}],"Base._xfadjoint":[{"Tuple{Any,Any}":" _xfadjoint(op, itr) -> op′, itr′\n\nGiven a pair of reducing function `op` and an iterator `itr`, return a pair\n`(op′, itr′)` of similar types. If the iterator `itr` is transformed by an\niterator transform `ixf` whose adjoint transducer `xf` is known, `op′ = xf(op)`\nand `itr′ = ixf⁻¹(itr)` is returned. Otherwise, `op` and `itr` are returned\nas-is. For example, transducer `rf -> MappingRF(f, rf)` is the adjoint of\niterator transform `itr -> Generator(f, itr)`.\n\nNested iterator transforms are converted recursively. That is to say,\ngiven `op` and\n\n itr = (ixf₁ ∘ ixf₂ ∘ ... ∘ ixfₙ)(itr′)\n\nwhat is returned is `itr′` and\n\n op′ = (xfₙ ∘ ... ∘ xf₂ ∘ xf₁)(op)\n"}],"Base.@gensym":[{"Tuple":" @gensym\n\nGenerates a gensym symbol for a variable. For example, `@gensym x y` is transformed into\n`x = gensym(\"x\"); y = gensym(\"y\")`.\n"}],"Base.get!":[{"Tuple{Function,Any,Any}":" get!(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => f()`, and return `f()`.\n\nThis is intended to be called using `do` block syntax:\n```julia\nget!(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get!(collection, key, default)\n\nReturn the value stored for the given key, or if no mapping for the key is present, store\n`key => default`, and return `default`.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2, \"c\"=>3);\n\njulia> get!(d, \"a\", 5)\n1\n\njulia> get!(d, \"d\", 4)\n4\n\njulia> d\nDict{String,Int64} with 4 entries:\n \"c\" => 3\n \"b\" => 2\n \"a\" => 1\n \"d\" => 4\n```\n"}],"Base.retry":[{"Tuple{Any}":" retry(f; delays=ExponentialBackOff(), check=nothing) -> Function\n\nReturn an anonymous function that calls function `f`. If an exception arises,\n`f` is repeatedly called again, each time `check` returns `true`, after waiting the\nnumber of seconds specified in `delays`. `check` should input `delays`'s\ncurrent state and the `Exception`.\n\n!!! compat \"Julia 1.2\"\n Before Julia 1.2 this signature was restricted to `f::Function`.\n\n# Examples\n```julia\nretry(f, delays=fill(5.0, 3))\nretry(f, delays=rand(5:10, 2))\nretry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))\nretry(http_get, check=(s,e)->e.status == \"503\")(url)\nretry(read, check=(s,e)->isa(e, IOError))(io, 128; all=false)\n```\n"}],"Base.timedwait":[{"Tuple{Function,Float64}":" timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)\n\nWaits until `testcb` returns `true` or for `secs` seconds, whichever is earlier.\n`testcb` is polled every `pollint` seconds.\n\nReturns :ok, :timed_out, or :error\n"}],"Base.foldl":[{"Tuple{Any,Any}":" foldl(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed left associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldl(=>, 1:4)\n((1 => 2) => 3) => 4\n\njulia> foldl(=>, 1:4; init=0)\n(((0 => 1) => 2) => 3) => 4\n```\n"}],"Base.isbitsunion":[{"Tuple{Union}":" Base.isbitsunion(::Type{T})\n\nReturn whether a type is an \"is-bits\" Union type, meaning each type included in a Union is [`isbitstype`](@ref).\n\n# Examples\n```jldoctest\njulia> Base.isbitsunion(Union{Float64, UInt8})\ntrue\n\njulia> Base.isbitsunion(Union{Float64, String})\nfalse\n```\n"}],"Base.mark":[{"Tuple{IO}":" mark(s)\n\nAdd a mark at the current position of stream `s`. Return the marked position.\n\nSee also [`unmark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.isperm":[{"Tuple{Any}":" isperm(v) -> Bool\n\nReturn `true` if `v` is a valid permutation.\n\n# Examples\n```jldoctest\njulia> isperm([1; 2])\ntrue\n\njulia> isperm([1; 3])\nfalse\n```\n"}],"Base.findmax!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmax!(rval, rind, A) -> (maxval, index)\n\nFind the maximum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as greater than all other values.\n"}],"Base.Regex":[{"Union{}":" Regex(pattern[, flags])\n\nA type representing a regular expression. `Regex` objects can be used to match strings\nwith [`match`](@ref).\n\n`Regex` objects can be created using the [`@r_str`](@ref) string macro. The\n`Regex(pattern[, flags])` constructor is usually used if the `pattern` string needs\nto be interpolated. See the documentation of the string macro for details on flags.\n"}],"Base.__precompile__":[{"Union{Tuple{}, Tuple{Bool}}":" __precompile__(isprecompilable::Bool)\n\nSpecify whether the file calling this function is precompilable, defaulting to `true`.\nIf a module or file is *not* safely precompilable, it should call `__precompile__(false)` in\norder to throw an error if Julia attempts to precompile it.\n"}],"Base.dump":[{"Tuple{Any}":" dump(x; maxdepth=8)\n\nShow every part of the representation of a value.\nThe depth of the output is truncated at `maxdepth`.\n\n# Examples\n```jldoctest\njulia> struct MyStruct\n x\n y\n end\n\njulia> x = MyStruct(1, (2,3));\n\njulia> dump(x)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n 1: Int64 2\n 2: Int64 3\n\njulia> dump(x; maxdepth = 1)\nMyStruct\n x: Int64 1\n y: Tuple{Int64,Int64}\n```\n"}],"Base.getpass":[{"Union{}":" Base.getpass(message::AbstractString) -> Base.SecretBuffer\n\nDisplay a message and wait for the user to input a secret, returning an `IO`\nobject containing the secret.\n\nNote that on Windows, the secret might be displayed as it is typed; see\n`Base.winprompt` for securely retrieving username/password pairs from a\ngraphical interface.\n"}],"Base.setindex!":[{"Union{}":" setindex!(collection, value, key...)\n\nStore the given value at the given key or index within a collection. The syntax `a[i,j,...] =\nx` is converted by the compiler to `(setindex!(a, x, i, j, ...); x)`.\n"},{"Tuple{AbstractArray,Any,Vararg{Any,N} where N}":" setindex!(A, X, inds...)\n A[inds...] = X\n\nStore values from array `X` within some subset of `A` as specified by `inds`.\nThe syntax `A[inds...] = X` is equivalent to `setindex!(A, X, inds...)`.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,2);\n\njulia> setindex!(A, [10, 20], [1, 2]);\n\njulia> A[[3, 4]] = [30, 40];\n\njulia> A\n2×2 Array{Float64,2}:\n 10.0 30.0\n 20.0 40.0\n```\n"}],"Base.release":[{"Tuple{Base.Semaphore}":" release(s::Semaphore)\n\nReturn one permit to the pool,\npossibly allowing another task to acquire it\nand resume execution.\n"}],"Base.iseven":[{"Tuple{Integer}":" iseven(x::Integer) -> Bool\n\nReturn `true` is `x` is even (that is, divisible by 2), and `false` otherwise.\n\n# Examples\n```jldoctest\njulia> iseven(9)\nfalse\n\njulia> iseven(10)\ntrue\n```\n"}],"Base.sizehint!":[{"Union{}":" sizehint!(s, n)\n\nSuggest that collection `s` reserve capacity for at least `n` elements. This can improve performance.\n"}],"Base.IOContext":[{"Tuple{IO,Pair,Vararg{Pair,N} where N}":" IOContext(io::IO, KV::Pair...)\n\nCreate an `IOContext` that wraps a given stream, adding the specified `key=>value` pairs to\nthe properties of that stream (note that `io` can itself be an `IOContext`).\n\n - use `(key => value) in io` to see if this particular combination is in the properties set\n - use `get(io, key, default)` to retrieve the most recent value for a particular key\n\nThe following properties are in common use:\n\n - `:compact`: Boolean specifying that small values should be printed more compactly, e.g.\n that numbers should be printed with fewer digits. This is set when printing array\n elements.\n - `:limit`: Boolean specifying that containers should be truncated, e.g. showing `…` in\n place of most elements.\n - `:displaysize`: A `Tuple{Int,Int}` giving the size in rows and columns to use for text\n output. This can be used to override the display size for called functions, but to\n get the size of the screen use the `displaysize` function.\n - `:typeinfo`: a `Type` characterizing the information already printed\n concerning the type of the object about to be displayed. This is mainly useful when\n displaying a collection of objects of the same type, so that redundant type information\n can be avoided (e.g. `[Float16(0)]` can be shown as \"Float16[0.0]\" instead\n of \"Float16[Float16(0.0)]\" : while displaying the elements of the array, the `:typeinfo`\n property will be set to `Float16`).\n - `:color`: Boolean specifying whether ANSI color/escape codes are supported/expected.\n By default, this is determined by whether `io` is a compatible terminal and by any\n `--color` command-line flag when `julia` was launched.\n\n# Examples\n\n```jldoctest\njulia> io = IOBuffer();\n\njulia> printstyled(IOContext(io, :color => true), \"string\", color=:red)\n\njulia> String(take!(io))\n\"\\e[31mstring\\e[39m\"\n\njulia> printstyled(io, \"string\", color=:red)\n\njulia> String(take!(io))\n\"string\"\n```\n\n```jldoctest\njulia> print(IOContext(stdout, :compact => false), 1.12341234)\n1.12341234\njulia> print(IOContext(stdout, :compact => true), 1.12341234)\n1.12341\n```\n\n```jldoctest\njulia> function f(io::IO)\n if get(io, :short, false)\n print(io, \"short\")\n else\n print(io, \"loooooong\")\n end\n end\nf (generic function with 1 method)\n\njulia> f(stdout)\nloooooong\njulia> f(IOContext(stdout, :short => true))\nshort\n```\n"},{"Union{}":" IOContext\n\n`IOContext` provides a mechanism for passing output configuration settings among [`show`](@ref) methods.\n\nIn short, it is an immutable dictionary that is a subclass of `IO`. It supports standard\ndictionary operations such as [`getindex`](@ref), and can also be used as an I/O stream.\n"},{"Tuple{IO,IO}":" IOContext(io::IO, context::IOContext)\n\nCreate an `IOContext` that wraps an alternate `IO` but inherits the properties of `context`.\n"}],"Base.>:":[{"Union{}":" >:(T1, T2)\n\nSupertype operator, equivalent to `T2 <: T1`.\n"}],"Base.>":[{"Tuple{Any}":" >(x)\n\nCreate a function that compares its argument to `x` using [`>`](@ref), i.e.\na function equivalent to `y -> y > x`.\nThe returned function is of type `Base.Fix2{typeof(>)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >(x, y)\n\nGreater-than comparison operator. Falls back to `y < x`.\n\n# Implementation\nGenerally, new types should implement [`<`](@ref) instead of this function,\nand rely on the fallback definition `>(x, y) = y < x`.\n\n# Examples\n```jldoctest\njulia> 'a' > 'b'\nfalse\n\njulia> 7 > 3 > 1\ntrue\n\njulia> \"abc\" > \"abd\"\nfalse\n\njulia> 5 > 3\ntrue\n```\n"}],"Base.RangeStepStyle":[{"Union{}":" RangeStepStyle(instance)\n RangeStepStyle(T::Type)\n\nIndicate whether an instance or a type supports constructing a range with\na perfectly regular step or not. A regular step means that\n[`step`](@ref) will always be exactly equal to the difference between two\nsubsequent elements in a range, i.e. for a range `r::AbstractRange{T}`:\n```julia\nall(diff(r) .== step(r))\n```\n\nWhen a type `T` always leads to ranges with regular steps, it should\ndefine the following method:\n```julia\nBase.RangeStepStyle(::Type{<:AbstractRange{<:T}}) = Base.RangeStepRegular()\n```\nThis will allow [`hash`](@ref) to use an O(1) algorithm for `AbstractRange{T}`\nobjects instead of the default O(N) algorithm (with N the length of the range).\n\nIn some cases, whether the step will be regular depends not only on the\nelement type `T`, but also on the type of the step `S`. In that case, more\nspecific methods should be defined:\n```julia\nBase.RangeStepStyle(::Type{<:OrdinalRange{<:T, <:S}}) = Base.RangeStepRegular()\n```\n\nBy default, all range types are assumed to be `RangeStepIrregular`, except\nranges with an element type which is a subtype of `Integer`.\n"}],"Base.argmax":[{"Tuple{Any}":" argmax(itr) -> Integer\n\nReturn the index of the maximum element in a collection. If there are multiple maximal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmax([8,0.1,-9,pi])\n1\n\njulia> argmax([1,7,7,6])\n2\n\njulia> argmax([1,7,7,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmax(A; dims) -> indices\n\nFor an array input, return the indices of the maximum elements over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmax(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(2, 1) CartesianIndex(2, 2)\n\njulia> argmax(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n```\n"}],"Base.put!":[{"Union{Tuple{T}, Tuple{Channel{T},Any}} where T":" put!(c::Channel, v)\n\nAppend an item `v` to the channel `c`. Blocks if the channel is full.\n\nFor unbuffered channels, blocks until a [`take!`](@ref) is performed by a different\ntask.\n\n!!! compat \"Julia 1.1\"\n `v` now gets converted to the channel's type with [`convert`](@ref) as `put!` is called.\n"}],"Base.println":[{"Tuple{IO,Vararg{Any,N} where N}":" println([io::IO], xs...)\n\nPrint (using [`print`](@ref)) `xs` followed by a newline.\nIf `io` is not supplied, prints to [`stdout`](@ref).\n\n# Examples\n```jldoctest\njulia> println(\"Hello, world\")\nHello, world\n\njulia> io = IOBuffer();\n\njulia> println(io, \"Hello, world\")\n\njulia> String(take!(io))\n\"Hello, world\\n\"\n```\n"}],"Base.unsafe_trunc":[{"Union{}":" unsafe_trunc(T, x)\n\nReturn the nearest integral value of type `T` whose absolute value is\nless than or equal to `x`. If the value is not representable by `T`, an arbitrary value will\nbe returned.\n"}],"Base.empty!":[{"Union{Tuple{Dict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" empty!(collection) -> collection\n\nRemove all elements from a `collection`.\n\n# Examples\n```jldoctest\njulia> A = Dict(\"a\" => 1, \"b\" => 2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> empty!(A);\n\njulia> A\nDict{String,Int64} with 0 entries\n```\n"}],"Base.which":[{"Tuple{Any,Any}":" which(f, types)\n\nReturns the method of `f` (a `Method` object) that would be called for arguments of the given `types`.\n\nIf `types` is an abstract type, then the method that would be called by `invoke` is returned.\n"},{"Tuple{Module,Symbol}":" which(module, symbol)\n\nReturn the module in which the binding for the variable referenced by `symbol` in `module` was created.\n"}],"Base.isimmutable":[{"Tuple{Any}":" isimmutable(v) -> Bool\n\nReturn `true` iff value `v` is immutable. See [Mutable Composite Types](@ref)\nfor a discussion of immutability. Note that this function works on values, so if you give it\na type, it will tell you that a value of `DataType` is mutable.\n\n# Examples\n```jldoctest\njulia> isimmutable(1)\ntrue\n\njulia> isimmutable([1,2])\nfalse\n```\n"}],"Base.ImmutableDict":[{"Union{}":" ImmutableDict\n\nImmutableDict is a Dictionary implemented as an immutable linked list,\nwhich is optimal for small dictionaries that are constructed over many individual insertions\nNote that it is not possible to remove a value, although it can be partially overridden and hidden\nby inserting a new value with the same key\n\n ImmutableDict(KV::Pair)\n\nCreate a new entry in the Immutable Dictionary for the key => value pair\n\n - use `(key => value) in dict` to see if this particular combination is in the properties set\n - use `get(dict, key, default)` to retrieve the most recent value for a particular key\n\n"}],"Base.@task":[{"Tuple{Any}":" @task\n\nWrap an expression in a [`Task`](@ref) without executing it, and return the [`Task`](@ref). This only\ncreates a task, and does not run it.\n\n# Examples\n```jldoctest\njulia> a1() = sum(i for i in 1:1000);\n\njulia> b = @task a1();\n\njulia> istaskstarted(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.max":[{"Tuple{Any,Any}":" max(x, y, ...)\n\nReturn the maximum of the arguments. See also the [`maximum`](@ref) function\nto take the maximum element from a collection.\n\n# Examples\n```jldoctest\njulia> max(2, 5, 1)\n5\n```\n"}],"Base.MissingException":[{"Union{}":" MissingException(msg)\n\nException thrown when a [`missing`](@ref) value is encountered in a situation\nwhere it is not supported. The error message, in the `msg` field\nmay provide more specific details.\n"}],"Base.prod!":[{"Tuple{Any,Any}":" prod!(r, A)\n\nMultiply elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 12\n\njulia> prod!([1 1], A)\n1×2 Array{Int64,2}:\n 3 8\n```\n"}],"Base.AbstractRange":[{"Union{}":" AbstractRange{T}\n\nSupertype for ranges with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.findmin!":[{"Tuple{AbstractArray,AbstractArray,AbstractArray}":" findmin!(rval, rind, A) -> (minval, index)\n\nFind the minimum of `A` and the corresponding linear index along singleton\ndimensions of `rval` and `rind`, and store the results in `rval` and `rind`.\n`NaN` is treated as less than all other values.\n"}],"Base.@allocated":[{"Tuple{Any}":" @allocated\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\ntotal number of bytes allocated during evaluation of the expression.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@elapsed`](@ref).\n\n```julia-repl\njulia> @allocated rand(10^6)\n8000080\n```\n"}],"Base.unmark":[{"Tuple{IO}":" unmark(s)\n\nRemove a mark from stream `s`. Return `true` if the stream was marked, `false` otherwise.\n\nSee also [`mark`](@ref), [`reset`](@ref), [`ismarked`](@ref).\n"}],"Base.EnvDict":[{"Union{}":" EnvDict() -> EnvDict\n\nA singleton of this type provides a hash table interface to environment variables.\n"}],"Base.oftype":[{"Tuple{Any,Any}":" oftype(x, y)\n\nConvert `y` to the type of `x` (`convert(typeof(x), y)`).\n\n# Examples\n```jldoctest\njulia> x = 4;\n\njulia> y = 3.;\n\njulia> oftype(x, y)\n3\n\njulia> oftype(y, x)\n4.0\n```\n"}],"Base.Set":[{"Tuple{Any}":" Set([itr])\n\nConstruct a [`Set`](@ref) of the values generated by the given iterable object, or an\nempty set. Should be used instead of [`BitSet`](@ref) for sparse integer sets, or\nfor sets of arbitrary objects.\n"}],"Base.similar":[{"Union{Tuple{T}, Tuple{Type{T},Vararg{Union{Integer, AbstractUnitRange},N} where N}} where T<:AbstractArray":" similar(storagetype, axes)\n\nCreate an uninitialized mutable array analogous to that specified by\n`storagetype`, but with `axes` specified by the last\nargument. `storagetype` might be a type or a function.\n\n**Examples**:\n\n similar(Array{Int}, axes(A))\n\ncreates an array that \"acts like\" an `Array{Int}` (and might indeed be\nbacked by one), but which is indexed identically to `A`. If `A` has\nconventional indexing, this will be identical to\n`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the\nindices of the result will match `A`.\n\n similar(BitArray, (axes(A, 2),))\n\nwould create a 1-dimensional logical array whose indices match those\nof the columns of `A`.\n"},{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" similar(array, [element_type=eltype(array)], [dims=size(array)])\n\nCreate an uninitialized mutable array with the given element type and size, based upon the\ngiven source array. The second and third arguments are both optional, defaulting to the\ngiven array's `eltype` and `size`. The dimensions may be specified either as a single tuple\nargument or as a series of integer arguments.\n\nCustom AbstractArray subtypes may choose which specific array type is best-suited to return\nfor the given element type and dimensionality. If they do not specialize this method, the\ndefault is an `Array{element_type}(undef, dims...)`.\n\nFor example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are\nneither mutable nor support 2 dimensions:\n\n```julia-repl\njulia> similar(1:10, 1, 4)\n1×4 Array{Int64,2}:\n 4419743872 4374413872 4419743888 0\n```\n\nConversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two\nelements since `BitArray`s are both mutable and can support 1-dimensional arrays:\n\n```julia-repl\njulia> similar(trues(10,10), 2)\n2-element BitArray{1}:\n 0\n 0\n```\n\nSince `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a\ndifferent element type it will create a regular `Array` instead:\n\n```julia-repl\njulia> similar(falses(10), Float64, 2, 4)\n2×4 Array{Float64,2}:\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314\n```\n\n"}],"Base.isassigned":[{"Union{}":" isassigned(array, i) -> Bool\n\nTest whether the given array has a value associated with index `i`. Return `false`\nif the index is out of bounds, or has an undefined reference.\n\n# Examples\n```jldoctest\njulia> isassigned(rand(3, 3), 5)\ntrue\n\njulia> isassigned(rand(3, 3), 3 * 3 + 1)\nfalse\n\njulia> mutable struct Foo end\n\njulia> v = similar(rand(3), Foo)\n3-element Array{Foo,1}:\n #undef\n #undef\n #undef\n\njulia> isassigned(v, 1)\nfalse\n```\n"}],"Base.insert!":[{"Union{Tuple{T}, Tuple{Array{T,1},Integer,Any}} where T":" insert!(a::Vector, index::Integer, item)\n\nInsert an `item` into `a` at the given `index`. `index` is the index of `item` in\nthe resulting `a`.\n\n# Examples\n```jldoctest\njulia> insert!([6, 5, 4, 2, 1], 4, 3)\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.isunaryoperator":[{"Tuple{Symbol}":" isunaryoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as a unary (prefix) operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isunaryoperator(:-), Base.isunaryoperator(:√), Base.isunaryoperator(:f)\n(true, true, false)\n```\n"}],"Base.promote_op":[{"Tuple{Any,Vararg{Type,N} where N}":" promote_op(f, argtypes...)\n\nGuess what an appropriate container eltype would be for storing results of\n`f(::argtypes...)`. The guess is in part based on type inference, so can change any time.\n\n!!! warning\n Due to its fragility, use of `promote_op` should be avoided. It is preferable to base\n the container eltype on the type of the actual elements. Only in the absence of any\n elements (for an empty result container), it may be unavoidable to call `promote_op`.\n"}],"Base.julia_cmd":[{"Union{Tuple{}, Tuple{Any}}":" Base.julia_cmd(juliapath=joinpath(Sys.BINDIR::String, julia_exename()))\n\nReturn a julia command similar to the one of the running process.\nPropagates any of the `--cpu-target`, `--sysimage`, `--compile`, `--sysimage-native-code`,\n`--compiled-modules`, `--inline`, `--check-bounds`, `--optimize`, `-g`,\n`--code-coverage`, and `--depwarn`\ncommand line arguments that are not at their default values.\n\nAmong others, `--math-mode`, `--warn-overwrite`, and `--trace-compile` are notably not propagated currently.\n\n!!! compat \"Julia 1.1\"\n Only the `--cpu-target`, `--sysimage`, `--depwarn`, `--compile` and `--check-bounds` flags were propagated before Julia 1.1.\n"}],"Base.@sync":[{"Tuple{Any}":" @sync\n\nWait until all lexically-enclosed uses of `@async`, `@spawn`, `@spawnat` and `@distributed`\nare complete. All exceptions thrown by enclosed async operations are collected and thrown as\na `CompositeException`.\n"}],"Base.CodeUnits":[{"Union{}":" CodeUnits(s::AbstractString)\n\nWrap a string (without copying) in an immutable vector-like object that accesses the code units\nof the string's representation.\n"}],"Base.unsafe_string":[{"Tuple{Union{Ptr{Int8}, Ptr{UInt8}},Integer}":" unsafe_string(p::Ptr{UInt8}, [length::Integer])\n\nCopy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8.\n(The pointer can be safely freed afterwards.) If `length` is specified\n(the length of the data in bytes), the string does not have to be NUL-terminated.\n\nThis function is labeled \"unsafe\" because it will crash if `p` is not\na valid memory address to data of the requested length.\n"}],"Base.reenable_sigint":[{"Tuple{Function}":" reenable_sigint(f::Function)\n\nRe-enable Ctrl-C handler during execution of a function.\nTemporarily reverses the effect of [`disable_sigint`](@ref).\n"}],"Base.range":[{"Tuple{Any}":" range(start[, stop]; length, stop, step=1)\n\nGiven a starting value, construct a range either by length or from `start` to `stop`,\noptionally with a given step (defaults to 1, a [`UnitRange`](@ref)).\nOne of `length` or `stop` is required. If `length`, `stop`, and `step` are all specified, they must agree.\n\nIf `length` and `stop` are provided and `step` is not, the step size will be computed\nautomatically such that there are `length` linearly spaced elements in the range (a [`LinRange`](@ref)).\n\nIf `step` and `stop` are provided and `length` is not, the overall range length will be computed\nautomatically such that the elements are `step` spaced (a [`StepRange`](@ref)).\n\n`stop` may be specified as either a positional or keyword argument.\n\n!!! compat \"Julia 1.1\"\n `stop` as a positional argument requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> range(1, length=100)\n1:100\n\njulia> range(1, stop=100)\n1:100\n\njulia> range(1, step=5, length=100)\n1:5:496\n\njulia> range(1, step=5, stop=100)\n1:5:96\n\njulia> range(1, 10, length=101)\n1.0:0.09:10.0\n\njulia> range(1, 100, step=5)\n1:5:96\n```\n"}],"Base.mapslices":[{"Tuple{Any,AbstractArray}":" mapslices(f, A; dims)\n\nTransform the given dimensions of array `A` using function `f`. `f` is called on each slice\nof `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the\ncolons go in this expression. The results are concatenated along the remaining dimensions.\nFor example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]`\nfor all `i` and `j`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16),(2,2,2,2))\n2×2×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\n[:, :, 2, 1] =\n 5 7\n 6 8\n\n[:, :, 1, 2] =\n 9 11\n 10 12\n\n[:, :, 2, 2] =\n 13 15\n 14 16\n\njulia> mapslices(sum, a, dims = [1,2])\n1×1×2×2 Array{Int64,4}:\n[:, :, 1, 1] =\n 10\n\n[:, :, 2, 1] =\n 26\n\n[:, :, 1, 2] =\n 42\n\n[:, :, 2, 2] =\n 58\n```\n"}],"Base.ncodeunits":[{"Tuple{Char}":" ncodeunits(c::Char) -> Int\n\nReturn the number of code units required to encode a character as UTF-8.\nThis is the number of bytes which will be printed if the character is written\nto an output stream, or `ncodeunits(string(c))` but computed efficiently.\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 consider\n using `ncodeunits(string(c))`.\n"},{"Tuple{AbstractString}":" ncodeunits(s::AbstractString) -> Int\n\nReturn the number of code units in a string. Indices that are in bounds to\naccess this string must satisfy `1 ≤ i ≤ ncodeunits(s)`. Not all such indices\nare valid – they may not be the start of a character, but they will return a\ncode unit value when calling `codeunit(s,i)`.\n\nSee also: [`codeunit`](@ref), [`checkbounds`](@ref), [`sizeof`](@ref),\n[`length`](@ref), [`lastindex`](@ref)\n"}],"Base.parentindices":[{"Tuple{AbstractArray}":" parentindices(A)\n\nReturn the indices in the [`parent`](@ref) which correspond to the array view `A`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4];\n\njulia> V = view(A, 1, :)\n2-element view(::Array{Int64,2}, 1, :) with eltype Int64:\n 1\n 2\n\njulia> parentindices(V)\n(1, Base.Slice(Base.OneTo(2)))\n```\n"}],"Base.istaskdone":[{"Tuple{Task}":" istaskdone(t::Task) -> Bool\n\nDetermine whether a task has exited.\n\n# Examples\n```jldoctest\njulia> a2() = sum(i for i in 1:1000);\n\njulia> b = Task(a2);\n\njulia> istaskdone(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskdone(b)\ntrue\n```\n"}],"Base.@generated":[{"Tuple{Any}":" @generated f\n @generated(f)\n`@generated` is used to annotate a function which will be generated.\nIn the body of the generated function, only types of arguments can be read\n(not the values). The function returns a quoted expression evaluated when the\nfunction is called. The `@generated` macro should not be used on functions mutating\nthe global scope or depending on mutable elements.\n\nSee [Metaprogramming](@ref) for further details.\n\n## Example:\n```julia\njulia> @generated function bar(x)\n if x <: Integer\n return :(x ^ 2)\n else\n return :(x)\n end\n end\nbar (generic function with 1 method)\n\njulia> bar(4)\n16\n\njulia> bar(\"baz\")\n\"baz\"\n```\n"}],"Base.Culonglong":[{"Union{}":" Culonglong\n\nEquivalent to the native `unsigned long long` c-type ([`UInt64`](@ref)).\n"}],"Base.rotr90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotr90(A, k)\n\nRight-rotate matrix `A` 90 degrees clockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a,1)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotr90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotr90(a,3)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotr90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotr90(A)\n\nRotate matrix `A` right 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotr90(a)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n```\n"}],"Base.print_matrix_row":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,Array{T,1} where T,Integer,AbstractArray{T,1} where T,AbstractString}":"`print_matrix_row(io, X, A, i, cols, sep)` produces the aligned output for\na single matrix row X[i, cols] where the desired list of columns is given.\nThe corresponding alignment A is used, and the separation between elements\nis specified as string sep.\n`print_matrix_row` will also respect compact output for elements.\n"}],"Base.haskey":[{"Tuple{Dict,Any}":" haskey(collection, key) -> Bool\n\nDetermine whether a collection has a mapping for a given `key`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> haskey(D, 'a')\ntrue\n\njulia> haskey(D, 'c')\nfalse\n```\n"}],"Base.codepoint":[{"Union{}":" codepoint(c::AbstractChar) -> Integer\n\nReturn the Unicode codepoint (an unsigned integer) corresponding\nto the character `c` (or throw an exception if `c` does not represent\na valid character). For `Char`, this is a `UInt32` value, but\n`AbstractChar` types that represent only a subset of Unicode may\nreturn a different-sized integer (e.g. `UInt8`).\n"}],"Base.print_matrix":[{"Union{Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer}, Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,AbstractString,Integer,Integer}}":" print_matrix(io::IO, mat, pre, sep, post, hdots, vdots, ddots, hmod, vmod)\n\nPrints a matrix with limited output size. If `io` sets `:limit` to true,\nthen only the corners of the matrix are printed, separated with vertical,\nhorizontal, and diagonal ellipses as appropriate.\nOptional arguments are string pre (printed before the matrix, e.g. an opening bracket)\nwhich will cause a corresponding same-size indent on following rows, and\nstring post (printed at the end of the last row of the matrix).\nAlso options to use different ellipsis characters hdots, vdots, ddots.\nThese are repeated every hmod or vmod elements.\n"}],"Base.shell_escape_posixly":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escape_posixly(args::Union{Cmd,AbstractString...})\n\nThe unexported `shell_escape_posixly` function\ntakes a string or command object and escapes any special characters in such a way that\nit is safe to pass it as an argument to a posix shell.\n\n# Examples\n```jldoctest\njulia> Base.shell_escape_posixly(\"cat\", \"/foo/bar baz\", \"&&\", \"echo\", \"done\")\n\"cat '/foo/bar baz' '&&' echo done\"\n\njulia> Base.shell_escape_posixly(\"echo\", \"this\", \"&&\", \"that\")\n\"echo this '&&' that\"\n```\n"}],"Base.⊊":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.intersect!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nIntersect all passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n"}],"Base.imag":[{"Tuple{Complex}":" imag(z)\n\nReturn the imaginary part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> imag(1 + 3im)\n3\n```\n"}],"Base.isconcretetype":[{"Tuple{Any}":" isconcretetype(T)\n\nDetermine whether type `T` is a concrete type, meaning it could have direct instances\n(values `x` such that `typeof(x) === T`).\n\n# Examples\n```jldoctest\njulia> isconcretetype(Complex)\nfalse\n\njulia> isconcretetype(Complex{Float32})\ntrue\n\njulia> isconcretetype(Vector{Complex})\ntrue\n\njulia> isconcretetype(Vector{Complex{Float32}})\ntrue\n\njulia> isconcretetype(Union{})\nfalse\n\njulia> isconcretetype(Union{Int,String})\nfalse\n```\n"}],"Base.checkbounds":[{"Tuple{Type{Bool},AbstractArray,Vararg{Any,N} where N}":" checkbounds(Bool, A, I...)\n\nReturn `true` if the specified indices `I` are in bounds for the given\narray `A`. Subtypes of `AbstractArray` should specialize this method\nif they need to provide custom bounds checking behaviors; however, in\nmany cases one can rely on `A`'s indices and [`checkindex`](@ref).\n\nSee also [`checkindex`](@ref).\n\n# Examples\n```jldoctest\njulia> A = rand(3, 3);\n\njulia> checkbounds(Bool, A, 2)\ntrue\n\njulia> checkbounds(Bool, A, 3, 4)\nfalse\n\njulia> checkbounds(Bool, A, 1:3)\ntrue\n\njulia> checkbounds(Bool, A, 1:3, 2:4)\nfalse\n```\n"},{"Tuple{AbstractArray,Vararg{Any,N} where N}":" checkbounds(A, I...)\n\nThrow an error if the specified indices `I` are not in bounds for the given array `A`.\n"}],"Base.∋":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"}],"Base.BottomRF":[{"Union{}":" BottomRF(rf) -> rf′\n\n\"Bottom\" reducing function. This is a thin wrapper around the `op` argument\npassed to `foldl`-like functions for handling the initial invocation to call\n[`reduce_first`](@ref).\n"}],"Base.DenseVector":[{"Union{}":" DenseVector{T}\n\nOne-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,1}`.\n"}],"Base.binomial":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" binomial(n::Integer, k::Integer)\n\nThe _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in\nthe polynomial expansion of ``(1+x)^n``.\n\nIf ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items:\n```math\n\\binom{n}{k} = \\frac{n!}{k! (n-k)!}\n```\nwhere ``n!`` is the [`factorial`](@ref) function.\n\nIf ``n`` is negative, then it is defined in terms of the identity\n```math\n\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k}\n```\n\n# Examples\n```jldoctest\njulia> binomial(5, 3)\n10\n\njulia> factorial(5) ÷ (factorial(5-3) * factorial(3))\n10\n\njulia> binomial(-5, 3)\n-35\n```\n\n# See also\n* [`factorial`](@ref)\n\n# External links\n* [Binomial coeffient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia.\n"}],"Base.redirect_stderr":[{"Union{}":" redirect_stderr([stream]) -> (rd, wr)\n\nLike [`redirect_stdout`](@ref), but for [`stderr`](@ref).\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stderr(f::Function, stream)\n\nRun the function `f` while redirecting [`stderr`](@ref) to `stream`.\nUpon completion, [`stderr`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.Complex":[{"Union{}":" Complex{T<:Real} <: Number\n\nComplex number type with real and imaginary part of type `T`.\n\n`ComplexF16`, `ComplexF32` and `ComplexF64` are aliases for\n`Complex{Float16}`, `Complex{Float32}` and `Complex{Float64}` respectively.\n"}],"Base.stderr":[{"Union{}":" stderr\n\nGlobal variable referring to the standard error stream.\n"}],"Base.count_ones":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" count_ones(x::Integer) -> Integer\n\nNumber of ones in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_ones(7)\n3\n```\n"}],"Base.parentmodule":[{"Tuple{Any,Any}":" parentmodule(f::Function, types) -> Module\n\nDetermine the module containing a given definition of a generic function.\n"},{"Tuple{Module}":" parentmodule(m::Module) -> Module\n\nGet a module's enclosing `Module`. `Main` is its own parent.\n\n# Examples\n```jldoctest\njulia> parentmodule(Main)\nMain\n\njulia> parentmodule(Base.Broadcast)\nBase\n```\n"},{"Tuple{Function}":" parentmodule(f::Function) -> Module\n\nDetermine the module containing the (first) definition of a generic\nfunction.\n"},{"Tuple{DataType}":" parentmodule(t::DataType) -> Module\n\nDetermine the module containing the definition of a (potentially `UnionAll`-wrapped) `DataType`.\n\n# Examples\n```jldoctest\njulia> module Foo\n struct Int end\n end\nFoo\n\njulia> parentmodule(Int)\nCore\n\njulia> parentmodule(Foo.Int)\nFoo\n```\n"}],"Base.isopen":[{"Union{}":" isopen(object) -> Bool\n\nDetermine whether an object - such as a stream or timer\n-- is not yet closed. Once an object is closed, it will never produce a new event.\nHowever, since a closed stream may still have data to read in its buffer,\nuse [`eof`](@ref) to check for the ability to read data.\nUse the `FileWatching` package to be notified when a stream might be writable or readable.\n\n# Examples\n```jldoctest\njulia> io = open(\"my_file.txt\", \"w+\");\n\njulia> isopen(io)\ntrue\n\njulia> close(io)\n\njulia> isopen(io)\nfalse\n```\n"}],"Base.lastindex":[{"Tuple{AbstractArray}":" lastindex(collection) -> Integer\n lastindex(collection, d) -> Integer\n\nReturn the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.\n\nThe syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and\n`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.\n\n# Examples\n```jldoctest\njulia> lastindex([1,2,4])\n3\n\njulia> lastindex(rand(3,4,5), 2)\n4\n```\n"}],"Base.delete_method":[{"Tuple{Method}":" delete_method(m::Method)\n\nMake method `m` uncallable and force recompilation of any methods that use(d) it.\n"}],"Base.fetch":[{"Tuple{Task}":" fetch(t::Task)\n\nWait for a Task to finish, then return its result value.\nIf the task fails with an exception, a `TaskFailedException` (which wraps the failed task)\nis thrown.\n"},{"Tuple{Channel}":" fetch(c::Channel)\n\nWait for and get the first available item from the channel. Does not\nremove the item. `fetch` is unsupported on an unbuffered (0-size) channel.\n"}],"Base.@show":[{"Tuple":" @show\n\nShow an expression and result, returning the result. See also [`show`](@ref).\n"}],"Base.unique":[{"Tuple{Any}":" unique(itr)\n\nReturn an array containing only the unique elements of collection `itr`,\nas determined by [`isequal`](@ref), in the order that the first of each\nset of equivalent elements originally appears. The element type of the\ninput is preserved.\n\n# Examples\n```jldoctest\njulia> unique([1, 2, 6, 2])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> unique(Real[1, 1.0, 2])\n2-element Array{Real,1}:\n 1\n 2\n```\n"},{"Tuple{AbstractArray}":" unique(A::AbstractArray; dims::Int)\n\nReturn unique regions of `A` along dimension `dims`.\n\n# Examples\n```jldoctest\njulia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))\n2×2×2 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n\n[:, :, 2] =\n 1 1\n 0 0\n\njulia> unique(A)\n2-element Array{Bool,1}:\n 1\n 0\n\njulia> unique(A, dims=2)\n2×1×2 Array{Bool,3}:\n[:, :, 1] =\n 1\n 0\n\n[:, :, 2] =\n 1\n 0\n\njulia> unique(A, dims=3)\n2×2×1 Array{Bool,3}:\n[:, :, 1] =\n 1 1\n 0 0\n```\n"},{"Tuple{Any,Any}":" unique(f, itr)\n\nReturns an array containing one value from `itr` for each unique value produced by `f`\napplied to elements of `itr`.\n\n# Examples\n```jldoctest\njulia> unique(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n```\n"}],"Base.div":[{"Union{}":" div(x, y)\n ÷(x, y)\n\nThe quotient from Euclidean division. Computes `x/y`, truncated to an integer.\n\n# Examples\n```jldoctest\njulia> 9 ÷ 4\n2\n\njulia> -5 ÷ 3\n-1\n\njulia> 5.0 ÷ 2\n2.0\n```\n"},{"Tuple{Any,Any,RoundingMode}":" div(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient from Euclidean division. Computes x/y, rounded to an integer according\nto the rounding mode `r`. In other words, the quantity\n\n round(x/y,r)\n\nwithout any intermediate rounding.\n\nSee also: [`fld`](@ref), [`cld`](@ref) which are special cases of this function\n\n# Examples:\n```jldoctest\njulia> div(4, 3, RoundDown) # Matches fld(4, 3)\n1\njulia> div(4, 3, RoundUp) # Matches cld(4, 3)\n2\njulia> div(5, 2, RoundNearest)\n2\njulia> div(5, 2, RoundNearestTiesAway)\n3\njulia> div(-5, 2, RoundNearest)\n-2\njulia> div(-5, 2, RoundNearestTiesAway)\n-3\njulia> div(-5, 2, RoundNearestTiesUp)\n-2\n```\n"}],"Base.⊈":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base.displaysize":[{"Tuple{IO}":" displaysize([io::IO]) -> (lines, columns)\n\nReturn the nominal size of the screen that may be used for rendering output to\nthis `IO` object.\nIf no input is provided, the environment variables `LINES` and `COLUMNS` are read.\nIf those are not set, a default size of `(24, 80)` is returned.\n\n# Examples\n```jldoctest\njulia> withenv(\"LINES\" => 30, \"COLUMNS\" => 100) do\n displaysize()\n end\n(30, 100)\n```\n\nTo get your TTY size,\n\n```julia\njulia> displaysize(stdout)\n(34, 147)\n```\n"}],"Base.hex2bytes!":[{"Tuple{AbstractArray{UInt8,1},Union{AbstractArray{UInt8,1}, String}}":" hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})\n\nConvert an array `s` of bytes representing a hexadecimal string to its binary\nrepresentation, similar to [`hex2bytes`](@ref) except that the output is written in-place\nin `d`. The length of `s` must be exactly twice the length of `d`.\n"}],"Base.bytes2hex":[{"Union{}":" bytes2hex(a::AbstractArray{UInt8}) -> String\n bytes2hex(io::IO, a::AbstractArray{UInt8})\n\nConvert an array `a` of bytes to its hexadecimal string representation, either\nreturning a `String` via `bytes2hex(a)` or writing the string to an `io` stream\nvia `bytes2hex(io, a)`. The hexadecimal characters are all lowercase.\n\n# Examples\n```jldoctest\njulia> a = string(12345, base = 16)\n\"3039\"\n\njulia> b = hex2bytes(a)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> bytes2hex(b)\n\"3039\"\n```\n"}],"Base.instances":[{"Union{}":" instances(T::Type)\n\nReturn a collection of all instances of the given type, if applicable. Mostly used for\nenumerated types (see `@enum`).\n\n# Example\n```jldoctest\njulia> @enum Color red blue green\n\njulia> instances(Color)\n(red, blue, green)\n```\n"}],"Base.reim":[{"Tuple{Any}":" reim(z)\n\nReturn both the real and imaginary parts of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> reim(1 + 3im)\n(1, 3)\n```\n"}],"Base.BitVector":[{"Tuple{Tuple{Vararg{Bool,N} where N}}":" BitVector(nt::Tuple{Vararg{Bool}})\n\nConstruct a `BitVector` from a tuple of `Bool`.\n# Examples\n```julia-repl\njulia> nt = (true, false, true, false)\n(true, false, true, false)\n\njulia> BitVector(nt)\n4-element BitArray{1}:\n 1\n 0\n 1\n 0\n```\n"}],"Base.pairs":[{"Tuple{Any}":" pairs(collection)\n\nReturn an iterator over `key => value` pairs for any\ncollection that maps a set of keys to a set of values.\nThis includes arrays, where the keys are the array indices.\n"}],"Base.isabstracttype":[{"Tuple{Any}":" isabstracttype(T)\n\nDetermine whether type `T` was declared as an abstract type\n(i.e. using the `abstract` keyword).\n\n# Examples\n```jldoctest\njulia> isabstracttype(AbstractArray)\ntrue\n\njulia> isabstracttype(Vector)\nfalse\n```\n"}],"Base.Cwstring":[{"Union{}":" Cwstring\n\nA C-style string composed of the native wide character type\n[`Cwchar_t`](@ref)s. `Cwstring`s are NUL-terminated. For\nC-style strings composed of the native character\ntype, see [`Cstring`](@ref). For more information\nabout string interopability with C, see the\n[manual](@ref man-bits-types).\n\n"}],"Base.rstrip":[{"Tuple{Any,AbstractString}":" rstrip([pred=isspace,] str::AbstractString) -> SubString\n rstrip(str::AbstractString, chars) -> SubString\n\nRemove trailing characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove trailing whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = rpad(\"March\", 20)\n\"March \"\n\njulia> rstrip(a)\n\"March\"\n```\n"}],"Base.splice!":[{"Union{Tuple{Array{T,1} where T,UnitRange{#s662} where #s662<:Integer}, Tuple{Array{T,1} where T,UnitRange{#s661} where #s661<:Integer,Any}}":" splice!(a::Vector, range, [replacement]) -> items\n\nRemove items in the specified index range, and return a collection containing\nthe removed items.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered collection will be spliced in\nplace of the removed items.\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n\n# Examples\n```jldoctest\njulia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)\n0-element Array{Int64,1}\n\njulia> A\n8-element Array{Int64,1}:\n -1\n -2\n -3\n 2\n 5\n 4\n 3\n -1\n```\n"},{"Union{Tuple{Array{T,1} where T,Integer}, Tuple{Array{T,1} where T,Integer,Any}}":" splice!(a::Vector, index::Integer, [replacement]) -> item\n\nRemove the item at the given index, and return the removed item.\nSubsequent items are shifted left to fill the resulting gap.\nIf specified, replacement values from an ordered\ncollection will be spliced in place of the removed item.\n\n# Examples\n```jldoctest\njulia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)\n2\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 1\n\njulia> splice!(A, 5, -1)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n -1\n\njulia> splice!(A, 1, [-1, -2, -3])\n6\n\njulia> A\n7-element Array{Int64,1}:\n -1\n -2\n -3\n 5\n 4\n 3\n -1\n```\n\nTo insert `replacement` before an index `n` without removing any items, use\n`splice!(collection, n:n-1, replacement)`.\n"}],"Base.C_NULL":[{"Union{}":" C_NULL\n\nThe C null pointer constant, sometimes used when calling external code.\n"}],"Base.rot180":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rot180(A, k)\n\nRotate matrix `A` 180 degrees an integer `k` number of times.\nIf `k` is even, this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a,1)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rot180(a,2)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rot180(A)\n\nRotate matrix `A` 180 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rot180(a)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n```\n"}],"Base.ndigits0z":[{"Tuple{Integer,Integer}":" ndigits0z(n::Integer, b::Integer=10)\n\nReturn 0 if `n == 0`, otherwise compute the number of digits in\ninteger `n` written in base `b` (i.e. equal to `ndigits(n, base=b)`\nin this case).\nThe base `b` must not be in `[-1, 0, 1]`.\n\n# Examples\n```jldoctest\njulia> Base.ndigits0z(0, 16)\n0\n\njulia> Base.ndigits(0, base=16)\n1\n\njulia> Base.ndigits0z(0)\n0\n\njulia> Base.ndigits0z(10, 2)\n4\n\njulia> Base.ndigits0z(10)\n2\n```\n\nSee also [`ndigits`](@ref).\n"}],"Base.rotl90":[{"Tuple{AbstractArray{T,2} where T,Integer}":" rotl90(A, k)\n\nLeft-rotate matrix `A` 90 degrees counterclockwise an integer `k` number of times.\nIf `k` is a multiple of four (including zero), this is equivalent to a `copy`.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a,1)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n\njulia> rotl90(a,2)\n2×2 Array{Int64,2}:\n 4 3\n 2 1\n\njulia> rotl90(a,3)\n2×2 Array{Int64,2}:\n 3 1\n 4 2\n\njulia> rotl90(a,4)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"},{"Tuple{AbstractArray{T,2} where T}":" rotl90(A)\n\nRotate matrix `A` left 90 degrees.\n\n# Examples\n```jldoctest\njulia> a = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> rotl90(a)\n2×2 Array{Int64,2}:\n 2 4\n 1 3\n```\n"}],"Base.repr":[{"Tuple{Any}":" repr(x; context=nothing)\n\nCreate a string from any value using the [`show`](@ref) function.\nYou should not add methods to `repr`; define a `show` method instead.\n\nThe optional keyword argument `context` can be set to an `IO` or [`IOContext`](@ref)\nobject whose attributes are used for the I/O stream passed to `show`.\n\nNote that `repr(x)` is usually similar to how the value of `x` would\nbe entered in Julia. See also [`repr(MIME(\"text/plain\"), x)`](@ref) to instead\nreturn a \"pretty-printed\" version of `x` designed more for human consumption,\nequivalent to the REPL display of `x`.\n\n# Examples\n```jldoctest\njulia> repr(1)\n\"1\"\n\njulia> repr(zeros(3))\n\"[0.0, 0.0, 0.0]\"\n\njulia> repr(big(1/3))\n\"0.333333333333333314829616256247390992939472198486328125\"\n\njulia> repr(big(1/3), context=:compact => true)\n\"0.333333\"\n\n```\n"}],"Base.datatype_pointerfree":[{"Tuple{DataType}":" Base.datatype_pointerfree(dt::DataType) -> Bool\n\nReturn whether instances of this type can contain references to gc-managed memory.\nCan be called on any `isconcretetype`.\n"}],"Base.Cwchar_t":[{"Union{}":" Cwchar_t\n\nEquivalent to the native `wchar_t` c-type ([`Int32`](@ref)).\n"}],"Base.digits":[{"Tuple{Integer}":" digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)\n\nReturn an array with element type `T` (default `Int`) of the digits of `n` in the given\nbase, optionally padded with zeros to a specified size. More significant digits are at\nhigher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`.\n\n# Examples\n```jldoctest\njulia> digits(10, base = 10)\n2-element Array{Int64,1}:\n 0\n 1\n\njulia> digits(10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits(10, base = 2, pad = 6)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.bytesavailable":[{"Tuple{Base.AbstractPipe}":" bytesavailable(io)\n\nReturn the number of bytes available for reading before a read from this stream or buffer will block.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> bytesavailable(io)\n34\n```\n"}],"Base.cumsum!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" cumsum!(B, A; dims::Integer)\n\nCumulative sum of `A` along the dimension `dims`, storing the result in `B`. See also [`cumsum`](@ref).\n"}],"Base.copy":[{"Union{}":" copy(x)\n\nCreate a shallow copy of `x`: the outer structure is copied, but not all internal values.\nFor example, copying an array produces a new array with identically-same elements as the\noriginal.\n"}],"Base.copysign":[{"Tuple{Real,Real}":" copysign(x, y) -> z\n\nReturn `z` which has the magnitude of `x` and the same sign as `y`.\n\n# Examples\n```jldoctest\njulia> copysign(1, -2)\n-1\n\njulia> copysign(-1, 2)\n1\n```\n"}],"Base.merge!":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nSee also [`merge`](@ref).\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 4\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge!(combine, d::AbstractDict, others::AbstractDict...)\n\nUpdate collection with pairs from the other collections.\nValues with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> d1 = Dict(1 => 2, 3 => 4);\n\njulia> d2 = Dict(1 => 4, 4 => 5);\n\njulia> merge!(+, d1, d2);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 5\n 3 => 4\n 1 => 6\n\njulia> merge!(-, d1, d1);\n\njulia> d1\nDict{Int64,Int64} with 3 entries:\n 4 => 0\n 3 => 0\n 1 => 0\n```\n"}],"Base.widen":[{"Union{Tuple{T}, Tuple{T}} where T":" widen(x)\n\nIf `x` is a type, return a \"larger\" type, defined so that arithmetic operations\n`+` and `-` are guaranteed not to overflow nor lose precision for any combination\nof values that type `x` can hold.\n\nFor fixed-size integer types less than 128 bits, `widen` will return a type with\ntwice the number of bits.\n\nIf `x` is a value, it is converted to `widen(typeof(x))`.\n\n# Examples\n```jldoctest\njulia> widen(Int32)\nInt64\n\njulia> widen(1.5f0)\n1.5\n```\n"}],"Base.all":[{"Tuple{Any}":" all(itr) -> Bool\n\nTest whether all elements of a boolean collection are `true`, returning `false` as\nsoon as the first `false` value in `itr` is encountered (short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> a = [true,false,false,true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> all(a)\nfalse\n\njulia> all((println(i); v) for (i, v) in enumerate(a))\n1\n2\nfalse\n\njulia> all([missing, false])\nfalse\n\njulia> all([true, missing])\nmissing\n```\n"},{"Tuple{AbstractArray}":" all(A; dims)\n\nTest whether all values along the given dimensions of an array are `true`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true true]\n2×2 Array{Bool,2}:\n 1 0\n 1 1\n\njulia> all(A, dims=1)\n1×2 Array{Bool,2}:\n 1 0\n\njulia> all(A, dims=2)\n2×1 Array{Bool,2}:\n 0\n 1\n```\n"},{"Tuple{Any,Any}":" all(p, itr) -> Bool\n\nDetermine whether predicate `p` returns `true` for all elements of `itr`, returning\n`false` as soon as the first item in `itr` for which `p` returns `false` is encountered\n(short-circuiting).\n\nIf the input contains [`missing`](@ref) values, return `missing` if all non-missing\nvalues are `true` (or equivalently, if the input contains no `false` value), following\n[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).\n\n# Examples\n```jldoctest\njulia> all(i->(4<=i<=6), [4,5,6])\ntrue\n\njulia> all(i -> (println(i); i < 3), 1:10)\n1\n2\n3\nfalse\n\njulia> all(i -> i > 0, [1, missing])\nmissing\n\njulia> all(i -> i > 0, [-1, missing])\nfalse\n\njulia> all(i -> i > 0, [1, 2])\ntrue\n```\n"}],"Base.rationalize":[{"Union{Tuple{T}, Tuple{Type{T},AbstractFloat,Real}} where T<:Integer":" rationalize([T<:Integer=Int,] x; tol::Real=eps(x))\n\nApproximate floating point number `x` as a [`Rational`](@ref) number with components\nof the given integer type. The result will differ from `x` by no more than `tol`.\n\n# Examples\n```jldoctest\njulia> rationalize(5.6)\n28//5\n\njulia> a = rationalize(BigInt, 10.3)\n103//10\n\njulia> typeof(numerator(a))\nBigInt\n```\n"}],"Base.ascii":[{"Tuple{AbstractString}":" ascii(s::AbstractString)\n\nConvert a string to `String` type and check that it contains only ASCII data, otherwise\nthrowing an `ArgumentError` indicating the position of the first non-ASCII byte.\n\n# Examples\n```jldoctest\njulia> ascii(\"abcdeγfgh\")\nERROR: ArgumentError: invalid ASCII at index 6 in \"abcdeγfgh\"\nStacktrace:\n[...]\n\njulia> ascii(\"abcdefgh\")\n\"abcdefgh\"\n```\n"}],"Base.ispow2":[{"Tuple{Integer}":" ispow2(n::Integer) -> Bool\n\nTest whether `n` is a power of two.\n\n# Examples\n```jldoctest\njulia> ispow2(4)\ntrue\n\njulia> ispow2(5)\nfalse\n```\n"}],"Base.|":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" |(x, y)\n\nBitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `false`.\n\n# Examples\n```jldoctest\njulia> 4 | 10\n14\n\njulia> 4 | 1\n5\n\njulia> true | missing\ntrue\n\njulia> false | missing\nmissing\n```\n"}],"Base.isbits":[{"Tuple{Any}":" isbits(x)\n\nReturn `true` if `x` is an instance of an `isbitstype` type.\n"}],"Base.union!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" union!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the union of passed in sets and overwrite `s` with the result.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> union!(a, 1:2:8);\n\njulia> a\nSet{Int64} with 5 elements:\n 7\n 4\n 3\n 5\n 1\n```\n"}],"Base.AbstractSet":[{"Union{}":" AbstractSet{T}\n\nSupertype for set-like types whose elements are of type `T`.\n[`Set`](@ref), [`BitSet`](@ref) and other types are subtypes of this.\n"}],"Base.copyfirst!":[{"Tuple{AbstractArray,AbstractArray}":"Extract first entry of slices of array A into existing array R.\n"}],"Base.take!":[{"Tuple{Base.GenericIOBuffer}":" take!(b::IOBuffer)\n\nObtain the contents of an `IOBuffer` as an array, without copying. Afterwards, the\n`IOBuffer` is reset to its initial state.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n```\n"},{"Tuple{Channel}":" take!(c::Channel)\n\nRemove and return a value from a [`Channel`](@ref). Blocks until data is available.\n\nFor unbuffered channels, blocks until a [`put!`](@ref) is performed by a different\ntask.\n"}],"Base.keys":[{"Union{}":" keys(iterator)\n\nFor an iterator or collection that has keys and values (e.g. arrays and dictionaries),\nreturn an iterator over the keys.\n"},{"Tuple{AbstractDict}":" keys(a::AbstractDict)\n\nReturn an iterator over all keys in a dictionary.\n`collect(keys(a))` returns an array of keys.\nWhen the keys are stored internally in a hash table,\nas is the case for `Dict`,\nthe order in which they are returned may vary.\nBut `keys(a)` and `values(a)` both iterate `a` and\nreturn the elements in the same order.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> collect(keys(D))\n2-element Array{Char,1}:\n 'a'\n 'b'\n```\n"}],"Base.hasmethod":[{"Tuple{Any,Any}":" hasmethod(f, t::Type{<:Tuple}[, kwnames]; world=typemax(UInt)) -> Bool\n\nDetermine whether the given generic function has a method matching the given\n`Tuple` of argument types with the upper bound of world age given by `world`.\n\nIf a tuple of keyword argument names `kwnames` is provided, this also checks\nwhether the method of `f` matching `t` has the given keyword argument names.\nIf the matching method accepts a variable number of keyword arguments, e.g.\nwith `kwargs...`, any names given in `kwnames` are considered valid. Otherwise\nthe provided names must be a subset of the method's keyword arguments.\n\nSee also [`applicable`](@ref).\n\n!!! compat \"Julia 1.2\"\n Providing keyword argument names requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> hasmethod(length, Tuple{Array})\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:dims,))\ntrue\n\njulia> hasmethod(sum, Tuple{Function, Array}, (:apples, :bananas))\nfalse\n\njulia> g(; xs...) = 4;\n\njulia> hasmethod(g, Tuple{}, (:a, :b, :c, :d)) # g accepts arbitrary kwargs\ntrue\n```\n"}],"Base.argmin":[{"Tuple{Any}":" argmin(itr) -> Integer\n\nReturn the index of the minimum element in a collection. If there are multiple minimal\nelements, then the first one will be returned.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> argmin([8,0.1,-9,pi])\n3\n\njulia> argmin([7,1,1,6])\n2\n\njulia> argmin([7,1,1,NaN])\n4\n```\n"},{"Tuple{AbstractArray}":" argmin(A; dims) -> indices\n\nFor an array input, return the indices of the minimum elements over the given dimensions.\n`NaN` is treated as less than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> argmin(A, dims=1)\n1×2 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1) CartesianIndex(1, 2)\n\njulia> argmin(A, dims=2)\n2×1 Array{CartesianIndex{2},2}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n```\n"}],"Base.firstindex":[{"Tuple{AbstractArray}":" firstindex(collection) -> Integer\n firstindex(collection, d) -> Integer\n\nReturn the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.\n\n# Examples\n```jldoctest\njulia> firstindex([1,2,4])\n1\n\njulia> firstindex(rand(3,4,5), 2)\n1\n```\n"}],"Base.findprev":[{"Tuple{Function,Any,Any}":" findprev(predicate::Function, A, i)\n\nFind the previous index before or including `i` of an element of `A`\nfor which `predicate` returns `true`, or `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [4, 6, 1, 2]\n4-element Array{Int64,1}:\n 4\n 6\n 1\n 2\n\njulia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL\n\njulia> findprev(isodd, A, 3)\n3\n\njulia> A = [4 6; 1 2]\n2×2 Array{Int64,2}:\n 4 6\n 1 2\n\njulia> findprev(isodd, A, CartesianIndex(1, 2))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Any,Any}":" findprev(A, i)\n\nFind the previous index before or including `i` of a `true` element of `A`,\nor `nothing` if not found.\n\nIndices are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, true]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 1\n\njulia> findprev(A, 3)\n3\n\njulia> findprev(A, 1) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true true]\n2×2 Array{Bool,2}:\n 0 0\n 1 1\n\njulia> findprev(A, CartesianIndex(2, 1))\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString,Integer}":" findprev(pattern::AbstractString, string::AbstractString, start::Integer)\n\nFind the previous occurrence of `pattern` in `string` starting at position `start`.\n\nThe return value is a range of indices where the matching sequence is found, such that\n`s[findprev(x, s, i)] == x`:\n\n`findprev(\"substring\", string, i)` == `start:stop` such that\n`string[start:stop] == \"substring\"` and `stop <= i`, or `nothing` if unmatched.\n\n# Examples\n```jldoctest\njulia> findprev(\"z\", \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev(\"o\", \"Hello to the world\", 18)\n15:15\n\njulia> findprev(\"Julia\", \"JuliaLang\", 6)\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString,Integer}":" findprev(ch::AbstractChar, string::AbstractString, start::Integer)\n\nFind the previous occurrence of character `ch` in `string` starting at position `start`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findprev('z', \"Hello to the world\", 18) === nothing\ntrue\n\njulia> findprev('o', \"Hello to the world\", 18)\n15\n```\n"}],"Base.Cuchar":[{"Union{}":" Cuchar\n\nEquivalent to the native `unsigned char` c-type ([`UInt8`](@ref)).\n"}],"Base.datatype_alignment":[{"Tuple{DataType}":" Base.datatype_alignment(dt::DataType) -> Int\n\nMemory allocation minimum alignment for instances of this type.\nCan be called on any `isconcretetype`.\n"}],"Base.complex":[{"Tuple{Complex}":" complex(r, [i])\n\nConvert real numbers or arrays to complex. `i` defaults to zero.\n\n# Examples\n```jldoctest\njulia> complex(7)\n7 + 0im\n\njulia> complex([1, 2, 3])\n3-element Array{Complex{Int64},1}:\n 1 + 0im\n 2 + 0im\n 3 + 0im\n```\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Real":" complex(T::Type)\n\nReturn an appropriate type which can represent a value of type `T` as a complex number.\nEquivalent to `typeof(complex(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> complex(Complex{Int})\nComplex{Int64}\n\njulia> complex(Int)\nComplex{Int64}\n```\n"}],"Base.isinf":[{"Tuple{Real}":" isinf(f) -> Bool\n\nTest whether a number is infinite.\n"}],"Base.datatype_fielddesc_type":[{"Tuple{DataType}":" Base.datatype_fielddesc_type(dt::DataType) -> Int\n\nReturn the size in bytes of each field-description entry in the layout array,\nlocated at `(dt.layout + sizeof(DataTypeLayout))`.\nCan be called on any `isconcretetype`.\n\nSee also [`fieldoffset`](@ref).\n"}],"Base.isstructtype":[{"Tuple{Type}":" isstructtype(T) -> Bool\n\nDetermine whether type `T` was declared as a struct type\n(i.e. using the `struct` or `mutable struct` keyword).\n"}],"Base.fullname":[{"Tuple{Module}":" fullname(m::Module)\n\nGet the fully-qualified name of a module as a tuple of symbols. For example,\n\n# Examples\n```jldoctest\njulia> fullname(Base.Iterators)\n(:Base, :Iterators)\n\njulia> fullname(Main)\n(:Main,)\n```\n"}],"Base.∘":[{"Tuple{Any,Any}":" f ∘ g\n\nCompose functions: i.e. `(f ∘ g)(args...)` means `f(g(args...))`. The `∘` symbol can be\nentered in the Julia REPL (and most editors, appropriately configured) by typing `\\circ`.\n\nFunction composition also works in prefix form: `∘(f, g)` is the same as `f ∘ g`.\nThe prefix form supports composition of multiple functions: `∘(f, g, h) = f ∘ g ∘ h`\nand splatting `∘(fs...)` for composing an iterable collection of functions.\n\n!!! compat \"Julia 1.4\"\n Multiple function composition requires at least Julia 1.4.\n\n# Examples\n```jldoctest\njulia> map(uppercase∘first, [\"apple\", \"banana\", \"carrot\"])\n3-element Array{Char,1}:\n 'A'\n 'B'\n 'C'\n\njulia> fs = [\n x -> 2x\n x -> x/2\n x -> x-1\n x -> x+1\n ];\n\njulia> ∘(fs...)(3)\n3.0\n```\n"}],"Base.cis":[{"Tuple{Complex}":" cis(z)\n\nReturn ``\\exp(iz)``.\n\n# Examples\n```jldoctest\njulia> cis(π) ≈ -1\ntrue\n```\n"}],"Base.circshift!":[{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any,Tuple{Vararg{Integer,N}} where N}} where N where T":" circshift!(dest, src, shifts)\n\nCircularly shift, i.e. rotate, the data in `src`, storing the result in\n`dest`. `shifts` specifies the amount to shift in each dimension.\n\nThe `dest` array must be distinct from the `src` array (they cannot\nalias each other).\n\nSee also [`circshift`](@ref).\n"}],"Base.UnitRange":[{"Union{}":" UnitRange{T<:Real}\n\nA range parameterized by a `start` and `stop` of type `T`, filled\nwith elements spaced by `1` from `start` until `stop` is exceeded.\nThe syntax `a:b` with `a` and `b` both `Integer`s creates a `UnitRange`.\n\n# Examples\n```jldoctest\njulia> collect(UnitRange(2.3, 5.2))\n3-element Array{Float64,1}:\n 2.3\n 3.3\n 4.3\n\njulia> typeof(1:10)\nUnitRange{Int64}\n```\n"}],"Base.>>>":[{"Tuple{BitArray{1},Int64}":" >>>(B::BitVector, n) -> BitVector\n\nUnsigned right bitshift operator, `B >>> n`. Equivalent to `B >> n`. See [`>>`](@ref) for\ndetails and examples.\n"},{"Tuple{Integer,Integer}":" >>>(x, n)\n\nUnsigned right bit shift operator, `x >>> n`. For `n >= 0`, the result is `x`\nshifted right by `n` bits, where `n >= 0`, filling with `0`s. For `n < 0`, this\nis equivalent to `x << -n`.\n\nFor [`Unsigned`](@ref) integer types, this is equivalent to [`>>`](@ref). For\n[`Signed`](@ref) integer types, this is equivalent to `signed(unsigned(x) >> n)`.\n\n# Examples\n```jldoctest\njulia> Int8(-14) >>> 2\n60\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(60))\n\"00111100\"\n```\n\n[`BigInt`](@ref)s are treated as if having infinite size, so no filling is required and this\nis equivalent to [`>>`](@ref).\n\nSee also [`>>`](@ref), [`<<`](@ref).\n"}],"Base.Inf32":[{"Union{}":" Inf32\n\nPositive infinity of type [`Float32`](@ref).\n"}],"Base.objectid":[{"Tuple{Any}":" objectid(x)\n\nGet a hash value for `x` based on object identity. `objectid(x)==objectid(y)` if `x === y`.\n"}],"Base.join":[{"Tuple{IO,Any,Any,Any}":" join([io::IO,] strings [, delim [, last]])\n\nJoin an array of `strings` into a single string, inserting the given delimiter (if any) between\nadjacent strings. If `last` is given, it will be used instead of `delim` between the last\ntwo strings. If `io` is given, the result is written to `io` rather than returned as\nas a `String`.\n\n`strings` can be any iterable over elements `x` which are convertible to strings\nvia `print(io::IOBuffer, x)`. `strings` will be printed to `io`.\n\n# Examples\n```jldoctest\njulia> join([\"apples\", \"bananas\", \"pineapples\"], \", \", \" and \")\n\"apples, bananas and pineapples\"\n\njulia> join([1,2,3,4,5])\n\"12345\"\n```\n"}],"Base.isnan":[{"Tuple{AbstractFloat}":" isnan(f) -> Bool\n\nTest whether a number value is a NaN, an indeterminate value which is neither an infinity\nnor a finite number (\"not a number\").\n"}],"Base.unsafe_convert":[{"Union{}":" unsafe_convert(T, x)\n\nConvert `x` to a C argument of type `T`\nwhere the input `x` must be the return value of `cconvert(T, ...)`.\n\nIn cases where [`convert`](@ref) would need to take a Julia object\nand turn it into a `Ptr`, this function should be used to define and perform\nthat conversion.\n\nBe careful to ensure that a Julia reference to `x` exists as long as the result of this\nfunction will be used. Accordingly, the argument `x` to this function should never be an\nexpression, only a variable name or field reference. For example, `x=a.b.c` is acceptable,\nbut `x=[a,b,c]` is not.\n\nThe `unsafe` prefix on this function indicates that using the result of this function after\nthe `x` argument to this function is no longer accessible to the program may cause undefined\nbehavior, including program corruption or segfaults, at any later time.\n\nSee also [`cconvert`](@ref)\n"}],"Base.findmax":[{"Tuple{Any}":" findmax(itr) -> (x, index)\n\nReturn the maximum element of the collection `itr` and its index. If there are multiple\nmaximal elements, then the first one will be returned.\nIf any data element is `NaN`, this element is returned.\nThe result is in line with `max`.\n\nThe collection must not be empty.\n\n# Examples\n```jldoctest\njulia> findmax([8,0.1,-9,pi])\n(8.0, 1)\n\njulia> findmax([1,7,7,6])\n(7, 2)\n\njulia> findmax([1,7,7,NaN])\n(NaN, 4)\n```\n"},{"Tuple{AbstractArray}":" findmax(A; dims) -> (maxval, index)\n\nFor an array input, returns the value and index of the maximum over the given dimensions.\n`NaN` is treated as greater than all other values.\n\n# Examples\n```jldoctest\njulia> A = [1.0 2; 3 4]\n2×2 Array{Float64,2}:\n 1.0 2.0\n 3.0 4.0\n\njulia> findmax(A, dims=1)\n([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])\n\njulia> findmax(A, dims=2)\n([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])\n```\n"}],"Base.unlock":[{"Tuple{ReentrantLock}":" unlock(lock)\n\nReleases ownership of the `lock`.\n\nIf this is a recursive lock which has been acquired before, decrement an\ninternal counter and return immediately.\n"}],"Base.Some":[{"Union{}":" Some{T}\n\nA wrapper type used in `Union{Some{T}, Nothing}` to distinguish between the absence\nof a value ([`nothing`](@ref)) and the presence of a `nothing` value (i.e. `Some(nothing)`).\n\nUse [`something`](@ref) to access the value wrapped by a `Some` object.\n"}],"Base.*":[{"Tuple{Union{AbstractChar, AbstractString},Vararg{Union{AbstractChar, AbstractString},N} where N}":" *(s::Union{AbstractString, AbstractChar}, t::Union{AbstractString, AbstractChar}...) -> AbstractString\n\nConcatenate strings and/or characters, producing a [`String`](@ref). This is equivalent\nto calling the [`string`](@ref) function on the arguments. Concatenation of built-in\nstring types always produces a value of type `String` but other string types may choose\nto return a string of a different type as appropriate.\n\n# Examples\n```jldoctest\njulia> \"Hello \" * \"world\"\n\"Hello world\"\n\njulia> 'j' * \"ulia\"\n\"julia\"\n```\n"},{"Tuple{Union{Regex, AbstractChar, AbstractString},Vararg{Union{Regex, AbstractChar, AbstractString},N} where N}":" *(s::Regex, t::Union{Regex,AbstractString,AbstractChar}) -> Regex\n *(s::Union{Regex,AbstractString,AbstractChar}, t::Regex) -> Regex\n\nConcatenate regexes, strings and/or characters, producing a [`Regex`](@ref).\nString and character arguments must be matched exactly in the resulting regex,\nmeaning that the contained characters are devoid of any special meaning\n(they are quoted with \"\\Q\" and \"\\E\").\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> match(r\"Hello|Good bye\" * ' ' * \"world\", \"Hello world\")\nRegexMatch(\"Hello world\")\n\njulia> r = r\"a|b\" * \"c|d\"\nr\"(?:a|b)\\Qc|d\\E\"\n\njulia> match(r, \"ac\") == nothing\ntrue\n\njulia> match(r, \"ac|d\")\nRegexMatch(\"ac|d\")\n```\n"}],"Base.mod1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" mod1(x, y)\n\nModulus after flooring division, returning a value `r` such that `mod(r, y) == mod(x, y)`\nin the range ``(0, y]`` for positive `y` and in the range ``[y,0)`` for negative `y`.\n\nSee also: [`fld1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod1(4, 2)\n2\n\njulia> mod1(4, 3)\n1\n```\n"}],"Base.isvalid":[{"Tuple{AbstractString,Integer}":" isvalid(s::AbstractString, i::Integer) -> Bool\n\nPredicate indicating whether the given index is the start of the encoding of a\ncharacter in `s` or not. If `isvalid(s, i)` is true then `s[i]` will return the\ncharacter whose encoding starts at that index, if it's false, then `s[i]` will\nraise an invalid index error or a bounds error depending on if `i` is in bounds.\nIn order for `isvalid(s, i)` to be an O(1) function, the encoding of `s` must be\n[self-synchronizing](https://en.wikipedia.org/wiki/Self-synchronizing_code) this\nis a basic assumption of Julia's generic string support.\n\nSee also: [`getindex`](@ref), [`iterate`](@ref), [`thisind`](@ref),\n[`nextind`](@ref), [`prevind`](@ref), [`length`](@ref)\n\n# Examples\n\n```jldoctest\njulia> str = \"αβγdef\";\n\njulia> isvalid(str, 1)\ntrue\n\njulia> str[1]\n'α': Unicode U+03B1 (category Ll: Letter, lowercase)\n\njulia> isvalid(str, 2)\nfalse\n\njulia> str[2]\nERROR: StringIndexError(\"αβγdef\", 2)\nStacktrace:\n[...]\n```\n"}],"Base.escape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" escape_string(str::AbstractString[, esc])::AbstractString\n escape_string(io, str::AbstractString[, esc::])::Nothing\n\nGeneral escaping of traditional C and Unicode escape sequences. The first form returns the\nescaped string, the second prints the result to `io`.\n\nBackslashes (`\\`) are escaped with a double-backslash (`\"\\\\\"`). Non-printable\ncharacters are escaped either with their standard C escape codes, `\"\\0\"` for NUL (if\nunambiguous), unicode code point (`\"\\u\"` prefix) or hex (`\"\\x\"` prefix).\n\nThe optional `esc` argument specifies any additional characters that should also be\nescaped by a prepending backslash (`\"` is also escaped by default in the first form).\n\n# Examples\n```jldoctest\njulia> escape_string(\"aaa\\nbbb\")\n\"aaa\\\\nbbb\"\n\njulia> escape_string(\"\\xfe\\xff\") # invalid utf-8\n\"\\\\xfe\\\\xff\"\n\njulia> escape_string(string('\\u2135','\\0')) # unambiguous\n\"ℵ\\\\0\"\n\njulia> escape_string(string('\\u2135','\\0','0')) # \\0 would be ambiguous\n\"ℵ\\\\x000\"\n```\n\n## See also\n[`unescape_string`](@ref) for the reverse operation.\n"}],"Base.im":[{"Union{}":" im\n\nThe imaginary unit.\n\n# Examples\n```jldoctest\njulia> im * im\n-1 + 0im\n```\n"}],"Base.NaN32":[{"Union{}":" NaN32\n\nA not-a-number value of type [`Float32`](@ref).\n"}],"Base.@threadcall":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @threadcall((cfunc, clib), rettype, (argtypes...), argvals...)\n\nThe `@threadcall` macro is called in the same way as [`ccall`](@ref) but does the work\nin a different thread. This is useful when you want to call a blocking C\nfunction without causing the main `julia` thread to become blocked. Concurrency\nis limited by size of the libuv thread pool, which defaults to 4 threads but\ncan be increased by setting the `UV_THREADPOOL_SIZE` environment variable and\nrestarting the `julia` process.\n\nNote that the called function should never call back into Julia.\n"}],"Base.ntuple":[{"Union{Tuple{F}, Tuple{F,Integer}} where F":" ntuple(f::Function, n::Integer)\n\nCreate a tuple of length `n`, computing each element as `f(i)`,\nwhere `i` is the index of the element.\n\n# Examples\n```jldoctest\njulia> ntuple(i -> 2*i, 4)\n(2, 4, 6, 8)\n```\n"}],"Base.∌":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.error":[{"Tuple{AbstractString}":" error(message::AbstractString)\n\nRaise an `ErrorException` with the given message.\n"},{"Union{Tuple{Vararg{Any,N}}, Tuple{N}} where N":" error(msg...)\n\nRaise an `ErrorException` with the given message.\n"}],"Base.sizeof":[{"Tuple{Any}":" sizeof(T::DataType)\n sizeof(obj)\n\nSize, in bytes, of the canonical binary representation of the given `DataType` `T`, if any.\nSize, in bytes, of object `obj` if it is not `DataType`.\n\n# Examples\n```jldoctest\njulia> sizeof(Float32)\n4\n\njulia> sizeof(ComplexF64)\n16\n\njulia> sizeof(1.0)\n8\n\njulia> sizeof([1.0:10.0;])\n80\n```\n\nIf `DataType` `T` does not have a specific size, an error is thrown.\n\n```jldoctest\njulia> sizeof(AbstractArray)\nERROR: Abstract type AbstractArray does not have a definite size.\nStacktrace:\n[...]\n```\n"},{"Tuple{AbstractString}":" sizeof(str::AbstractString)\n\nSize, in bytes, of the string `str`. Equal to the number of code units in `str` multiplied by\nthe size, in bytes, of one code unit in `str`.\n\n# Examples\n```jldoctest\njulia> sizeof(\"\")\n0\n\njulia> sizeof(\"∀\")\n3\n```\n"}],"Base.isqrt":[{"Tuple{Integer}":" isqrt(n::Integer)\n\nInteger square root: the largest integer `m` such that `m*m <= n`.\n\n```jldoctest\njulia> isqrt(5)\n2\n```\n"}],"Base.Cshort":[{"Union{}":" Cshort\n\nEquivalent to the native `signed short` c-type ([`Int16`](@ref)).\n"}],"Base.trunc":[{"Union{}":" trunc([T,] x)\n trunc(x; digits::Integer= [, base = 10])\n trunc(x; sigdigits::Integer= [, base = 10])\n\n`trunc(x)` returns the nearest integral value of the same type as `x` whose absolute value\nis less than or equal to `x`.\n\n`trunc(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.minimum":[{"Tuple{Any}":" minimum(itr)\n\nReturns the smallest element in a collection.\n\n# Examples\n```jldoctest\njulia> minimum(-20.5:10)\n-20.5\n\njulia> minimum([1,2,3])\n1\n```\n"},{"Tuple{AbstractArray}":" minimum(A::AbstractArray; dims)\n\nCompute the minimum value of an array over the given dimensions. See also the\n[`min(a,b)`](@ref) function to take the minimum of two or more arguments,\nwhich can be applied elementwise to arrays via `min.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum(A, dims=1)\n1×2 Array{Int64,2}:\n 1 2\n\njulia> minimum(A, dims=2)\n2×1 Array{Int64,2}:\n 1\n 3\n```\n"},{"Tuple{Any,Any}":" minimum(f, itr)\n\nReturns the smallest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> minimum(length, [\"Julion\", \"Julia\", \"Jule\"])\n4\n```\n"}],"Base.inv":[{"Tuple{Number}":" inv(x)\n\nReturn the multiplicative inverse of `x`, such that `x*inv(x)` or `inv(x)*x`\nyields [`one(x)`](@ref) (the multiplicative identity) up to roundoff errors.\n\nIf `x` is a number, this is essentially the same as `one(x)/x`, but for\nsome types `inv(x)` may be slightly more efficient.\n\n# Examples\n```jldoctest\njulia> inv(2)\n0.5\n\njulia> inv(1 + 2im)\n0.2 - 0.4im\n\njulia> inv(1 + 2im) * (1 + 2im)\n1.0 + 0.0im\n\njulia> inv(2//3)\n3//2\n```\n\n!!! compat \"Julia 1.2\"\n `inv(::Missing)` requires at least Julia 1.2.\n"}],"Base.==":[{"Tuple{Any}":" ==(x)\n\nCreate a function that compares its argument to `x` using [`==`](@ref), i.e.\na function equivalent to `y -> y == x`.\n\nThe returned function is of type `Base.Fix2{typeof(==)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" ==(x, y)\n\nGeneric equality operator. Falls back to [`===`](@ref).\nShould be implemented for all types with a notion of equality, based on the abstract value\nthat an instance represents. For example, all numeric types are compared by numeric value,\nignoring type. Strings are compared as sequences of characters, ignoring encoding.\nFor collections, `==` is generally called recursively on all contents,\nthough other properties (like the shape for arrays) may also be taken into account.\n\nThis operator follows IEEE semantics for floating-point numbers: `0.0 == -0.0` and\n`NaN != NaN`.\n\nThe result is of type `Bool`, except when one of the operands is [`missing`](@ref),\nin which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic)).\nFor collections, `missing` is returned if at least one of the operands contains\na `missing` value and all non-missing values are equal.\nUse [`isequal`](@ref) or [`===`](@ref) to always get a `Bool` result.\n\n# Implementation\nNew numeric types should implement this function for two arguments of the new type, and\nhandle comparison to other types via promotion rules where possible.\n\n[`isequal`](@ref) falls back to `==`, so new methods of `==` will be used by the\n[`Dict`](@ref) type to compare keys. If your type will be used as a dictionary key, it\nshould therefore also implement [`hash`](@ref).\n"},{"Tuple{AbstractString,AbstractString}":" ==(a::AbstractString, b::AbstractString) -> Bool\n\nTest whether two strings are equal character by character (technically, Unicode\ncode point by code point).\n\n# Examples\n```jldoctest\njulia> \"abc\" == \"abc\"\ntrue\n\njulia> \"abc\" == \"αβγ\"\nfalse\n```\n"}],"Base.invokelatest":[{"Tuple{Any,Vararg{Any,N} where N}":" invokelatest(f, args...; kwargs...)\n\nCalls `f(args...; kwargs...)`, but guarantees that the most recent method of `f`\nwill be executed. This is useful in specialized circumstances,\ne.g. long-running event loops or callback functions that may\ncall obsolete versions of a function `f`.\n(The drawback is that `invokelatest` is somewhat slower than calling\n`f` directly, and the type of the result cannot be inferred by the compiler.)\n"}],"Base.Cint":[{"Union{}":" Cint\n\nEquivalent to the native `signed int` c-type ([`Int32`](@ref)).\n"}],"Base.fma":[{"Union{}":" fma(x, y, z)\n\nComputes `x*y+z` without rounding the intermediate result `x*y`. On some systems this is\nsignificantly more expensive than `x*y+z`. `fma` is used to improve accuracy in certain\nalgorithms. See [`muladd`](@ref).\n"}],"Base.yieldto":[{"Tuple{Task,Any}":" yieldto(t::Task, arg = nothing)\n\nSwitch to the given task. The first time a task is switched to, the task's function is\ncalled with no arguments. On subsequent switches, `arg` is returned from the task's last\ncall to `yieldto`. This is a low-level call that only switches tasks, not considering states\nor scheduling in any way. Its use is discouraged.\n"}],"Base.VERSION":[{"Union{}":" VERSION\n\nA `VersionNumber` object describing which version of Julia is in use. For details see\n[Version Number Literals](@ref man-version-number-literals).\n"}],"Base.@async":[{"Tuple{Any}":" @async\n\nWrap an expression in a [`Task`](@ref) and add it to the local machine's scheduler queue.\n\nValues can be interpolated into `@async` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.fld1":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Real":" fld1(x, y)\n\nFlooring division, returning a value consistent with `mod1(x,y)`\n\nSee also: [`mod1`](@ref), [`fldmod1`](@ref).\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> fld1(x, y)\n4\n\njulia> x == fld(x, y) * y + mod(x, y)\ntrue\n\njulia> x == (fld1(x, y) - 1) * y + mod1(x, y)\ntrue\n```\n"}],"Base.AbstractMatrix":[{"Union{}":" AbstractMatrix{T}\n\nSupertype for two-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,2}`](@ref).\n"}],"Base.powermod":[{"Union{Tuple{T}, Tuple{Integer,Integer,T}} where T<:Integer":" powermod(x::Integer, p::Integer, m)\n\nCompute ``x^p \\pmod m``.\n\n# Examples\n```jldoctest\njulia> powermod(2, 6, 5)\n4\n\njulia> mod(2^6, 5)\n4\n\njulia> powermod(5, 2, 20)\n5\n\njulia> powermod(5, 2, 19)\n6\n\njulia> powermod(5, 3, 19)\n11\n```\n"}],"Base.open_flags":[{"Tuple{}":" open_flags(; keywords...) -> NamedTuple\n\nCompute the `read`, `write`, `create`, `truncate`, `append` flag value for\na given set of keyword arguments to [`open`](@ref) a [`NamedTuple`](@ref).\n"}],"Base.isfinite":[{"Tuple{AbstractFloat}":" isfinite(f) -> Bool\n\nTest whether a number is finite.\n\n# Examples\n```jldoctest\njulia> isfinite(5)\ntrue\n\njulia> isfinite(NaN32)\nfalse\n```\n"}],"Base.SecretBuffer":[{"Union{}":" Base.SecretBuffer()\n\nAn [`IOBuffer`](@ref)-like object where the contents will be securely wiped when garbage collected.\n\nIt is considered best practice to wipe the buffer using `Base.shred!(::SecretBuffer)` as\nsoon as the secure data are no longer required. When initializing with existing data, the\n`SecretBuffer!` method is highly recommended to securely zero the passed argument. Avoid\ninitializing with and converting to `String`s as they are unable to be securely zeroed.\n\n# Examples\n```jldoctest\njulia> s = Base.SecretBuffer()\nSecretBuffer(\"*******\")\n\njulia> write(s, 's', 'e', 'c', 'r', 'e', 't')\n6\n\njulia> seek(s, 0); Char(read(s, UInt8))\n's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)\n\njulia> Base.shred!(s)\nSecretBuffer(\"*******\")\n\njulia> eof(s)\ntrue\n```\n"},{"Tuple{AbstractString}":" SecretBuffer(str::AbstractString)\n\nA convenience constructor to initialize a `SecretBuffer` from a non-secret string.\n\nStrings are bad at keeping secrets because they are unable to be securely\nzeroed or destroyed. Therefore, avoid using this constructor with secret data.\nInstead of starting with a string, either construct the `SecretBuffer`\nincrementally with `SecretBuffer()` and [`write`](@ref), or use a `Vector{UInt8}` with\nthe `Base.SecretBuffer!(::Vector{UInt8})` constructor.\n"}],"Base.!":[{"Tuple{Bool}":" !(x)\n\nBoolean not. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if `x` is `missing`.\n\n# Examples\n```jldoctest\njulia> !true\nfalse\n\njulia> !false\ntrue\n\njulia> !missing\nmissing\n\njulia> .![true false true]\n1×3 BitArray{2}:\n 0 1 0\n```\n"},{"Tuple{Function}":" !f::Function\n\nPredicate function negation: when the argument of `!` is a function, it returns a\nfunction which computes the boolean negation of `f`.\n\n# Examples\n```jldoctest\njulia> str = \"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε\"\n\njulia> filter(isletter, str)\n\"εδxyδfxfyε\"\n\njulia> filter(!isletter, str)\n\"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < \"\n```\n"}],"Base.match":[{"Union{}":" match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])\n\nSearch for the first match of the regular expression `r` in `s` and return a `RegexMatch`\nobject containing the match, or nothing if the match failed. The matching substring can be\nretrieved by accessing `m.match` and the captured sequences can be retrieved by accessing\n`m.captures` The optional `idx` argument specifies an index at which to start the search.\n\n# Examples\n```jldoctest\njulia> rx = r\"a(.)a\"\nr\"a(.)a\"\n\njulia> m = match(rx, \"cabac\")\nRegexMatch(\"aba\", 1=\"b\")\n\njulia> m.captures\n1-element Array{Union{Nothing, SubString{String}},1}:\n \"b\"\n\njulia> m.match\n\"aba\"\n\njulia> match(rx, \"cabac\", 3) === nothing\ntrue\n```\n"}],"Base.hash":[{"Tuple{Any}":" hash(x[, h::UInt])\n\nCompute an integer hash code such that `isequal(x,y)` implies `hash(x)==hash(y)`. The\noptional second argument `h` is a hash code to be mixed with the result.\n\nNew types should implement the 2-argument form, typically by calling the 2-argument `hash`\nmethod recursively in order to mix hashes of the contents with each other (and with `h`).\nTypically, any type that implements `hash` should also implement its own `==` (hence\n`isequal`) to guarantee the property mentioned above. Types supporting subtraction\n(operator `-`) should also implement [`widen`](@ref), which is required to hash\nvalues inside heterogeneous arrays.\n"}],"Base.isreadable":[{"Union{}":" isreadable(io) -> Bool\n\nReturn `true` if the specified IO object is readable (if that can be determined).\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n print(io, \"Hello world!\");\n isreadable(io)\n end\nfalse\n\njulia> open(\"myfile.txt\", \"r\") do io\n isreadable(io)\n end\ntrue\n\njulia> rm(\"myfile.txt\")\n```\n"}],"Base.ReinterpretArray":[{"Union{}":"Gives a reinterpreted view (of element type T) of the underlying array (of element type S).\nIf the size of `T` differs from the size of `S`, the array will be compressed/expanded in\nthe first dimension.\n"}],"Base.truncate":[{"Tuple{IOStream,Integer}":" truncate(file, n)\n\nResize the file or buffer given by the first argument to exactly `n` bytes, filling\npreviously unallocated space with '\\0' if the file or buffer is grown.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n35\n\njulia> truncate(io, 15)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=15, maxsize=Inf, ptr=16, mark=-1)\n\njulia> String(take!(io))\n\"JuliaLang is a \"\n\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\");\n\njulia> truncate(io, 40);\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization.\\0\\0\\0\\0\\0\"\n```\n"}],"Base.ismalformed":[{"Tuple{AbstractChar}":" ismalformed(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents malformed (non-Unicode) data according to the\nencoding used by `c`. Defaults to `false` for non-`Char` types. See also\n[`show_invalid`](@ref).\n"}],"Base.has_bottom_parameter":[{"Tuple{DataType}":" has_bottom_parameter(t) -> Bool\n\nDetermine whether `t` is a Type for which one or more of its parameters is `Union{}`.\n"}],"Base.circcopy!":[{"Tuple{Any,Any}":" circcopy!(dest, src)\n\nCopy `src` to `dest`, indexing each dimension modulo its length.\n`src` and `dest` must have the same size, but can be offset in\ntheir indices; any offset results in a (circular) wraparound. If the\narrays have overlapping indices, then on the domain of the overlap\n`dest` agrees with `src`.\n\n# Examples\n```julia-repl\njulia> src = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> dest = OffsetArray{Int}(undef, (0:3,2:5))\n\njulia> circcopy!(dest, src)\nOffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:\n 8 12 16 4\n 5 9 13 1\n 6 10 14 2\n 7 11 15 3\n\njulia> dest[1:3,2:4] == src[1:3,2:4]\ntrue\n```\n"}],"Base.lpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" lpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the left with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> lpad(\"March\", 10)\n\" March\"\n```\n"}],"Base.unsafe_write":[{"Tuple{IO,Ptr{UInt8},UInt64}":" unsafe_write(io::IO, ref, nbytes::UInt)\n\nCopy `nbytes` from `ref` (converted to a pointer) into the `IO` object.\n\nIt is recommended that subtypes `T<:IO` override the following method signature\nto provide more efficient implementations:\n`unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)`\n"}],"Base.AbstractUnitRange":[{"Union{}":" AbstractUnitRange{T} <: OrdinalRange{T, T}\n\nSupertype for ranges with a step size of [`oneunit(T)`](@ref) with elements of type `T`.\n[`UnitRange`](@ref) and other types are subtypes of this.\n"}],"Base.reverse":[{"Tuple{AbstractArray}":" reverse(A; dims::Integer)\n\nReverse `A` in dimension `dims`.\n\n# Examples\n```jldoctest\njulia> b = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> reverse(b, dims=2)\n2×2 Array{Int64,2}:\n 2 1\n 4 3\n```\n"},{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse(v [, start=1 [, stop=length(v) ]] )\n\nReturn a copy of `v` reversed from start to stop. See also [`Iterators.reverse`](@ref)\nfor reverse-order iteration without making a copy.\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse(A)\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n\njulia> reverse(A, 1, 4)\n5-element Array{Int64,1}:\n 4\n 3\n 2\n 1\n 5\n\njulia> reverse(A, 3, 5)\n5-element Array{Int64,1}:\n 1\n 2\n 5\n 4\n 3\n```\n"},{"Tuple{Union{SubString{String}, String}}":" reverse(s::AbstractString) -> AbstractString\n\nReverses a string. Technically, this function reverses the codepoints in a string and its\nmain utility is for reversed-order string processing, especially for reversed\nregular-expression searches. See also [`reverseind`](@ref) to convert indices in `s` to\nindices in `reverse(s)` and vice-versa, and `graphemes` from module `Unicode` to\noperate on user-visible \"characters\" (graphemes) rather than codepoints.\nSee also [`Iterators.reverse`](@ref) for\nreverse-order iteration without making a copy. Custom string types must implement the\n`reverse` function themselves and should typically return a string with the same type\nand encoding. If they return a string with a different encoding, they must also override\n`reverseind` for that string type to satisfy `s[reverseind(s,i)] == reverse(s)[i]`.\n\n# Examples\n```jldoctest\njulia> reverse(\"JuliaLang\")\n\"gnaLailuJ\"\n\njulia> reverse(\"ax̂e\") # combining characters can lead to surprising results\n\"êxa\"\n\njulia> using Unicode\n\njulia> join(reverse(collect(graphemes(\"ax̂e\")))) # reverses graphemes\n\"ex̂a\"\n```\n"}],"Base.Inf":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.include_dependency":[{"Tuple{AbstractString}":" include_dependency(path::AbstractString)\n\nIn a module, declare that the file specified by `path` (relative or absolute) is a\ndependency for precompilation; that is, the module will need to be recompiled if this file\nchanges.\n\nThis is only needed if your module depends on a file that is not used via [`include`](@ref). It has\nno effect outside of compilation.\n"}],"Base.≉":[{"Tuple":" x ≉ y\n\nThis is equivalent to `!isapprox(x,y)` (see [`isapprox`](@ref)).\n"}],"Base.current_task":[{"Tuple{}":" current_task()\n\nGet the currently running [`Task`](@ref).\n"}],"Base.redirect_stdout":[{"Union{}":" redirect_stdout([stream]) -> (rd, wr)\n\nCreate a pipe to which all C and Julia level [`stdout`](@ref) output\nwill be redirected.\nReturns a tuple `(rd, wr)` representing the pipe ends.\nData written to [`stdout`](@ref) may now be read from the `rd` end of\nthe pipe. The `wr` end is given for convenience in case the old\n[`stdout`](@ref) object was cached by the user and needs to be replaced\nelsewhere.\n\nIf called with the optional `stream` argument, then returns `stream` itself.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"},{"Tuple{Function,Any}":" redirect_stdout(f::Function, stream)\n\nRun the function `f` while redirecting [`stdout`](@ref) to `stream`.\nUpon completion, [`stdout`](@ref) is restored to its prior setting.\n\n!!! note\n `stream` must be a `TTY`, a `Pipe`, or a socket.\n"}],"Base.add12":[{"Union{Tuple{T}, Tuple{T,T}} where T":" zhi, zlo = add12(x, y)\n\nA high-precision representation of `x + y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x + y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nBecause of the way floating-point numbers are printed, `lo` may not\nlook the way you might expect from the standpoint of decimal\nrepresentation, even though it is exact from the standpoint of binary\nrepresentation.\n\nExample:\n```julia\njulia> 1.0 + 1.0001e-15\n1.000000000000001\n\njulia> big(1.0) + big(1.0001e-15)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n\njulia> hi, lo = Base.add12(1.0, 1.0001e-15)\n(1.000000000000001, -1.1012302462515652e-16)\n\njulia> big(hi) + big(lo)\n1.000000000000001000100000000000020165767380775934141445417482375879192346701529\n```\n\n`lo` differs from 1.0e-19 because `hi` is not exactly equal to\nthe first 16 decimal digits of the answer.\n"}],"Base.extrema":[{"Tuple{Any,AbstractArray}":" extrema(f, A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum of `f` applied to each element in the given dimensions\nof `A`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n"},{"Tuple{Any}":" extrema(itr) -> Tuple\n\nCompute both the minimum and maximum element in a single pass, and return them as a 2-tuple.\n\n# Examples\n```jldoctest\njulia> extrema(2:10)\n(2, 10)\n\njulia> extrema([9,pi,4.5])\n(3.141592653589793, 9.0)\n```\n"},{"Tuple{AbstractArray}":" extrema(A::AbstractArray; dims) -> Array{Tuple}\n\nCompute the minimum and maximum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = reshape(Vector(1:2:16), (2,2,2))\n2×2×2 Array{Int64,3}:\n[:, :, 1] =\n 1 5\n 3 7\n\n[:, :, 2] =\n 9 13\n 11 15\n\njulia> extrema(A, dims = (1,2))\n1×1×2 Array{Tuple{Int64,Int64},3}:\n[:, :, 1] =\n (1, 7)\n\n[:, :, 2] =\n (9, 15)\n```\n"},{"Tuple{Any,Any}":" extrema(f, itr) -> Tuple\n\nCompute both the minimum and maximum of `f` applied to each element in `itr` and return\nthem as a 2-tuple. Only one pass is made over `itr`.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> extrema(sin, 0:π)\n(0.0, 0.9092974268256817)\n```\n"}],"Base.unindent":[{"Tuple{AbstractString,Int64}":" unindent(str::AbstractString, indent::Int; tabwidth=8)\n\nRemove leading indentation from string.\n\n# Examples\n```jldoctest\njulia> Base.unindent(\" a\\n b\", 2)\n\" a\\n b\"\n\njulia> Base.unindent(\"\\ta\\n\\tb\", 2, tabwidth=8)\n\" a\\n b\"\n```\n"}],"Base.maxintfloat":[{"Union{Tuple{T}, Tuple{S}, Tuple{Type{S},Type{T}}} where T<:Integer where S<:AbstractFloat":" maxintfloat(T, S)\n\nThe largest consecutive integer representable in the given floating-point type `T` that\nalso does not exceed the maximum integer representable by the integer type `S`. Equivalently,\nit is the minimum of `maxintfloat(T)` and [`typemax(S)`](@ref).\n"},{"Tuple{Type{Float64}}":" maxintfloat(T=Float64)\n\nThe largest consecutive integer-valued floating-point number that is exactly represented in\nthe given floating-point type `T` (which defaults to `Float64`).\n\nThat is, `maxintfloat` returns the smallest positive integer-valued floating-point number\n`n` such that `n+1` is *not* exactly representable in the type `T`.\n\nWhen an `Integer`-type value is needed, use `Integer(maxintfloat(T))`.\n"}],"Base.pipeline":[{"Tuple{Base.AbstractCmd}":" pipeline(command; stdin, stdout, stderr, append=false)\n\nRedirect I/O to or from the given `command`. Keyword arguments specify which of the\ncommand's streams should be redirected. `append` controls whether file output appends to the\nfile. This is a more general version of the 2-argument `pipeline` function.\n`pipeline(from, to)` is equivalent to `pipeline(from, stdout=to)` when `from` is a command,\nand to `pipeline(to, stdin=from)` when `from` is another kind of data source.\n\n**Examples**:\n\n```julia\nrun(pipeline(`dothings`, stdout=\"out.txt\", stderr=\"errs.txt\"))\nrun(pipeline(`update`, stdout=\"log.txt\", append=true))\n```\n"},{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" pipeline(from, to, ...)\n\nCreate a pipeline from a data source to a destination. The source and destination can be\ncommands, I/O streams, strings, or results of other `pipeline` calls. At least one argument\nmust be a command. Strings refer to filenames. When called with more than two arguments,\nthey are chained together from left to right. For example, `pipeline(a,b,c)` is equivalent to\n`pipeline(pipeline(a,b),c)`. This provides a more concise way to specify multi-stage\npipelines.\n\n**Examples**:\n\n```julia\nrun(pipeline(`ls`, `grep xyz`))\nrun(pipeline(`ls`, \"out.txt\"))\nrun(pipeline(\"out.txt\", `grep xyz`))\n```\n"}],"Base.angle":[{"Tuple{Complex}":" angle(z)\n\nCompute the phase angle in radians of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> rad2deg(angle(1 + im))\n45.0\n\njulia> rad2deg(angle(1 - im))\n-45.0\n\njulia> rad2deg(angle(-1 - im))\n-135.0\n```\n"}],"Base.hex2bytes":[{"Union{}":" hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})\n\nGiven a string or array `s` of ASCII codes for a sequence of hexadecimal digits, returns a\n`Vector{UInt8}` of bytes corresponding to the binary representation: each successive pair\nof hexadecimal digits in `s` gives the value of one byte in the return vector.\n\nThe length of `s` must be even, and the returned array has half of the length of `s`.\nSee also [`hex2bytes!`](@ref) for an in-place version, and [`bytes2hex`](@ref) for the inverse.\n\n# Examples\n```jldoctest\njulia> s = string(12345, base = 16)\n\"3039\"\n\njulia> hex2bytes(s)\n2-element Array{UInt8,1}:\n 0x30\n 0x39\n\njulia> a = b\"01abEF\"\n6-element Base.CodeUnits{UInt8,String}:\n 0x30\n 0x31\n 0x61\n 0x62\n 0x45\n 0x46\n\njulia> hex2bytes(a)\n3-element Array{UInt8,1}:\n 0x01\n 0xab\n 0xef\n```\n"}],"Base.unescape_string":[{"Union{Tuple{IO,AbstractString}, Tuple{IO,AbstractString,Any}}":" unescape_string(str::AbstractString, keep = ())::AbstractString\n unescape_string(io, s::AbstractString, keep = ())::Nothing\n\nGeneral unescaping of traditional C and Unicode escape sequences. The first form returns\nthe escaped string, the second prints the result to `io`.\nThe argument `keep` specifies a collection of characters which (along with backlashes) are\nto be kept as they are.\n\nThe following escape sequences are recognised:\n - Escaped backslash (`\\\\`)\n - Escaped double-quote (`\\\"`)\n - Standard C escape sequences (`\\a`, `\\b`, `\\t`, `\\n`, `\\v`, `\\f`, `\\r`, `\\e`)\n - Unicode BMP code points (`\\u` with 1-4 trailing hex digits)\n - All Unicode code points (`\\U` with 1-8 trailing hex digits; max value = 0010ffff)\n - Hex bytes (`\\x` with 1-2 trailing hex digits)\n - Octal bytes (`\\` with 1-3 trailing octal digits)\n\n# Examples\n```jldoctest\njulia> unescape_string(\"aaa\\\\nbbb\") # C escape sequence\n\"aaa\\nbbb\"\n\njulia> unescape_string(\"\\\\u03c0\") # unicode\n\"π\"\n\njulia> unescape_string(\"\\\\101\") # octal\n\"A\"\n\njulia> unescape_string(\"aaa \\\\g \\\\n\", ['g']) # using `keep` argument\n\"aaa \\\\g \\n\"\n```\n\n## See also\n[`escape_string`](@ref).\n"}],"Base.macroexpand":[{"Tuple{Module,Any}":" macroexpand(m::Module, x; recursive=true)\n\nTake the expression `x` and return an equivalent expression with all macros removed (expanded)\nfor executing in module `m`.\nThe `recursive` keyword controls whether deeper levels of nested macros are also expanded.\nThis is demonstrated in the example below:\n```julia-repl\njulia> module M\n macro m1()\n 42\n end\n macro m2()\n :(@m1())\n end\n end\nM\n\njulia> macroexpand(M, :(@m2()), recursive=true)\n42\n\njulia> macroexpand(M, :(@m2()), recursive=false)\n:(#= REPL[16]:6 =# M.@m1)\n```\n"}],"Base.lock":[{"Tuple{Any,Base.AbstractLock}":" lock(f::Function, lock)\n\nAcquire the `lock`, execute `f` with the `lock` held, and release the `lock` when `f`\nreturns. If the lock is already locked by a different task/thread, wait for it to become\navailable.\n\nWhen this function returns, the `lock` has been released, so the caller should\nnot attempt to `unlock` it.\n"},{"Tuple{ReentrantLock}":" lock(lock)\n\nAcquire the `lock` when it becomes available.\nIf the lock is already locked by a different task/thread,\nwait for it to become available.\n\nEach `lock` must be matched by an [`unlock`](@ref).\n"}],"Base.@static":[{"Tuple{Any}":" @static\n\nPartially evaluate an expression at parse time.\n\nFor example, `@static Sys.iswindows() ? foo : bar` will evaluate `Sys.iswindows()` and insert\neither `foo` or `bar` into the expression.\nThis is useful in cases where a construct would be invalid on other platforms,\nsuch as a `ccall` to a non-existent function.\n`@static if Sys.isapple() foo end` and `@static foo <&&,||> bar` are also valid syntax.\n"}],"Base.rpad":[{"Union{Tuple{Any,Integer}, Tuple{Any,Integer,Union{AbstractChar, AbstractString}}}":" rpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String\n\nStringify `s` and pad the resulting string on the right with `p` to make it `n`\ncharacters (code points) long. If `s` is already `n` characters long, an equal\nstring is returned. Pad with spaces by default.\n\n# Examples\n```jldoctest\njulia> rpad(\"March\", 20)\n\"March \"\n```\n"}],"Base.rsplit":[{"Union{}":" rsplit(s::AbstractString; limit::Integer=0, keepempty::Bool=false)\n rsplit(s::AbstractString, chars; limit::Integer=0, keepempty::Bool=true)\n\nSimilar to [`split`](@ref), but starting from the end of the string.\n\n# Examples\n```jldoctest\njulia> a = \"M.a.r.c.h\"\n\"M.a.r.c.h\"\n\njulia> rsplit(a,\".\")\n5-element Array{SubString{String},1}:\n \"M\"\n \"a\"\n \"r\"\n \"c\"\n \"h\"\n\njulia> rsplit(a,\".\";limit=1)\n1-element Array{SubString{String},1}:\n \"M.a.r.c.h\"\n\njulia> rsplit(a,\".\";limit=2)\n2-element Array{SubString{String},1}:\n \"M.a.r.c\"\n \"h\"\n```\n"}],"Base.fill!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,N} where N,Any}} where T":" fill!(A, x)\n\nFill array `A` with the value `x`. If `x` is an object reference, all elements will refer to\nthe same object. `fill!(A, Foo())` will return `A` filled with the result of evaluating\n`Foo()` once.\n\n# Examples\n```jldoctest\njulia> A = zeros(2,3)\n2×3 Array{Float64,2}:\n 0.0 0.0 0.0\n 0.0 0.0 0.0\n\njulia> fill!(A, 2.)\n2×3 Array{Float64,2}:\n 2.0 2.0 2.0\n 2.0 2.0 2.0\n\njulia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A\n3-element Array{Array{Int64,1},1}:\n [2, 1, 1]\n [2, 1, 1]\n [2, 1, 1]\n\njulia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())\n3-element Array{Int64,1}:\n 1\n 1\n 1\n```\n"}],"Base.ENDIAN_BOM":[{"Union{}":" ENDIAN_BOM\n\nThe 32-bit byte-order-mark indicates the native byte order of the host machine.\nLittle-endian machines will contain the value `0x04030201`. Big-endian machines will contain\nthe value `0x01020304`.\n"}],"Base.chomp":[{"Tuple{AbstractString}":" chomp(s::AbstractString) -> SubString\n\nRemove a single trailing newline from a string.\n\n# Examples\n```jldoctest\njulia> chomp(\"Hello\\n\")\n\"Hello\"\n```\n"}],"Base.occursin":[{"Tuple{Union{AbstractChar, AbstractString},AbstractString}":" occursin(needle::Union{AbstractString,Regex,AbstractChar}, haystack::AbstractString)\n\nDetermine whether the first argument is a substring of the second. If `needle`\nis a regular expression, checks whether `haystack` contains a match.\n\n# Examples\n```jldoctest\njulia> occursin(\"Julia\", \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin('a', \"JuliaLang is pretty cool!\")\ntrue\n\njulia> occursin(r\"a.a\", \"aba\")\ntrue\n\njulia> occursin(r\"a.a\", \"abba\")\nfalse\n```\n"}],"Base.promote_typejoin":[{"Tuple{Any,Any}":" promote_typejoin(T, S)\n\nCompute a type that contains both `T` and `S`, which could be\neither a parent of both types, or a `Union` if appropriate.\nFalls back to [`typejoin`](@ref).\n"}],"Base.fldmod1":[{"Tuple{Any,Any}":" fldmod1(x, y)\n\nReturn `(fld1(x,y), mod1(x,y))`.\n\nSee also: [`fld1`](@ref), [`mod1`](@ref).\n"}],"Base.eof":[{"Tuple{Base.AbstractPipe}":" eof(stream) -> Bool\n\nTest whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this\nfunction will block to wait for more data if necessary, and then return `false`. Therefore\nit is always safe to read one byte after seeing `eof` return `false`. `eof` will return\n`false` as long as buffered data is still available, even if the remote end of a connection\nis closed.\n"}],"Base.@label":[{"Tuple{Symbol}":" @label name\n\nLabels a statement with the symbolic label `name`. The label marks the end-point\nof an unconditional jump with [`@goto name`](@ref).\n"}],"Base.codeunit":[{"Tuple{AbstractString}":" codeunit(s::AbstractString) -> Type{<:Union{UInt8, UInt16, UInt32}}\n\nReturn the code unit type of the given string object. For ASCII, Latin-1, or\nUTF-8 encoded strings, this would be `UInt8`; for UCS-2 and UTF-16 it would be\n`UInt16`; for UTF-32 it would be `UInt32`. The unit code type need not be\nlimited to these three types, but it's hard to think of widely used string\nencodings that don't use one of these units. `codeunit(s)` is the same as\n`typeof(codeunit(s,1))` when `s` is a non-empty string.\n\nSee also: [`ncodeunits`](@ref)\n"},{"Tuple{AbstractString,Integer}":" codeunit(s::AbstractString, i::Integer) -> Union{UInt8, UInt16, UInt32}\n\nReturn the code unit value in the string `s` at index `i`. Note that\n\n codeunit(s, i) :: codeunit(s)\n\nI.e. the value returned by `codeunit(s, i)` is of the type returned by\n`codeunit(s)`.\n\nSee also: [`ncodeunits`](@ref), [`checkbounds`](@ref)\n"}],"Base.Vector":[{"Union{}":" Vector{T} <: AbstractVector{T}\n\nOne-dimensional dense array with elements of type `T`, often used to represent\na mathematical vector. Alias for [`Array{T,1}`](@ref).\n"}],"Base.unalias":[{"Tuple{Any,AbstractArray}":" Base.unalias(dest, A)\n\nReturn either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from\naffecting the returned object. No guarantees are provided.\n\nCustom arrays that wrap or use fields containing arrays that might alias against other\nexternal objects should provide a [`Base.dataids`](@ref) implementation.\n\nThis function must return an object of exactly the same type as `A` for performance and type\nstability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should\nprovide a [`Base.unaliascopy`](@ref) implementation.\n\nSee also [`Base.mightalias`](@ref).\n"}],"Base.StepRange":[{"Union{}":" StepRange{T, S} <: OrdinalRange{T, S}\n\nRanges with elements of type `T` with spacing of type `S`. The step\nbetween each element is constant, and the range is defined in terms\nof a `start` and `stop` of type `T` and a `step` of type `S`. Neither\n`T` nor `S` should be floating point types. The syntax `a:b:c` with `b > 1`\nand `a`, `b`, and `c` all integers creates a `StepRange`.\n\n# Examples\n```jldoctest\njulia> collect(StepRange(1, Int8(2), 10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n\njulia> typeof(StepRange(1, Int8(2), 10))\nStepRange{Int64,Int8}\n\njulia> typeof(1:3:6)\nStepRange{Int64,Int64}\n```\n"}],"Base.VecOrMat":[{"Union{}":" VecOrMat{T}\n\nUnion type of [`Vector{T}`](@ref) and [`Matrix{T}`](@ref).\n"}],"Base.@eval":[{"Tuple{Any}":" @eval [mod,] ex\n\nEvaluate an expression with values interpolated into it using `eval`.\nIf two arguments are provided, the first is the module to evaluate in.\n"}],"Base.accumulate!":[{"Tuple{Any,Any,Any}":" accumulate!(op, B, A; [dims], [init])\n\nCumulative operation `op` on `A` along the dimension `dims`, storing the result in `B`.\nProviding `dims` is optional for vectors. If the keyword argument `init` is given, its\nvalue is used to instantiate the accumulation. See also [`accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 0, 2, 0, 3];\n\njulia> y = [0, 0, 0, 0, 0];\n\njulia> accumulate!(+, y, x);\n\njulia> y\n5-element Array{Int64,1}:\n 1\n 1\n 3\n 3\n 6\n\njulia> A = [1 2; 3 4];\n\njulia> B = [0 0; 0 0];\n\njulia> accumulate!(-, B, A, dims=1);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 2\n -2 -2\n\njulia> accumulate!(-, B, A, dims=2);\n\njulia> B\n2×2 Array{Int64,2}:\n 1 -1\n 3 -1\n```\n"}],"Base.BitArray":[{"Union{}":" BitArray{N} <: AbstractArray{Bool, N}\n\nSpace-efficient `N`-dimensional boolean array, using just one bit for each boolean value.\n\n`BitArray`s pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency\nover `Array{Bool, N}` and allowing some operations to work on 64 values at once.\n\nBy default, Julia returns `BitArrays` from [broadcasting](@ref Broadcasting) operations\nthat generate boolean elements (including dotted-comparisons like `.==`) as well as from\nthe functions [`trues`](@ref) and [`falses`](@ref).\n"},{"Tuple{Any}":" BitArray(itr)\n\nConstruct a [`BitArray`](@ref) generated by the given iterable object.\nThe shape is inferred from the `itr` object.\n\n# Examples\n```jldoctest\njulia> BitArray([1 0; 0 1])\n2×2 BitArray{2}:\n 1 0\n 0 1\n\njulia> BitArray(x+y == 3 for x = 1:2, y = 1:3)\n2×3 BitArray{2}:\n 0 1 0\n 1 0 0\n\njulia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)\n6-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"},{"Tuple{UndefInitializer,Vararg{Integer,N} where N}":" BitArray(undef, dims::Integer...)\n BitArray{N}(undef, dims::NTuple{N,Int})\n\nConstruct an undef [`BitArray`](@ref) with the given dimensions.\nBehaves identically to the [`Array`](@ref) constructor. See [`undef`](@ref).\n\n# Examples\n```julia-repl\njulia> BitArray(undef, 2, 2)\n2×2 BitArray{2}:\n 0 0\n 0 0\n\njulia> BitArray(undef, (3, 1))\n3×1 BitArray{2}:\n 0\n 0\n 0\n```\n"}],"Base.rethrow":[{"Tuple{}":" rethrow()\n\nRethrow the current exception from within a `catch` block. The rethrown\nexception will continue propagation as if it had not been caught.\n\n!!! note\n The alternative form `rethrow(e)` allows you to associate an alternative\n exception object `e` with the current backtrace. However this misrepresents\n the program state at the time of the error so you're encouraged to instead\n throw a new exception using `throw(e)`. In Julia 1.1 and above, using\n `throw(e)` will preserve the root cause exception on the stack, as\n described in [`catch_stack`](@ref).\n"}],"Base.@__DIR__":[{"Tuple{}":" @__DIR__ -> AbstractString\n\nExpand to a string with the absolute path to the directory of the file\ncontaining the macrocall.\nReturn the current working directory if run from a REPL or if evaluated by `julia -e `.\n"}],"Base.abs2":[{"Tuple{Real}":" abs2(x)\n\nSquared absolute value of `x`.\n\n# Examples\n```jldoctest\njulia> abs2(-3)\n9\n```\n"}],"Base.@v_str":[{"Tuple{Any}":" @v_str\n\nString macro used to parse a string to a [`VersionNumber`](@ref).\n\n# Examples\n```jldoctest\njulia> v\"1.2.3\"\nv\"1.2.3\"\n\njulia> v\"2.0.1-rc1\"\nv\"2.0.1-rc1\"\n```\n"}],"Base.flush":[{"Tuple{IO}":" flush(stream)\n\nCommit all currently buffered writes to the given stream.\n"}],"Base.ismarked":[{"Tuple{IO}":" ismarked(s)\n\nReturn `true` if stream `s` is marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`reset`](@ref).\n"}],"Base.isequal":[{"Tuple{Any}":" isequal(x)\n\nCreate a function that compares its argument to `x` using [`isequal`](@ref), i.e.\na function equivalent to `y -> isequal(y, x)`.\n\nThe returned function is of type `Base.Fix2{typeof(isequal)}`, which can be\nused to implement specialized methods.\n"},{"Tuple{Any,Any}":" isequal(x, y)\n\nSimilar to [`==`](@ref), except for the treatment of floating point numbers\nand of missing values. `isequal` treats all floating-point `NaN` values as equal\nto each other, treats `-0.0` as unequal to `0.0`, and [`missing`](@ref) as equal\nto `missing`. Always returns a `Bool` value.\n\n# Implementation\nThe default implementation of `isequal` calls `==`, so a type that does not involve\nfloating-point values generally only needs to define `==`.\n\n`isequal` is the comparison function used by hash tables (`Dict`). `isequal(x,y)` must imply\nthat `hash(x) == hash(y)`.\n\nThis typically means that types for which a custom `==` or `isequal` method exists must\nimplement a corresponding `hash` method (and vice versa). Collections typically implement\n`isequal` by calling `isequal` recursively on all contents.\n\nScalar types generally do not need to implement `isequal` separate from `==`, unless they\nrepresent floating-point numbers amenable to a more efficient implementation than that\nprovided as a generic fallback (based on `isnan`, `signbit`, and `==`).\n\n# Examples\n```jldoctest\njulia> isequal([1., NaN], [1., NaN])\ntrue\n\njulia> [1., NaN] == [1., NaN]\nfalse\n\njulia> 0.0 == -0.0\ntrue\n\njulia> isequal(0.0, -0.0)\nfalse\n```\n"}],"Base.iszero":[{"Tuple{Any}":" iszero(x)\n\nReturn `true` if `x == zero(x)`; if `x` is an array, this checks whether\nall of the elements of `x` are zero.\n\n# Examples\n```jldoctest\njulia> iszero(0.0)\ntrue\n\njulia> iszero([1, 9, 0])\nfalse\n\njulia> iszero([false, 0, 0])\ntrue\n```\n"}],"Base.compilecache":[{"Tuple{Base.PkgId}":" Base.compilecache(module::PkgId)\n\nCreates a precompiled cache file for a module and all of its dependencies.\nThis can be used to reduce package load times. Cache files are stored in\n`DEPOT_PATH[1]/compiled`. See [Module initialization and precompilation](@ref)\nfor important notes.\n"}],"Base.@polly":[{"Tuple{Any}":" @polly\n\nTells the compiler to apply the polyhedral optimizer Polly to a function.\n"}],"Base.isapprox":[{"Tuple{Number,Number}":" isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)\n\nInexact equality comparison: `true` if `norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))`. The\ndefault `atol` is zero and the default `rtol` depends on the types of `x` and `y`. The keyword\nargument `nans` determines whether or not NaN values are considered equal (defaults to false).\n\nFor real or complex floating-point values, if an `atol > 0` is not specified, `rtol` defaults to\nthe square root of [`eps`](@ref) of the type of `x` or `y`, whichever is bigger (least precise).\nThis corresponds to requiring equality of about half of the significand digits. Otherwise,\ne.g. for integer arguments or if an `atol > 0` is supplied, `rtol` defaults to zero.\n\n`x` and `y` may also be arrays of numbers, in which case `norm` defaults to the usual\n`norm` function in LinearAlgebra, but\nmay be changed by passing a `norm::Function` keyword argument. (For numbers, `norm` is the\nsame thing as `abs`.) When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`\nor `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are\napproximately equal component-wise.\n\nThe binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`\nis equivalent to `!isapprox(x,y)`.\n\nNote that `x ≈ 0` (i.e., comparing to zero with the default tolerances) is\nequivalent to `x == 0` since the default `atol` is `0`. In such cases, you should either\nsupply an appropriate `atol` (or use `norm(x) ≤ atol`) or rearrange your code (e.g.\nuse `x ≈ y` rather than `x - y ≈ 0`). It is not possible to pick a nonzero `atol`\nautomatically because it depends on the overall scaling (the \"units\") of your problem:\nfor example, in `x - y ≈ 0`, `atol=1e-9` is an absurdly small tolerance if `x` is the\n[radius of the Earth](https://en.wikipedia.org/wiki/Earth_radius) in meters,\nbut an absurdly large tolerance if `x` is the\n[radius of a Hydrogen atom](https://en.wikipedia.org/wiki/Bohr_radius) in meters.\n\n\n# Examples\n```jldoctest\njulia> 0.1 ≈ (0.1 - 1e-10)\ntrue\n\njulia> isapprox(10, 11; atol = 2)\ntrue\n\njulia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])\ntrue\n\njulia> 1e-10 ≈ 0\nfalse\n\njulia> isapprox(1e-10, 0, atol=1e-8)\ntrue\n```\n"}],"Base.isone":[{"Tuple{Any}":" isone(x)\n\nReturn `true` if `x == one(x)`; if `x` is an array, this checks whether\n`x` is an identity matrix.\n\n# Examples\n```jldoctest\njulia> isone(1.0)\ntrue\n\njulia> isone([1 0; 0 2])\nfalse\n\njulia> isone([1 0; 0 true])\ntrue\n```\n"}],"Base.tryparse":[{"Union{Tuple{T}, Tuple{Type{T},AbstractString}} where T<:Integer":" tryparse(type, str; base)\n\nLike [`parse`](@ref), but returns either a value of the requested type,\nor [`nothing`](@ref) if the string does not contain a valid number.\n"}],"Base.Fix1":[{"Union{}":" Fix1(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the first argument fixed to the value \"x\". In other words,\n`Fix1(f, x)` behaves similarly to `y->f(x, y)`.\n"}],"Base.coalesce":[{"Union{}":" coalesce(x, y...)\n\nReturn the first value in the arguments which is not equal to [`missing`](@ref),\nif any. Otherwise return `missing`.\n\nSee also [`something`](@ref).\n\n# Examples\n\n```jldoctest\njulia> coalesce(missing, 1)\n1\n\njulia> coalesce(1, missing)\n1\n\njulia> coalesce(nothing, 1) # returns `nothing`\n\njulia> coalesce(missing, missing)\nmissing\n```\n"}],"Base.hvcat":[{"Tuple{Tuple{Vararg{Int64,N} where N},Vararg{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,N} where N}":" hvcat(rows::Tuple{Vararg{Int}}, values...)\n\nHorizontal and vertical concatenation in one call. This function is called for block matrix\nsyntax. The first argument specifies the number of arguments to concatenate in each block\nrow.\n\n# Examples\n```jldoctest\njulia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6\n(1, 2, 3, 4, 5, 6)\n\njulia> [a b c; d e f]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> hvcat((3,3), a,b,c,d,e,f)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> [a b;c d; e f]\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n\njulia> hvcat((2,2,2), a,b,c,d,e,f)\n3×2 Array{Int64,2}:\n 1 2\n 3 4\n 5 6\n```\n\nIf the first argument is a single integer `n`, then all block rows are assumed to have `n`\nblock columns.\n"}],"Base.yield":[{"Tuple{Task,Any}":" yield(t::Task, arg = nothing)\n\nA fast, unfair-scheduling version of `schedule(t, arg); yield()` which\nimmediately yields to `t` before calling the scheduler.\n"},{"Tuple{}":" yield()\n\nSwitch to the scheduler to allow another scheduled task to run. A task that calls this\nfunction is still runnable, and will be restarted immediately if there are no other runnable\ntasks.\n"}],"Base.Condition":[{"Union{}":" Condition()\n\nCreate an edge-triggered event source that tasks can wait for. Tasks that call [`wait`](@ref) on a\n`Condition` are suspended and queued. Tasks are woken up when [`notify`](@ref) is later called on\nthe `Condition`. Edge triggering means that only tasks waiting at the time [`notify`](@ref) is\ncalled can be woken up. For level-triggered notifications, you must keep extra state to keep\ntrack of whether a notification has happened. The [`Channel`](@ref) and [`Threads.Event`](@ref) types do\nthis, and can be used for level-triggered events.\n\nThis object is NOT thread-safe. See [`Threads.Condition`](@ref) for a thread-safe version.\n"}],"Base.filter":[{"Tuple{Any,AbstractDict}":" filter(f, d::AbstractDict)\n\nReturn a copy of `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Examples\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\")\nDict{Int64,String} with 2 entries:\n 2 => \"b\"\n 1 => \"a\"\n\njulia> filter(p->isodd(p.first), d)\nDict{Int64,String} with 1 entry:\n 1 => \"a\"\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{Any,Array{T,N}}} where N where T":" filter(f, a::AbstractArray)\n\nReturn a copy of `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> a = 1:10\n1:10\n\njulia> filter(isodd, a)\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"},{"Tuple{Any,Base.SkipMissing{#s662} where #s662<:AbstractArray}":" filter(f, itr::SkipMissing{<:AbstractArray})\n\nReturn a vector similar to the array wrapped by the given `SkipMissing` iterator\nbut with all missing elements and those for which `f` returns `false` removed.\n\n!!! compat \"Julia 1.2\"\n This method requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> x = [1 2; missing 4]\n2×2 Array{Union{Missing, Int64},2}:\n 1 2\n missing 4\n\njulia> filter(isodd, skipmissing(x))\n1-element Array{Int64,1}:\n 1\n```\n"}],"Base.nextpow":[{"Tuple{Real,Real}":" nextpow(a, x)\n\nThe smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be\ngreater than 1, and `x` must be greater than 0.\n\n# Examples\n```jldoctest\njulia> nextpow(2, 7)\n8\n\njulia> nextpow(2, 9)\n16\n\njulia> nextpow(5, 20)\n25\n\njulia> nextpow(4, 16)\n16\n```\n\nSee also [`prevpow`](@ref).\n"}],"Base.AsyncCondition":[{"Union{}":" AsyncCondition()\n\nCreate a async condition that wakes up tasks waiting for it\n(by calling [`wait`](@ref) on the object)\nwhen notified from C by a call to `uv_async_send`.\nWaiting tasks are woken with an error when the object is closed (by [`close`](@ref).\nUse [`isopen`](@ref) to check whether it is still active.\n"},{"Tuple{Function}":" AsyncCondition(callback::Function)\n\nCreate a async condition that calls the given `callback` function. The `callback` is passed one argument,\nthe async condition object itself.\n"}],"Base.runtests":[{"Union{Tuple{}, Tuple{Any}}":" Base.runtests(tests=[\"all\"]; ncores=ceil(Int, Sys.CPU_THREADS / 2),\n exit_on_error=false, [seed])\n\nRun the Julia unit tests listed in `tests`, which can be either a string or an array of\nstrings, using `ncores` processors. If `exit_on_error` is `false`, when one test\nfails, all remaining tests in other files will still be run; they are otherwise discarded,\nwhen `exit_on_error == true`.\nIf a seed is provided via the keyword argument, it is used to seed the\nglobal RNG in the context where the tests are run; otherwise the seed is chosen randomly.\n"}],"Base.get":[{"Tuple{Function,Any,Any}":" get(f::Function, collection, key)\n\nReturn the value stored for the given key, or if no mapping for the key is present, return\n`f()`. Use [`get!`](@ref) to also store the default value in the dictionary.\n\nThis is intended to be called using `do` block syntax\n\n```julia\nget(dict, key) do\n # default value calculated here\n time()\nend\n```\n"},{"Tuple{Any,Any,Any}":" get(collection, key, default)\n\nReturn the value stored for the given key, or the given default value if no mapping for the\nkey is present.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2);\n\njulia> get(d, \"a\", 3)\n1\n\njulia> get(d, \"c\", 3)\n3\n```\n"}],"Base.run":[{"Tuple{Base.AbstractCmd,Vararg{Any,N} where N}":" run(command, args...; wait::Bool = true)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual). Throws an error if anything goes wrong, including the process\nexiting with a non-zero status (when `wait` is true).\n\nIf `wait` is false, the process runs asynchronously. You can later wait for it and check\nits exit status by calling `success` on the returned process object.\n\nWhen `wait` is false, the process' I/O streams are directed to `devnull`.\nWhen `wait` is true, I/O streams are shared with the parent process.\nUse [`pipeline`](@ref) to control I/O redirection.\n"}],"Base.IdentityUnitRange":[{"Union{}":" IdentityUnitRange(range::AbstractUnitRange)\n\nRepresent an AbstractUnitRange `range` as an offset vector such that `range[i] == i`.\n\n`IdentityUnitRange`s are frequently used as axes for offset arrays.\n"}],"Base.isascii":[{"Tuple{Char}":" isascii(c::Union{AbstractChar,AbstractString}) -> Bool\n\nTest whether a character belongs to the ASCII character set, or whether this is true for\nall elements of a string.\n\n# Examples\n```jldoctest\njulia> isascii('a')\ntrue\n\njulia> isascii('α')\nfalse\n\njulia> isascii(\"abc\")\ntrue\n\njulia> isascii(\"αβγ\")\nfalse\n```\n"}],"Base.write":[{"Union{}":" write(io::IO, x)\n write(filename::AbstractString, x)\n\nWrite the canonical binary representation of a value to the given I/O stream or file.\nReturn the number of bytes written into the stream. See also [`print`](@ref) to\nwrite a text representation (with an encoding that may depend upon `io`).\n\nYou can write multiple values with the same `write` call. i.e. the following are equivalent:\n\n write(io, x, y...)\n write(io, x) + write(io, y...)\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> write(io, \"Sometimes those members\") + write(io, \" write documentation.\")\n44\n\njulia> String(take!(io))\n\"Sometimes those members write documentation.\"\n```\nUser-defined plain-data types without `write` methods can be written when wrapped in a `Ref`:\n```jldoctest\njulia> struct MyStruct; x::Float64; end\n\njulia> io = IOBuffer()\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=Inf, ptr=1, mark=-1)\n\njulia> write(io, Ref(MyStruct(42.0)))\n8\n\njulia> seekstart(io); read!(io, Ref(MyStruct(NaN)))\nBase.RefValue{MyStruct}(MyStruct(42.0))\n```\n"}],"Base.parse":[{"Tuple{Type,Any}":" parse(type, str; base)\n\nParse a string as a number. For `Integer` types, a base can be specified\n(the default is 10). For floating-point types, the string is parsed as a decimal\nfloating-point number. `Complex` types are parsed from decimal strings\nof the form `\"R±Iim\"` as a `Complex(R,I)` of the requested type; `\"i\"` or `\"j\"` can also be\nused instead of `\"im\"`, and `\"R\"` or `\"Iim\"` are also permitted.\nIf the string does not contain a valid number, an error is raised.\n\n!!! compat \"Julia 1.1\"\n `parse(Bool, str)` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> parse(Int, \"1234\")\n1234\n\njulia> parse(Int, \"1234\", base = 5)\n194\n\njulia> parse(Int, \"afc\", base = 16)\n2812\n\njulia> parse(Float64, \"1.2e-3\")\n0.0012\n\njulia> parse(Complex{Float64}, \"3.2e-1 + 4.5im\")\n0.32 + 4.5im\n```\n"}],"Base.!=":[{"Tuple{Any}":" !=(x)\n\nCreate a function that compares its argument to `x` using [`!=`](@ref), i.e.\na function equivalent to `y -> y != x`.\nThe returned function is of type `Base.Fix2{typeof(!=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" !=(x, y)\n ≠(x,y)\n\nNot-equals comparison operator. Always gives the opposite answer as [`==`](@ref).\n\n# Implementation\nNew types should generally not implement this, and rely on the fallback definition\n`!=(x,y) = !(x==y)` instead.\n\n# Examples\n```jldoctest\njulia> 3 != 2\ntrue\n\njulia> \"foo\" ≠ \"foo\"\nfalse\n```\n"}],"Base.>=":[{"Tuple{Any}":" >=(x)\n\nCreate a function that compares its argument to `x` using [`>=`](@ref), i.e.\na function equivalent to `y -> y >= x`.\nThe returned function is of type `Base.Fix2{typeof(>=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" >=(x, y)\n ≥(x,y)\n\nGreater-than-or-equals comparison operator. Falls back to `y <= x`.\n\n# Examples\n```jldoctest\njulia> 'a' >= 'b'\nfalse\n\njulia> 7 ≥ 7 ≥ 3\ntrue\n\njulia> \"abc\" ≥ \"abc\"\ntrue\n\njulia> 5 >= 3\ntrue\n```\n"}],"Base.foldr":[{"Tuple{Any,Any}":" foldr(op, itr; [init])\n\nLike [`reduce`](@ref), but with guaranteed right associativity. If provided, the keyword\nargument `init` will be used exactly once. In general, it will be necessary to provide\n`init` to work with empty collections.\n\n# Examples\n```jldoctest\njulia> foldr(=>, 1:4)\n1 => (2 => (3 => 4))\n\njulia> foldr(=>, 1:4; init=0)\n1 => (2 => (3 => (4 => 0)))\n```\n"}],"Base.summarysize":[{"Tuple{Any}":" Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int\n\nCompute the amount of memory, in bytes, used by all unique objects reachable from the argument.\n\n# Keyword Arguments\n- `exclude`: specifies the types of objects to exclude from the traversal.\n- `chargeall`: specifies the types of objects to always charge the size of all of their\n fields, even if those fields would normally be excluded.\n"}],"Base.fldmod":[{"Tuple{Any,Any}":" fldmod(x, y)\n\nThe floored quotient and modulus after division. A convenience wrapper for\n`divrem(x, y, RoundDown)`. Equivalent to `(fld(x,y), mod(x,y))`.\n"}],"Base.filter!":[{"Tuple{Any,AbstractDict}":" filter!(f, d::AbstractDict)\n\nUpdate `d`, removing elements for which `f` is `false`.\nThe function `f` is passed `key=>value` pairs.\n\n# Example\n```jldoctest\njulia> d = Dict(1=>\"a\", 2=>\"b\", 3=>\"c\")\nDict{Int64,String} with 3 entries:\n 2 => \"b\"\n 3 => \"c\"\n 1 => \"a\"\n\njulia> filter!(p->isodd(p.first), d)\nDict{Int64,String} with 2 entries:\n 3 => \"c\"\n 1 => \"a\"\n```\n"},{"Tuple{Any,AbstractArray{T,1} where T}":" filter!(f, a::AbstractVector)\n\nUpdate `a`, removing elements for which `f` is `false`.\nThe function `f` is passed one argument.\n\n# Examples\n```jldoctest\njulia> filter!(isodd, Vector(1:10))\n5-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n```\n"}],"Base.setenv":[{"Tuple{Cmd,Any}":" setenv(command::Cmd, env; dir=\"\")\n\nSet environment variables to use when running the given `command`. `env` is either a\ndictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, or zero\nor more `\"var\"=>val` pair arguments. In order to modify (rather than replace) the existing\nenvironment, create `env` by `copy(ENV)` and then setting `env[\"var\"]=val` as desired, or\nuse `withenv`.\n\nThe `dir` keyword argument can be used to specify a working directory for the command.\n"}],"Base.hton":[{"Tuple{Any}":" hton(x)\n\nConvert the endianness of a value from that used by the Host to Network byte order (big-endian).\n"}],"Base.split":[{"Union{}":" split(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true)\n split(str::AbstractString; limit::Integer=0, keepempty::Bool=false)\n\nSplit `str` into an array of substrings on occurrences of the delimiter(s) `dlm`. `dlm`\ncan be any of the formats allowed by [`findnext`](@ref)'s first argument (i.e. as a\nstring, regular expression or a function), or as a single character or collection of\ncharacters.\n\nIf `dlm` is omitted, it defaults to [`isspace`](@ref).\n\nThe optional keyword arguments are:\n - `limit`: the maximum size of the result. `limit=0` implies no maximum (default)\n - `keepempty`: whether empty fields should be kept in the result. Default is `false` without\n a `dlm` argument, `true` with a `dlm` argument.\n\nSee also [`rsplit`](@ref).\n\n# Examples\n```jldoctest\njulia> a = \"Ma.rch\"\n\"Ma.rch\"\n\njulia> split(a,\".\")\n2-element Array{SubString{String},1}:\n \"Ma\"\n \"rch\"\n```\n"}],"Base.endswith":[{"Tuple{AbstractString,Regex}":" endswith(s::AbstractString, suffix::Regex)\n\nReturn `true` if `s` ends with the regex pattern, `suffix`.\n\n!!! note\n `endswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"...$\", s)` is faster than `endswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`startswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> endswith(\"JuliaLang\", r\"Lang|Roberts\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" endswith(s::AbstractString, suffix::AbstractString)\n\nReturn `true` if `s` ends with `suffix`. If `suffix` is a vector or set of\ncharacters, test whether the last character of `s` belongs to that set.\n\nSee also [`startswith`](@ref).\n\n# Examples\n```jldoctest\njulia> endswith(\"Sunday\", \"day\")\ntrue\n```\n"}],"Base.cmp":[{"Tuple{Any,Any}":" cmp(x,y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. Uses the total order implemented by `isless`.\n\n# Examples\n```jldoctest\njulia> cmp(1, 2)\n-1\n\njulia> cmp(2, 1)\n1\n\njulia> cmp(2+im, 3-im)\nERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})\n[...]\n```\n"},{"Tuple{Any,Any,Any}":" cmp(<, x, y)\n\nReturn -1, 0, or 1 depending on whether `x` is less than, equal to, or greater than `y`,\nrespectively. The first argument specifies a less-than comparison function to use.\n"},{"Tuple{AbstractString,AbstractString}":" cmp(a::AbstractString, b::AbstractString) -> Int\n\nCompare two strings. Return `0` if both strings have the same length and the character\nat each index is the same in both strings. Return `-1` if `a` is a prefix of `b`, or if\n`a` comes before `b` in alphabetical order. Return `1` if `b` is a prefix of `a`, or if\n`b` comes before `a` in alphabetical order (technically, lexicographical order by Unicode\ncode points).\n\n# Examples\n```jldoctest\njulia> cmp(\"abc\", \"abc\")\n0\n\njulia> cmp(\"ab\", \"abc\")\n-1\n\njulia> cmp(\"abc\", \"ab\")\n1\n\njulia> cmp(\"ab\", \"ac\")\n-1\n\njulia> cmp(\"ac\", \"ab\")\n1\n\njulia> cmp(\"α\", \"a\")\n1\n\njulia> cmp(\"b\", \"β\")\n-1\n```\n"}],"Base.moduleroot":[{"Tuple{Module}":" moduleroot(m::Module) -> Module\n\nFind the root module of a given module. This is the first module in the chain of\nparent modules of `m` which is either a registered root module or which is its\nown parent module.\n"}],"Base.atexit":[{"Tuple{Function}":" atexit(f)\n\nRegister a zero-argument function `f()` to be called at process exit. `atexit()` hooks are\ncalled in last in first out (LIFO) order and run before object finalizers.\n\nExit hooks are allowed to call `exit(n)`, in which case Julia will exit with\nexit code `n` (instead of the original exit code). If more than one exit hook\ncalls `exit(n)`, then Julia will exit with the exit code corresponding to the\nlast called exit hook that calls `exit(n)`. (Because exit hooks are called in\nLIFO order, \"last called\" is equivalent to \"first registered\".)\n"}],"Base.setdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" setdiff!(s, itrs...)\n\nRemove from set `s` (in-place) each element of each iterable from `itrs`.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> a = Set([1, 3, 4, 5]);\n\njulia> setdiff!(a, 1:2:6);\n\njulia> a\nSet{Int64} with 1 element:\n 4\n```\n"}],"Base.DimensionMismatch":[{"Union{}":" DimensionMismatch([msg])\n\nThe objects called do not have matching dimensionality. Optional argument `msg` is a\ndescriptive error string.\n"}],"Base.chop":[{"Tuple{AbstractString}":" chop(s::AbstractString; head::Integer = 0, tail::Integer = 1)\n\nRemove the first `head` and the last `tail` characters from `s`.\nThe call `chop(s)` removes the last character from `s`.\nIf it is requested to remove more characters than `length(s)`\nthen an empty string is returned.\n\n# Examples\n```jldoctest\njulia> a = \"March\"\n\"March\"\n\njulia> chop(a)\n\"Marc\"\n\njulia> chop(a, head = 1, tail = 2)\n\"ar\"\n\njulia> chop(a, head = 5, tail = 5)\n\"\"\n```\n"}],"Base.copy!":[{"Tuple{AbstractArray{T,1} where T,AbstractArray{T,1} where T}":" copy!(dst, src) -> dst\n\nIn-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing\nelements in `dst`.\nIf `dst` and `src` are of the same type, `dst == src` should hold after\nthe call. If `dst` and `src` are multidimensional arrays, they must have\nequal [`axes`](@ref).\nSee also [`copyto!`](@ref).\n\n!!! compat \"Julia 1.1\"\n This method requires at least Julia 1.1. In Julia 1.0 this method\n is available from the `Future` standard library as `Future.copy!`.\n"}],"Base.isready":[{"Tuple{Channel}":" isready(c::Channel)\n\nDetermine whether a [`Channel`](@ref) has a value stored to it. Returns\nimmediately, does not block.\n\nFor unbuffered channels returns `true` if there are tasks waiting\non a [`put!`](@ref).\n"}],"Base.isinteractive":[{"Tuple{}":" isinteractive() -> Bool\n\nDetermine whether Julia is running an interactive session.\n"}],"Base.skipchars":[{"Tuple{Any,IO}":" skipchars(predicate, io::IO; linecomment=nothing)\n\nAdvance the stream `io` such that the next-read character will be the first remaining for\nwhich `predicate` returns `false`. If the keyword argument `linecomment` is specified, all\ncharacters from that character until the start of the next line are ignored.\n\n# Examples\n```jldoctest\njulia> buf = IOBuffer(\" text\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=1, mark=-1)\n\njulia> skipchars(isspace, buf)\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8, maxsize=Inf, ptr=5, mark=-1)\n\njulia> String(readavailable(buf))\n\"text\"\n```\n"}],"Base.hastypemax":[{"Tuple{Union{Type{Int128}, Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt128}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}}":" hastypemax(T::Type) -> Bool\n\nReturn `true` if and only if `typemax(T)` is defined.\n"}],"Base.print":[{"Tuple{IO,Any}":" print([io::IO], xs...)\n\nWrite to `io` (or to the default output stream [`stdout`](@ref)\nif `io` is not given) a canonical (un-decorated) text representation.\nThe representation used by `print` includes minimal formatting and tries to\navoid Julia-specific details.\n\n`print` falls back to calling `show`, so most types should just define\n`show`. Define `print` if your type has a separate \"plain\" representation.\nFor example, `show` displays strings with quotes, and `print` displays strings\nwithout quotes.\n\n[`string`](@ref) returns the output of `print` as a string.\n\n# Examples\n```jldoctest\njulia> print(\"Hello World!\")\nHello World!\njulia> io = IOBuffer();\n\njulia> print(io, \"Hello\", ' ', :World!)\n\njulia> String(take!(io))\n\"Hello World!\"\n```\n"}],"Base.sortslices":[{"Tuple{AbstractArray}":" sortslices(A; dims, alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)\n\nSort slices of an array `A`. The required keyword argument `dims` must\nbe either an integer or a tuple of integers. It specifies the\ndimension(s) over which the slices are sorted.\n\nE.g., if `A` is a matrix, `dims=1` will sort rows, `dims=2` will sort columns.\nNote that the default comparison function on one dimensional slices sorts\nlexicographically.\n\nFor the remaining keyword arguments, see the documentation of [`sort!`](@ref).\n\n# Examples\n```jldoctest\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1) # Sort rows\n3×3 Array{Int64,2}:\n -1 6 4\n 7 3 5\n 9 -2 8\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, rev=true)\n3×3 Array{Int64,2}:\n 9 -2 8\n 7 3 5\n -1 6 4\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2) # Sort columns\n3×3 Array{Int64,2}:\n 3 5 7\n -1 -4 6\n -2 8 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))\n3×3 Array{Int64,2}:\n 5 3 7\n -4 -1 6\n 8 -2 9\n\njulia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, rev=true)\n3×3 Array{Int64,2}:\n 7 5 3\n 6 -4 -1\n 9 8 -2\n```\n\n# Higher dimensions\n\n`sortslices` extends naturally to higher dimensions. E.g., if `A` is a\na 2x2x2 array, `sortslices(A, dims=3)` will sort slices within the 3rd dimension,\npassing the 2x2 slices `A[:, :, 1]` and `A[:, :, 2]` to the comparison function.\nNote that while there is no default order on higher-dimensional slices, you may\nuse the `by` or `lt` keyword argument to specify such an order.\n\nIf `dims` is a tuple, the order of the dimensions in `dims` is\nrelevant and specifies the linear order of the slices. E.g., if `A` is three\ndimensional and `dims` is `(1, 2)`, the orderings of the first two dimensions\nare re-arranged such such that the slices (of the remaining third dimension) are sorted.\nIf `dims` is `(2, 1)` instead, the same slices will be taken,\nbut the result order will be row-major instead.\n\n# Higher dimensional examples\n```\njulia> A = permutedims(reshape([4 3; 2 1; 'A' 'B'; 'C' 'D'], (2, 2, 2)), (1, 3, 2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 4 3\n 2 1\n\n[:, :, 2] =\n 'A' 'B'\n 'C' 'D'\n\njulia> sortslices(A, dims=(1,2))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 3\n 2 4\n\n[:, :, 2] =\n 'D' 'B'\n 'C' 'A'\n\njulia> sortslices(A, dims=(2,1))\n2×2×2 Array{Any,3}:\n[:, :, 1] =\n 1 2\n 3 4\n\n[:, :, 2] =\n 'D' 'C'\n 'B' 'A'\n\njulia> sortslices(reshape([5; 4; 3; 2; 1], (1,1,5)), dims=3, by=x->x[1,1])\n1×1×5 Array{Int64,3}:\n[:, :, 1] =\n 1\n\n[:, :, 2] =\n 2\n\n[:, :, 3] =\n 3\n\n[:, :, 4] =\n 4\n\n[:, :, 5] =\n 5\n```\n"}],"Base.Csize_t":[{"Union{}":" Csize_t\n\nEquivalent to the native `size_t` c-type (`UInt`).\n"}],"Base.DenseVecOrMat":[{"Union{}":" DenseVecOrMat{T}\n\nUnion type of [`DenseVector{T}`](@ref) and [`DenseMatrix{T}`](@ref).\n"}],"Base.@kwdef":[{"Tuple{Any}":" @kwdef typedef\n\nThis is a helper macro that automatically defines a keyword-based constructor for the type\ndeclared in the expression `typedef`, which must be a `struct` or `mutable struct`\nexpression. The default argument is supplied by declaring fields of the form `field::T =\ndefault` or `field = default`. If no default is provided then the keyword argument becomes\na required keyword argument in the resulting type constructor.\n\nInner constructors can still be defined, but at least one should accept arguments in the\nsame form as the default inner constructor (i.e. one positional argument per field) in\norder to function correctly with the keyword outer constructor.\n\n!!! compat \"Julia 1.1\"\n `Base.@kwdef` for parametric structs, and structs with supertypes\n requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> Base.@kwdef struct Foo\n a::Int = 1 # specified default\n b::String # required keyword\n end\nFoo\n\njulia> Foo(b=\"hi\")\nFoo(1, \"hi\")\n\njulia> Foo()\nERROR: UndefKeywordError: keyword argument b not assigned\nStacktrace:\n[...]\n```\n"}],"Base.@inline":[{"Tuple{Any}":" @inline\n\nGive a hint to the compiler that this function is worth inlining.\n\nSmall functions typically do not need the `@inline` annotation,\nas the compiler does it automatically. By using `@inline` on bigger functions,\nan extra nudge can be given to the compiler to inline it.\nThis is shown in the following example:\n\n```julia\n@inline function bigfunction(x)\n #=\n Function Definition\n =#\nend\n```\n"}],"Base.mapfoldl":[{"Tuple{Any,Any,Any}":" mapfoldl(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed left associativity, as in [`foldl`](@ref).\nIf provided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.securezero!":[{"Union{}":" securezero!(o)\n\n`securezero!` fills the memory associated with an object `o` with zeros.\nUnlike `fill!(o,0)` and similar code, which might be optimized away by\nthe compiler for objects about to be discarded, the `securezero!` function\nwill always be called.\n"}],"Base.intersect":[{"Tuple{AbstractSet,Any,Vararg{Any,N} where N}":" intersect(s, itrs...)\n ∩(s, itrs...)\n\nConstruct the intersection of sets.\nMaintain order with arrays.\n\n# Examples\n```jldoctest\njulia> intersect([1, 2, 3], [3, 4, 5])\n1-element Array{Int64,1}:\n 3\n\njulia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])\n2-element Array{Int64,1}:\n 4\n 6\n\njulia> intersect(Set([1, 2]), BitSet([2, 3]))\nSet{Int64} with 1 element:\n 2\n```\n"}],"Base.trylock":[{"Tuple{ReentrantLock}":" trylock(lock) -> Success (Boolean)\n\nAcquire the lock if it is available,\nand return `true` if successful.\nIf the lock is already locked by a different task/thread,\nreturn `false`.\n\nEach successful `trylock` must be matched by an [`unlock`](@ref).\n"}],"Base.methods":[{"Tuple{Any,Any,Union{Nothing, Module, AbstractArray{Module,N} where N}}":" methods(f, [types], [module])\n\nReturn the method table for `f`.\n\nIf `types` is specified, return an array of methods whose types match.\nIf `module` is specified, return an array of methods defined in that module.\nA list of modules can also be specified as an array.\n\n!!! compat \"Julia 1.4\"\n At least Julia 1.4 is required for specifying a module.\n"}],"Base.@timev":[{"Tuple{Any}":" @timev\n\nThis is a verbose version of the `@time` macro. It first prints the same information as\n`@time`, then any non-zero memory allocation counters, and then returns the value of the\nexpression.\n\nSee also [`@time`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> @timev rand(10^6);\n 0.001006 seconds (7 allocations: 7.630 MiB)\nelapsed time (ns): 1005567\nbytes allocated: 8000256\npool allocs: 6\nmalloc() calls: 1\n```\n"}],"Base.Cuint":[{"Union{}":" Cuint\n\nEquivalent to the native `unsigned int` c-type ([`UInt32`](@ref)).\n"}],"Base.checkbounds_indices":[{"Tuple{Type{Bool},Tuple,Tuple}":" checkbounds_indices(Bool, IA, I)\n\nReturn `true` if the \"requested\" indices in the tuple `I` fall within\nthe bounds of the \"permitted\" indices specified by the tuple\n`IA`. This function recursively consumes elements of these tuples,\nusually in a 1-for-1 fashion,\n\n checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &\n checkbounds_indices(Bool, IA, I)\n\nNote that [`checkindex`](@ref) is being used to perform the actual\nbounds-check for a single dimension of the array.\n\nThere are two important exceptions to the 1-1 rule: linear indexing and\nCartesianIndex{N}, both of which may \"consume\" more than one element\nof `IA`.\n\nSee also [`checkbounds`](@ref).\n"}],"Base.hasfield":[{"Union{Tuple{T}, Tuple{Type{T},Symbol}} where T":" hasfield(T::Type, name::Symbol)\n\nReturn a boolean indicating whether `T` has `name` as one of its own fields.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.acquire":[{"Tuple{Base.Semaphore}":" acquire(s::Semaphore)\n\nWait for one of the `sem_size` permits to be available,\nblocking until one can be acquired.\n"}],"Base.axes":[{"Tuple{Any}":" axes(A)\n\nReturn the tuple of valid indices for array `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A)\n(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))\n```\n"},{"Union{Tuple{N}, Tuple{T}, Tuple{AbstractArray{T,N},Any}} where N where T":" axes(A, d)\n\nReturn the valid range of indices for array `A` along dimension `d`.\n\nSee also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> axes(A, 2)\nBase.OneTo(6)\n```\n"}],"Base.LogicalIndex":[{"Union{}":" LogicalIndex(mask)\n\nThe `LogicalIndex` type is a special vector that simply contains all indices I\nwhere `mask[I]` is true. This specialized type does not support indexing\ndirectly as doing so would require O(n) lookup time. `AbstractArray{Bool}` are\nwrapped with `LogicalIndex` upon calling [`to_indices`](@ref).\n"}],"Base.getkey":[{"Union{Tuple{V}, Tuple{K}, Tuple{Dict{K,V},Any,Any}} where V where K":" getkey(collection, key, default)\n\nReturn the key matching argument `key` if one exists in `collection`, otherwise return `default`.\n\n# Examples\n```jldoctest\njulia> D = Dict('a'=>2, 'b'=>3)\nDict{Char,Int64} with 2 entries:\n 'a' => 2\n 'b' => 3\n\njulia> getkey(D, 'a', 1)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> getkey(D, 'd', 'a')\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n```\n"}],"Base.read!":[{"Union{}":" read!(stream::IO, array::AbstractArray)\n read!(filename::AbstractString, array::AbstractArray)\n\nRead binary data from an I/O stream or file, filling in `array`.\n"}],"Base.mightalias":[{"Tuple{AbstractArray,AbstractArray}":" Base.mightalias(A::AbstractArray, B::AbstractArray)\n\nPerform a conservative test to check if arrays `A` and `B` might share the same memory.\n\nBy default, this simply checks if either of the arrays reference the same memory\nregions, as identified by their [`Base.dataids`](@ref).\n"}],"Base.catch_backtrace":[{"Tuple{}":" catch_backtrace()\n\nGet the backtrace of the current exception, for use within `catch` blocks.\n"}],"Base.evalfile":[{"Union{Tuple{AbstractString}, Tuple{AbstractString,Array{String,1}}}":" evalfile(path::AbstractString, args::Vector{String}=String[])\n\nLoad the file using [`include`](@ref), evaluate all expressions,\nand return the value of the last one.\n"}],"Base.Channel":[{"Union{}":" Channel{T=Any}(size::Int=0)\n\nConstructs a `Channel` with an internal buffer that can hold a maximum of `size` objects\nof type `T`.\n[`put!`](@ref) calls on a full channel block until an object is removed with [`take!`](@ref).\n\n`Channel(0)` constructs an unbuffered channel. `put!` blocks until a matching `take!` is called.\nAnd vice-versa.\n\nOther constructors:\n\n* `Channel()`: default constructor, equivalent to `Channel{Any}(0)`\n* `Channel(Inf)`: equivalent to `Channel{Any}(typemax(Int))`\n* `Channel(sz)`: equivalent to `Channel{Any}(sz)`\n\n!!! compat \"Julia 1.3\"\n The default constructor `Channel()` and default `size=0` were added in Julia 1.3.\n"},{"Union{Tuple{Function}, Tuple{T}, Tuple{Function,Any}} where T":" Channel{T=Any}(func::Function, size=0; taskref=nothing, spawn=false)\n\nCreate a new task from `func`, bind it to a new channel of type\n`T` and size `size`, and schedule the task, all in a single call.\n\n`func` must accept the bound channel as its only argument.\n\nIf you need a reference to the created task, pass a `Ref{Task}` object via\nthe keyword argument `taskref`.\n\nIf `spawn = true`, the Task created for `func` may be scheduled on another thread\nin parallel, equivalent to creating a task via [`Threads.@spawn`](@ref).\n\nReturn a `Channel`.\n\n# Examples\n```jldoctest\njulia> chnl = Channel() do ch\n foreach(i -> put!(ch, i), 1:4)\n end;\n\njulia> typeof(chnl)\nChannel{Any}\n\njulia> for i in chnl\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n```\n\nReferencing the created task:\n\n```jldoctest\njulia> taskref = Ref{Task}();\n\njulia> chnl = Channel(taskref=taskref) do ch\n println(take!(ch))\n end;\n\njulia> istaskdone(taskref[])\nfalse\n\njulia> put!(chnl, \"Hello\");\nHello\n\njulia> istaskdone(taskref[])\ntrue\n```\n\n!!! compat \"Julia 1.3\"\n The `spawn=` parameter was added in Julia 1.3. This constructor was added in Julia 1.3.\n In earlier versions of Julia, Channel used keyword arguments to set `size` and `T`, but\n those constructors are deprecated.\n\n```jldoctest\njulia> chnl = Channel{Char}(1, spawn=true) do ch\n for c in \"hello world\"\n put!(ch, c)\n end\n end\nChannel{Char}(sz_max:1,sz_curr:1)\n\njulia> String(collect(chnl))\n\"hello world\"\n```\n"}],"Base.parent":[{"Tuple{AbstractArray}":" parent(A)\n\nReturns the \"parent array\" of an array view type (e.g., `SubArray`), or the array itself if\nit is not a view.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> V = view(A, 1:2, :)\n2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64:\n 1 2\n 3 4\n\njulia> parent(V)\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n```\n"}],"Base.Inf16":[{"Union{}":" Inf16\n\nPositive infinity of type [`Float16`](@ref).\n"}],"Base.catch_stack":[{"Union{Tuple{}, Tuple{Any}}":" catch_stack(task=current_task(); [inclue_bt=true])\n\nGet the stack of exceptions currently being handled. For nested catch blocks\nthere may be more than one current exception in which case the most recently\nthrown exception is last in the stack. The stack is returned as a Vector of\n`(exception,backtrace)` pairs, or a Vector of exceptions if `include_bt` is\nfalse.\n\nExplicitly passing `task` will return the current exception stack on an\narbitrary task. This is useful for inspecting tasks which have failed due to\nuncaught exceptions.\n\n!!! compat \"Julia 1.1\"\n This function is experimental in Julia 1.1 and will likely be renamed in a\n future release (see https://github.com/JuliaLang/julia/pull/29901).\n"}],"Base.VersionNumber":[{"Union{}":" VersionNumber\n\nVersion number type which follow the specifications of\n[semantic versioning](https://semver.org/), composed of major, minor\nand patch numeric values, followed by pre-release and build\nalpha-numeric annotations. See also [`@v_str`](@ref).\n\n# Examples\n```jldoctest\njulia> VersionNumber(\"1.2.3\")\nv\"1.2.3\"\n\njulia> VersionNumber(\"2.0.1-rc1\")\nv\"2.0.1-rc1\"\n```\n"}],"Base.⊋":[{"Union{}":" ⊊(a, b) -> Bool\n ⊋(b, a) -> Bool\n\nDetermines if `a` is a subset of, but not equal to, `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊊ (1, 2, 3)\ntrue\n\njulia> (1, 2) ⊊ (1, 2)\nfalse\n```\n"}],"Base.fill":[{"Union{}":" fill(x, dims::Tuple)\n fill(x, dims...)\n\nCreate an array filled with the value `x`. For example, `fill(1.0, (5,5))` returns a 5×5\narray of floats, with each element initialized to `1.0`.\n\n`dims` may be specified as either a tuple or a sequence of arguments. For example,\nthe common idiom `fill(x)` creates a zero-dimensional array containing the single value `x`.\n\n# Examples\n```jldoctest\njulia> fill(1.0, (5,5))\n5×5 Array{Float64,2}:\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n 1.0 1.0 1.0 1.0 1.0\n\njulia> fill(0.5, 1, 2)\n1×2 Array{Float64,2}:\n 0.5 0.5\n\njulia> fill(42)\n0-dimensional Array{Int64,0}:\n42\n```\n\nIf `x` is an object reference, all elements will refer to the same object. `fill(Foo(),\ndims)` will return an array filled with the result of evaluating `Foo()` once.\n"}],"Base.Cintmax_t":[{"Union{}":" Cintmax_t\n\nEquivalent to the native `intmax_t` c-type ([`Int64`](@ref)).\n"}],"Base.isoverlong":[{"Tuple{AbstractChar}":" isoverlong(c::AbstractChar) -> Bool\n\nReturn `true` if `c` represents an overlong UTF-8 sequence. Defaults\nto `false` for non-`Char` types. See also [`decode_overlong`](@ref)\nand [`show_invalid`](@ref).\n"}],"Base.gcd":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcd(x,y)\n\nGreatest common (positive) divisor (or zero if `x` and `y` are both zero).\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcd(6,9)\n3\n\njulia> gcd(6,-9)\n3\n```\n"}],"Base.codeunits":[{"Tuple{AbstractString}":" codeunits(s::AbstractString)\n\nObtain a vector-like object containing the code units of a string.\nReturns a `CodeUnits` wrapper by default, but `codeunits` may optionally be defined\nfor new string types if necessary.\n"}],"Base.flipsign":[{"Tuple{Real,Real}":" flipsign(x, y)\n\nReturn `x` with its sign flipped if `y` is negative. For example `abs(x) = flipsign(x,x)`.\n\n# Examples\n```jldoctest\njulia> flipsign(5, 3)\n5\n\njulia> flipsign(5, -3)\n-5\n```\n"}],"Base.denominator":[{"Tuple{Integer}":" denominator(x)\n\nDenominator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> denominator(2//3)\n3\n\njulia> denominator(4)\n1\n```\n"}],"Base.issubset":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.divrem":[{"Tuple{Any,Any}":" divrem(x, y, r::RoundingMode=RoundToZero)\n\nThe quotient and remainder from Euclidean division.\nEquivalent to `(div(x,y,r), rem(x,y,r))`. Equivalently, with the the default\nvalue of `r`, this call is equivalent to `(x÷y, x%y)`.\n\n# Examples\n```jldoctest\njulia> divrem(3,7)\n(0, 3)\n\njulia> divrem(7,3)\n(2, 1)\n```\n"}],"Base.any!":[{"Tuple{Any,Any}":" any!(r, A)\n\nTest whether any values in `A` along the singleton dimensions of `r` are `true`, and write\nresults to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> any!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 1\n\njulia> any!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.Fix2":[{"Union{}":" Fix2(f, x)\n\nA type representing a partially-applied version of the two-argument function\n`f`, with the second argument fixed to the value \"x\". In other words,\n`Fix2(f, x)` behaves similarly to `y->f(y, x)`.\n"}],"Base.sum!":[{"Tuple{Any,Any}":" sum!(r, A)\n\nSum elements of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum!([1; 1], A)\n2-element Array{Int64,1}:\n 3\n 7\n\njulia> sum!([1 1], A)\n1×2 Array{Int64,2}:\n 4 6\n```\n"}],"Base.bitstring":[{"Union{}":" bitstring(n)\n\nA string giving the literal bit representation of a number.\n\n# Examples\n```jldoctest\njulia> bitstring(4)\n\"0000000000000000000000000000000000000000000000000000000000000100\"\n\njulia> bitstring(2.2)\n\"0100000000000001100110011001100110011001100110011001100110011010\"\n```\n"}],"Base.sprint":[{"Tuple{Function,Vararg{Any,N} where N}":" sprint(f::Function, args...; context=nothing, sizehint=0)\n\nCall the given function with an I/O stream and the supplied extra arguments.\nEverything written to this I/O stream is returned as a string.\n`context` can be either an [`IOContext`](@ref) whose properties will be used,\nor a `Pair` specifying a property and its value. `sizehint` suggests the capacity\nof the buffer (in bytes).\n\nThe optional keyword argument `context` can be set to `:key=>value` pair\nor an `IO` or [`IOContext`](@ref) object whose attributes are used for the I/O\nstream passed to `f`. The optional `sizehint` is a suggested size (in bytes)\nto allocate for the buffer used to write the string.\n\n# Examples\n```jldoctest\njulia> sprint(show, 66.66666; context=:compact => true)\n\"66.6667\"\n\njulia> sprint(showerror, BoundsError([1], 100))\n\"BoundsError: attempt to access 1-element Array{Int64,1} at index [100]\"\n```\n"}],"Base.LinRange":[{"Union{}":" LinRange{T}\n\nA range with `len` linearly spaced elements between its `start` and `stop`.\nThe size of the spacing is controlled by `len`, which must\nbe an `Int`.\n\n# Examples\n```jldoctest\njulia> LinRange(1.5, 5.5, 9)\n9-element LinRange{Float64}:\n 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5\n```\n"}],"Base.⊇":[{"Union{}":" issubset(a, b) -> Bool\n ⊆(a, b) -> Bool\n ⊇(b, a) -> Bool\n\nDetermine whether every element of `a` is also in `b`, using [`in`](@ref).\n\n# Examples\n```jldoctest\njulia> issubset([1, 2], [1, 2, 3])\ntrue\n\njulia> [1, 2, 3] ⊆ [1, 2]\nfalse\n\njulia> [1, 2, 3] ⊇ [1, 2]\ntrue\n```\n"}],"Base.NaN64":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.reduce_first":[{"Tuple{Any,Any}":" Base.reduce_first(op, x)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref`) or\n[`foldr`](@ref) with reduction `op` over an iterator which contains a single element\n`x`. This value may also used to initialise the recursion, so that `reduce(op, [x, y])`\nmay call `op(reduce_first(op, x), y)`.\n\nThe default is `x` for most types. The main purpose is to ensure type stability, so\nadditional methods should only be defined for cases where `op` gives a result with\ndifferent types than its inputs.\n"}],"Base.step":[{"Tuple{StepRange}":" step(r)\n\nGet the step size of an [`AbstractRange`](@ref) object.\n\n# Examples\n```jldoctest\njulia> step(1:10)\n1\n\njulia> step(1:2:10)\n2\n\njulia> step(2.5:0.3:10.9)\n0.3\n\njulia> step(range(2.5, stop=10.9, length=85))\n0.1\n```\n"}],"Base.fld":[{"Tuple{Any,Any}":" fld(x, y)\n\nLargest integer less than or equal to `x/y`. Equivalent to `div(x, y, RoundDown)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> fld(7.3,5.5)\n1.0\n```\n"}],"Base.popfirst!":[{"Tuple{Array{T,1} where T}":" popfirst!(collection) -> item\n\nRemove the first `item` from `collection`.\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4, 5, 6]\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n\njulia> popfirst!(A)\n1\n\njulia> A\n5-element Array{Int64,1}:\n 2\n 3\n 4\n 5\n 6\n```\n"}],"Base.structdiff":[{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,Union{Type{NamedTuple{bn,T} where T<:Tuple}, NamedTuple{bn,T} where T<:Tuple}}} where bn where an":" structdiff(a::NamedTuple{an}, b::Union{NamedTuple{bn},Type{NamedTuple{bn}}}) where {an,bn}\n\nConstruct a copy of named tuple `a`, except with fields that exist in `b` removed.\n`b` can be a named tuple, or a type of the form `NamedTuple{field_names}`.\n"}],"Base.prepend!":[{"Union{}":" prepend!(a::Vector, items) -> collection\n\nInsert the elements of `items` to the beginning of `a`.\n\n# Examples\n```jldoctest\njulia> prepend!([3],[1,2])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.promote":[{"Union{}":" promote(xs...)\n\nConvert all arguments to a common type, and return them all (as a tuple).\nIf no arguments can be converted, an error is raised.\n\n# Examples\n```jldoctest\njulia> promote(Int8(1), Float16(4.5), Float32(4.1))\n(1.0f0, 4.5f0, 4.1f0)\n```\n"}],"Base.mapreduce_first":[{"Tuple{Any,Any,Any}":" Base.mapreduce_first(f, op, x)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an iterator which contains a\nsingle element `x`. This value may also used to initialise the recursion, so that\n`mapreduce(f, op, [x, y])` may call `op(reduce_first(op, f, x), f(y))`.\n\nThe default is `reduce_first(op, f(x))`.\n"}],"Base.hasfastin":[{"Tuple{Type}":" hasfastin(T)\n\nDetermine whether the computation `x ∈ collection` where `collection::T` can be considered\nas a \"fast\" operation (typically constant or logarithmic complexity).\nThe definition `hasfastin(x) = hasfastin(typeof(x))` is provided for convenience so that instances\ncan be passed instead of types.\nHowever the form that accepts a type argument should be defined for new types.\n"}],"Base.seek":[{"Tuple{IOStream,Integer}":" seek(s, pos)\n\nSeek a stream to the given position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> read(io, Char)\n'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)\n```\n"}],"Base.countlines":[{"Tuple{IO}":" countlines(io::IO; eol::AbstractChar = '\\n')\n\nRead `io` until the end of the stream/file and count the number of lines. To specify a file\npass the filename as the first argument. EOL markers other than `'\\n'` are supported by\npassing them as the second argument. The last non-empty line of `io` is counted even if it does not\nend with the EOL, matching the length returned by [`eachline`](@ref) and [`readlines`](@ref).\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\\n\");\n\njulia> countlines(io)\n1\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> countlines(io)\n1\n\njulia> countlines(io, eol = '.')\n0\n```\n"}],"Base.rem":[{"Union{}":" rem(x, y)\n %(x, y)\n\nRemainder from Euclidean division, returning a value of the same sign as `x`, and smaller in\nmagnitude than `y`. This value is always exact.\n\n# Examples\n```jldoctest\njulia> x = 15; y = 4;\n\njulia> x % y\n3\n\njulia> x == div(x, y) * y + rem(x, y)\ntrue\n```\n"},{"Tuple{Any,Any,RoundingMode}":" rem(x, y, r::RoundingMode=RoundToZero)\n\nCompute the remainder of `x` after integer division by `y`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - y*round(x/y,r)\n\nwithout any intermediate rounding.\n\n- if `r == RoundNearest`, then the result is exact, and in the interval\n ``[-|y|/2, |y|/2]``. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero` (default), then the result is exact, and in the interval\n ``[0, |y|)`` if `x` is positive, or ``(-|y|, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, y)`` if `y` is positive, or\n ``(y, 0]`` otherwise. The result may not be exact if `x` and `y` have different signs, and\n `abs(x) < abs(y)`. See also [`RoundDown`](@ref).\n\n- if `r == RoundUp`, then the result is in the interval `(-y,0]` if `y` is positive, or\n `[0,-y)` otherwise. The result may not be exact if `x` and `y` have the same sign, and\n `abs(x) < abs(y)`. See also [`RoundUp`](@ref).\n\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"}],"Base.process_running":[{"Tuple{Base.Process}":" process_running(p::Process)\n\nDetermine whether a process is currently running.\n"}],"Base.SubString":[{"Union{}":" SubString(s::AbstractString, i::Integer, j::Integer=lastindex(s))\n SubString(s::AbstractString, r::UnitRange{<:Integer})\n\nLike [`getindex`](@ref), but returns a view into the parent string `s`\nwithin range `i:j` or `r` respectively instead of making a copy.\n\n# Examples\n```jldoctest\njulia> SubString(\"abc\", 1, 2)\n\"ab\"\n\njulia> SubString(\"abc\", 1:2)\n\"ab\"\n\njulia> SubString(\"abc\", 2)\n\"bc\"\n```\n"}],"Base.∉":[{"Union{}":" ∉(item, collection) -> Bool\n ∌(collection, item) -> Bool\n\nNegation of `∈` and `∋`, i.e. checks that `item` is not in `collection`.\n\n# Examples\n```jldoctest\njulia> 1 ∉ 2:4\ntrue\n\njulia> 1 ∉ 1:3\nfalse\n```\n"}],"Base.Event":[{"Union{}":" Event()\n\nCreate a level-triggered event source. Tasks that call [`wait`](@ref) on an\n`Event` are suspended and queued until `notify` is called on the `Event`.\nAfter `notify` is called, the `Event` remains in a signaled state and\ntasks will no longer block when waiting for it.\n\n!!! compat \"Julia 1.1\"\n This functionality requires at least Julia 1.1.\n"}],"Base.leading_ones":[{"Tuple{Integer}":" leading_ones(x::Integer) -> Integer\n\nNumber of ones leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_ones(UInt32(2 ^ 32 - 2))\n31\n```\n"}],"Base.prod":[{"Tuple{Any}":" prod(itr)\n\nReturns the product of all elements of a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(1:20)\n2432902008176640000\n```\n"},{"Tuple{AbstractArray}":" prod(A::AbstractArray; dims)\n\nMultiply elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> prod(A, dims=1)\n1×2 Array{Int64,2}:\n 3 8\n\njulia> prod(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 12\n```\n"},{"Tuple{Any,Any}":" prod(f, itr)\n\nReturns the product of `f` applied to each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> prod(abs2, [2; 3; 4])\n576\n```\n"}],"Base.float":[{"Tuple{Any}":" float(x)\n\nConvert a number or array to a floating point data type.\n"},{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" float(T::Type)\n\nReturn an appropriate type to represent a value of type `T` as a floating point value.\nEquivalent to `typeof(float(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> float(Complex{Int})\nComplex{Float64}\n\njulia> float(Int)\nFloat64\n```\n"}],"Base.isdone":[{"Tuple{Any,Vararg{Any,N} where N}":" isdone(itr, state...) -> Union{Bool, Missing}\n\nThis function provides a fast-path hint for iterator completion.\nThis is useful for mutable iterators that want to avoid having elements\nconsumed, if they are not going to be exposed to the user (e.g. to check\nfor done-ness in `isempty` or `zip`). Mutable iterators that want to\nopt into this feature should define an isdone method that returns\ntrue/false depending on whether the iterator is done or not. Stateless\niterators need not implement this function. If the result is `missing`,\ncallers may go ahead and compute `iterate(x, state...) === nothing` to\ncompute a definite answer.\n"}],"Base.CyclePadding":[{"Union{}":" CyclePadding(padding, total_size)\n\nCylces an iterator of `Padding` structs, restarting the padding at `total_size`.\nE.g. if `padding` is all the padding in a struct and `total_size` is the total\naligned size of that array, `CyclePadding` will correspond to the padding in an\ninfinite vector of such structs.\n"}],"Base.@__LINE__":[{"Tuple{}":" @__LINE__ -> Int\n\nExpand to the line number of the location of the macrocall.\nReturn `0` if the line number could not be determined.\n"}],"Base.⊉":[{"Union{}":" ⊈(a, b) -> Bool\n ⊉(b, a) -> Bool\n\nNegation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.\n\n# Examples\n```jldoctest\njulia> (1, 2) ⊈ (2, 3)\ntrue\n\njulia> (1, 2) ⊈ (1, 2, 3)\nfalse\n```\n"}],"Base._show_nonempty":[{"Tuple{IO,AbstractArray{T,2} where T,String}":"`_show_nonempty(io, X::AbstractMatrix, prefix)` prints matrix X with opening and closing square brackets,\npreceded by `prefix`, supposed to encode the type of the elements.\n"}],"Base.fieldnames":[{"Tuple{DataType}":" fieldnames(x::DataType)\n\nGet a tuple with the names of the fields of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldnames(Rational)\n(:num, :den)\n```\n"}],"Base.to_index":[{"Tuple{Any,Any}":" to_index(A, i)\n\nConvert index `i` to an `Int` or array of indices to be used as an index into array `A`.\n\nCustom array types may specialize `to_index(::CustomArray, i)` to provide\nspecial indexing behaviors. Note that some index types (like `Colon`) require\nmore context in order to transform them into an array of indices; those get\nconverted in the more complicated `to_indices` function. By default, this\nsimply calls the generic `to_index(i)`. This must return either an `Int` or an\n`AbstractArray` of scalar indices that are supported by `A`.\n"},{"Tuple{Integer}":" to_index(i)\n\nConvert index `i` to an `Int` or array of `Int`s to be used as an index for all arrays.\n\nCustom index types may specialize `to_index(::CustomIndex)` to provide special\nindexing behaviors. This must return either an `Int` or an `AbstractArray` of\n`Int`s.\n"}],"Base.isconst":[{"Tuple{Module,Symbol}":" isconst(m::Module, s::Symbol) -> Bool\n\nDetermine whether a global is declared `const` in a given `Module`.\n"}],"Base.AbstractDict":[{"Union{}":" AbstractDict{K, V}\n\nSupertype for dictionary-like types with keys of type `K` and values of type `V`.\n[`Dict`](@ref), [`IdDict`](@ref) and other types are subtypes of this.\nAn `AbstractDict{K, V}` should be an iterator of `Pair{K, V}`.\n"}],"Base.atreplinit":[{"Tuple{Function}":" atreplinit(f)\n\nRegister a one-argument function to be called before the REPL interface is initialized in\ninteractive sessions; this is useful to customize the interface. The argument of `f` is the\nREPL object. This function should be called from within the `.julia/config/startup.jl`\ninitialization file.\n"}],"Base.symdiff!":[{"Tuple{AbstractSet,Vararg{Any,N} where N}":" symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)\n\nConstruct the symmetric difference of the passed in sets, and overwrite `s` with the result.\nWhen `s` is an array, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n"}],"Base.SubstitutionString":[{"Union{}":" SubstitutionString(substr)\n\nStores the given string `substr` as a `SubstitutionString`, for use in regular expression\nsubstitutions. Most commonly constructed using the [`@s_str`](@ref) macro.\n\n```jldoctest\njulia> SubstitutionString(\"Hello \\\\g, it's \\\\1\")\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> subst = s\"Hello \\g, it's \\1\"\ns\"Hello \\\\g, it's \\\\1\"\n\njulia> typeof(subst)\nSubstitutionString{String}\n\n```\n\n"}],"Base.fieldname":[{"Tuple{DataType,Integer}":" fieldname(x::DataType, i::Integer)\n\nGet the name of field `i` of a `DataType`.\n\n# Examples\n```jldoctest\njulia> fieldname(Rational, 1)\n:num\n\njulia> fieldname(Rational, 2)\n:den\n```\n"}],"Base.@nospecialize":[{"Tuple":" @nospecialize\n\nApplied to a function argument name, hints to the compiler that the method\nshould not be specialized for different types of that argument,\nbut instead to use precisely the declared type for each argument.\nThis is only a hint for avoiding excess code generation.\nCan be applied to an argument within a formal argument list,\nor in the function body.\nWhen applied to an argument, the macro must wrap the entire argument expression.\nWhen used in a function body, the macro must occur in statement position and\nbefore any code.\n\nWhen used without arguments, it applies to all arguments of the parent scope.\nIn local scope, this means all arguments of the containing function.\nIn global (top-level) scope, this means all methods subsequently defined in the current module.\n\nSpecialization can reset back to the default by using [`@specialize`](@ref).\n\n```julia\nfunction example_function(@nospecialize x)\n ...\nend\n\nfunction example_function(@nospecialize(x = 1), y)\n ...\nend\n\nfunction example_function(x, y, z)\n @nospecialize x y\n ...\nend\n\n@nospecialize\nf(y) = [x for x in y]\n@specialize\n```\n"}],"Base.trailing_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" trailing_zeros(x::Integer) -> Integer\n\nNumber of zeros trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_zeros(2)\n1\n```\n"}],"Base.signed":[{"Tuple{Any}":" signed(x)\n\nConvert a number to a signed integer. If the argument is unsigned, it is reinterpreted as\nsigned without checking for overflow.\n"}],"Base.IndexLinear":[{"Union{}":" IndexLinear()\n\nSubtype of [`IndexStyle`](@ref) used to describe arrays which\nare optimally indexed by one linear index.\n\nA linear indexing style uses one integer index to describe the position in the array\n(even if it's a multidimensional array) and column-major\nordering is used to efficiently access the elements. This means that\nrequesting [`eachindex`](@ref) from an array that is `IndexLinear` will return\na simple one-dimensional range, even if it is multidimensional.\n\nA custom array that reports its `IndexStyle` as `IndexLinear` only needs\nto implement indexing (and indexed assignment) with a single `Int` index;\nall other indexing expressions — including multidimensional accesses — will\nbe recomputed to the linear index. For example, if `A` were a `2×3` custom\nmatrix with linear indexing, and we referenced `A[1, 3]`, this would be\nrecomputed to the equivalent linear index and call `A[5]` since `2*1 + 3 = 5`.\n\nSee also [`IndexCartesian`](@ref).\n"}],"Base.zeros":[{"Union{}":" zeros([T=Float64,] dims::Tuple)\n zeros([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all zeros with size specified by `dims`.\nSee also [`fill`](@ref), [`ones`](@ref).\n\n# Examples\n```jldoctest\njulia> zeros(1)\n1-element Array{Float64,1}:\n 0.0\n\njulia> zeros(Int8, 2, 3)\n2×3 Array{Int8,2}:\n 0 0 0\n 0 0 0\n```\n"}],"Base.@__MODULE__":[{"Tuple{}":" @__MODULE__ -> Module\n\nGet the `Module` of the toplevel eval,\nwhich is the `Module` code is currently being read from.\n"}],"Base.vec":[{"Tuple{AbstractArray}":" vec(a::AbstractArray) -> AbstractVector\n\nReshape the array `a` as a one-dimensional column vector. Return `a` if it is\nalready an `AbstractVector`. The resulting array\nshares the same underlying data as `a`, so it will only be mutable if `a` is\nmutable, in which case modifying one will also modify the other.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> vec(a)\n6-element Array{Int64,1}:\n 1\n 4\n 2\n 5\n 3\n 6\n\njulia> vec(1:3)\n1:3\n```\n\nSee also [`reshape`](@ref).\n"}],"Base.collect":[{"Tuple{Any}":" collect(collection)\n\nReturn an `Array` of all items in a collection or iterator. For dictionaries, returns\n`Pair{KeyType, ValType}`. If the argument is array-like or is an iterator with the\n[`HasShape`](@ref IteratorSize) trait, the result will have the same shape\nand number of dimensions as the argument.\n\n# Examples\n```jldoctest\njulia> collect(1:2:13)\n7-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n 13\n```\n"},{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" collect(element_type, collection)\n\nReturn an `Array` with the given element type of all items in a collection or iterable.\nThe result has the same shape and number of dimensions as `collection`.\n\n# Examples\n```jldoctest\njulia> collect(Float64, 1:2:5)\n3-element Array{Float64,1}:\n 1.0\n 3.0\n 5.0\n```\n"}],"Base.conj":[{"Tuple{Complex}":" conj(z)\n\nCompute the complex conjugate of a complex number `z`.\n\n# Examples\n```jldoctest\njulia> conj(1 + 3im)\n1 - 3im\n```\n"}],"Base.!==":[{"Tuple{Any,Any}":" !==(x, y)\n ≢(x,y)\n\nAlways gives the opposite answer as [`===`](@ref).\n\n# Examples\n```jldoctest\njulia> a = [1, 2]; b = [1, 2];\n\njulia> a ≢ b\ntrue\n\njulia> a ≢ a\nfalse\n```\n"}],"Base.readline":[{"Tuple{AbstractString}":" readline(io::IO=stdin; keep::Bool=false)\n readline(filename::AbstractString; keep::Bool=false)\n\nRead a single line of text from the given I/O stream or file (defaults to `stdin`).\nWhen reading from a file, the text is assumed to be encoded in UTF-8. Lines in the\ninput end with `'\\n'` or `\"\\r\\n\"` or the end of an input stream. When `keep` is\nfalse (as it is by default), these trailing newline characters are removed from the\nline before it is returned. When `keep` is true, they are returned as part of the\nline.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readline(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\"\n\njulia> readline(\"my_file.txt\", keep=true)\n\"JuliaLang is a GitHub organization.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.something":[{"Union{}":" something(x, y...)\n\nReturn the first value in the arguments which is not equal to [`nothing`](@ref),\nif any. Otherwise throw an error.\nArguments of type [`Some`](@ref) are unwrapped.\n\nSee also [`coalesce`](@ref).\n\n# Examples\n```jldoctest\njulia> something(nothing, 1)\n1\n\njulia> something(Some(1), nothing)\n1\n\njulia> something(missing, nothing)\nmissing\n\njulia> something(nothing, nothing)\nERROR: ArgumentError: No value arguments present\n```\n"}],"Base.IOBuffer":[{"Tuple{String}":" IOBuffer(string::String)\n\nCreate a read-only `IOBuffer` on the data underlying the given string.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"Haho\");\n\njulia> String(take!(io))\n\"Haho\"\n\njulia> String(take!(io))\n\"Haho\"\n```\n"},{"Tuple{AbstractArray{UInt8,1}}":" IOBuffer([data::AbstractVector{UInt8}]; keywords...) -> IOBuffer\n\nCreate an in-memory I/O stream, which may optionally operate on a pre-existing array.\n\nIt may take optional keyword arguments:\n- `read`, `write`, `append`: restricts operations to the buffer; see `open` for details.\n- `truncate`: truncates the buffer size to zero length.\n- `maxsize`: specifies a size beyond which the buffer may not be grown.\n- `sizehint`: suggests a capacity of the buffer (`data` must implement `sizehint!(data, size)`).\n\nWhen `data` is not given, the buffer will be both readable and writable by default.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer();\n\njulia> write(io, \"JuliaLang is a GitHub organization.\", \" It has many members.\")\n56\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization. It has many members.\"\n\njulia> io = IOBuffer(b\"JuliaLang is a GitHub organization.\")\nIOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=35, maxsize=Inf, ptr=1, mark=-1)\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization.\"\n\njulia> write(io, \"This isn't writable.\")\nERROR: ArgumentError: ensureroom failed, IOBuffer is not writeable\n\njulia> io = IOBuffer(UInt8[], read=true, write=true, maxsize=34)\nIOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0, maxsize=34, ptr=1, mark=-1)\n\njulia> write(io, \"JuliaLang is a GitHub organization.\")\n34\n\njulia> String(take!(io))\n\"JuliaLang is a GitHub organization\"\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=false)))\n4\n\njulia> length(read(IOBuffer(b\"data\", read=true, truncate=true)))\n0\n```\n"}],"Base.AlwaysLockedST":[{"Union{}":" AlwaysLockedST\n\nThis struct does not implement a real lock, but instead\npretends to be always locked on the original thread it was allocated on,\nand simply ignores all other interactions.\nIt also does not synchronize tasks; for that use a real lock such as [`RecursiveLock`](@ref).\nThis can be used in the place of a real lock to, instead, simply and cheaply assert\nthat the operation is only occurring on a single cooperatively-scheduled thread.\nIt is thus functionally equivalent to allocating a real, recursive, task-unaware lock\nimmediately calling `lock` on it, and then never calling a matching `unlock`,\nexcept that calling `lock` from another thread will throw a concurrency violation exception.\n"}],"Base.replace_with_centered_mark":[{"Tuple{AbstractString}":"Unexported convenience function used in body of `replace_in_print_matrix`\nmethods. By default returns a string of the same width as original with a\ncentered cdot, used in printing of structural zeros of structured matrices.\nAccept keyword args `c` for alternate single character marker.\n"}],"Base.reinterpret":[{"Union{Tuple{T}, Tuple{Type{T},Any}} where T":" reinterpret(type, A)\n\nChange the type-interpretation of a block of memory.\nFor arrays, this constructs a view of the array with the same binary data as the given\narray, but with the specified element type.\nFor example,\n`reinterpret(Float32, UInt32(7))` interprets the 4 bytes corresponding to `UInt32(7)` as a\n[`Float32`](@ref).\n\n# Examples\n```jldoctest\njulia> reinterpret(Float32, UInt32(7))\n1.0f-44\n\njulia> reinterpret(Float32, UInt32[1 2 3 4 5])\n1×5 reinterpret(Float32, ::Array{UInt32,2}):\n 1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45\n```\n"}],"Base.signbit":[{"Tuple{Real}":" signbit(x)\n\nReturns `true` if the value of the sign of `x` is negative, otherwise `false`.\n\n# Examples\n```jldoctest\njulia> signbit(-4)\ntrue\n\njulia> signbit(5)\nfalse\n\njulia> signbit(5.5)\nfalse\n\njulia> signbit(-4.1)\ntrue\n```\n"}],"Base.invmod":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" invmod(x,m)\n\nTake the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``,\nwith ``div(x,y) = 0``. This is undefined for ``m = 0``, or if\n``gcd(x,m) \\neq 1``.\n\n# Examples\n```jldoctest\njulia> invmod(2,5)\n3\n\njulia> invmod(2,3)\n2\n\njulia> invmod(5,6)\n5\n```\n"}],"Base.PipeBuffer":[{"Union{Tuple{}, Tuple{Array{UInt8,1}}}":" PipeBuffer(data::Vector{UInt8}=UInt8[]; maxsize::Integer = typemax(Int))\n\nAn [`IOBuffer`](@ref) that allows reading and performs writes by appending.\nSeeking and truncating are not supported.\nSee [`IOBuffer`](@ref) for the available constructors.\nIf `data` is given, creates a `PipeBuffer` to operate on a data vector,\noptionally specifying a size beyond which the underlying `Array` may not be grown.\n"}],"Base.map":[{"Tuple{Any,Any}":" map(f, c...) -> collection\n\nTransform collection `c` by applying `f` to each element. For multiple collection arguments,\napply `f` elementwise.\n\nSee also: [`mapslices`](@ref)\n\n# Examples\n```jldoctest\njulia> map(x -> x * 2, [1, 2, 3])\n3-element Array{Int64,1}:\n 2\n 4\n 6\n\njulia> map(+, [1, 2, 3], [10, 20, 30])\n3-element Array{Int64,1}:\n 11\n 22\n 33\n```\n"}],"Base.all!":[{"Tuple{Any,Any}":" all!(r, A)\n\nTest whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> all!([1; 1], A)\n2-element Array{Int64,1}:\n 0\n 0\n\njulia> all!([1 1], A)\n1×2 Array{Int64,2}:\n 1 0\n```\n"}],"Base.gc_live_bytes":[{"Tuple{}":" Base.gc_live_bytes()\n\nReturn the total size (in bytes) of objects currently in memory.\nThis is computed as the total size of live objects after\nthe last garbage collection, plus the number of bytes allocated\nsince then.\n"}],"Base.ndims":[{"Union{Tuple{AbstractArray{T,N}}, Tuple{N}, Tuple{T}} where N where T":" ndims(A::AbstractArray) -> Integer\n\nReturn the number of dimensions of `A`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> ndims(A)\n3\n```\n"}],"Base.precision":[{"Union{}":" precision(num::AbstractFloat)\n\nGet the precision of a floating point number, as defined by the effective number of bits in\nthe mantissa.\n"}],"Base.pointer_from_objref":[{"Tuple{Any}":" pointer_from_objref(x)\n\nGet the memory address of a Julia object as a `Ptr`. The existence of the resulting `Ptr`\nwill not protect the object from garbage collection, so you must ensure that the object\nremains referenced for the whole time that the `Ptr` will be used.\n\nThis function may not be called on immutable objects, since they do not have\nstable memory addresses.\n\nSee also: [`unsafe_pointer_to_objref`](@ref).\n"}],"Base.@goto":[{"Tuple{Symbol}":" @goto name\n\n`@goto name` unconditionally jumps to the statement at the location [`@label name`](@ref).\n\n`@label` and `@goto` cannot create jumps to different top-level statements. Attempts cause an\nerror. To still use `@goto`, enclose the `@label` and `@goto` in a block.\n"}],"Base.front":[{"Tuple{Tuple}":" front(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the last component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.front((1,2,3))\n(1, 2)\n\njulia> Base.front(())\nERROR: ArgumentError: Cannot call front on an empty tuple.\n```\n"}],"Base.maximum!":[{"Tuple{Any,Any}":" maximum!(r, A)\n\nCompute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum!([1; 1], A)\n2-element Array{Int64,1}:\n 2\n 4\n\njulia> maximum!([1 1], A)\n1×2 Array{Int64,2}:\n 3 4\n```\n"}],"Base.copymutable":[{"Tuple{AbstractArray}":" copymutable(a)\n\nMake a mutable copy of an array or iterable `a`. For `a::Array`,\nthis is equivalent to `copy(a)`, but for other array types it may\ndiffer depending on the type of `similar(a)`. For generic iterables\nthis is equivalent to `collect(a)`.\n\n# Examples\n```jldoctest\njulia> tup = (1, 2, 3)\n(1, 2, 3)\n\njulia> Base.copymutable(tup)\n3-element Array{Int64,1}:\n 1\n 2\n 3\n```\n"}],"Base.@locals":[{"Tuple{}":" @locals()\n\nConstruct a dictionary of the names (as symbols) and values of all local\nvariables defined as of the call site.\n\n!!! compat \"Julia 1.1\"\n This macro requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> let x = 1, y = 2\n Base.@locals\n end\nDict{Symbol,Any} with 2 entries:\n :y => 2\n :x => 1\n\njulia> function f(x)\n local y\n show(Base.@locals); println()\n for i = 1:1\n show(Base.@locals); println()\n end\n y = 2\n show(Base.@locals); println()\n nothing\n end;\n\njulia> f(42)\nDict{Symbol,Any}(:x => 42)\nDict{Symbol,Any}(:i => 1,:x => 42)\nDict{Symbol,Any}(:y => 2,:x => 42)\n```\n"}],"Base.\\":[{"Tuple{Any,Any}":" \\(x, y)\n\nLeft division operator: multiplication of `y` by the inverse of `x` on the left. Gives\nfloating-point results for integer arguments.\n\n# Examples\n```jldoctest\njulia> 3 \\ 6\n2.0\n\njulia> inv(3) * 6\n2.0\n\njulia> A = [4 3; 2 1]; x = [5, 6];\n\njulia> A \\ x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n\njulia> inv(A) * x\n2-element Array{Float64,1}:\n 6.5\n -7.0\n```\n"}],"Base.AbstractVecOrMat":[{"Union{}":" AbstractVecOrMat{T}\n\nUnion type of [`AbstractVector{T}`](@ref) and [`AbstractMatrix{T}`](@ref).\n"}],"Base.fieldindex":[{"Union{Tuple{DataType,Symbol}, Tuple{DataType,Symbol,Bool}}":" Base.fieldindex(T, name::Symbol, err:Bool=true)\n\nGet the index of a named field, throwing an error if the field does not exist (when err==true)\nor returning 0 (when err==false).\n\n# Examples\n```jldoctest\njulia> struct Foo\n x::Int64\n y::String\n end\n\njulia> Base.fieldindex(Foo, :z)\nERROR: type Foo has no field z\nStacktrace:\n[...]\n\njulia> Base.fieldindex(Foo, :z, false)\n0\n```\n"}],"Base.bswap":[{"Tuple{Union{Int8, UInt8}}":" bswap(n)\n\nReverse the byte order of `n`.\n\n(See also [`ntoh`](@ref) and [`hton`](@ref) to convert between the current native byte order and big-endian order.)\n\n# Examples\n```jldoctest\njulia> a = bswap(0x10203040)\n0x40302010\n\njulia> bswap(a)\n0x10203040\n\njulia> string(1, base = 2)\n\"1\"\n\njulia> string(bswap(1), base = 2)\n\"100000000000000000000000000000000000000000000000000000000\"\n```\n"}],"Base.Cdouble":[{"Union{}":" Cdouble\n\nEquivalent to the native `double` c-type ([`Float64`](@ref)).\n"}],"Base.@deprecate":[{"Union{Tuple{Any,Any}, Tuple{Any,Any,Any}}":" @deprecate old new [ex=true]\n\nThe first argument `old` is the signature of the deprecated method, the second one\n`new` is the call which replaces it. `@deprecate` exports `old` unless the optional\nthird argument is `false`.\n\n# Examples\n```jldoctest\njulia> @deprecate old(x) new(x)\nold (generic function with 1 method)\n\njulia> @deprecate old(x) new(x) false\nold (generic function with 1 method)\n```\n"}],"Base.DenseMatrix":[{"Union{}":" DenseMatrix{T}\n\nTwo-dimensional [`DenseArray`](@ref) with elements of type `T`. Alias for `DenseArray{T,2}`.\n"}],"Base.propertynames":[{"Tuple{Any}":" propertynames(x, private=false)\n\nGet a tuple or a vector of the properties (`x.property`) of an object `x`.\nThis is typically the same as [`fieldnames(typeof(x))`](@ref), but types\nthat overload [`getproperty`](@ref) should generally overload `propertynames`\nas well to get the properties of an instance of the type.\n\n`propertynames(x)` may return only \"public\" property names that are part\nof the documented interface of `x`. If you want it to also return \"private\"\nfieldnames intended for internal use, pass `true` for the optional second argument.\nREPL tab completion on `x.` shows only the `private=false` properties.\n"}],"Base.dropdims":[{"Tuple{Any}":" dropdims(A; dims)\n\nRemove the dimensions specified by `dims` from array `A`.\nElements of `dims` must be unique and within the range `1:ndims(A)`.\n`size(A,i)` must equal 1 for all `i` in `dims`.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:4),(2,2,1,1))\n2×2×1×1 Array{Int64,4}:\n[:, :, 1, 1] =\n 1 3\n 2 4\n\njulia> dropdims(a; dims=3)\n2×2×1 Array{Int64,3}:\n[:, :, 1] =\n 1 3\n 2 4\n```\n"}],"Base.@pure":[{"Tuple{Any}":" @pure ex\n @pure(ex)\n\n`@pure` gives the compiler a hint for the definition of a pure function,\nhelping for type inference.\n\nA pure function can only depend on immutable information.\nThis also means a `@pure` function cannot use any global mutable state, including\ngeneric functions. Calls to generic functions depend on method tables which are\nmutable global state.\nUse with caution, incorrect `@pure` annotation of a function may introduce\nhard to identify bugs. Double check for calls to generic functions.\nThis macro is intended for internal compiler use and may be subject to changes.\n"}],"Base.fd":[{"Tuple{IOStream}":" fd(stream)\n\nReturn the file descriptor backing the stream or file. Note that this function only applies\nto synchronous `File`'s and `IOStream`'s not to any of the asynchronous streams.\n"}],"Base.unsafe_wrap":[{"Union{Tuple{N}, Tuple{T}, Tuple{Union{Type{Array}, Type{Array{T,N} where N}, Type{Array{T,N}}},Ptr{T},Tuple{Vararg{Int64,N}}}} where N where T":" unsafe_wrap(Array, pointer::Ptr{T}, dims; own = false)\n\nWrap a Julia `Array` object around the data at the address given by `pointer`,\nwithout making a copy. The pointer element type `T` determines the array\nelement type. `dims` is either an integer (for a 1d array) or a tuple of the array dimensions.\n`own` optionally specifies whether Julia should take ownership of the memory,\ncalling `free` on the pointer when the array is no longer referenced.\n\nThis function is labeled \"unsafe\" because it will crash if `pointer` is not\na valid memory address to data of the requested length.\n"}],"Base.splat":[{"Tuple{Any}":" splat(f)\n\nDefined as\n```julia\n splat(f) = args->f(args...)\n```\ni.e. given a function returns a new function that takes one argument and splats\nits argument into the original function. This is useful as an adaptor to pass\na multi-argument function in a context that expects a single argument, but\npasses a tuple as that single argument.\n\n# Example usage:\n```jldoctest\njulia> map(Base.splat(+), zip(1:3,4:6))\n3-element Array{Int64,1}:\n 5\n 7\n 9\n```\n"}],"Base.readavailable":[{"Union{}":" readavailable(stream)\n\nRead all available data on the stream, blocking the task only if no data is available. The\nresult is a `Vector{UInt8,1}`.\n"}],"Base.missing":[{"Union{}":" missing\n\nThe singleton instance of type [`Missing`](@ref) representing a missing value.\n"}],"Base.issubnormal":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" issubnormal(f) -> Bool\n\nTest whether a floating point number is subnormal.\n"}],"Base.@view":[{"Tuple{Any}":" @view A[inds...]\n\nCreates a `SubArray` from an indexing expression. This can only be applied directly to a\nreference expression (e.g. `@view A[1,2:end]`), and should *not* be used as the target of\nan assignment (e.g. `@view(A[1,2:end]) = ...`). See also [`@views`](@ref)\nto switch an entire block of code to use views for slicing.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> b = @view A[:, 1]\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 1\n 3\n\njulia> fill!(b, 0)\n2-element view(::Array{Int64,2}, :, 1) with eltype Int64:\n 0\n 0\n\njulia> A\n2×2 Array{Int64,2}:\n 0 2\n 0 4\n```\n"}],"Base.seekend":[{"Tuple{IOStream}":" seekend(s)\n\nSeek a stream to its end.\n"}],"Base.prevind":[{"Tuple{AbstractString,Integer,Integer}":" prevind(str::AbstractString, i::Integer, n::Integer=1) -> Int\n\n* Case `n == 1`\n\n If `i` is in bounds in `s` return the index of the start of the character whose\n encoding starts before index `i`. In other words, if `i` is the start of a\n character, return the start of the previous character; if `i` is not the start\n of a character, rewind until the start of a character and return that index.\n If `i` is equal to `1` return `0`.\n If `i` is equal to `ncodeunits(str)+1` return `lastindex(str)`.\n Otherwise throw `BoundsError`.\n\n* Case `n > 1`\n\n Behaves like applying `n` times `prevind` for `n==1`. The only difference\n is that if `n` is so large that applying `prevind` would reach `0` then each remaining\n iteration decreases the returned value by `1`.\n This means that in this case `prevind` can return a negative value.\n\n* Case `n == 0`\n\n Return `i` only if `i` is a valid index in `str` or is equal to `ncodeunits(str)+1`.\n Otherwise `StringIndexError` or `BoundsError` is thrown.\n\n# Examples\n```jldoctest\njulia> prevind(\"α\", 3)\n1\n\njulia> prevind(\"α\", 1)\n0\n\njulia> prevind(\"α\", 0)\nERROR: BoundsError: attempt to access String\n at index [0]\n[...]\n\njulia> prevind(\"α\", 2, 2)\n0\n\njulia> prevind(\"α\", 2, 3)\n-1\n```\n"}],"Base.windowserror":[{"Tuple{Any,Bool}":" windowserror(sysfunc[, code::UInt32=Libc.GetLastError()])\n windowserror(sysfunc, iftrue::Bool)\n\nLike [`systemerror`](@ref), but for Windows API functions that use [`GetLastError`](@ref Base.Libc.GetLastError) to\nreturn an error code instead of setting [`errno`](@ref Base.Libc.errno).\n"}],"Base.finalizer":[{"Tuple{Any,Any}":" finalizer(f, x)\n\nRegister a function `f(x)` to be called when there are no program-accessible references to\n`x`, and return `x`. The type of `x` must be a `mutable struct`, otherwise the behavior of\nthis function is unpredictable.\n\n`f` must not cause a task switch, which excludes most I/O operations such as `println`.\n`@schedule println(\"message\")` or `ccall(:jl_, Cvoid, (Any,), \"message\")` may be helpful for\ndebugging purposes.\n"}],"Base.DEPOT_PATH":[{"Union{}":" DEPOT_PATH\n\nA stack of \"depot\" locations where the package manager, as well as Julia's code\nloading mechanisms, look for package registries, installed packages, named\nenvironments, repo clones, cached compiled package images, and configuration\nfiles. By default it includes:\n\n1. `~/.julia` where `~` is the user home as appropriate on the system;\n2. an architecture-specific shared system directory, e.g. `/usr/local/share/julia`;\n3. an architecture-independent shared system directory, e.g. `/usr/share/julia`.\n\nSo `DEPOT_PATH` might be:\n```julia\n[joinpath(homedir(), \".julia\"), \"/usr/local/share/julia\", \"/usr/share/julia\"]\n```\nThe first entry is the \"user depot\" and should be writable by and owned by the\ncurrent user. The user depot is where: registries are cloned, new package versions\nare installed, named environments are created and updated, package repos are cloned,\nnewly compiled package image files are saved, log files are written, development\npackages are checked out by default, and global configuration data is saved. Later\nentries in the depot path are treated as read-only and are appropriate for\nregistries, packages, etc. installed and managed by system administrators.\n\n`DEPOT_PATH` is populated based on the [`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH)\nenvironment variable if set.\n\nSee also:\n[`JULIA_DEPOT_PATH`](@ref JULIA_DEPOT_PATH), and\n[Code Loading](@ref Code-Loading).\n"}],"Base.findall":[{"Tuple{Any}":" findall(A)\n\nReturn a vector `I` of the `true` indices or keys of `A`.\nIf there are no such elements of `A`, return an empty array.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, false, true]\n4-element Array{Bool,1}:\n 1\n 0\n 0\n 1\n\njulia> findall(A)\n2-element Array{Int64,1}:\n 1\n 4\n\njulia> A = [true false; false true]\n2×2 Array{Bool,2}:\n 1 0\n 0 1\n\njulia> findall(A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 2)\n\njulia> findall(falses(3))\n0-element Array{Int64,1}\n```\n"},{"Tuple{Union{Regex, AbstractString},AbstractString}":" findall(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn a `Vector{UnitRange{Int}}` of all the matches for `pattern` in `string`.\nEach element of the returned vector is a range of indices where the\nmatching sequence is found, like the return value of [`findnext`](@ref).\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Function,Any}":" findall(f::Function, A)\n\nReturn a vector `I` of the indices or keys of `A` where `f(A[I])` returns `true`.\nIf there are no such elements of `A`, return an empty array.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> x = [1, 3, 4]\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> findall(isodd, x)\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> A = [1 2 0; 3 4 0]\n2×3 Array{Int64,2}:\n 1 2 0\n 3 4 0\njulia> findall(isodd, A)\n2-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n\njulia> findall(!iszero, A)\n4-element Array{CartesianIndex{2},1}:\n CartesianIndex(1, 1)\n CartesianIndex(2, 1)\n CartesianIndex(1, 2)\n CartesianIndex(2, 2)\n\njulia> d = Dict(:A => 10, :B => -1, :C => 0)\nDict{Symbol,Int64} with 3 entries:\n :A => 10\n :B => -1\n :C => 0\n\njulia> findall(x -> x >= 0, d)\n2-element Array{Symbol,1}:\n :A\n :C\n\n```\n"}],"Base.TaskFailedException":[{"Union{}":" TaskFailedException\n\nThis exception is thrown by a `wait(t)` call when task `t` fails.\n`TaskFailedException` wraps the failed task `t`.\n"}],"Base.AsyncGenerator":[{"Union{}":" AsyncGenerator(f, c...; ntasks=0, batch_size=nothing) -> iterator\n\nApply `f` to each element of `c` using at most `ntasks` asynchronous tasks.\n\nKeyword args `ntasks` and `batch_size` have the same behavior as in\n[`asyncmap`](@ref). If `batch_size` is specified, `f` must\nbe a function which operates on an array of argument tuples.\n\n!!! note\n `collect(AsyncGenerator(f, c...; ntasks=1))` is equivalent to\n `map(f, c...)`.\n"}],"Base.cumprod":[{"Tuple{AbstractArray}":" cumprod(A; dims::Integer)\n\nCumulative product along the dimension `dim`. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumprod(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 10 18\n\njulia> cumprod(a, dims=2)\n2×3 Array{Int64,2}:\n 1 2 6\n 4 20 120\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumprod(x::AbstractVector)\n\nCumulative product of a vector. See also\n[`cumprod!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumprod(fill(1//2, 3))\n3-element Array{Rational{Int64},1}:\n 1//2\n 1//4\n 1//8\n\njulia> cumprod([fill(1//3, 2, 2) for i in 1:3])\n3-element Array{Array{Rational{Int64},2},1}:\n [1//3 1//3; 1//3 1//3]\n [2//9 2//9; 2//9 2//9]\n [4//27 4//27; 4//27 4//27]\n```\n"}],"Base.@raw_str":[{"Tuple{Any}":" @raw_str -> String\n\nCreate a raw string without interpolation and unescaping.\nThe exception is that quotation marks still must be escaped. Backslashes\nescape both quotation marks and other backslashes, but only when a sequence\nof backslashes precedes a quote character. Thus, 2n backslashes followed by\na quote encodes n backslashes and the end of the literal while 2n+1 backslashes\nfollowed by a quote encodes n backslashes followed by a quote character.\n\n# Examples\n```jldoctest\njulia> println(raw\"\\ $x\")\n\\ $x\n\njulia> println(raw\"\\\"\")\n\"\n\njulia> println(raw\"\\\\\\\"\")\n\\\"\n\njulia> println(raw\"\\\\x \\\\\\\"\")\n\\\\x \\\"\n```\n"}],"Base.gcdx":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" gcdx(x,y)\n\nComputes the greatest common (positive) divisor of `x` and `y` and their Bézout\ncoefficients, i.e. the integer coefficients `u` and `v` that satisfy\n``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``.\n\nThe arguments may be integer and rational numbers.\n\n!!! compat \"Julia 1.4\"\n Rational arguments require Julia 1.4 or later.\n\n# Examples\n```jldoctest\njulia> gcdx(12, 42)\n(6, -3, 1)\n\njulia> gcdx(240, 46)\n(2, -9, 47)\n```\n\n!!! note\n Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal\n Bézout coefficients that are computed by the extended Euclidean algorithm.\n (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)\n For signed integers, these coefficients `u` and `v` are minimal in\n the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore,\n the signs of `u` and `v` are chosen so that `d` is positive.\n For unsigned integers, the coefficients `u` and `v` might be near\n their `typemax`, and the identity then holds only via the unsigned\n integers' modulo arithmetic.\n"}],"Base.SystemError":[{"Union{}":" SystemError(prefix::AbstractString, [errno::Int32])\n\nA system call failed with an error code (in the `errno` global variable).\n"}],"Base.findfirst":[{"Tuple{Any}":" findfirst(A)\n\nReturn the index or key of the first `true` value in `A`.\nReturn `nothing` if no such value is found.\nTo search for other kinds of values, pass a predicate as the first argument.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [false, false, true, false]\n4-element Array{Bool,1}:\n 0\n 0\n 1\n 0\n\njulia> findfirst(A)\n3\n\njulia> findfirst(falses(3)) # returns nothing, but not printed in the REPL\n\njulia> A = [false false; true false]\n2×2 Array{Bool,2}:\n 0 0\n 1 0\n\njulia> findfirst(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findfirst(predicate::Function, A)\n\nReturn the index or key of the first element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 4, 2, 2]\n4-element Array{Int64,1}:\n 1\n 4\n 2\n 2\n\njulia> findfirst(iseven, A)\n2\n\njulia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL\n\njulia> findfirst(isequal(4), A)\n2\n\njulia> A = [1 4; 2 2]\n2×2 Array{Int64,2}:\n 1 4\n 2 2\n\njulia> findfirst(iseven, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findfirst(pattern::AbstractString, string::AbstractString)\n findfirst(pattern::Regex, string::String)\n\nFind the first occurrence of `pattern` in `string`. Equivalent to\n[`findnext(pattern, string, firstindex(s))`](@ref).\n\n# Examples\n```jldoctest\njulia> findfirst(\"z\", \"Hello to the world\") # returns nothing, but not printed in the REPL\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findfirst(ch::AbstractChar, string::AbstractString)\n\nFind the first occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findfirst('a', \"happy\")\n2\n\njulia> findfirst('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.typemax":[{"Union{}":" typemax(T)\n\nThe highest value representable by the given (real) numeric `DataType`.\n\n# Examples\n```jldoctest\njulia> typemax(Int8)\n127\n\njulia> typemax(UInt32)\n0xffffffff\n```\n"}],"Base.EOFError":[{"Union{}":" EOFError()\n\nNo more data was available to read from a file or stream.\n"}],"Base.convert":[{"Union{}":" convert(T, x)\n\nConvert `x` to a value of type `T`.\n\nIf `T` is an [`Integer`](@ref) type, an [`InexactError`](@ref) will be raised if `x`\nis not representable by `T`, for example if `x` is not integer-valued, or is outside the\nrange supported by `T`.\n\n# Examples\n```jldoctest\njulia> convert(Int, 3.0)\n3\n\njulia> convert(Int, 3.5)\nERROR: InexactError: Int64(3.5)\nStacktrace:\n[...]\n```\n\nIf `T` is a [`AbstractFloat`](@ref) or [`Rational`](@ref) type,\nthen it will return the closest value to `x` representable by `T`.\n\n```jldoctest\njulia> x = 1/3\n0.3333333333333333\n\njulia> convert(Float32, x)\n0.33333334f0\n\njulia> convert(Rational{Int32}, x)\n1//3\n\njulia> convert(Rational{Int64}, x)\n6004799503160661//18014398509481984\n```\n\nIf `T` is a collection type and `x` a collection, the result of\n`convert(T, x)` may alias all or part of `x`.\n```jldoctest\njulia> x = Int[1, 2, 3];\n\njulia> y = convert(Vector{Int}, x);\n\njulia> y === x\ntrue\n```\n"}],"Base.invpermute!":[{"Tuple{Any,AbstractArray{T,1} where T}":" invpermute!(v, p)\n\nLike [`permute!`](@ref), but the inverse of the given permutation is applied.\n\n# Examples\n```jldoctest\njulia> A = [1, 1, 3, 4];\n\njulia> perm = [2, 4, 3, 1];\n\njulia> invpermute!(A, perm);\n\njulia> A\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 1\n```\n"}],"Base.factorial":[{"Tuple{Integer}":" factorial(n::Integer)\n\nFactorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an\ninteger (promoted to at least 64 bits). Note that this may overflow if `n` is not small,\nbut you can use `factorial(big(n))` to compute the result exactly in arbitrary precision.\n\n# Examples\n```jldoctest\njulia> factorial(6)\n720\n\njulia> factorial(21)\nERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead\nStacktrace:\n[...]\n\njulia> factorial(big(21))\n51090942171709440000\n```\n\n# See also\n* [`binomial`](@ref)\n\n# External links\n* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia.\n"}],"Base.Cchar":[{"Union{}":" Cchar\n\nEquivalent to the native `char` c-type.\n"}],"Base.open":[{"Union{Tuple{Base.AbstractCmd}, Tuple{Base.AbstractCmd,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, stdio=devnull; write::Bool = false, read::Bool = !write)\n\nStart running `command` asynchronously, and return a `process::IO` object. If `read` is\ntrue, then reads from the process come from the process's standard output and `stdio` optionally\nspecifies the process's standard input stream. If `write` is true, then writes go to\nthe process's standard input and `stdio` optionally specifies the process's standard output\nstream.\nThe process's standard error stream is connected to the current global `stderr`.\n"},{"Tuple{Function,Vararg{Any,N} where N}":" open(f::Function, args...; kwargs....)\n\nApply the function `f` to the result of `open(args...; kwargs...)` and close the resulting file\ndescriptor upon completion.\n\n# Examples\n```jldoctest\njulia> open(\"myfile.txt\", \"w\") do io\n write(io, \"Hello world!\")\n end;\n\njulia> open(f->read(f, String), \"myfile.txt\")\n\"Hello world!\"\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Union{Tuple{Base.AbstractCmd,AbstractString}, Tuple{Base.AbstractCmd,AbstractString,Union{RawFD, Base.FileRedirect, IO}}}":" open(command, mode::AbstractString, stdio=devnull)\n\nRun `command` asynchronously. Like `open(command, stdio; read, write)` except specifying\nthe read and write flags via a mode string instead of keyword arguments.\nPossible mode strings are:\n\n| Mode | Description | Keywords |\n|:-----|:------------|:---------------------------------|\n| `r` | read | none |\n| `w` | write | `write = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write | `read = true, write = true` |\n"},{"Tuple{Function,Base.AbstractCmd,Vararg{Any,N} where N}":" open(f::Function, command, args...; kwargs...)\n\nSimilar to `open(command, args...; kwargs...)`, but calls `f(stream)` on the resulting process\nstream, then closes the input stream and waits for the process to complete.\nReturns the value returned by `f`.\n"},{"Tuple{AbstractString}":" open(filename::AbstractString; keywords...) -> IOStream\n\nOpen a file in a mode specified by five boolean keyword arguments:\n\n| Keyword | Description | Default |\n|:-----------|:-----------------------|:----------------------------------------|\n| `read` | open for reading | `!write` |\n| `write` | open for writing | `truncate \\| append` |\n| `create` | create if non-existent | `!read & write \\| truncate \\| append` |\n| `truncate` | truncate to zero size | `!read & write` |\n| `append` | seek to end | `false` |\n\nThe default when no keywords are passed is to open files for reading only.\nReturns a stream for accessing the opened file.\n"},{"Tuple{AbstractString,AbstractString}":" open(filename::AbstractString, [mode::AbstractString]) -> IOStream\n\nAlternate syntax for open, where a string-based mode specifier is used instead of the five\nbooleans. The values of `mode` correspond to those from `fopen(3)` or Perl `open`, and are\nequivalent to setting the following boolean groups:\n\n| Mode | Description | Keywords |\n|:-----|:------------------------------|:------------------------------------|\n| `r` | read | none |\n| `w` | write, create, truncate | `write = true` |\n| `a` | write, create, append | `append = true` |\n| `r+` | read, write | `read = true, write = true` |\n| `w+` | read, write, create, truncate | `truncate = true, read = true` |\n| `a+` | read, write, create, append | `append = true, read = true` |\n\n# Examples\n```jldoctest\njulia> io = open(\"myfile.txt\", \"w\");\n\njulia> write(io, \"Hello world!\");\n\njulia> close(io);\n\njulia> io = open(\"myfile.txt\", \"r\");\n\njulia> read(io, String)\n\"Hello world!\"\n\njulia> write(io, \"This file is read only\")\nERROR: ArgumentError: write failed, IOStream is not writeable\n[...]\n\njulia> close(io)\n\njulia> io = open(\"myfile.txt\", \"a\");\n\njulia> write(io, \"This stream is not read only\")\n28\n\njulia> close(io)\n\njulia> rm(\"myfile.txt\")\n```\n"},{"Tuple{RawFD}":" open(fd::OS_HANDLE) -> IO\n\nTake a raw file descriptor wrap it in a Julia-aware IO type,\nand take ownership of the fd handle.\nCall `open(Libc.dup(fd))` to avoid the ownership capture\nof the original handle.\n\n!!! warn\n Do not call this on a handle that's already owned by some\n other part of the system.\n"}],"Base.print_matrix_vdots":[{"Union{Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer}, Tuple{IO,AbstractString,Array{T,1} where T,AbstractString,Integer,Integer,Bool}}":"`print_matrix_vdots` is used to show a series of vertical ellipsis instead\nof a bunch of rows for long matrices. Not only is the string vdots shown\nbut it also repeated every M elements if desired.\n"}],"Base.unaliascopy":[{"Tuple{Array}":" Base.unaliascopy(A)\n\nMake a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against\nanother array in order to preserve consistent semantics as that other array is mutated.\n\nThis must return an object of the same type as `A` to preserve optimal performance in the\nmuch more common case where aliasing does not occur. By default,\n`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where\n`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of\n`Base.unaliascopy(A)`.\n"}],"Base.trues":[{"Tuple{Vararg{Union{Integer, AbstractUnitRange},N} where N}":" trues(dims)\n\nCreate a `BitArray` with all values set to `true`.\n\n# Examples\n```jldoctest\njulia> trues(2,3)\n2×3 BitArray{2}:\n 1 1 1\n 1 1 1\n```\n"}],"Base.eltype":[{"Tuple{Type}":" eltype(type)\n\nDetermine the type of the elements generated by iterating a collection of the given `type`.\nFor dictionary types, this will be a `Pair{KeyType,ValType}`. The definition\n`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed\ninstead of types. However the form that accepts a type argument should be defined for new\ntypes.\n\n# Examples\n```jldoctest\njulia> eltype(fill(1f0, (2,2)))\nFloat32\n\njulia> eltype(fill(0x1, (2,2)))\nUInt8\n```\n"}],"Base.@cfunction":[{"Tuple{Any,Any,Any}":" @cfunction(callable, ReturnType, (ArgumentTypes...,)) -> Ptr{Cvoid}\n @cfunction($callable, ReturnType, (ArgumentTypes...,)) -> CFunction\n\nGenerate a C-callable function pointer from the Julia function `callable`\nfor the given type signature.\nTo pass the return value to a `ccall`, use the argument type `Ptr{Cvoid}` in the signature.\n\nNote that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression\n(although it can include a splat expression). And that these arguments will be evaluated in global scope\nduring compile-time (not deferred until runtime).\nAdding a '\\$' in front of the function argument changes this to instead create a runtime closure\nover the local variable `callable` (this is not supported on all architectures).\n\nSee [manual section on ccall and cfunction usage](@ref Calling-C-and-Fortran-Code).\n\n# Examples\n```julia-repl\njulia> function foo(x::Int, y::Int)\n return x + y\n end\n\njulia> @cfunction(foo, Int, (Int, Int))\nPtr{Cvoid} @0x000000001b82fcd0\n```\n"}],"Base.push!":[{"Union{}":" push!(collection, items...) -> collection\n\nInsert one or more `items` in `collection`. If `collection` is an ordered container,\nthe items are inserted at the end (in the given order).\n\n# Examples\n```jldoctest\njulia> push!([1, 2, 3], 4, 5, 6)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nIf `collection` is ordered, use [`append!`](@ref) to add all the elements of another\ncollection to it. The result of the preceding example is equivalent to `append!([1, 2, 3], [4,\n5, 6])`. For `AbstractSet` objects, [`union!`](@ref) can be used instead.\n"}],"Base.count_zeros":[{"Tuple{Integer}":" count_zeros(x::Integer) -> Integer\n\nNumber of zeros in the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> count_zeros(Int32(2 ^ 16 - 1))\n16\n```\n"}],"Base.prevpow":[{"Tuple{Real,Real}":" prevpow(a, x)\n\nThe largest `a^n` not greater than `x`, where `n` is a non-negative integer.\n`a` must be greater than 1, and `x` must not be less than 1.\n\n# Examples\n```jldoctest\njulia> prevpow(2, 7)\n4\n\njulia> prevpow(2, 9)\n8\n\njulia> prevpow(5, 20)\n5\n\njulia> prevpow(4, 16)\n16\n```\nSee also [`nextpow`](@ref).\n"}],"Base.read":[{"Tuple{AbstractString,Vararg{Any,N} where N}":" read(filename::AbstractString, args...)\n\nOpen a file and read its contents. `args` is passed to `read`: this is equivalent to\n`open(io->read(io, args...), filename)`.\n\n read(filename::AbstractString, String)\n\nRead the entire contents of a file as a string.\n"},{"Tuple{Any,Any}":" read(io::IO, T)\n\nRead a single value of type `T` from `io`, in canonical binary representation.\n\n read(io::IO, String)\n\nRead the entirety of `io`, as a `String`.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, Char)\n'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)\n\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> read(io, String)\n\"JuliaLang is a GitHub organization\"\n```\n"},{"Union{Tuple{IO}, Tuple{IO,Integer}}":" read(s::IO, nb=typemax(Int))\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n"},{"Tuple{Base.AbstractCmd,Type{String}}":" read(command::Cmd, String)\n\nRun `command` and return the resulting output as a `String`.\n"},{"Tuple{IOStream,Integer}":" read(s::IOStream, nb::Integer; all=true)\n\nRead at most `nb` bytes from `s`, returning a `Vector{UInt8}` of the bytes read.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"},{"Tuple{Base.AbstractCmd}":" read(command::Cmd)\n\nRun `command` and return the resulting output as an array of bytes.\n"}],"Base.vect":[{"Tuple":" vect(X...)\n\nCreate a [`Vector`](@ref) with element type computed from the `promote_typeof` of the argument,\ncontaining the argument list.\n\n# Examples\n```jldoctest\njulia> a = Base.vect(UInt8(1), 2.5, 1//2)\n3-element Array{Float64,1}:\n 1.0\n 2.5\n 0.5\n```\n"}],"Base.SubArray":[{"Union{}":" SubArray{T,N,P,I,L} <: AbstractArray{T,N}\n\n`N`-dimensional view into a parent array (of type `P`) with an element type `T`, restricted by a tuple of indices (of type `I`). `L` is true for types that support fast linear indexing, and `false` otherwise.\n\nConstruct `SubArray`s using the [`view`](@ref) function.\n"}],"Base.skip":[{"Tuple{IOStream,Integer}":" skip(s, offset)\n\nSeek a stream relative to the current position.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> skip(io, 10);\n\njulia> read(io, Char)\n'G': ASCII/Unicode U+0047 (category Lu: Letter, uppercase)\n```\n"}],"Base.Val":[{"Union{}":" Val(c)\n\nReturn `Val{c}()`, which contains no run-time data. Types like this can be used to\npass the information between functions through the value `c`, which must be an `isbits`\nvalue. The intent of this construct is to be able to dispatch on constants directly (at\ncompile time) without having to test the value of the constant at run time.\n\n# Examples\n```jldoctest\njulia> f(::Val{true}) = \"Good\"\nf (generic function with 1 method)\n\njulia> f(::Val{false}) = \"Bad\"\nf (generic function with 2 methods)\n\njulia> f(Val(true))\n\"Good\"\n```\n"}],"Base.to_indices":[{"Tuple{Any,Tuple}":" to_indices(A, I::Tuple)\n\nConvert the tuple `I` to a tuple of indices for use in indexing into array `A`.\n\nThe returned tuple must only contain either `Int`s or `AbstractArray`s of\nscalar indices that are supported by array `A`. It will error upon encountering\na novel index type that it does not know how to process.\n\nFor simple index types, it defers to the unexported `Base.to_index(A, i)` to\nprocess each index `i`. While this internal function is not intended to be\ncalled directly, `Base.to_index` may be extended by custom array or index types\nto provide custom indexing behaviors.\n\nMore complicated index types may require more context about the dimension into\nwhich they index. To support those cases, `to_indices(A, I)` calls\n`to_indices(A, axes(A), I)`, which then recursively walks through both the\ngiven tuple of indices and the dimensional indices of `A` in tandem. As such,\nnot all index types are guaranteed to propagate to `Base.to_index`.\n"}],"Base.wait":[{"Tuple{Base.GenericCondition}":" wait([x])\n\nBlock the current task until some event occurs, depending on the type of the argument:\n\n* [`Channel`](@ref): Wait for a value to be appended to the channel.\n* [`Condition`](@ref): Wait for [`notify`](@ref) on a condition.\n* `Process`: Wait for a process or process chain to exit. The `exitcode` field of a process\n can be used to determine success or failure.\n* [`Task`](@ref): Wait for a `Task` to finish. If the task fails with an exception, a\n `TaskFailedException` (which wraps the failed task) is thrown.\n* [`RawFD`](@ref): Wait for changes on a file descriptor (see the `FileWatching` package).\n\nIf no argument is passed, the task blocks for an undefined period. A task can only be\nrestarted by an explicit call to [`schedule`](@ref) or [`yieldto`](@ref).\n\nOften `wait` is called within a `while` loop to ensure a waited-for condition is met before\nproceeding.\n"}],"Base.decode_overlong":[{"Union{}":" decode_overlong(c::AbstractChar) -> Integer\n\nWhen [`isoverlong(c)`](@ref) is `true`, `decode_overlong(c)` returns\nthe Unicode codepoint value of `c`. `AbstractChar` implementations\nthat support overlong encodings should implement `Base.decode_overlong`.\n"}],"Base.ntoh":[{"Tuple{Any}":" ntoh(x)\n\nConvert the endianness of a value from Network byte order (big-endian) to that used by the Host.\n"}],"Base.Inf64":[{"Union{}":" Inf, Inf64\n\nPositive infinity of type [`Float64`](@ref).\n"}],"Base.|>":[{"Tuple{Any,Any}":" |>(x, f)\n\nApplies a function to the preceding argument. This allows for easy function chaining.\n\n# Examples\n```jldoctest\njulia> [1:5;] |> x->x.^2 |> sum |> inv\n0.01818181818181818\n```\n"}],"Base.include_string":[{"Tuple{Module,String,String}":" include_string(m::Module, code::AbstractString, filename::AbstractString=\"string\")\n\nLike [`include`](@ref), except reads code from the given string rather than from a file.\n"}],"Base.NaN":[{"Union{}":" NaN, NaN64\n\nA not-a-number value of type [`Float64`](@ref).\n"}],"Base.~":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" ~(x)\n\nBitwise not.\n\n# Examples\n```jldoctest\njulia> ~4\n-5\n\njulia> ~10\n-11\n\njulia> ~true\nfalse\n```\n"}],"Base.show":[{"Tuple{Any}":" show(x)\n\nWrite an informative text representation of a value to the current output stream. New types\nshould overload `show(io::IO, x)` where the first argument is a stream. The representation used\nby `show` generally includes Julia-specific formatting and type information.\n\n[`repr`](@ref) returns the output of `show` as a string.\n\nSee also [`print`](@ref), which writes un-decorated representations.\n\n# Examples\n```jldoctest\njulia> show(\"Hello World!\")\n\"Hello World!\"\njulia> print(\"Hello World!\")\nHello World!\n```\n"}],"Base.prompt":[{"Tuple{IO,IO,AbstractString}":" prompt(message; default=\"\") -> Union{String, Nothing}\n\nDisplays the `message` then waits for user input. Input is terminated when a newline (\\n)\nis encountered or EOF (^D) character is entered on a blank line. If a `default` is provided\nthen the user can enter just a newline character to select the `default`.\n\nSee also `Base.getpass` and `Base.winprompt` for secure entry of passwords.\n"}],"Base.add_sum":[{"Tuple{Any,Any}":" Base.add_sum(x, y)\n\nThe reduction operator used in `sum`. The main difference from [`+`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.print_range":[{"Union{Tuple{IO,AbstractRange}, Tuple{IO,AbstractRange,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString}, Tuple{IO,AbstractRange,AbstractString,AbstractString,AbstractString,AbstractString}}":"`print_range(io, r)` prints out a nice looking range r in terms of its elements\nas if it were `collect(r)`, dependent on the size of the\nterminal, and taking into account whether compact numbers should be shown.\nIt figures out the width in characters of each element, and if they\nend up too wide, it shows the first and last elements separated by a\nhorizontal ellipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`.\n\n`print_range(io, r, pre, sep, post, hdots)` uses optional\nparameters `pre` and `post` characters for each printed row,\n`sep` separator string between printed elements,\n`hdots` string for the horizontal ellipsis.\n"}],"Base.cld":[{"Tuple{Any,Any}":" cld(x, y)\n\nSmallest integer larger than or equal to `x/y`. Equivalent to `div(x, y, RoundUp)`.\n\nSee also: [`div`](@ref)\n\n# Examples\n```jldoctest\njulia> cld(5.5,2.2)\n3.0\n```\n"}],"Base.mul12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = mul12(x, y)\n\nA high-precision representation of `x * y` for floating-point\nnumbers. Mathematically, `zhi + zlo = x * y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x = Float32(π)\n3.1415927f0\n\njulia> x * x\n9.869605f0\n\njulia> Float64(x) * Float64(x)\n9.869604950382893\n\njulia> hi, lo = Base.mul12(x, x)\n(9.869605f0, -1.140092f-7)\n\njulia> Float64(hi) + Float64(lo)\n9.869604950382893\n```\n"}],"Base.code_lowered":[{"Tuple{Any,Any}":" code_lowered(f, types; generated=true, debuginfo=:default)\n\nReturn an array of the lowered forms (IR) for the methods matching the given generic function\nand type signature.\n\nIf `generated` is `false`, the returned `CodeInfo` instances will correspond to fallback\nimplementations. An error is thrown if no fallback implementation exists.\nIf `generated` is `true`, these `CodeInfo` instances will correspond to the method bodies\nyielded by expanding the generators.\n\nThe keyword debuginfo controls the amount of code metadata present in the output.\n\nNote that an error will be thrown if `types` are not leaf types when `generated` is\n`true` and any of the corresponding methods are an `@generated` method.\n"}],"Base.digits!":[{"Union{Tuple{T}, Tuple{AbstractArray{T,1},Integer}} where T<:Integer":" digits!(array, n::Integer; base::Integer = 10)\n\nFills an array of the digits of `n` in the given base. More significant digits are at higher\nindices. If the array length is insufficient, the least significant digits are filled up to\nthe array length. If the array length is excessive, the excess portion is filled with zeros.\n\n# Examples\n```jldoctest\njulia> digits!([2,2,2,2], 10, base = 2)\n4-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n\njulia> digits!([2,2,2,2,2,2], 10, base = 2)\n6-element Array{Int64,1}:\n 0\n 1\n 0\n 1\n 0\n 0\n```\n"}],"Base.AbstractChannel":[{"Union{}":" AbstractChannel{T}\n\nRepresentation of a channel passing objects of type `T`.\n"}],"Base.Colon":[{"Union{}":" Colon()\n\nColons (:) are used to signify indexing entire objects or dimensions at once.\n\nVery few operations are defined on Colons directly; instead they are converted\nby [`to_indices`](@ref) to an internal vector type (`Base.Slice`) to represent the\ncollection of indices they span before being used.\n\nThe singleton instance of `Colon` is also a function used to construct ranges;\nsee [`:`](@ref).\n"}],"Base.vcat":[{"Tuple":" vcat(A...)\n\nConcatenate along dimension 1.\n\n# Examples\n```jldoctest\njulia> a = [1 2 3 4 5]\n1×5 Array{Int64,2}:\n 1 2 3 4 5\n\njulia> b = [6 7 8 9 10; 11 12 13 14 15]\n2×5 Array{Int64,2}:\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> vcat(a,b)\n3×5 Array{Int64,2}:\n 1 2 3 4 5\n 6 7 8 9 10\n 11 12 13 14 15\n\njulia> c = ([1 2 3], [4 5 6])\n([1 2 3], [4 5 6])\n\njulia> vcat(c...)\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n```\n"}],"Base.Cssize_t":[{"Union{}":" Cssize_t\n\nEquivalent to the native `ssize_t` c-type.\n"}],"Base.alignment":[{"Tuple{IO,Union{AbstractArray{T,1}, AbstractArray{T,2}} where T,AbstractArray{T,1} where T,AbstractArray{T,1} where T,Integer,Integer,Integer}":"`alignment(X, rows, cols, cols_if_complete, cols_otherwise, sep)` returns the\nalignment for specified parts of array `X`, returning the (left,right) info.\nIt will look in X's `rows`, `cols` (both lists of indices)\nand figure out what's needed to be fully aligned, for example looking all\nthe way down a column and finding out the maximum size of each element.\nParameter `sep::Integer` is number of spaces to put between elements.\n`cols_if_complete` and `cols_otherwise` indicate screen width to use.\nAlignment is reported as a vector of (left,right) tuples, one for each\ncolumn going across the screen.\n"},{"Tuple{IO,Integer}":"`alignment(42)` yields (2,0)"},{"Tuple{IO,Any}":"`alignment(X)` returns a tuple (left,right) showing how many characters are\nneeded on either side of an alignment feature such as a decimal point.\n"},{"Tuple{IO,Real}":"`alignment(4.23)` yields (1,3) for `4` and `.23`"},{"Tuple{IO,Complex}":"`alignment(1 + 10im)` yields (3,5) for `1 +` and `_10im` (plus sign on left, space on right)"}],"Base.ndigits":[{"Tuple{Integer}":" ndigits(n::Integer; base::Integer=10, pad::Integer=1)\n\nCompute the number of digits in integer `n` written in base `base`\n(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros\nto a specified size (the result will never be less than `pad`).\n\n# Examples\n```jldoctest\njulia> ndigits(12345)\n5\n\njulia> ndigits(1022, base=16)\n3\n\njulia> string(1022, base=16)\n\"3fe\"\n\njulia> ndigits(123, pad=5)\n5\n```\n"}],"Base.CompositeException":[{"Union{}":" CompositeException\n\nWrap a `Vector` of exceptions thrown by a [`Task`](@ref) (e.g. generated from a remote worker over a channel\nor an asynchronously executing local I/O write or a remote worker under `pmap`) with information about the series of exceptions.\nFor example, if a group of workers are executing several tasks, and multiple workers fail, the resulting `CompositeException` will\ncontain a \"bundle\" of information from each worker indicating where and why the exception(s) occurred.\n"}],"Base.readbytes!":[{"Union{Tuple{IO,AbstractArray{UInt8,N} where N}, Tuple{IO,AbstractArray{UInt8,N} where N,Any}}":" readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n"},{"Union{Tuple{IOStream,Array{UInt8,N} where N}, Tuple{IOStream,Array{UInt8,N} where N,Any}}":" readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)\n\nRead at most `nb` bytes from `stream` into `b`, returning the number of bytes read.\nThe size of `b` will be increased if needed (i.e. if `nb` is greater than `length(b)`\nand enough bytes could be read), but it will never be decreased.\n\nIf `all` is `true` (the default), this function will block repeatedly trying to read all\nrequested bytes, until an error or end-of-file occurs. If `all` is `false`, at most one\n`read` call is performed, and the amount of data returned is device-dependent. Note that not\nall stream types support the `all` option.\n"}],"Base.functionloc":[{"Tuple{Method}":" functionloc(m::Method)\n\nReturns a tuple `(filename,line)` giving the location of a `Method` definition.\n"},{"Tuple{Any,Any}":" functionloc(f::Function, types)\n\nReturns a tuple `(filename,line)` giving the location of a generic `Function` definition.\n"}],"Base.shell_escape_winsomely":[{"Tuple{Vararg{AbstractString,N} where N}":" shell_escaped_winsomely(args::Union{Cmd,AbstractString...})::String\n\nConvert the collection of strings `args` into single string suitable for passing as the argument\nstring for a Windows command line. Windows passes the entire command line as a single string to\nthe application (unlike POSIX systems, where the list of arguments are passed separately).\nMany Windows API applications (including julia.exe), use the conventions of the [Microsoft C\nruntime](https://docs.microsoft.com/en-us/cpp/c-language/parsing-c-command-line-arguments) to\nsplit that command line into a list of strings. This function implements the inverse of such a\nC runtime command-line parser. It joins command-line arguments to be passed to a Windows console\napplication into a command line, escaping or quoting meta characters such as space,\ndouble quotes and backslash where needed. This may be useful in concert with the `windows_verbatim`\nflag to [`Cmd`](@ref) when constructing process pipelines.\n\n# Example\n```jldoctest\njulia> println(shell_escaped_winsomely(\"A B\\\", \"C\"))\n\"A B\\\" C\n"}],"Base.conj!":[{"Tuple{AbstractArray{#s662,N} where N where #s662<:Number}":" conj!(A)\n\nTransform an array to its complex conjugate in-place.\n\nSee also [`conj`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1+im 2-im; 2+2im 3+im]\n2×2 Array{Complex{Int64},2}:\n 1+1im 2-1im\n 2+2im 3+1im\n\njulia> conj!(A);\n\njulia> A\n2×2 Array{Complex{Int64},2}:\n 1-1im 2+1im\n 2-2im 3-1im\n```\n"}],"Base.trailing_ones":[{"Tuple{Integer}":" trailing_ones(x::Integer) -> Integer\n\nNumber of ones trailing the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> trailing_ones(3)\n2\n```\n"}],"Base.>>":[{"Tuple{Integer,Integer}":" >>(x, n)\n\nRight bit shift operator, `x >> n`. For `n >= 0`, the result is `x` shifted\nright by `n` bits, where `n >= 0`, filling with `0`s if `x >= 0`, `1`s if `x <\n0`, preserving the sign of `x`. This is equivalent to `fld(x, 2^n)`. For `n <\n0`, this is equivalent to `x << -n`.\n\n# Examples\n```jldoctest\njulia> Int8(13) >> 2\n3\n\njulia> bitstring(Int8(13))\n\"00001101\"\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> Int8(-14) >> 2\n-4\n\njulia> bitstring(Int8(-14))\n\"11110010\"\n\njulia> bitstring(Int8(-4))\n\"11111100\"\n```\nSee also [`>>>`](@ref), [`<<`](@ref).\n"},{"Tuple{BitArray{1},Union{Int64, UInt64}}":" >>(B::BitVector, n) -> BitVector\n\nRight bit shift operator, `B >> n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions forward, filling with `false`\nvalues. If `n < 0`, elements are shifted backwards. Equivalent to\n`B << -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B >> 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n\njulia> B >> -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n```\n"}],"Base.LinearIndices":[{"Union{}":" LinearIndices(A::AbstractArray)\n\nReturn a `LinearIndices` array with the same shape and [`axes`](@ref) as `A`,\nholding the linear index of each entry in `A`. Indexing this array with\ncartesian indices allows mapping them to linear indices.\n\nFor arrays with conventional indexing (indices start at 1), or any multidimensional\narray, linear indices range from 1 to `length(A)`. However, for `AbstractVector`s\nlinear indices are `axes(A, 1)`, and therefore do not start at 1 for vectors with\nunconventional indexing.\n\nCalling this function is the \"safe\" way to write algorithms that\nexploit linear indexing.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (5,6,7));\n\njulia> b = LinearIndices(A);\n\njulia> extrema(b)\n(1, 210)\n```\n\n LinearIndices(inds::CartesianIndices) -> R\n LinearIndices(sz::Dims) -> R\n LinearIndices((istart:istop, jstart:jstop, ...)) -> R\n\nReturn a `LinearIndices` array with the specified shape or [`axes`](@ref).\n\n# Example\n\nThe main purpose of this constructor is intuitive conversion\nfrom cartesian to linear indexing:\n\n```jldoctest\njulia> linear = LinearIndices((1:3, 1:2))\n3×2 LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}:\n 1 4\n 2 5\n 3 6\n\njulia> linear[1,2]\n4\n```\n"}],"Base.ARGS":[{"Union{}":" ARGS\n\nAn array of the command line arguments passed to Julia, as strings.\n"}],"Base.istaskfailed":[{"Tuple{Task}":" istaskfailed(t::Task) -> Bool\n\nDetermine whether a task has exited because an exception was thrown.\n\n# Examples\n```jldoctest\njulia> a4() = error(\"task failed\");\n\njulia> b = Task(a4);\n\njulia> istaskfailed(b)\nfalse\n\njulia> schedule(b);\n\njulia> yield();\n\njulia> istaskfailed(b)\ntrue\n```\n"}],"Base.Cmd":[{"Union{}":" Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)\n\nConstruct a new `Cmd` object, representing an external program and arguments, from `cmd`,\nwhile changing the settings of the optional keyword arguments:\n\n* `ignorestatus::Bool`: If `true` (defaults to `false`), then the `Cmd` will not throw an\n error if the return code is nonzero.\n* `detach::Bool`: If `true` (defaults to `false`), then the `Cmd` will be run in a new\n process group, allowing it to outlive the `julia` process and not have Ctrl-C passed to\n it.\n* `windows_verbatim::Bool`: If `true` (defaults to `false`), then on Windows the `Cmd` will\n send a command-line string to the process with no quoting or escaping of arguments, even\n arguments containing spaces. (On Windows, arguments are sent to a program as a single\n \"command-line\" string, and programs are responsible for parsing it into arguments. By\n default, empty arguments and arguments with spaces or tabs are quoted with double quotes\n `\"` in the command line, and `\\` or `\"` are preceded by backslashes.\n `windows_verbatim=true` is useful for launching programs that parse their command line in\n nonstandard ways.) Has no effect on non-Windows systems.\n* `windows_hide::Bool`: If `true` (defaults to `false`), then on Windows no new console\n window is displayed when the `Cmd` is executed. This has no effect if a console is\n already open or on non-Windows systems.\n* `env`: Set environment variables to use when running the `Cmd`. `env` is either a\n dictionary mapping strings to strings, an array of strings of the form `\"var=val\"`, an\n array or tuple of `\"var\"=>val` pairs, or `nothing`. In order to modify (rather than\n replace) the existing environment, create `env` by `copy(ENV)` and then set\n `env[\"var\"]=val` as desired.\n* `dir::AbstractString`: Specify a working directory for the command (instead\n of the current directory).\n\nFor any keywords that are not specified, the current settings from `cmd` are used. Normally,\nto create a `Cmd` object in the first place, one uses backticks, e.g.\n\n Cmd(`echo \"Hello world\"`, ignorestatus=true, detach=false)\n"}],"Base.success":[{"Tuple{Base.AbstractCmd}":" success(command)\n\nRun a command object, constructed with backticks (see the [Running External Programs](@ref)\nsection in the manual), and tell whether it was successful (exited with a code of 0).\nAn exception is raised if the process cannot be started.\n"}],"Base.IdDict":[{"Union{}":" IdDict([itr])\n\n`IdDict{K,V}()` constructs a hash table using object-id as hash and\n`===` as equality with keys of type `K` and values of type `V`.\n\nSee [`Dict`](@ref) for further help.\n"}],"Base.unsafe_pointer_to_objref":[{"Tuple{Ptr}":" unsafe_pointer_to_objref(p::Ptr)\n\nConvert a `Ptr` to an object reference. Assumes the pointer refers to a valid heap-allocated\nJulia object. If this is not the case, undefined behavior results, hence this function is\nconsidered \"unsafe\" and should be used with care.\n\nSee also: [`pointer_from_objref`](@ref).\n"}],"Base.operator_associativity":[{"Tuple{Symbol}":" operator_associativity(s::Symbol)\n\nReturn a symbol representing the associativity of operator `s`. Left- and right-associative\noperators return `:left` and `:right`, respectively. Return `:none` if `s` is non-associative\nor an invalid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_associativity(:-), Base.operator_associativity(:+), Base.operator_associativity(:^)\n(:left, :none, :right)\n\njulia> Base.operator_associativity(:⊗), Base.operator_associativity(:sin), Base.operator_associativity(:→)\n(:left, :none, :right)\n```\n"}],"Base.position":[{"Tuple{IOStream}":" position(s)\n\nGet the current position of a stream.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization.\");\n\njulia> seek(io, 5);\n\njulia> position(io)\n5\n\njulia> skip(io, 10);\n\njulia> position(io)\n15\n\njulia> seekend(io);\n\njulia> position(io)\n35\n```\n"}],"Base.unique!":[{"Tuple{Any,AbstractArray{T,1} where T}":" unique!(f, A::AbstractVector)\n\nSelects one value from `A` for each unique value produced by `f` applied to\nelements of `A` , then return the modified A.\n\n!!! compat \"Julia 1.1\"\n This method is available as of Julia 1.1.\n\n# Examples\n```jldoctest\njulia> unique!(x -> x^2, [1, -1, 3, -3, 4])\n3-element Array{Int64,1}:\n 1\n 3\n 4\n\njulia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])\n3-element Array{Int64,1}:\n 5\n 1\n 9\n\njulia> unique!(iseven, [2, 3, 5, 7, 9])\n2-element Array{Int64,1}:\n 2\n 3\n```\n"},{"Tuple{Union{AbstractArray{#s662,1} where #s662<:Real, AbstractArray{#s661,1} where #s661<:AbstractString, AbstractArray{#s660,1} where #s660<:Symbol}}":" unique!(A::AbstractVector)\n\nRemove duplicate items as determined by [`isequal`](@ref), then return the modified `A`.\n`unique!` will return the elements of `A` in the order that they occur. If you do not care\nabout the order of the returned data, then calling `(sort!(A); unique!(A))` will be much\nmore efficient as long as the elements of `A` can be sorted.\n\n# Examples\n```jldoctest\njulia> unique!([1, 1, 1])\n1-element Array{Int64,1}:\n 1\n\njulia> A = [7, 3, 2, 3, 7, 5];\n\njulia> unique!(A)\n4-element Array{Int64,1}:\n 7\n 3\n 2\n 5\n\njulia> B = [7, 6, 42, 6, 7, 42];\n\njulia> sort!(B); # unique! is able to process sorted data much more efficiently.\n\njulia> unique!(B)\n3-element Array{Int64,1}:\n 6\n 7\n 42\n```\n"}],"Base.eachslice":[{"Tuple{AbstractArray}":" eachslice(A::AbstractArray; dims)\n\nCreate a generator that iterates over dimensions `dims` of `A`, returning views that select all\nthe data from the other dimensions in `A`.\n\nOnly a single dimension in `dims` is currently supported. Equivalent to `(view(A,:,:,...,i,:,:\n...)) for i in axes(A, dims))`, where `i` is in position `dims`.\n\nSee also [`eachrow`](@ref), [`eachcol`](@ref), and [`selectdim`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.@specialize":[{"Tuple":" @specialize\n\nReset the specialization hint for an argument back to the default.\nFor details, see [`@nospecialize`](@ref).\n"}],"Base.@time":[{"Tuple{Any}":" @time\n\nA macro to execute an expression, printing the time it took to execute, the number of\nallocations, and the total number of bytes its execution caused to be allocated, before\nreturning the value of the expression.\n\nSee also [`@timev`](@ref), [`@timed`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n!!! note\n For more serious benchmarking, consider the `@btime` macro from the BenchmarkTools.jl\n package which among other things evaluates the function multiple times in order to\n reduce noise.\n\n```julia-repl\njulia> @time rand(10^6);\n 0.001525 seconds (7 allocations: 7.630 MiB)\n\njulia> @time begin\n sleep(0.3)\n 1+1\n end\n 0.301395 seconds (8 allocations: 336 bytes)\n2\n```\n"}],"Base.AbstractIrrational":[{"Union{}":" AbstractIrrational <: Real\n\nNumber type representing an exact irrational value.\n"}],"Base.&":[{"Union{Tuple{T}, Tuple{T,T}} where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}":" &(x, y)\n\nBitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nreturning [`missing`](@ref) if one operand is `missing` and the other is `true`.\n\n# Examples\n```jldoctest\njulia> 4 & 10\n0\n\njulia> 4 & 12\n4\n\njulia> true & missing\nmissing\n\njulia> false & missing\nfalse\n```\n"}],"Base.eachmatch":[{"Tuple{Regex,AbstractString}":" eachmatch(r::Regex, s::AbstractString; overlap::Bool=false)\n\nSearch for all matches of a the regular expression `r` in `s` and return a iterator over the\nmatches. If overlap is `true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from distinct character ranges.\n\n# Examples\n```jldoctest\njulia> rx = r\"a.a\"\nr\"a.a\"\n\njulia> m = eachmatch(rx, \"a1a2a3a\")\nBase.RegexMatchIterator(r\"a.a\", \"a1a2a3a\", false)\n\njulia> collect(m)\n2-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a3a\")\n\njulia> collect(eachmatch(rx, \"a1a2a3a\", overlap = true))\n3-element Array{RegexMatch,1}:\n RegexMatch(\"a1a\")\n RegexMatch(\"a2a\")\n RegexMatch(\"a3a\")\n```\n"}],"Base.time_ns":[{"Tuple{}":" time_ns()\n\nGet the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.\n"}],"Base.nextprod":[{"Tuple{Array{Int64,1},Any}":" nextprod([k_1, k_2,...], n)\n\nNext integer greater than or equal to `n` that can be written as ``\\prod k_i^{p_i}`` for integers\n``p_1``, ``p_2``, etc.\n\n# Examples\n```jldoctest\njulia> nextprod([2, 3], 105)\n108\n\njulia> 2^2 * 3^3\n108\n```\n"}],"Base.mul_prod":[{"Tuple{Any,Any}":" Base.mul_prod(x, y)\n\nThe reduction operator used in `prod`. The main difference from [`*`](@ref) is that small\nintegers are promoted to `Int`/`UInt`.\n"}],"Base.oneunit":[{"Union{Tuple{T}, Tuple{T}} where T":" oneunit(x::T)\n oneunit(T::Type)\n\nReturns `T(one(x))`, where `T` is either the type of the argument or\n(if a type is passed) the argument. This differs from [`one`](@ref) for\ndimensionful quantities: `one` is dimensionless (a multiplicative identity)\nwhile `oneunit` is dimensionful (of the same type as `x`, or of type `T`).\n\n# Examples\n```jldoctest\njulia> oneunit(3.7)\n1.0\n\njulia> import Dates; oneunit(Dates.Day)\n1 day\n```\n"}],"Base.NaN16":[{"Union{}":" NaN16\n\nA not-a-number value of type [`Float16`](@ref).\n"}],"Base.OrdinalRange":[{"Union{}":" OrdinalRange{T, S} <: AbstractRange{T}\n\nSupertype for ordinal ranges with elements of type `T` with\nspacing(s) of type `S`. The steps should be always-exact\nmultiples of [`oneunit`](@ref), and `T` should be a \"discrete\"\ntype, which cannot have values smaller than `oneunit`. For example,\n`Integer` or `Date` types would qualify, whereas `Float64` would not (since this\ntype can represent values smaller than `oneunit(Float64)`.\n[`UnitRange`](@ref), [`StepRange`](@ref), and other types are subtypes of this.\n"}],"Base.pushfirst!":[{"Union{Tuple{T}, Tuple{Array{T,1},Any}} where T":" pushfirst!(collection, items...) -> collection\n\nInsert one or more `items` at the beginning of `collection`.\n\n# Examples\n```jldoctest\njulia> pushfirst!([1, 2, 3, 4], 5, 6)\n6-element Array{Int64,1}:\n 5\n 6\n 1\n 2\n 3\n 4\n```\n"}],"Base.Culong":[{"Union{}":" Culong\n\nEquivalent to the native `unsigned long` c-type.\n"}],"Base.printstyled":[{"Tuple{IO,Vararg{Any,N} where N}":" printstyled([io], xs...; bold::Bool=false, color::Union{Symbol,Int}=:normal)\n\nPrint `xs` in a color specified as a symbol or integer, optionally in bold.\n\n`color` may take any of the values `:normal`,\n`:default`,\n`:bold`,\n`:black`,\n`:blink`,\n`:blue`,\n`:cyan`,\n`:green`,\n`:hidden`,\n`:light_black`,\n`:light_blue`,\n`:light_cyan`,\n`:light_green`,\n`:light_magenta`,\n`:light_red`,\n`:light_yellow`,\n`:magenta`,\n`:nothing`,\n`:red`,\n`:reverse`,\n`:underline`,\n`:white`, or \n`:yellow`\nor an integer between 0 and 255 inclusive. Note that not all terminals support 256 colors.\nIf the keyword `bold` is given as `true`, the result will be printed in bold.\n"}],"Base.Generator":[{"Union{}":" Generator(f, iter)\n\nGiven a function `f` and an iterator `iter`, construct an iterator that yields\nthe values of `f` applied to the elements of `iter`.\nThe syntax `f(x) for x in iter [if cond(x)::Bool]` is syntax for constructing an instance of this\ntype. The `[if cond(x)::Bool]` expression is optional and acts as a \"guard\", effectively\nfiltering out values where the condition is false.\n\n```jldoctest\njulia> g = (abs2(x) for x in 1:5 if x != 3);\n\njulia> for x in g\n println(x)\n end\n1\n4\n16\n25\n\njulia> collect(g)\n4-element Array{Int64,1}:\n 1\n 4\n 16\n 25\n```\n"}],"Base.transcode":[{"Union{}":" transcode(T, src)\n\nConvert string data between Unicode encodings. `src` is either a\n`String` or a `Vector{UIntXX}` of UTF-XX code units, where\n`XX` is 8, 16, or 32. `T` indicates the encoding of the return value:\n`String` to return a (UTF-8 encoded) `String` or `UIntXX`\nto return a `Vector{UIntXX}` of UTF-`XX` data. (The alias [`Cwchar_t`](@ref)\ncan also be used as the integer type, for converting `wchar_t*` strings\nused by external C libraries.)\n\nThe `transcode` function succeeds as long as the input data can be\nreasonably represented in the target encoding; it always succeeds for\nconversions between UTF-XX encodings, even for invalid Unicode data.\n\nOnly conversion to/from UTF-8 is currently supported.\n"}],"Base.names":[{"Tuple{Module}":" names(x::Module; all::Bool = false, imported::Bool = false)\n\nGet an array of the names exported by a `Module`, excluding deprecated names.\nIf `all` is true, then the list also includes non-exported names defined in the module,\ndeprecated names, and compiler-generated names.\nIf `imported` is true, then names explicitly imported from other modules\nare also included.\n\nAs a special case, all names defined in `Main` are considered \"exported\",\nsince it is not idiomatic to explicitly export names from `Main`.\n"}],"Base.keytype":[{"Tuple{AbstractArray}":" keytype(T::Type{<:AbstractArray})\n keytype(A::AbstractArray)\n\nReturn the key type of an array. This is equal to the\n`eltype` of the result of `keys(...)`, and is provided\nmainly for compatibility with the dictionary interface.\n\n# Examples\n```jldoctest\njulia> keytype([1, 2, 3]) == Int\ntrue\n\njulia> keytype([1 2; 3 4])\nCartesianIndex{2}\n```\n\n!!! compat \"Julia 1.2\"\n For arrays, this function requires at least Julia 1.2.\n"},{"Union{Tuple{Type{#s662} where #s662<:AbstractDict{K,V}}, Tuple{V}, Tuple{K}} where V where K":" keytype(type)\n\nGet the key type of an dictionary type. Behaves similarly to [`eltype`](@ref).\n\n# Examples\n```jldoctest\njulia> keytype(Dict(Int32(1) => \"foo\"))\nInt32\n```\n"}],"Base.count":[{"Tuple{Union{Regex, AbstractString},AbstractString}":" count(\n pattern::Union{AbstractString,Regex},\n string::AbstractString;\n overlap::Bool = false,\n )\n\nReturn the number of matches for `pattern` in `string`. This is equivalent to\ncalling `length(findall(pattern, string))` but more efficient.\n\nIf `overlap=true`, the matching sequences are allowed to overlap indices in the\noriginal string, otherwise they must be from disjoint character ranges.\n"},{"Tuple{Any,Any}":" count(p, itr) -> Integer\n count(itr) -> Integer\n\nCount the number of elements in `itr` for which predicate `p` returns `true`.\nIf `p` is omitted, counts the number of `true` elements in `itr` (which\nshould be a collection of boolean values).\n\n# Examples\n```jldoctest\njulia> count(i->(4<=i<=6), [2,3,4,5,6])\n3\n\njulia> count([true, false, true, true])\n3\n```\n"}],"Base.istaskstarted":[{"Tuple{Task}":" istaskstarted(t::Task) -> Bool\n\nDetermine whether a task has started executing.\n\n# Examples\n```jldoctest\njulia> a3() = sum(i for i in 1:1000);\n\njulia> b = Task(a3);\n\njulia> istaskstarted(b)\nfalse\n```\n"}],"Base.IteratorEltype":[{"Tuple{Any}":" IteratorEltype(itertype::Type) -> IteratorEltype\n\nGiven the type of an iterator, return one of the following values:\n\n* `EltypeUnknown()` if the type of elements yielded by the iterator is not known in advance.\n* `HasEltype()` if the element type is known, and [`eltype`](@ref) would return a meaningful value.\n\n`HasEltype()` is the default, since iterators are assumed to implement [`eltype`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate a specific\ntype of result, and algorithms that pick a result type based on the types of yielded\nvalues.\n\n```jldoctest\njulia> Base.IteratorEltype(1:5)\nBase.HasEltype()\n```\n"}],"Base.repeat":[{"Tuple{AbstractString,Integer}":" repeat(s::AbstractString, r::Integer)\n\nRepeat a string `r` times. This can be written as `s^r`.\n\nSee also: [`^`](@ref)\n\n# Examples\n```jldoctest\njulia> repeat(\"ha\", 3)\n\"hahaha\"\n```\n"},{"Tuple{AbstractArray}":" repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))\n\nConstruct an array by repeating the entries of `A`. The i-th element of `inner` specifies\nthe number of times that the individual entries of the i-th dimension of `A` should be\nrepeated. The i-th element of `outer` specifies the number of times that a slice along the\ni-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition\nis performed.\n\n# Examples\n```jldoctest\njulia> repeat(1:2, inner=2)\n4-element Array{Int64,1}:\n 1\n 1\n 2\n 2\n\njulia> repeat(1:2, outer=2)\n4-element Array{Int64,1}:\n 1\n 2\n 1\n 2\n\njulia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))\n4×6 Array{Int64,2}:\n 1 2 1 2 1 2\n 1 2 1 2 1 2\n 3 4 3 4 3 4\n 3 4 3 4 3 4\n```\n"},{"Tuple{AbstractChar,Integer}":" repeat(c::AbstractChar, r::Integer) -> String\n\nRepeat a character `r` times. This can equivalently be accomplished by calling [`c^r`](@ref ^).\n\n# Examples\n```jldoctest\njulia> repeat('A', 3)\n\"AAA\"\n```\n"},{"Tuple{AbstractArray,Vararg{Integer,N} where N}":" repeat(A::AbstractArray, counts::Integer...)\n\nConstruct an array by repeating array `A` a given number of times in each dimension, specified by `counts`.\n\n# Examples\n```jldoctest\njulia> repeat([1, 2, 3], 2)\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 1\n 2\n 3\n\njulia> repeat([1, 2, 3], 2, 3)\n6×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n 1 1 1\n 2 2 2\n 3 3 3\n```\n"}],"Base.@b_str":[{"Tuple{Any}":" @b_str\n\nCreate an immutable byte (`UInt8`) vector using string syntax.\n\n# Examples\n```jldoctest\njulia> v = b\"12\\x01\\x02\"\n4-element Base.CodeUnits{UInt8,String}:\n 0x31\n 0x32\n 0x01\n 0x02\n\njulia> v[2]\n0x32\n```\n"}],"Base.@elapsed":[{"Tuple{Any}":" @elapsed\n\nA macro to evaluate an expression, discarding the resulting value, instead returning the\nnumber of seconds it took to execute as a floating-point number.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@timed`](@ref),\nand [`@allocated`](@ref).\n\n```julia-repl\njulia> @elapsed sleep(0.3)\n0.301391426\n```\n"}],"Base.summary":[{"Tuple{IO,Any}":" summary(io::IO, x)\n str = summary(x)\n\nPrint to a stream `io`, or return a string `str`, giving a brief description of\na value. By default returns `string(typeof(x))`, e.g. [`Int64`](@ref).\n\nFor arrays, returns a string of size and type info,\ne.g. `10-element Array{Int64,1}`.\n\n# Examples\n```jldoctest\njulia> summary(1)\n\"Int64\"\n\njulia> summary(zeros(2))\n\"2-element Array{Float64,1}\"\n```\n"}],"Base.isoperator":[{"Tuple{Union{AbstractString, Symbol}}":" isoperator(s::Symbol)\n\nReturn `true` if the symbol can be used as an operator, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> Base.isoperator(:+), Base.isoperator(:f)\n(true, false)\n```\n"}],"Base.ExponentialBackOff":[{"Tuple{}":" ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)\n\nA [`Float64`](@ref) iterator of length `n` whose elements exponentially increase at a\nrate in the interval `factor` * (1 ± `jitter`). The first element is\n`first_delay` and all elements are clamped to `max_delay`.\n"}],"Base.finalize":[{"Tuple{Any}":" finalize(x)\n\nImmediately run finalizers registered for object `x`.\n"}],"Base.dataids":[{"Tuple{AbstractArray}":" Base.dataids(A::AbstractArray)\n\nReturn a tuple of `UInt`s that represent the mutable data segments of an array.\n\nCustom arrays that would like to opt-in to aliasing detection of their component\nparts can specialize this method to return the concatenation of the `dataids` of\ntheir component parts. A typical definition for an array that wraps a parent is\n`Base.dataids(C::CustomArray) = dataids(C.parent)`.\n"}],"Base.has_offset_axes":[{"Tuple{Any}":" has_offset_axes(A)\n has_offset_axes(A, B, ...)\n\nReturn `true` if the indices of `A` start with something other than 1 along any axis.\nIf multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.\n"}],"Base.may_invoke_generator":[{"Tuple{Core.MethodInstance}":" may_invoke_generator(method, atypes, sparams)\n\nComputes whether or not we may invoke the generator for the given `method` on\nthe given atypes and sparams. For correctness, all generated function are\nrequired to return monotonic answers. However, since we don't expect users to\nbe able to successfully implement this criterion, we only call generated\nfunctions on concrete types. The one exception to this is that we allow calling\ngenerators with abstract types if the generator does not use said abstract type\n(and thus cannot incorrectly use it to break monotonicity). This function\ncomputes whether we are in either of these cases.\n\nUnlike normal functions, the compilation heuristics still can't generate good dispatch\nin some cases, but this may still allow inference not to fall over in some limited cases.\n"}],"Base.close":[{"Union{}":" close(stream)\n\nClose an I/O stream. Performs a [`flush`](@ref) first.\n"},{"Union{Tuple{Channel}, Tuple{Channel,Exception}}":" close(c::Channel[, excp::Exception])\n\nClose a channel. An exception (optionally given by `excp`), is thrown by:\n\n* [`put!`](@ref) on a closed channel.\n* [`take!`](@ref) and [`fetch`](@ref) on an empty, closed channel.\n"}],"Base.bind":[{"Tuple{Channel,Task}":" bind(chnl::Channel, task::Task)\n\nAssociate the lifetime of `chnl` with a task.\n`Channel` `chnl` is automatically closed when the task terminates.\nAny uncaught exception in the task is propagated to all waiters on `chnl`.\n\nThe `chnl` object can be explicitly closed independent of task termination.\nTerminating tasks have no effect on already closed `Channel` objects.\n\nWhen a channel is bound to multiple tasks, the first task to terminate will\nclose the channel. When multiple channels are bound to the same task,\ntermination of the task will close all of the bound channels.\n\n# Examples\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async foreach(i->put!(c, i), 1:4);\n\njulia> bind(c,task);\n\njulia> for i in c\n @show i\n end;\ni = 1\ni = 2\ni = 3\ni = 4\n\njulia> isopen(c)\nfalse\n```\n\n```jldoctest\njulia> c = Channel(0);\n\njulia> task = @async (put!(c,1);error(\"foo\"));\n\njulia> bind(c,task);\n\njulia> take!(c)\n1\n\njulia> put!(c,1);\nERROR: foo\nStacktrace:\n[...]\n```\n"}],"Base.startswith":[{"Tuple{AbstractString,Regex}":" startswith(s::AbstractString, prefix::Regex)\n\nReturn `true` if `s` starts with the regex pattern, `prefix`.\n\n!!! note\n `startswith` does not compile the anchoring into the regular\n expression, but instead passes the anchoring as\n `match_option` to PCRE. If compile time is amortized,\n `occursin(r\"^...\", s)` is faster than `startswith(s, r\"...\")`.\n\nSee also [`occursin`](@ref) and [`endswith`](@ref).\n\n!!! compat \"Julia 1.2\"\n This method requires at least Julia 1.2.\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", r\"Julia|Romeo\")\ntrue\n```\n"},{"Tuple{AbstractString,AbstractString}":" startswith(s::AbstractString, prefix::AbstractString)\n\nReturn `true` if `s` starts with `prefix`. If `prefix` is a vector or set\nof characters, test whether the first character of `s` belongs to that set.\n\nSee also [`endswith`](@ref).\n\n# Examples\n```jldoctest\njulia> startswith(\"JuliaLang\", \"Julia\")\ntrue\n```\n"}],"Base.tail":[{"Tuple{Tuple}":" tail(x::Tuple)::Tuple\n\nReturn a `Tuple` consisting of all but the first component of `x`.\n\n# Examples\n```jldoctest\njulia> Base.tail((1,2,3))\n(2, 3)\n\njulia> Base.tail(())\nERROR: ArgumentError: Cannot call tail on an empty tuple.\n```\n"}],"Base.floor":[{"Union{}":" floor([T,] x)\n floor(x; digits::Integer= [, base = 10])\n floor(x; sigdigits::Integer= [, base = 10])\n\n`floor(x)` returns the nearest integral value of the same type as `x` that is less than or\nequal to `x`.\n\n`floor(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is\nnot representable.\n\n`digits`, `sigdigits` and `base` work as for [`round`](@ref).\n"}],"Base.numerator":[{"Tuple{Integer}":" numerator(x)\n\nNumerator of the rational representation of `x`.\n\n# Examples\n```jldoctest\njulia> numerator(2//3)\n2\n\njulia> numerator(4)\n4\n```\n"}],"Base.accumulate":[{"Tuple{Any,Any}":" accumulate(op, A; dims::Integer, [init])\n\nCumulative operation `op` along the dimension `dims` of `A` (providing `dims` is optional\nfor vectors). An initial value `init` may optionally be provided by a keyword argument. See\nalso [`accumulate!`](@ref) to use a preallocated output array, both for performance and\nto control the precision of the output (e.g. to avoid overflow). For common operations\nthere are specialized variants of `accumulate`, see: [`cumsum`](@ref), [`cumprod`](@ref)\n\n# Examples\n```jldoctest\njulia> accumulate(+, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 3\n 6\n\njulia> accumulate(*, [1,2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> accumulate(+, [1,2,3]; init=100)\n3-element Array{Int64,1}:\n 101\n 103\n 106\n\njulia> accumulate(min, [1,2,-1]; init=0)\n3-element Array{Int64,1}:\n 0\n 0\n -1\n\njulia> accumulate(+, fill(1, 3, 3), dims=1)\n3×3 Array{Int64,2}:\n 1 1 1\n 2 2 2\n 3 3 3\n\njulia> accumulate(+, fill(1, 3, 3), dims=2)\n3×3 Array{Int64,2}:\n 1 2 3\n 1 2 3\n 1 2 3\n```\n"}],"Base.islocked":[{"Tuple{ReentrantLock}":" islocked(lock) -> Status (Boolean)\n\nCheck whether the `lock` is held by any task/thread.\nThis should not be used for synchronization (see instead [`trylock`](@ref)).\n"}],"Base.isprimitivetype":[{"Tuple{Type}":" isprimitivetype(T) -> Bool\n\nDetermine whether type `T` was declared as a primitive type\n(i.e. using the `primitive` keyword).\n"}],"Base.mapreduce_empty":[{"Tuple{Any,Any,Any}":" Base.mapreduce_empty(f, op, T)\n\nThe value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or\n[`mapfoldr`](@ref) with map `f` and reduction `op` over an empty array with element type\nof `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.div12":[{"Union{Tuple{T}, Tuple{T,T}} where T<:AbstractFloat":" zhi, zlo = div12(x, y)\n\nA high-precision representation of `x / y` for floating-point\nnumbers. Mathematically, `zhi + zlo ≈ x / y`, where `zhi` contains the\nmost significant bits and `zlo` the least significant.\n\nExample:\n```julia\njulia> x, y = Float32(π), 3.1f0\n(3.1415927f0, 3.1f0)\n\njulia> x / y\n1.013417f0\n\njulia> Float64(x) / Float64(y)\n1.0134170444063078\n\njulia> hi, lo = Base.div12(x, y)\n(1.013417f0, 3.8867366f-8)\n\njulia> Float64(hi) + Float64(lo)\n1.0134170444063066\n"}],"Base.operator_precedence":[{"Tuple{Symbol}":" operator_precedence(s::Symbol)\n\nReturn an integer representing the precedence of operator `s`, relative to\nother operators. Higher-numbered operators take precedence over lower-numbered\noperators. Return `0` if `s` is not a valid operator.\n\n# Examples\n```jldoctest\njulia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)\n(11, 12, 17)\n\njulia> Base.operator_precedence(:sin), Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens on `:(=)`)\n(0, 1, 1)\n```\n"}],"Base.isinteger":[{"Tuple{Integer}":" isinteger(x) -> Bool\n\nTest whether `x` is numerically equal to some integer.\n\n# Examples\n```jldoctest\njulia> isinteger(4.0)\ntrue\n```\n"}],"Base.AbstractVector":[{"Union{}":" AbstractVector{T}\n\nSupertype for one-dimensional arrays (or array-like types) with\nelements of type `T`. Alias for [`AbstractArray{T,1}`](@ref).\n"}],"Base.big":[{"Union{Tuple{Type{T}}, Tuple{T}} where T<:Number":" big(T::Type)\n\nCompute the type that represents the numeric type `T` with arbitrary precision.\nEquivalent to `typeof(big(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> big(Rational)\nRational{BigInt}\n\njulia> big(Float64)\nBigFloat\n\njulia> big(Complex{Int})\nComplex{BigInt}\n```\n"}],"Base.fdio":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Bool}}":" fdio([name::AbstractString, ]fd::Integer[, own::Bool=false]) -> IOStream\n\nCreate an [`IOStream`](@ref) object from an integer file descriptor. If `own` is `true`, closing\nthis object will close the underlying descriptor. By default, an `IOStream` is closed when\nit is garbage collected. `name` allows you to associate the descriptor with a named file.\n"}],"Base.IndexStyle":[{"Tuple{AbstractArray}":" IndexStyle(A)\n IndexStyle(typeof(A))\n\n`IndexStyle` specifies the \"native indexing style\" for array `A`. When\nyou define a new [`AbstractArray`](@ref) type, you can choose to implement\neither linear indexing (with [`IndexLinear`](@ref)) or cartesian indexing.\nIf you decide to only implement linear indexing, then you must set this trait for your array\ntype:\n\n Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()\n\nThe default is [`IndexCartesian()`](@ref).\n\nJulia's internal indexing machinery will automatically (and invisibly)\nrecompute all indexing operations into the preferred style. This allows users\nto access elements of your array using any indexing style, even when explicit\nmethods have not been provided.\n\nIf you define both styles of indexing for your `AbstractArray`, this\ntrait can be used to select the most performant indexing style. Some\nmethods check this trait on their inputs, and dispatch to different\nalgorithms depending on the most efficient access pattern. In\nparticular, [`eachindex`](@ref) creates an iterator whose type depends\non the setting of this trait.\n"}],"Base.union":[{"Union{}":" union(s, itrs...)\n ∪(s, itrs...)\n\nConstruct the union of sets. Maintain order with arrays.\n\n# Examples\n```jldoctest\njulia> union([1, 2], [3, 4])\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> union([1, 2], [2, 4])\n3-element Array{Int64,1}:\n 1\n 2\n 4\n\njulia> union([4, 2], 1:2)\n3-element Array{Int64,1}:\n 4\n 2\n 1\n\njulia> union(Set([1, 2]), 2:3)\nSet{Int64} with 3 elements:\n 2\n 3\n 1\n```\n"}],"Base.replace":[{"Tuple{AbstractString,Pair}":" replace(s::AbstractString, pat=>r; [count::Integer])\n\nSearch for the given pattern `pat` in `s`, and replace each occurrence with `r`.\nIf `count` is provided, replace at most `count` occurrences.\n`pat` may be a single character, a vector or a set of characters, a string,\nor a regular expression.\nIf `r` is a function, each occurrence is replaced with `r(s)`\nwhere `s` is the matched substring (when `pat` is a `Regex` or `AbstractString`) or\ncharacter (when `pat` is an `AbstractChar` or a collection of `AbstractChar`).\nIf `pat` is a regular expression and `r` is a [`SubstitutionString`](@ref), then capture group\nreferences in `r` are replaced with the corresponding matched text.\nTo remove instances of `pat` from `string`, set `r` to the empty `String` (`\"\"`).\n\n# Examples\n```jldoctest\njulia> replace(\"Python is a programming language.\", \"Python\" => \"Julia\")\n\"Julia is a programming language.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"slow\", count=1)\n\"The slow foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", \"quick\" => \"\", count=1)\n\"The foxes run quickly.\"\n\njulia> replace(\"The quick foxes run quickly.\", r\"fox(es)?\" => s\"bus\\1\")\n\"The quick buses run quickly.\"\n```\n"},{"Tuple{Union{Function, Type},Any}":" replace(new::Function, A; [count::Integer])\n\nReturn a copy of `A` where each value `x` in `A` is replaced by `new(x)`\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace(A, old_new::Pair...; [count::Integer])\n\nReturn a copy of collection `A` where, for each pair `old=>new` in `old_new`,\nall occurrences of `old` are replaced by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\n\nThe element type of the result is chosen using promotion (see [`promote_type`](@ref))\nbased on the element type of `A` and on the types of the `new` values in pairs.\nIf `count` is omitted and the element type of `A` is a `Union`, the element type\nof the result will not include singleton types which are replaced with values of\na different type: for example, `Union{T,Missing}` will become `T` if `missing` is\nreplaced.\n\nSee also [`replace!`](@ref).\n\n# Examples\n```jldoctest\njulia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace([1, missing], missing=>0)\n2-element Array{Int64,1}:\n 1\n 0\n```\n"}],"Base.maximum":[{"Tuple{Any}":" maximum(itr)\n\nReturns the largest element in a collection.\n\n# Examples\n```jldoctest\njulia> maximum(-20.5:10)\n9.5\n\njulia> maximum([1,2,3])\n3\n```\n"},{"Tuple{AbstractArray}":" maximum(A::AbstractArray; dims)\n\nCompute the maximum value of an array over the given dimensions. See also the\n[`max(a,b)`](@ref) function to take the maximum of two or more arguments,\nwhich can be applied elementwise to arrays via `max.(a,b)`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> maximum(A, dims=1)\n1×2 Array{Int64,2}:\n 3 4\n\njulia> maximum(A, dims=2)\n2×1 Array{Int64,2}:\n 2\n 4\n```\n"},{"Tuple{Any,Any}":" maximum(f, itr)\n\nReturns the largest result of calling function `f` on each element of `itr`.\n\n# Examples\n```jldoctest\njulia> maximum(length, [\"Julion\", \"Julia\", \"Jule\"])\n6\n```\n"}],"Base.notnothing":[{"Tuple{Any}":" notnothing(x)\n\nThrow an error if `x === nothing`, and return `x` if not.\n"}],"Base.backtrace":[{"Tuple{}":" backtrace()\n\nGet a backtrace object for the current program point.\n"}],"Base.empty":[{"Tuple{AbstractDict}":" empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])\n\nCreate an empty `AbstractDict` container which can accept indices of type `index_type` and\nvalues of type `value_type`. The second and third arguments are optional and default to the\ninput's `keytype` and `valtype`, respectively. (If only one of the two types is specified,\nit is assumed to be the `value_type`, and the `index_type` we default to `keytype(a)`).\n\nCustom `AbstractDict` subtypes may choose which specific dictionary type is best suited to\nreturn for the given index and value types, by specializing on the three-argument signature.\nThe default is to return an empty `Dict`.\n"},{"Tuple{Tuple}":" empty(x::Tuple)\n\nReturns an empty tuple, `()`.\n"},{"Union{Tuple{AbstractArray{T,1}}, Tuple{U}, Tuple{T}, Tuple{AbstractArray{T,1},Type{U}}} where U where T":" empty(v::AbstractVector, [eltype])\n\nCreate an empty vector similar to `v`, optionally changing the `eltype`.\n\n# Examples\n\n```jldoctest\njulia> empty([1.0, 2.0, 3.0])\n0-element Array{Float64,1}\n\njulia> empty([1.0, 2.0, 3.0], String)\n0-element Array{String,1}\n```\n"}],"Base.unsigned":[{"Tuple{Any}":" unsigned(x) -> Unsigned\n\nConvert a number to an unsigned integer. If the argument is signed, it is reinterpreted as\nunsigned without checking for negative values.\n\n# Examples\n```jldoctest\njulia> unsigned(-2)\n0xfffffffffffffffe\n\njulia> unsigned(2)\n0x0000000000000002\n\njulia> signed(unsigned(-2))\n-2\n```\n"}],"Base.floatmin":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmin(T)\n\nThe smallest in absolute value non-subnormal value representable by the given\nfloating-point DataType `T`.\n"}],"Base.string":[{"Tuple":" string(xs...)\n\nCreate a string from any values, except `nothing`, using the [`print`](@ref) function.\n\n`string` should usually not be defined directly. Instead, define a method\n`print(io::IO, x::MyType)`. If `string(x)` for a certain type needs to be\nhighly efficient, then it may make sense to add a method to `string` and\ndefine `print(io::IO, x::MyType) = print(io, string(x))` to ensure the\nfunctions are consistent.\n\n# Examples\n```jldoctest\njulia> string(\"a\", 1, true)\n\"a1true\"\n```\n"},{"Tuple{Integer}":" string(n::Integer; base::Integer = 10, pad::Integer = 1)\n\nConvert an integer `n` to a string in the given `base`,\noptionally specifying a number of digits to pad to.\n\n```jldoctest\njulia> string(5, base = 13, pad = 4)\n\"0005\"\n\njulia> string(13, base = 5, pad = 4)\n\"0023\"\n```\n"}],"Base.StringIndexError":[{"Union{}":" StringIndexError(str, i)\n\nAn error occurred when trying to access `str` at index `i` that is not valid.\n"}],"Base.@r_str":[{"Tuple{Any,Vararg{Any,N} where N}":" @r_str -> Regex\n\nConstruct a regex, such as `r\"^[a-z]*$\"`, without interpolation and unescaping (except for\nquotation mark `\"` which still has to be escaped). The regex also accepts one or more flags,\nlisted after the ending quote, to change its behaviour:\n\n- `i` enables case-insensitive matching\n- `m` treats the `^` and `$` tokens as matching the start and end of individual lines, as\n opposed to the whole string.\n- `s` allows the `.` modifier to match newlines.\n- `x` enables \"comment mode\": whitespace is enabled except when escaped with `\\`, and `#`\n is treated as starting a comment.\n- `a` disables `UCP` mode (enables ASCII mode). By default `\\B`, `\\b`, `\\D`, `\\d`, `\\S`,\n `\\s`, `\\W`, `\\w`, etc. match based on Unicode character properties. With this option,\n these sequences only match ASCII characters.\n\nSee `Regex` if interpolation is needed.\n\n# Examples\n```jldoctest\njulia> match(r\"a+.*b+.*?d$\"ism, \"Goodbye,\\nOh, angry,\\nBad world\\n\")\nRegexMatch(\"angry,\\nBad world\")\n```\nThis regex has the first three flags enabled.\n"}],"Base.round":[{"Tuple{Type,Any}":" round([T,] x, [r::RoundingMode])\n round(x, [r::RoundingMode]; digits::Integer=0, base = 10)\n round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)\n\nRounds the number `x`.\n\nWithout keyword arguments, `x` is rounded to an integer value, returning a value of type\n`T`, or of the same type of `x` if no `T` is provided. An [`InexactError`](@ref) will be\nthrown if the value is not representable by `T`, similar to [`convert`](@ref).\n\nIf the `digits` keyword argument is provided, it rounds to the specified number of digits\nafter the decimal place (or before if negative), in base `base`.\n\nIf the `sigdigits` keyword argument is provided, it rounds to the specified number of\nsignificant digits, in base `base`.\n\nThe [`RoundingMode`](@ref) `r` controls the direction of the rounding; the default is\n[`RoundNearest`](@ref), which rounds to the nearest integer, with ties (fractional values\nof 0.5) being rounded to the nearest even integer. Note that `round` may give incorrect\nresults if the global rounding mode is changed (see [`rounding`](@ref)).\n\n# Examples\n```jldoctest\njulia> round(1.7)\n2.0\n\njulia> round(Int, 1.7)\n2\n\njulia> round(1.5)\n2.0\n\njulia> round(2.5)\n2.0\n\njulia> round(pi; digits=2)\n3.14\n\njulia> round(pi; digits=3, base=2)\n3.125\n\njulia> round(123.456; sigdigits=2)\n120.0\n\njulia> round(357.913; sigdigits=4, base=2)\n352.0\n```\n\n!!! note\n Rounding to specified digits in bases other than 2 can be inexact when\n operating on binary floating point numbers. For example, the [`Float64`](@ref)\n value represented by `1.15` is actually *less* than 1.15, yet will be\n rounded to 1.2.\n\n # Examples\n ```jldoctest; setup = :(using Printf)\n julia> x = 1.15\n 1.15\n\n julia> @sprintf \"%.20f\" x\n \"1.14999999999999991118\"\n\n julia> x < 115//100\n true\n\n julia> round(x, digits=1)\n 1.2\n ```\n\n# Extensions\n\nTo extend `round` to new numeric types, it is typically sufficient to define `Base.round(x::NewType, r::RoundingMode)`.\n"},{"Union{Tuple{Complex}, Tuple{Complex,RoundingMode}, Tuple{Complex,RoundingMode,RoundingMode}}":" round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10)\n round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)\n\nReturn the nearest integral value of the same type as the complex-valued `z` to `z`,\nbreaking ties using the specified [`RoundingMode`](@ref)s. The first\n[`RoundingMode`](@ref) is used for rounding the real components while the\nsecond is used for rounding the imaginary components.\n\n# Example\n```jldoctest\njulia> round(3.14 + 4.5im)\n3.0 + 4.0im\n```\n"}],"Base.showarg":[{"Union{Tuple{T}, Tuple{IO,Type{T},Any}} where T":" showarg(io::IO, x, toplevel)\n\nShow `x` as if it were an argument to a function. This function is\nused by [`summary`](@ref) to display type information in terms of sequences of\nfunction calls on objects. `toplevel` is `true` if this is\nthe direct call from `summary` and `false` for nested (recursive) calls.\n\nThe fallback definition is to print `x` as \"::\\$(typeof(x))\",\nrepresenting argument `x` in terms of its type. (The double-colon is\nomitted if `toplevel=true`.) However, you can\nspecialize this function for specific types to customize printing.\n\n# Example\n\nA SubArray created as `view(a, :, 3, 2:5)`, where `a` is a\n3-dimensional Float64 array, has type\n\n SubArray{Float64,2,Array{Float64,3},Tuple{Colon,Int64,UnitRange{Int64}},false}\n\nThe default `show` printing would display this full type.\nHowever, the summary for SubArrays actually prints as\n\n 2×4 view(::Array{Float64,3}, :, 3, 2:5) with eltype Float64\n\nbecause of a definition similar to\n\n function Base.showarg(io::IO, v::SubArray, toplevel)\n print(io, \"view(\")\n showarg(io, parent(v), false)\n print(io, \", \", join(v.indices, \", \"))\n print(io, ')')\n toplevel && print(io, \" with eltype \", eltype(v))\n end\n\nNote that we're calling `showarg` recursively for the parent array\ntype, indicating that any recursed calls are not at the top level.\nPrinting the parent as `::Array{Float64,3}` is the fallback (non-toplevel)\nbehavior, because no specialized method for `Array` has been defined.\n"}],"Base.<=":[{"Tuple{Any}":" <=(x)\n\nCreate a function that compares its argument to `x` using [`<=`](@ref), i.e.\na function equivalent to `y -> y <= x`.\nThe returned function is of type `Base.Fix2{typeof(<=)}`, which can be\nused to implement specialized methods.\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"},{"Tuple{Any,Any}":" <=(x, y)\n ≤(x,y)\n\nLess-than-or-equals comparison operator. Falls back to `(x < y) | (x == y)`.\n\n# Examples\n```jldoctest\njulia> 'a' <= 'b'\ntrue\n\njulia> 7 ≤ 7 ≤ 9\ntrue\n\njulia> \"abc\" ≤ \"abc\"\ntrue\n\njulia> 5 <= 3\nfalse\n```\n"}],"Base.sleep":[{"Tuple{Real}":" sleep(seconds)\n\nBlock the current task for a specified number of seconds. The minimum sleep time is 1\nmillisecond or input of `0.001`.\n"}],"Base.sum":[{"Tuple{Any}":" sum(itr)\n\nReturns the sum of all elements in a collection.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(1:20)\n210\n```\n"},{"Tuple{AbstractArray}":" sum(A::AbstractArray; dims)\n\nSum elements of an array over the given dimensions.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> sum(A, dims=1)\n1×2 Array{Int64,2}:\n 4 6\n\njulia> sum(A, dims=2)\n2×1 Array{Int64,2}:\n 3\n 7\n```\n"},{"Tuple{Any,Any}":" sum(f, itr)\n\nSum the results of calling function `f` on each element of `itr`.\n\nThe return type is `Int` for signed integers of less than system word size, and\n`UInt` for unsigned integers of less than system word size. For all other\narguments, a common return type is found to which all arguments are promoted.\n\n# Examples\n```jldoctest\njulia> sum(abs2, [2; 3; 4])\n29\n```\n\nNote the important difference between `sum(A)` and `reduce(+, A)` for arrays\nwith small integer eltype:\n\n```jldoctest\njulia> sum(Int8[100, 28])\n128\n\njulia> reduce(+, Int8[100, 28])\n-128\n```\n\nIn the former case, the integers are widened to system word size and therefore\nthe result is 128. In the latter case, no such widening happens and integer\noverflow results in -128.\n"}],"Base.leading_zeros":[{"Tuple{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}}":" leading_zeros(x::Integer) -> Integer\n\nNumber of zeros leading the binary representation of `x`.\n\n# Examples\n```jldoctest\njulia> leading_zeros(Int32(1))\n31\n```\n"}],"Base.selectdim":[{"Tuple{AbstractArray,Integer,Any}":" selectdim(A, d::Integer, i)\n\nReturn a view of all the data of `A` where the index for dimension `d` equals `i`.\n\nEquivalent to `view(A,:,:,...,i,:,:,...)` where `i` is in position `d`.\n\n# Examples\n```jldoctest\njulia> A = [1 2 3 4; 5 6 7 8]\n2×4 Array{Int64,2}:\n 1 2 3 4\n 5 6 7 8\n\njulia> selectdim(A, 2, 3)\n2-element view(::Array{Int64,2}, :, 3) with eltype Int64:\n 3\n 7\n```\n"}],"Base.@propagate_inbounds":[{"Tuple{Any}":" @propagate_inbounds\n\nTells the compiler to inline a function while retaining the caller's inbounds context.\n"}],"Base.withenv":[{"Union{Tuple{T}, Tuple{Function,Vararg{Pair{T,B} where B,N} where N}} where T<:AbstractString":" withenv(f::Function, kv::Pair...)\n\nExecute `f` in an environment that is temporarily modified (not replaced as in `setenv`)\nby zero or more `\"var\"=>val` arguments `kv`. `withenv` is generally used via the\n`withenv(kv...) do ... end` syntax. A value of `nothing` can be used to temporarily unset an\nenvironment variable (if it is set). When `withenv` returns, the original environment has\nbeen restored.\n"}],"Base.mapreduce":[{"Tuple{Any,Any,Any}":" mapreduce(f, op, itrs...; [init])\n\nApply function `f` to each element(s) in `itrs`, and then reduce the result using the binary\nfunction `op`. If provided, `init` must be a neutral element for `op` that will be returned\nfor empty collections. It is unspecified whether `init` is used for non-empty collections.\nIn general, it will be necessary to provide `init` to work with empty collections.\n\n[`mapreduce`](@ref) is functionally equivalent to calling\n`reduce(op, map(f, itr); init=init)`, but will in general execute faster since no\nintermediate collection needs to be created. See documentation for [`reduce`](@ref) and\n[`map`](@ref).\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9\n14\n```\n\nThe associativity of the reduction is implementation-dependent. Additionally, some\nimplementations may reuse the return value of `f` for elements that appear multiple times in\n`itr`. Use [`mapfoldl`](@ref) or [`mapfoldr`](@ref) instead for\nguaranteed left or right associativity and invocation of `f` for every value.\n"},{"Tuple{Any,Any,AbstractArray}":" mapreduce(f, op, A::AbstractArray...; dims=:, [init])\n\nEvaluates to the same as `reduce(op, map(f, A); dims=dims, init=init)`, but is generally\nfaster because the intermediate array is avoided.\n\n!!! compat \"Julia 1.2\"\n `mapreduce` with multiple iterators requires Julia 1.2 or later.\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> mapreduce(isodd, *, a, dims=1)\n1×4 Array{Bool,2}:\n 0 0 0 0\n\njulia> mapreduce(isodd, |, a, dims=1)\n1×4 Array{Bool,2}:\n 1 1 1 1\n```\n"}],"Base.foreach":[{"Tuple{Any}":" foreach(f, c...) -> Nothing\n\nCall function `f` on each element of iterable `c`.\nFor multiple iterable arguments, `f` is called elementwise.\n`foreach` should be used instead of `map` when the results of `f` are not\nneeded, for example in `foreach(println, array)`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:7;\n\njulia> foreach(x -> println(x^2), a)\n1\n16\n49\n```\n"}],"Base.issingletontype":[{"Tuple{Any}":" Base.issingletontype(T)\n\nDetermine whether type `T` has exactly one possible instance; for example, a\nstruct type with no fields.\n"}],"Base.hcat":[{"Tuple":" hcat(A...)\n\nConcatenate along dimension 2.\n\n# Examples\n```jldoctest\njulia> a = [1; 2; 3; 4; 5]\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> b = [6 7; 8 9; 10 11; 12 13; 14 15]\n5×2 Array{Int64,2}:\n 6 7\n 8 9\n 10 11\n 12 13\n 14 15\n\njulia> hcat(a,b)\n5×3 Array{Int64,2}:\n 1 6 7\n 2 8 9\n 3 10 11\n 4 12 13\n 5 14 15\n\njulia> c = ([1; 2; 3], [4; 5; 6])\n([1, 2, 3], [4, 5, 6])\n\njulia> hcat(c...)\n3×2 Array{Int64,2}:\n 1 4\n 2 5\n 3 6\n```\n"}],"Base.append!":[{"Tuple{Array{T,1} where T,AbstractArray{T,1} where T}":" append!(collection, collection2) -> collection.\n\nFor an ordered container `collection`, add the elements of `collection2` to the end of it.\n\n# Examples\n```jldoctest\njulia> append!([1],[2,3])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> append!([1, 2, 3], [4, 5, 6])\n6-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n 6\n```\n\nUse [`push!`](@ref) to add individual items to `collection` which are not already\nthemselves in another collection. The result of the preceding example is equivalent to\n`push!([1, 2, 3], 4, 5, 6)`.\n"}],"Base.precompile":[{"Tuple{Any,Tuple}":" precompile(f, args::Tuple{Vararg{Any}})\n\nCompile the given function `f` for the argument tuple (of types) `args`, but do not execute it.\n"}],"Base.findlast":[{"Tuple{Any}":" findlast(A)\n\nReturn the index or key of the last `true` value in `A`.\nReturn `nothing` if there is no `true` value in `A`.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [true, false, true, false]\n4-element Array{Bool,1}:\n 1\n 0\n 1\n 0\n\njulia> findlast(A)\n3\n\njulia> A = falses(2,2);\n\njulia> findlast(A) # returns nothing, but not printed in the REPL\n\njulia> A = [true false; true false]\n2×2 Array{Bool,2}:\n 1 0\n 1 0\n\njulia> findlast(A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{Function,Any}":" findlast(predicate::Function, A)\n\nReturn the index or key of the last element of `A` for which `predicate` returns `true`.\nReturn `nothing` if there is no such element.\n\nIndices or keys are of the same type as those returned by [`keys(A)`](@ref)\nand [`pairs(A)`](@ref).\n\n# Examples\n```jldoctest\njulia> A = [1, 2, 3, 4]\n4-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n\njulia> findlast(isodd, A)\n3\n\njulia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL\n\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> findlast(isodd, A)\nCartesianIndex(2, 1)\n```\n"},{"Tuple{AbstractString,AbstractString}":" findlast(pattern::AbstractString, string::AbstractString)\n\nFind the last occurrence of `pattern` in `string`. Equivalent to\n[`findprev(pattern, string, lastindex(string))`](@ref).\n\n# Examples\n```jldoctest\njulia> findlast(\"o\", \"Hello to the world\")\n15:15\n\njulia> findfirst(\"Julia\", \"JuliaLang\")\n1:5\n```\n"},{"Tuple{AbstractChar,AbstractString}":" findlast(ch::AbstractChar, string::AbstractString)\n\nFind the last occurrence of character `ch` in `string`.\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n\n# Examples\n```jldoctest\njulia> findlast('p', \"happy\")\n4\n\njulia> findlast('z', \"happy\") === nothing\ntrue\n```\n"}],"Base.Cushort":[{"Union{}":" Cushort\n\nEquivalent to the native `unsigned short` c-type ([`UInt16`](@ref)).\n"}],"Base.datatype_haspadding":[{"Tuple{DataType}":" Base.datatype_haspadding(dt::DataType) -> Bool\n\nReturn whether the fields of instances of this type are packed in memory,\nwith no intervening padding bytes.\nCan be called on any `isconcretetype`.\n"}],"Base.@s_str":[{"Tuple{Any}":" @s_str -> SubstitutionString\n\nConstruct a substitution string, used for regular expression substitutions. Within the\nstring, sequences of the form `\\N` refer to the Nth capture group in the regex, and\n`\\g` refers to a named capture group with name `groupname`.\n\n```jldoctest\njulia> msg = \"#Hello# from Julia\";\n\njulia> replace(msg, r\"#(.+)# from (?\\w+)\" => s\"FROM: \\g; MESSAGE: \\1\")\n\"FROM: Julia; MESSAGE: Hello\"\n```\n"}],"Base.@__FILE__":[{"Tuple{}":" @__FILE__ -> AbstractString\n\nExpand to a string with the path to the file containing the\nmacrocall, or an empty string if evaluated by `julia -e `.\nReturn `nothing` if the macro was missing parser source information.\nAlternatively see [`PROGRAM_FILE`](@ref).\n"}],"Base.uabs":[{"Tuple{Integer}":" uabs(x::Integer)\n\nReturn the absolute value of `x`, possibly returning a different type should the\noperation be susceptible to overflow. This typically arises when `x` is a two's complement\nsigned integer, so that `abs(typemin(x)) == typemin(x) < 0`, in which case the result of\n`uabs(x)` will be an unsigned integer of the same size.\n"}],"Base.Semaphore":[{"Union{}":" Semaphore(sem_size)\n\nCreate a counting semaphore that allows at most `sem_size`\nacquires to be in use at any time.\nEach acquire must be matched with a release.\n"}],"Base.reset":[{"Union{Tuple{T}, Tuple{T}} where T<:IO":" reset(s)\n\nReset a stream `s` to a previously marked position, and remove the mark. Return the\npreviously marked position. Throw an error if the stream is not marked.\n\nSee also [`mark`](@ref), [`unmark`](@ref), [`ismarked`](@ref).\n"}],"Base.canonicalize2":[{"Tuple{Any,Any}":" hi, lo = canonicalize2(big, little)\n\nGenerate a representation where all the nonzero bits in `hi` are more\nsignificant than any of the nonzero bits in `lo`. `big` must be larger\nin absolute value than `little`.\n"}],"Base.include":[{"Union{}":" Base.include([m::Module,] path::AbstractString)\n\nEvaluate the contents of the input source file in the global scope of module `m`.\nEvery module (except those defined with [`baremodule`](@ref)) has its own 1-argument\ndefinition of `include`, which evaluates the file in that module.\nReturns the result of the last evaluated expression of the input file. During including,\na task-local include path is set to the directory containing the file. Nested calls to\n`include` will search relative to that path. This function is typically used to load source\ninteractively, or to combine files in packages that are broken into multiple source files.\n"}],"Base.Irrational":[{"Union{}":" Irrational{sym} <: AbstractIrrational\n\nNumber type representing an exact irrational value denoted by the\nsymbol `sym`.\n"}],"Base.@irrational":[{"Tuple{Any,Any,Any}":"\t@irrational sym val def\n\t@irrational(sym, val, def)\n\nDefine a new `Irrational` value, `sym`, with pre-computed `Float64` value `val`,\nand arbitrary-precision definition in terms of `BigFloat`s given be the expression `def`.\n"}],"Base.mod":[{"Tuple{Integer,Base.OneTo}":" mod(x::Integer, r::AbstractUnitRange)\n\nFind `y` in the range `r` such that ``x ≡ y (mod n)``, where `n = length(r)`,\ni.e. `y = mod(x - first(r), n) + first(r)`.\n\nSee also: [`mod1`](@ref).\n\n# Examples\n```jldoctest\njulia> mod(0, Base.OneTo(3))\n3\n\njulia> mod(3, 0:2)\n0\n```\n\n!!! compat \"Julia 1.3\"\n This method requires at least Julia 1.3.\n"},{"Tuple{Integer,Type{#s662} where #s662<:Integer}":" rem(x::Integer, T::Type{<:Integer}) -> T\n mod(x::Integer, T::Type{<:Integer}) -> T\n %(x::Integer, T::Type{<:Integer}) -> T\n\nFind `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable\nin `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.\nIf `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to\na conversion to `T`.\n\n# Examples\n```jldoctest\njulia> 129 % Int8\n-127\n```\n"},{"Union{Tuple{T}, Tuple{T,T}} where T<:Integer":" mod(x, y)\n rem(x, y, RoundDown)\n\nThe reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored\ndivision by `y`, i.e. `x - y*fld(x,y)` if computed without intermediate rounding.\n\nThe result will have the same sign as `y`, and magnitude less than `abs(y)` (with some\nexceptions, see note below).\n\n!!! note\n\n When used with floating point values, the exact result may not be representable by the\n type, and so rounding error may occur. In particular, if the exact result is very\n close to `y`, then it may be rounded to `y`.\n\n```jldoctest\njulia> mod(8, 3)\n2\n\njulia> mod(9, 3)\n0\n\njulia> mod(8.9, 3)\n2.9000000000000004\n\njulia> mod(eps(), 3)\n2.220446049250313e-16\n\njulia> mod(-eps(), 3)\n3.0\n```\n"}],"Base.Cptrdiff_t":[{"Union{}":" Cptrdiff_t\n\nEquivalent to the native `ptrdiff_t` c-type (`Int`).\n"}],"Base.resize!":[{"Tuple{Array{T,1} where T,Integer}":" resize!(a::Vector, n::Integer) -> Vector\n\nResize `a` to contain `n` elements. If `n` is smaller than the current collection\nlength, the first `n` elements will be retained. If `n` is larger, the new elements are not\nguaranteed to be initialized.\n\n# Examples\n```jldoctest\njulia> resize!([6, 5, 4, 3, 2, 1], 3)\n3-element Array{Int64,1}:\n 6\n 5\n 4\n\njulia> a = resize!([6, 5, 4, 3, 2, 1], 8);\n\njulia> length(a)\n8\n\njulia> a[1:6]\n6-element Array{Int64,1}:\n 6\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.fieldoffset":[{"Tuple{DataType,Integer}":" fieldoffset(type, i)\n\nThe byte offset of field `i` of a type relative to the data start. For example, we could\nuse it in the following manner to summarize information about a struct:\n\n```jldoctest\njulia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i = 1:fieldcount(T)];\n\njulia> structinfo(Base.Filesystem.StatStruct)\n12-element Array{Tuple{UInt64,Symbol,DataType},1}:\n (0x0000000000000000, :device, UInt64)\n (0x0000000000000008, :inode, UInt64)\n (0x0000000000000010, :mode, UInt64)\n (0x0000000000000018, :nlink, Int64)\n (0x0000000000000020, :uid, UInt64)\n (0x0000000000000028, :gid, UInt64)\n (0x0000000000000030, :rdev, UInt64)\n (0x0000000000000038, :size, Int64)\n (0x0000000000000040, :blksize, Int64)\n (0x0000000000000048, :blocks, Int64)\n (0x0000000000000050, :mtime, Float64)\n (0x0000000000000058, :ctime, Float64)\n```\n"}],"Base.isreadonly":[{"Tuple{Any}":" isreadonly(io) -> Bool\n\nDetermine whether a stream is read-only.\n\n# Examples\n```jldoctest\njulia> io = IOBuffer(\"JuliaLang is a GitHub organization\");\n\njulia> isreadonly(io)\ntrue\n\njulia> io = IOBuffer();\n\njulia> isreadonly(io)\nfalse\n```\n"}],"Base.@isdefined":[{"Tuple{Symbol}":" @isdefined s -> Bool\n\nTests whether variable `s` is defined in the current scope.\n\nSee also [`isdefined`](@ref).\n\n# Examples\n```jldoctest\njulia> function f()\n println(@isdefined x)\n x = 3\n println(@isdefined x)\n end\nf (generic function with 1 method)\n\njulia> f()\nfalse\ntrue\n```\n"}],"Base.minimum!":[{"Tuple{Any,Any}":" minimum!(r, A)\n\nCompute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`.\n\n# Examples\n```jldoctest\njulia> A = [1 2; 3 4]\n2×2 Array{Int64,2}:\n 1 2\n 3 4\n\njulia> minimum!([1; 1], A)\n2-element Array{Int64,1}:\n 1\n 3\n\njulia> minimum!([1 1], A)\n1×2 Array{Int64,2}:\n 1 2\n```\n"}],"Base.Clong":[{"Union{}":" Clong\n\nEquivalent to the native `signed long` c-type.\n"}],"Base.replace!":[{"Tuple{Union{Function, Type},Any}":" replace!(new::Function, A; [count::Integer])\n\nReplace each element `x` in collection `A` by `new(x)`.\nIf `count` is specified, then replace at most `count` values in total\n(replacements being defined as `new(x) !== x`).\n\n# Examples\n```jldoctest\njulia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])\n4-element Array{Int64,1}:\n 2\n 2\n 6\n 4\n\njulia> replace!(Dict(1=>2, 3=>4)) do kv\n first(kv) < 3 ? first(kv)=>3 : kv\n end\nDict{Int64,Int64} with 2 entries:\n 3 => 4\n 1 => 3\n\njulia> replace!(x->2x, Set([3, 6]))\nSet{Int64} with 2 elements:\n 6\n 12\n```\n"},{"Tuple{Any,Vararg{Pair,N} where N}":" replace!(A, old_new::Pair...; [count::Integer])\n\nFor each pair `old=>new` in `old_new`, replace all occurrences\nof `old` in collection `A` by `new`.\nEquality is determined using [`isequal`](@ref).\nIf `count` is specified, then replace at most `count` occurrences in total.\nSee also [`replace`](@ref replace(A, old_new::Pair...)).\n\n# Examples\n```jldoctest\njulia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)\n4-element Array{Int64,1}:\n 0\n 4\n 1\n 3\n\njulia> replace!(Set([1, 2, 3]), 1=>0)\nSet{Int64} with 3 elements:\n 0\n 2\n 3\n```\n"}],"Base.=>":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.in":[{"Union{}":" in(item, collection) -> Bool\n ∈(item, collection) -> Bool\n ∋(collection, item) -> Bool\n\nDetermine whether an item is in the given collection, in the sense that it is\n[`==`](@ref) to one of the values generated by iterating over the collection.\nReturns a `Bool` value, except if `item` is [`missing`](@ref) or `collection`\ncontains `missing` but not `item`, in which case `missing` is returned\n([three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),\nmatching the behavior of [`any`](@ref) and [`==`](@ref)).\n\nSome collections follow a slightly different definition. For example,\n[`Set`](@ref)s check whether the item [`isequal`](@ref) to one of the elements.\n[`Dict`](@ref)s look for `key=>value` pairs, and the key is compared using\n[`isequal`](@ref). To test for the presence of a key in a dictionary,\nuse [`haskey`](@ref) or `k in keys(dict)`. For these collections, the result\nis always a `Bool` and never `missing`.\n\n# Examples\n```jldoctest\njulia> a = 1:3:20\n1:3:19\n\njulia> 4 in a\ntrue\n\njulia> 5 in a\nfalse\n\njulia> missing in [1, 2]\nmissing\n\njulia> 1 in [2, missing]\nmissing\n\njulia> 1 in [1, missing]\ntrue\n\njulia> missing in Set([1, 2])\nfalse\n```\n"},{"Tuple{Any}":" in(x)\n\nCreate a function that checks whether its argument is [`in`](@ref) `x`, i.e.\na function equivalent to `y -> y in x`.\n\nThe returned function is of type `Base.Fix2{typeof(in)}`, which can be\nused to implement specialized methods.\n"}],"Base.@timed":[{"Tuple{Any}":" @timed\n\nA macro to execute an expression, and return the value of the expression, elapsed time,\ntotal bytes allocated, garbage collection time, and an object with various memory allocation\ncounters.\n\nSee also [`@time`](@ref), [`@timev`](@ref), [`@elapsed`](@ref), and\n[`@allocated`](@ref).\n\n```julia-repl\njulia> val, t, bytes, gctime, memallocs = @timed rand(10^6);\n\njulia> t\n0.006634834\n\njulia> bytes\n8000256\n\njulia> gctime\n0.0055765\n\njulia> fieldnames(typeof(memallocs))\n(:allocd, :malloc, :realloc, :poolalloc, :bigalloc, :freecall, :total_time, :pause, :full_sweep)\n\njulia> memallocs.total_time\n5576500\n```\n"}],"Base.reduce":[{"Tuple{Any,AbstractArray}":" reduce(f, A; dims=:, [init])\n\nReduce 2-argument function `f` along dimensions of `A`. `dims` is a vector specifying the\ndimensions to reduce, and the keyword argument `init` is the initial value to use in the\nreductions. For `+`, `*`, `max` and `min` the `init` argument is optional.\n\nThe associativity of the reduction is implementation-dependent; if you need a particular\nassociativity, e.g. left-to-right, you should write your own loop or consider using\n[`foldl`](@ref) or [`foldr`](@ref). See documentation for [`reduce`](@ref).\n\n# Examples\n```jldoctest\njulia> a = reshape(Vector(1:16), (4,4))\n4×4 Array{Int64,2}:\n 1 5 9 13\n 2 6 10 14\n 3 7 11 15\n 4 8 12 16\n\njulia> reduce(max, a, dims=2)\n4×1 Array{Int64,2}:\n 13\n 14\n 15\n 16\n\njulia> reduce(max, a, dims=1)\n1×4 Array{Int64,2}:\n 4 8 12 16\n```\n"},{"Tuple{Any,Any}":" reduce(op, itr; [init])\n\nReduce the given collection `itr` with the given binary operator `op`. If provided, the\ninitial value `init` must be a neutral element for `op` that will be returned for empty\ncollections. It is unspecified whether `init` is used for non-empty collections.\n\nFor empty collections, providing `init` will be necessary, except for some special cases\n(e.g. when `op` is one of `+`, `*`, `max`, `min`, `&`, `|`) when Julia can determine the\nneutral element of `op`.\n\nReductions for certain commonly-used operators may have special implementations, and\nshould be used instead: `maximum(itr)`, `minimum(itr)`, `sum(itr)`, `prod(itr)`,\n `any(itr)`, `all(itr)`.\n\nThe associativity of the reduction is implementation dependent. This means that you can't\nuse non-associative operations like `-` because it is undefined whether `reduce(-,[1,2,3])`\nshould be evaluated as `(1-2)-3` or `1-(2-3)`. Use [`foldl`](@ref) or\n[`foldr`](@ref) instead for guaranteed left or right associativity.\n\nSome operations accumulate error. Parallelism will be easier if the reduction can be\nexecuted in groups. Future versions of Julia might change the algorithm. Note that the\nelements are not reordered if you use an ordered collection.\n\n# Examples\n```jldoctest\njulia> reduce(*, [2; 3; 4])\n24\n\njulia> reduce(*, [2; 3; 4]; init=-1)\n-24\n```\n"}],"Base.sign":[{"Tuple{Number}":" sign(x)\n\nReturn zero if `x==0` and ``x/|x|`` otherwise (i.e., ±1 for real `x`).\n"}],"Base.CFunction":[{"Union{}":" CFunction struct\n\nGarbage-collection handle for the return value from `@cfunction`\nwhen the first argument is annotated with '\\$'.\nLike all `cfunction` handles, it should be passed to `ccall` as a `Ptr{Cvoid}`,\nand will be converted automatically at the call site to the appropriate type.\n\nSee [`@cfunction`](@ref).\n"}],"Base.reverse!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}, Tuple{AbstractArray{T,1} where T,Any,Any}}":" reverse!(v [, start=1 [, stop=length(v) ]]) -> v\n\nIn-place version of [`reverse`](@ref).\n\n# Examples\n```jldoctest\njulia> A = Vector(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> reverse!(A);\n\njulia> A\n5-element Array{Int64,1}:\n 5\n 4\n 3\n 2\n 1\n```\n"}],"Base.pointer":[{"Union{}":" pointer(array [, index])\n\nGet the native address of an array or string, optionally at a given location `index`.\n\nThis function is \"unsafe\". Be careful to ensure that a Julia reference to\n`array` exists as long as this pointer will be used. The [`GC.@preserve`](@ref)\nmacro should be used to protect the `array` argument from garbage collection\nwithin a given block of code.\n\nCalling [`Ref(array[, index])`](@ref Ref) is generally preferable to this function as it guarantees validity.\n"}],"Base.cumsum":[{"Union{Tuple{AbstractArray{T,N} where N}, Tuple{T}} where T":" cumsum(A; dims::Integer)\n\nCumulative sum along the dimension `dims`. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> a = [1 2 3; 4 5 6]\n2×3 Array{Int64,2}:\n 1 2 3\n 4 5 6\n\njulia> cumsum(a, dims=1)\n2×3 Array{Int64,2}:\n 1 2 3\n 5 7 9\n\njulia> cumsum(a, dims=2)\n2×3 Array{Int64,2}:\n 1 3 6\n 4 9 15\n```\n"},{"Tuple{AbstractArray{T,1} where T}":" cumsum(x::AbstractVector)\n\nCumulative sum a vector. See also [`cumsum!`](@ref)\nto use a preallocated output array, both for performance and to control the precision of the\noutput (e.g. to avoid overflow).\n\n# Examples\n```jldoctest\njulia> cumsum([1, 1, 1])\n3-element Array{Int64,1}:\n 1\n 2\n 3\n\njulia> cumsum([fill(1, 2) for i in 1:3])\n3-element Array{Array{Int64,1},1}:\n [1, 1]\n [2, 2]\n [3, 3]\n```\n"}],"Base.ReentrantLock":[{"Union{}":" ReentrantLock()\n\nCreates a re-entrant lock for synchronizing [`Task`](@ref)s.\nThe same task can acquire the lock as many times as required.\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n"}],"Base.Pair":[{"Union{}":" Pair(x, y)\n x => y\n\nConstruct a `Pair` object with type `Pair{typeof(x), typeof(y)}`. The elements\nare stored in the fields `first` and `second`. They can also be accessed via\niteration (but a `Pair` is treated as a single \"scalar\" for broadcasting operations).\n\nSee also: [`Dict`](@ref)\n\n# Examples\n```jldoctest\njulia> p = \"foo\" => 7\n\"foo\" => 7\n\njulia> typeof(p)\nPair{String,Int64}\n\njulia> p.first\n\"foo\"\n\njulia> for x in p\n println(x)\n end\nfoo\n7\n```\n"}],"Base.identity":[{"Tuple{Any}":" identity(x)\n\nThe identity function. Returns its argument.\n\n# Examples\n```jldoctest\njulia> identity(\"Well, what did you expect?\")\n\"Well, what did you expect?\"\n```\n"}],"Base.mapfoldr":[{"Tuple{Any,Any,Any}":" mapfoldr(f, op, itr; [init])\n\nLike [`mapreduce`](@ref), but with guaranteed right associativity, as in [`foldr`](@ref). If\nprovided, the keyword argument `init` will be used exactly once. In general, it will be\nnecessary to provide `init` to work with empty collections.\n"}],"Base.reduce_empty":[{"Tuple{Any,Any}":" Base.reduce_empty(op, T)\n\nThe value to be returned when calling [`reduce`](@ref), [`foldl`](@ref) or [`foldr`](@ref)\nwith reduction `op` over an empty array with element type of `T`.\n\nIf not defined, this will throw an `ArgumentError`.\n"}],"Base.floatmax":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" floatmax(T)\n\nThe highest finite value representable by the given floating-point DataType `T`.\n\n# Examples\n```jldoctest\njulia> floatmax(Float16)\nFloat16(6.55e4)\n\njulia> floatmax(Float32)\n3.4028235f38\n```\n"}],"Base.FlatteningRF":[{"Union{}":" FlatteningRF(rf) -> rf′\n\nCreate a flattening reducing function that is roughly equivalent to\n`rf′(acc, x) = foldl(rf, x; init=acc)`.\n"}],"Base.ones":[{"Union{}":" ones([T=Float64,] dims::Tuple)\n ones([T=Float64,] dims...)\n\nCreate an `Array`, with element type `T`, of all ones with size specified by `dims`.\nSee also: [`fill`](@ref), [`zeros`](@ref).\n\n# Examples\n```jldoctest\njulia> ones(1,2)\n1×2 Array{Float64,2}:\n 1.0 1.0\n\njulia> ones(ComplexF64, 2, 3)\n2×3 Array{Complex{Float64},2}:\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n 1.0+0.0im 1.0+0.0im 1.0+0.0im\n```\n"}],"Base.delete!":[{"Tuple{Any,Any}":" delete!(collection, key)\n\nDelete the mapping for the given key in a collection, if any, and return the collection.\n\n# Examples\n```jldoctest\njulia> d = Dict(\"a\"=>1, \"b\"=>2)\nDict{String,Int64} with 2 entries:\n \"b\" => 2\n \"a\" => 1\n\njulia> delete!(d, \"b\")\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n\njulia> delete!(d, \"b\") # d is left unchanged\nDict{String,Int64} with 1 entry:\n \"a\" => 1\n```\n"}],"Base.symdiff":[{"Tuple{Any,Vararg{Any,N} where N}":" symdiff(s, itrs...)\n\nConstruct the symmetric difference of elements in the passed in sets.\nWhen `s` is not an `AbstractSet`, the order is maintained.\nNote that in this case the multiplicity of elements matters.\n\n# Examples\n```jldoctest\njulia> symdiff([1,2,3], [3,4,5], [4,5,6])\n3-element Array{Int64,1}:\n 1\n 2\n 6\n\njulia> symdiff([1,2,1], [2, 1, 2])\n2-element Array{Int64,1}:\n 1\n 2\n\njulia> symdiff(unique([1,2,1]), unique([2, 1, 2]))\n0-element Array{Int64,1}\n```\n"}],"Base.hasproperty":[{"Tuple{Any,Symbol}":" hasproperty(x, s::Symbol)\n\nReturn a boolean indicating whether the object `x` has `s` as one of its own properties.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.supertype":[{"Tuple{DataType}":" supertype(T::DataType)\n\nReturn the supertype of DataType `T`.\n\n# Examples\n```jldoctest\njulia> supertype(Int32)\nSigned\n```\n"}],"Base.<<":[{"Tuple{BitArray{1},Int64}":" <<(B::BitVector, n) -> BitVector\n\nLeft bit shift operator, `B << n`. For `n >= 0`, the result is `B`\nwith elements shifted `n` positions backwards, filling with `false`\nvalues. If `n < 0`, elements are shifted forwards. Equivalent to\n`B >> -n`.\n\n# Examples\n```jldoctest\njulia> B = BitVector([true, false, true, false, false])\n5-element BitArray{1}:\n 1\n 0\n 1\n 0\n 0\n\njulia> B << 1\n5-element BitArray{1}:\n 0\n 1\n 0\n 0\n 0\n\njulia> B << -1\n5-element BitArray{1}:\n 0\n 1\n 0\n 1\n 0\n```\n"},{"Tuple{Integer,Integer}":" <<(x, n)\n\nLeft bit shift operator, `x << n`. For `n >= 0`, the result is `x` shifted left\nby `n` bits, filling with `0`s. This is equivalent to `x * 2^n`. For `n < 0`,\nthis is equivalent to `x >> -n`.\n\n# Examples\n```jldoctest\njulia> Int8(3) << 2\n12\n\njulia> bitstring(Int8(3))\n\"00000011\"\n\njulia> bitstring(Int8(12))\n\"00001100\"\n```\nSee also [`>>`](@ref), [`>>>`](@ref).\n"}],"Base.length":[{"Union{}":" length(collection) -> Integer\n\nReturn the number of elements in the collection.\n\nUse [`lastindex`](@ref) to get the last valid index of an indexable collection.\n\n# Examples\n```jldoctest\njulia> length(1:5)\n5\n\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractArray}":" length(A::AbstractArray)\n\nReturn the number of elements in the array, defaults to `prod(size(A))`.\n\n# Examples\n```jldoctest\njulia> length([1, 2, 3, 4])\n4\n\njulia> length([1 2; 3 4])\n4\n```\n"},{"Tuple{AbstractString}":" length(s::AbstractString) -> Int\n length(s::AbstractString, i::Integer, j::Integer) -> Int\n\nThe number of characters in string `s` from indices `i` through `j`. This is\ncomputed as the number of code unit indices from `i` to `j` which are valid\ncharacter indices. With only a single string argument, this computes the\nnumber of characters in the entire string. With `i` and `j` arguments it\ncomputes the number of indices between `i` and `j` inclusive that are valid\nindices in the string `s`. In addition to in-bounds values, `i` may take the\nout-of-bounds value `ncodeunits(s) + 1` and `j` may take the out-of-bounds\nvalue `0`.\n\nSee also: [`isvalid`](@ref), [`ncodeunits`](@ref), [`lastindex`](@ref),\n[`thisind`](@ref), [`nextind`](@ref), [`prevind`](@ref)\n\n# Examples\n```jldoctest\njulia> length(\"jμΛIα\")\n5\n```\n"}],"Base.prevfloat":[{"Tuple{AbstractFloat}":" prevfloat(x::AbstractFloat)\n\nReturn the largest floating point number `y` of the same type as `x` such `y < x`. If no\nsuch `y` exists (e.g. if `x` is `-Inf` or `NaN`), then return `x`.\n"},{"Tuple{AbstractFloat,Integer}":" prevfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `prevfloat` to `x` if `n >= 0`, or `-n`\napplications of `nextfloat` if `n < 0`.\n"}],"Base.eachcol":[{"Tuple{Union{AbstractArray{T,1}, AbstractArray{T,2}} where T}":" eachcol(A::AbstractVecOrMat)\n\nCreate a generator that iterates over the second dimension of matrix `A`, returning the\ncolumns as views.\n\nSee also [`eachrow`](@ref) and [`eachslice`](@ref).\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.pkgdir":[{"Tuple{Module}":" pkgdir(m::Module)\n\nReturn the root directory of the package that imported module `m`,\nor `nothing` if `m` was not imported from a package.\n"}],"Base.IOStream":[{"Union{}":" IOStream\n\nA buffered IO stream wrapping an OS file descriptor.\nMostly used to represent files returned by [`open`](@ref).\n"}],"Base.stride":[{"Tuple{AbstractArray,Integer}":" stride(A, k::Integer)\n\nReturn the distance in memory (in number of elements) between adjacent elements in dimension `k`.\n\n# Examples\n```jldoctest\njulia> A = fill(1, (3,4,5));\n\njulia> stride(A,2)\n3\n\njulia> stride(A,3)\n12\n```\n"}],"Base.real":[{"Tuple{Complex}":" real(z)\n\nReturn the real part of the complex number `z`.\n\n# Examples\n```jldoctest\njulia> real(1 + 3im)\n1\n```\n"},{"Tuple{Type}":" real(T::Type)\n\nReturn the type that represents the real part of a value of type `T`.\ne.g: for `T == Complex{R}`, returns `R`.\nEquivalent to `typeof(real(zero(T)))`.\n\n# Examples\n```jldoctest\njulia> real(Complex{Int})\nInt64\n\njulia> real(Float64)\nFloat64\n```\n"}],"Base.IteratorSize":[{"Tuple{Any}":" IteratorSize(itertype::Type) -> IteratorSize\n\nGiven the type of an iterator, return one of the following values:\n\n* `SizeUnknown()` if the length (number of elements) cannot be determined in advance.\n* `HasLength()` if there is a fixed, finite length.\n* `HasShape{N}()` if there is a known length plus a notion of multidimensional shape (as for an array).\n In this case `N` should give the number of dimensions, and the [`axes`](@ref) function is valid\n for the iterator.\n* `IsInfinite()` if the iterator yields values forever.\n\nThe default value (for iterators that do not define this function) is `HasLength()`.\nThis means that most iterators are assumed to implement [`length`](@ref).\n\nThis trait is generally used to select between algorithms that pre-allocate space for their\nresult, and algorithms that resize their result incrementally.\n\n```jldoctest\njulia> Base.IteratorSize(1:5)\nBase.HasShape{1}()\n\njulia> Base.IteratorSize((2,3))\nBase.HasLength()\n```\n"}],"Base.TwicePrecision":[{"Union{}":" TwicePrecision{T}(hi::T, lo::T)\n TwicePrecision{T}((num, denom))\n\nA number with twice the precision of `T`, e.g., quad-precision if `T =\nFloat64`. `hi` represents the high bits (most significant bits) and\n`lo` the low bits (least significant bits). Rational values\n`num//denom` can be approximated conveniently using the syntax\n`TwicePrecision{T}((num, denom))`.\n\nWhen used with `T<:Union{Float16,Float32,Float64}` to construct an \"exact\"\n`StepRangeLen`, `ref` should be the range element with smallest\nmagnitude and `offset` set to the corresponding index. For\nefficiency, multiplication of `step` by the index is not performed at\ntwice precision: `step.hi` should have enough trailing zeros in its\n`bits` representation that `(0:len-1)*step.hi` is exact (has no\nroundoff error). If `step` has an exact rational representation\n`num//denom`, then you can construct `step` using\n\n step = TwicePrecision{T}((num, denom), nb)\n\nwhere `nb` is the number of trailing zero bits of `step.hi`. For\nranges, you can set `nb = ceil(Int, log2(len-1))`.\n"}],"Base.setindex":[{"Tuple{NamedTuple,Any,Symbol}":" setindex(nt::NamedTuple, val, key::Symbol)\n\nConstructs a new `NamedTuple` with the key `key` set to `val`.\nIf `key` is already in the keys of `nt`, `val` replaces the old value.\n\n```jldoctest\njulia> nt = (a = 3,)\n(a = 3,)\n\njulia> Base.setindex(nt, 33, :b)\n(a = 3, b = 33)\n\njulia> Base.setindex(nt, 4, :a)\n(a = 4,)\n\njulia> Base.setindex(nt, \"a\", :a)\n(a = \"a\",)\n```\n"},{"Tuple{Tuple,Any,Integer}":" setindex(c::Tuple, v, i::Integer)\n\nCreates a new tuple similar to `x` with the value at index `i` set to `v`.\nThrows a `BoundsError` when out of bounds.\n\n# Examples\n```jldoctest\njulia> Base.setindex((1, 2, 6), 2, 3) == (1, 2, 2)\ntrue\n```\n"}],"Base.readlines":[{"Tuple{AbstractString}":" readlines(io::IO=stdin; keep::Bool=false)\n readlines(filename::AbstractString; keep::Bool=false)\n\nRead all lines of an I/O stream or a file as a vector of strings. Behavior is\nequivalent to saving the result of reading [`readline`](@ref) repeatedly with the same\narguments and saving the resulting lines as a vector of strings.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end\n57\n\njulia> readlines(\"my_file.txt\")\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\"\n \"It has many members.\"\n\njulia> readlines(\"my_file.txt\", keep=true)\n2-element Array{String,1}:\n \"JuliaLang is a GitHub organization.\\n\"\n \"It has many members.\\n\"\n\njulia> rm(\"my_file.txt\")\n```\n"}],"Base.GenericCondition":[{"Union{}":" GenericCondition\n\nAbstract implementation of a condition object\nfor synchonizing tasks objects with a given lock.\n"}],"Base.UUID":[{"Union{}":" Represents a Universally Unique Identifier (UUID).\n Can be built from one `UInt128` (all byte values), two `UInt64`, or four `UInt32`.\n Conversion from a string will check the UUID validity.\n"}],"Base.@views":[{"Tuple{Any}":" @views expression\n\nConvert every array-slicing operation in the given expression\n(which may be a `begin`/`end` block, loop, function, etc.)\nto return a view. Scalar indices, non-array types, and\nexplicit [`getindex`](@ref) calls (as opposed to `array[...]`) are\nunaffected.\n\n!!! note\n The `@views` macro only affects `array[...]` expressions\n that appear explicitly in the given `expression`, not array slicing that\n occurs in functions called by that code.\n\n# Examples\n```jldoctest\njulia> A = zeros(3, 3);\n\njulia> @views for row in 1:3\n b = A[row, :]\n b[:] .= row\n end\n\njulia> A\n3×3 Array{Float64,2}:\n 1.0 1.0 1.0\n 2.0 2.0 2.0\n 3.0 3.0 3.0\n```\n"}],"Base.merge":[{"Tuple{AbstractDict,Vararg{AbstractDict,N} where N}":" merge(d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. If the same key is present in another collection, the\nvalue for that key will be the value it has in the last collection listed.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4711.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n\njulia> merge(b, a)\nDict{String,Float64} with 3 entries:\n \"bar\" => 42.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Tuple{NamedTuple,Any}":" merge(a::NamedTuple, iterable)\n\nInterpret an iterable of key-value pairs as a named tuple, and perform a merge.\n\n```jldoctest\njulia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])\n(a = 1, b = 4, c = 3, d = 5)\n```\n"},{"Tuple{Function,AbstractDict,Vararg{AbstractDict,N} where N}":" merge(combine, d::AbstractDict, others::AbstractDict...)\n\nConstruct a merged collection from the given collections. If necessary, the\ntypes of the resulting collection will be promoted to accommodate the types of\nthe merged collections. Values with the same key will be combined using the\ncombiner function.\n\n# Examples\n```jldoctest\njulia> a = Dict(\"foo\" => 0.0, \"bar\" => 42.0)\nDict{String,Float64} with 2 entries:\n \"bar\" => 42.0\n \"foo\" => 0.0\n\njulia> b = Dict(\"baz\" => 17, \"bar\" => 4711)\nDict{String,Int64} with 2 entries:\n \"bar\" => 4711\n \"baz\" => 17\n\njulia> merge(+, a, b)\nDict{String,Float64} with 3 entries:\n \"bar\" => 4753.0\n \"baz\" => 17.0\n \"foo\" => 0.0\n```\n"},{"Union{Tuple{bn}, Tuple{an}, Tuple{NamedTuple{an,T} where T<:Tuple,NamedTuple{bn,T} where T<:Tuple}} where bn where an":" merge(a::NamedTuple, bs::NamedTuple...)\n\nConstruct a new named tuple by merging two or more existing ones, in a left-associative\nmanner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields\npresent in both the leftmost and rightmost named tuples take the same position as they are found in the\nleftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that\ncontains that field. Fields present in only the rightmost named tuple of a pair are appended at the end.\nA fallback is implemented for when only a single named tuple is supplied,\nwith signature `merge(a::NamedTuple)`.\n\n!!! compat \"Julia 1.1\"\n Merging 3 or more `NamedTuple` requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> merge((a=1, b=2, c=3), (b=4, d=5))\n(a = 1, b = 4, c = 3, d = 5)\n```\n\n```jldoctest\njulia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))\n(a = 1, b = 3, c = (d = 2,))\n```\n"}],"Base.readchomp":[{"Tuple{Any}":" readchomp(x)\n\nRead the entirety of `x` as a string and remove a single trailing newline\nif there is one. Equivalent to `chomp(read(x, String))`.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\nIt has many members.\\n\");\n end;\n\njulia> readchomp(\"my_file.txt\")\n\"JuliaLang is a GitHub organization.\\nIt has many members.\"\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.Missing":[{"Union{}":" Missing\n\nA type with no fields whose singleton instance [`missing`](@ref) is used\nto represent missing values.\n"}],"Base.//":[{"Tuple{Integer,Integer}":" //(num, den)\n\nDivide two integers or rational numbers, giving a [`Rational`](@ref) result.\n\n# Examples\n```jldoctest\njulia> 3 // 5\n3//5\n\njulia> (3 // 5) // (2 // 1)\n3//10\n```\n"}],"Base.bitsunionsize":[{"Tuple{Union}":" Base.bitsunionsize(U::Union)\n\nFor a `Union` of [`isbitstype`](@ref) types, return the size of the largest type; assumes `Base.isbitsunion(U) == true`.\n\n# Examples\n```jldoctest\njulia> Base.bitsunionsize(Union{Float64, UInt8})\n0x0000000000000008\n\njulia> Base.bitsunionsize(Union{Float64, UInt8, Int128})\n0x0000000000000010\n```\n"}],"Base.invperm":[{"Tuple{AbstractArray{T,1} where T}":" invperm(v)\n\nReturn the inverse permutation of `v`.\nIf `B = A[v]`, then `A == B[invperm(v)]`.\n\n# Examples\n```jldoctest\njulia> v = [2; 4; 3; 1];\n\njulia> invperm(v)\n4-element Array{Int64,1}:\n 4\n 1\n 3\n 2\n\njulia> A = ['a','b','c','d'];\n\njulia> B = A[v]\n4-element Array{Char,1}:\n 'b'\n 'd'\n 'c'\n 'a'\n\njulia> B[invperm(v)]\n4-element Array{Char,1}:\n 'a'\n 'b'\n 'c'\n 'd'\n```\n"}],"Base.lstrip":[{"Tuple{Any,AbstractString}":" lstrip([pred=isspace,] str::AbstractString) -> SubString\n lstrip(str::AbstractString, chars) -> SubString\n\nRemove leading characters from `str`, either those specified by `chars` or those for\nwhich the function `pred` returns `true`.\n\nThe default behaviour is to remove leading whitespace and delimiters: see\n[`isspace`](@ref) for precise details.\n\nThe optional `chars` argument specifies which characters to remove: it can be a single\ncharacter, or a vector or set of characters.\n\n# Examples\n```jldoctest\njulia> a = lpad(\"March\", 20)\n\" March\"\n\njulia> lstrip(a)\n\"March\"\n```\n"}],"Base.nextfloat":[{"Tuple{Union{Float16, Float32, Float64},Integer}":" nextfloat(x::AbstractFloat, n::Integer)\n\nThe result of `n` iterative applications of `nextfloat` to `x` if `n >= 0`, or `-n`\napplications of `prevfloat` if `n < 0`.\n"},{"Tuple{AbstractFloat}":" nextfloat(x::AbstractFloat)\n\nReturn the smallest floating point number `y` of the same type as `x` such `x < y`. If no\nsuch `y` exists (e.g. if `x` is `Inf` or `NaN`), then return `x`.\n"}],"Base.Cuintmax_t":[{"Union{}":" Cuintmax_t\n\nEquivalent to the native `uintmax_t` c-type ([`UInt64`](@ref)).\n"}],"Base.unsafe_copyto!":[{"Union{Tuple{T}, Tuple{Ptr{T},Ptr{T},Any}} where T":" unsafe_copyto!(dest::Ptr{T}, src::Ptr{T}, N)\n\nCopy `N` elements from a source pointer to a destination, with no checking. The size of an\nelement is determined by the type of the pointers.\n\nThe `unsafe` prefix on this function indicates that no validation is performed on the\npointers `dest` and `src` to ensure that they are valid. Incorrect usage may corrupt or\nsegfault your program, in the same manner as C.\n"},{"Union{Tuple{T}, Tuple{Array{T,N} where N,Any,Array{T,N} where N,Any,Any}} where T":" unsafe_copyto!(dest::Array, do, src::Array, so, N)\n\nCopy `N` elements from a source array to a destination, starting at offset `so` in the\nsource and `do` in the destination (1-indexed).\n\nThe `unsafe` prefix on this function indicates that no validation is performed to ensure\nthat N is inbounds on either array. Incorrect usage may corrupt or segfault your program, in\nthe same manner as C.\n"}],"Base.eachline":[{"Union{Tuple{}, Tuple{IO}}":" eachline(io::IO=stdin; keep::Bool=false)\n eachline(filename::AbstractString; keep::Bool=false)\n\nCreate an iterable `EachLine` object that will yield each line from an I/O stream\nor a file. Iteration calls [`readline`](@ref) on the stream argument repeatedly with\n`keep` passed through, determining whether trailing end-of-line characters are\nretained. When called with a file name, the file is opened once at the beginning of\niteration and closed at the end. If iteration is interrupted, the file will be\nclosed when the `EachLine` object is garbage collected.\n\n# Examples\n```jldoctest\njulia> open(\"my_file.txt\", \"w\") do io\n write(io, \"JuliaLang is a GitHub organization.\\n It has many members.\\n\");\n end;\n\njulia> for line in eachline(\"my_file.txt\")\n print(line)\n end\nJuliaLang is a GitHub organization. It has many members.\n\njulia> rm(\"my_file.txt\");\n```\n"}],"Base.isreal":[{"Tuple{Real}":" isreal(x) -> Bool\n\nTest whether `x` or all its elements are numerically equal to some real number\nincluding infinities and NaNs. `isreal(x)` is true if `isequal(x, real(x))`\nis true.\n\n# Examples\n```jldoctest\njulia> isreal(5.)\ntrue\n\njulia> isreal(Inf + 0im)\ntrue\n\njulia> isreal([4.; complex(0,1)])\nfalse\n```\n"}],"Base.StepRangeLen":[{"Union{}":" StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}\n StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}\n\nA range `r` where `r[i]` produces values of type `T` (in the second\nform, `T` is deduced automatically), parameterized by a `ref`erence\nvalue, a `step`, and the `len`gth. By default `ref` is the starting\nvalue `r[1]`, but alternatively you can supply it as the value of\n`r[offset]` for some other index `1 <= offset <= len`. In conjunction\nwith `TwicePrecision` this can be used to implement ranges that are\nfree of roundoff error.\n"}],"Base.last":[{"Tuple{Any}":" last(coll)\n\nGet the last element of an ordered collection, if it can be computed in O(1) time. This is\naccomplished by calling [`lastindex`](@ref) to get the last index. Return the end\npoint of an [`AbstractRange`](@ref) even if it is empty.\n\n# Examples\n```jldoctest\njulia> last(1:2:10)\n9\n\njulia> last([1; 2; 3; 4])\n4\n```\n"},{"Tuple{AbstractString,Integer}":" last(s::AbstractString, n::Integer)\n\nGet a string consisting of the last `n` characters of `s`.\n\n```jldoctest\njulia> last(\"∀ϵ≠0: ϵ²>0\", 0)\n\"\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 1)\n\"0\"\n\njulia> last(\"∀ϵ≠0: ϵ²>0\", 3)\n\"²>0\"\n```\n"}],"Base.ltoh":[{"Tuple{Any}":" ltoh(x)\n\nConvert the endianness of a value from Little-endian to that used by the Host.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Cartesian_docstrings.json b/en/docstrings/Cartesian_docstrings.json index 309a059d..4472da42 100644 --- a/en/docstrings/Cartesian_docstrings.json +++ b/en/docstrings/Cartesian_docstrings.json @@ -1 +1 @@ -{"Base.Cartesian.@nextract":[{"Tuple{Int64,Symbol,Symbol}":" @nextract N esym isym\n\nGenerate `N` variables `esym_1`, `esym_2`, ..., `esym_N` to extract values from `isym`.\n`isym` can be either a `Symbol` or anonymous-function expression.\n\n`@nextract 2 x y` would generate\n\n x_1 = y[1]\n x_2 = y[2]\n\nwhile `@nextract 3 x d->y[2d-1]` yields\n\n x_1 = y[1]\n x_2 = y[3]\n x_3 = y[5]\n\n"}],"Base.Cartesian.@nall":[{"Tuple{Int64,Expr}":" @nall N expr\n\nCheck whether all of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nall 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 && i_2 > 1 && i_3 > 1)`. This\ncan be convenient for bounds-checking.\n"}],"Base.Cartesian.@nif":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" @nif N conditionexpr expr\n @nif N conditionexpr expr elseexpr\n\nGenerates a sequence of `if ... elseif ... else ... end` statements. For example:\n\n @nif 3 d->(i_d >= size(A,d)) d->(error(\"Dimension \", d, \" too big\")) d->println(\"All OK\")\n\nwould generate:\n\n if i_1 > size(A, 1)\n error(\"Dimension \", 1, \" too big\")\n elseif i_2 > size(A, 2)\n error(\"Dimension \", 2, \" too big\")\n else\n println(\"All OK\")\n end\n"}],"Base.Cartesian.@ncall":[{"Tuple{Int64,Any,Vararg{Any,N} where N}":" @ncall N f sym...\n\nGenerate a function call expression. `sym` represents any number of function arguments, the\nlast of which may be an anonymous-function expression and is expanded into `N` arguments.\n\nFor example, `@ncall 3 func a` generates\n\n func(a_1, a_2, a_3)\n\nwhile `@ncall 2 func a b i->c[i]` yields\n\n func(a, b, c[1], c[2])\n\n"}],"Base.Cartesian.@nloops":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @nloops N itersym rangeexpr bodyexpr\n @nloops N itersym rangeexpr preexpr bodyexpr\n @nloops N itersym rangeexpr preexpr postexpr bodyexpr\n\nGenerate `N` nested loops, using `itersym` as the prefix for the iteration variables.\n`rangeexpr` may be an anonymous-function expression, or a simple symbol `var` in which case\nthe range is `axes(var, d)` for dimension `d`.\n\nOptionally, you can provide \"pre\" and \"post\" expressions. These get executed first and last,\nrespectively, in the body of each loop. For example:\n\n @nloops 2 i A d -> j_d = min(i_d, 5) begin\n s += @nref 2 A j\n end\n\nwould generate:\n\n for i_2 = axes(A, 2)\n j_2 = min(i_2, 5)\n for i_1 = axes(A, 1)\n j_1 = min(i_1, 5)\n s += A[j_1, j_2]\n end\n end\n\nIf you want just a post-expression, supply [`nothing`](@ref) for the pre-expression. Using\nparentheses and semicolons, you can supply multi-statement expressions.\n"}],"Base.Cartesian.@ntuple":[{"Tuple{Int64,Any}":" @ntuple N expr\n\nGenerates an `N`-tuple. `@ntuple 2 i` would generate `(i_1, i_2)`, and `@ntuple 2 k->k+1`\nwould generate `(2,3)`.\n"}],"Base.Cartesian.@nany":[{"Tuple{Int64,Expr}":" @nany N expr\n\nCheck whether any of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nany 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 || i_2 > 1 || i_3 > 1)`.\n"}],"Base.Cartesian.@nexprs":[{"Tuple{Int64,Expr}":" @nexprs N expr\n\nGenerate `N` expressions. `expr` should be an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]\nquote\n y[1] = A[1 + j]\n y[2] = A[2 + j]\n y[3] = A[3 + j]\n y[4] = A[4 + j]\nend\n```\n"}],"Base.Cartesian.@nref":[{"Tuple{Int64,Symbol,Any}":" @nref N A indexexpr\n\nGenerate expressions like `A[i_1, i_2, ...]`. `indexexpr` can either be an iteration-symbol\nprefix, or an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nref 3 A i\n:(A[i_1, i_2, i_3])\n```\n"}]} \ No newline at end of file +{"Base.Cartesian.@nref":[{"Tuple{Int64,Symbol,Any}":" @nref N A indexexpr\n\nGenerate expressions like `A[i_1, i_2, ...]`. `indexexpr` can either be an iteration-symbol\nprefix, or an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nref 3 A i\n:(A[i_1, i_2, i_3])\n```\n"}],"Base.Cartesian.@ncall":[{"Tuple{Int64,Any,Vararg{Any,N} where N}":" @ncall N f sym...\n\nGenerate a function call expression. `sym` represents any number of function arguments, the\nlast of which may be an anonymous-function expression and is expanded into `N` arguments.\n\nFor example, `@ncall 3 func a` generates\n\n func(a_1, a_2, a_3)\n\nwhile `@ncall 2 func a b i->c[i]` yields\n\n func(a, b, c[1], c[2])\n\n"}],"Base.Cartesian.@nexprs":[{"Tuple{Int64,Expr}":" @nexprs N expr\n\nGenerate `N` expressions. `expr` should be an anonymous-function expression.\n\n# Examples\n```jldoctest\njulia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]\nquote\n y[1] = A[1 + j]\n y[2] = A[2 + j]\n y[3] = A[3 + j]\n y[4] = A[4 + j]\nend\n```\n"}],"Base.Cartesian.@nloops":[{"Tuple{Any,Any,Any,Vararg{Any,N} where N}":" @nloops N itersym rangeexpr bodyexpr\n @nloops N itersym rangeexpr preexpr bodyexpr\n @nloops N itersym rangeexpr preexpr postexpr bodyexpr\n\nGenerate `N` nested loops, using `itersym` as the prefix for the iteration variables.\n`rangeexpr` may be an anonymous-function expression, or a simple symbol `var` in which case\nthe range is `axes(var, d)` for dimension `d`.\n\nOptionally, you can provide \"pre\" and \"post\" expressions. These get executed first and last,\nrespectively, in the body of each loop. For example:\n\n @nloops 2 i A d -> j_d = min(i_d, 5) begin\n s += @nref 2 A j\n end\n\nwould generate:\n\n for i_2 = axes(A, 2)\n j_2 = min(i_2, 5)\n for i_1 = axes(A, 1)\n j_1 = min(i_1, 5)\n s += A[j_1, j_2]\n end\n end\n\nIf you want just a post-expression, supply [`nothing`](@ref) for the pre-expression. Using\nparentheses and semicolons, you can supply multi-statement expressions.\n"}],"Base.Cartesian.@nall":[{"Tuple{Int64,Expr}":" @nall N expr\n\nCheck whether all of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nall 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 && i_2 > 1 && i_3 > 1)`. This\ncan be convenient for bounds-checking.\n"}],"Base.Cartesian.@nextract":[{"Tuple{Int64,Symbol,Symbol}":" @nextract N esym isym\n\nGenerate `N` variables `esym_1`, `esym_2`, ..., `esym_N` to extract values from `isym`.\n`isym` can be either a `Symbol` or anonymous-function expression.\n\n`@nextract 2 x y` would generate\n\n x_1 = y[1]\n x_2 = y[2]\n\nwhile `@nextract 3 x d->y[2d-1]` yields\n\n x_1 = y[1]\n x_2 = y[3]\n x_3 = y[5]\n\n"}],"Base.Cartesian.@nif":[{"Tuple{Any,Any,Vararg{Any,N} where N}":" @nif N conditionexpr expr\n @nif N conditionexpr expr elseexpr\n\nGenerates a sequence of `if ... elseif ... else ... end` statements. For example:\n\n @nif 3 d->(i_d >= size(A,d)) d->(error(\"Dimension \", d, \" too big\")) d->println(\"All OK\")\n\nwould generate:\n\n if i_1 > size(A, 1)\n error(\"Dimension \", 1, \" too big\")\n elseif i_2 > size(A, 2)\n error(\"Dimension \", 2, \" too big\")\n else\n println(\"All OK\")\n end\n"}],"Base.Cartesian.@nany":[{"Tuple{Int64,Expr}":" @nany N expr\n\nCheck whether any of the expressions generated by the anonymous-function expression `expr`\nevaluate to `true`.\n\n`@nany 3 d->(i_d > 1)` would generate the expression `(i_1 > 1 || i_2 > 1 || i_3 > 1)`.\n"}],"Base.Cartesian.@ntuple":[{"Tuple{Int64,Any}":" @ntuple N expr\n\nGenerates an `N`-tuple. `@ntuple 2 i` would generate `(i_1, i_2)`, and `@ntuple 2 k->k+1`\nwould generate `(2,3)`.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Enums_docstrings.json b/en/docstrings/Enums_docstrings.json index 6d38adb5..a78a6162 100644 --- a/en/docstrings/Enums_docstrings.json +++ b/en/docstrings/Enums_docstrings.json @@ -1 +1 @@ -{"Base.Enums.@enum":[{"Tuple{Any,Vararg{Any,N} where N}":" @enum EnumName[::BaseType] value1[=x] value2[=y]\n\nCreate an `Enum{BaseType}` subtype with name `EnumName` and enum member values of\n`value1` and `value2` with optional assigned values of `x` and `y`, respectively.\n`EnumName` can be used just like other types and enum member values as regular values, such as\n\n# Examples\n```jldoctest fruitenum\njulia> @enum Fruit apple=1 orange=2 kiwi=3\n\njulia> f(x::Fruit) = \"I'm a Fruit with value: $(Int(x))\"\nf (generic function with 1 method)\n\njulia> f(apple)\n\"I'm a Fruit with value: 1\"\n\njulia> Fruit(1)\napple::Fruit = 1\n```\n\nValues can also be specified inside a `begin` block, e.g.\n\n```julia\n@enum EnumName begin\n value1\n value2\nend\n```\n\n`BaseType`, which defaults to [`Int32`](@ref), must be a primitive subtype of `Integer`.\nMember values can be converted between the enum type and `BaseType`. `read` and `write`\nperform these conversions automatically.\n\nTo list all the instances of an enum use `instances`, e.g.\n\n```jldoctest fruitenum\njulia> instances(Fruit)\n(apple, orange, kiwi)\n```\n"}],"Base.Enums.Enum":[{"Union{}":" Enum{T<:Integer}\n\nThe abstract supertype of all enumerated types defined with [`@enum`](@ref).\n"}]} \ No newline at end of file +{"Base.Enums.Enum":[{"Union{}":" Enum{T<:Integer}\n\nThe abstract supertype of all enumerated types defined with [`@enum`](@ref).\n"}],"Base.Enums.@enum":[{"Tuple{Any,Vararg{Any,N} where N}":" @enum EnumName[::BaseType] value1[=x] value2[=y]\n\nCreate an `Enum{BaseType}` subtype with name `EnumName` and enum member values of\n`value1` and `value2` with optional assigned values of `x` and `y`, respectively.\n`EnumName` can be used just like other types and enum member values as regular values, such as\n\n# Examples\n```jldoctest fruitenum\njulia> @enum Fruit apple=1 orange=2 kiwi=3\n\njulia> f(x::Fruit) = \"I'm a Fruit with value: $(Int(x))\"\nf (generic function with 1 method)\n\njulia> f(apple)\n\"I'm a Fruit with value: 1\"\n\njulia> Fruit(1)\napple::Fruit = 1\n```\n\nValues can also be specified inside a `begin` block, e.g.\n\n```julia\n@enum EnumName begin\n value1\n value2\nend\n```\n\n`BaseType`, which defaults to [`Int32`](@ref), must be a primitive subtype of `Integer`.\nMember values can be converted between the enum type and `BaseType`. `read` and `write`\nperform these conversions automatically.\n\nTo list all the instances of an enum use `instances`, e.g.\n\n```jldoctest fruitenum\njulia> instances(Fruit)\n(apple, orange, kiwi)\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Experimental_docstrings.json b/en/docstrings/Experimental_docstrings.json index 2e72786c..65e99b47 100644 --- a/en/docstrings/Experimental_docstrings.json +++ b/en/docstrings/Experimental_docstrings.json @@ -1 +1 @@ -{"Base.Experimental.Const":[{"Union{}":" Const(A::Array)\n\nMark an Array as constant/read-only. The invariant guaranteed is that you will not\nmodify an Array (through another reference) within an `@aliasscope` scope.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}],"Base.Experimental.@aliasscope":[{"Tuple{Any}":" @aliasscope expr\n\nAllows the compiler to assume that all `Const`s are not being modified through stores\nwithin this scope, even if the compiler can't prove this to be the case.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}]} \ No newline at end of file +{"Base.Experimental.@aliasscope":[{"Tuple{Any}":" @aliasscope expr\n\nAllows the compiler to assume that all `Const`s are not being modified through stores\nwithin this scope, even if the compiler can't prove this to be the case.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}],"Base.Experimental.Const":[{"Union{}":" Const(A::Array)\n\nMark an Array as constant/read-only. The invariant guaranteed is that you will not\nmodify an Array (through another reference) within an `@aliasscope` scope.\n\n!!! warning\n Experimental API. Subject to change without deprecation.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Filesystem_docstrings.json b/en/docstrings/Filesystem_docstrings.json index 94feec98..3920fd25 100644 --- a/en/docstrings/Filesystem_docstrings.json +++ b/en/docstrings/Filesystem_docstrings.json @@ -1 +1 @@ -{"Base.Filesystem.issocket":[{"Tuple{Base.Filesystem.StatStruct}":" issocket(path) -> Bool\n\nReturn `true` if `path` is a socket, `false` otherwise.\n"}],"Base.Filesystem.isblockdev":[{"Tuple{Base.Filesystem.StatStruct}":" isblockdev(path) -> Bool\n\nReturn `true` if `path` is a block device, `false` otherwise.\n"}],"Base.Filesystem.chown":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Integer}}":" chown(path::AbstractString, owner::Integer, group::Integer=-1)\n\nChange the owner and/or group of `path` to `owner` and/or `group`. If the value entered for `owner` or `group`\nis `-1` the corresponding ID will not change. Only integer `owner`s and `group`s are currently supported.\nReturn `path`.\n"}],"Base.Filesystem.ctime":[{"Tuple{Base.Filesystem.StatStruct}":" ctime(file)\n\nEquivalent to `stat(file).ctime`.\n"}],"Base.Filesystem.operm":[{"Tuple{Base.Filesystem.StatStruct}":" operm(file)\n\nLike [`uperm`](@ref) but gets the permissions for people who neither own the file nor are a member of\nthe group owning the file\n"}],"Base.Filesystem.issetuid":[{"Tuple{Base.Filesystem.StatStruct}":" issetuid(path) -> Bool\n\nReturn `true` if `path` has the setuid flag set, `false` otherwise.\n"}],"Base.Filesystem.gperm":[{"Tuple{Base.Filesystem.StatStruct}":" gperm(file)\n\nLike [`uperm`](@ref) but gets the permissions of the group owning the file.\n"}],"Base.Filesystem.splitdrive":[{"Tuple{AbstractString}":" splitdrive(path::AbstractString) -> (AbstractString, AbstractString)\n\nOn Windows, split a path into the drive letter part and the path part. On Unix systems, the\nfirst component is always the empty string.\n"}],"Base.Filesystem.touch":[{"Tuple{AbstractString}":" touch(path::AbstractString)\n\nUpdate the last-modified timestamp on a file to the current time.\n\nIf the file does not exist a new file is created.\n\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> write(\"my_little_file\", 2);\n\njulia> mtime(\"my_little_file\")\n1.5273815391135583e9\n\njulia> touch(\"my_little_file\");\n\njulia> mtime(\"my_little_file\")\n1.527381559163435e9\n```\n\nWe can see the [`mtime`](@ref) has been modified by `touch`.\n"}],"Base.Filesystem.mkpath":[{"Tuple{AbstractString}":" mkpath(path::AbstractString; mode::Unsigned = 0o777)\n\nCreate all directories in the given `path`, with permissions `mode`. `mode` defaults to\n`0o777`, modified by the current file creation mask.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n\njulia> mkpath(\"my/test/dir\")\n\"my/test/dir\"\n\njulia> readdir()\n1-element Array{String,1}:\n \"my\"\n\njulia> cd(\"my\")\n\njulia> readdir()\n1-element Array{String,1}:\n \"test\"\n\njulia> readdir(\"test\")\n1-element Array{String,1}:\n \"dir\"\n```\n"}],"Base.Filesystem.homedir":[{"Tuple{}":" homedir() -> String\n\nReturn the current user's home directory.\n\n!!! note\n `homedir` determines the home directory via `libuv`'s `uv_os_homedir`. For details\n (for example on how to specify the home directory via environment variables), see the\n [`uv_os_homedir` documentation](http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir).\n"}],"Base.Filesystem.filemode":[{"Tuple{Base.Filesystem.StatStruct}":" filemode(file)\n\nEquivalent to `stat(file).mode`.\n"}],"Base.Filesystem.dirname":[{"Tuple{AbstractString}":" dirname(path::AbstractString) -> AbstractString\n\nGet the directory part of a path. Trailing characters ('/' or '\\') in the path are\ncounted as part of the path.\n\n# Examples\n```jldoctest\njulia> dirname(\"/home/myuser\")\n\"/home\"\n\njulia> dirname(\"/home/myuser/\")\n\"/home/myuser\"\n```\n\nSee also: [`basename`](@ref)\n"}],"Base.Filesystem.relpath":[{"Union{Tuple{String}, Tuple{String,String}}":" relpath(path::AbstractString, startpath::AbstractString = \".\") -> AbstractString\n\nReturn a relative filepath to `path` either from the current directory or from an optional\nstart directory. This is a path computation: the filesystem is not accessed to confirm the\nexistence or nature of `path` or `startpath`.\n"}],"Base.Filesystem.uperm":[{"Tuple{Base.Filesystem.StatStruct}":" uperm(file)\n\nGet the permissions of the owner of the file as a bitfield of\n\n| Value | Description |\n|:------|:-------------------|\n| 01 | Execute Permission |\n| 02 | Write Permission |\n| 04 | Read Permission |\n\nFor allowed arguments, see [`stat`](@ref).\n"}],"Base.Filesystem.isabspath":[{"Tuple{AbstractString}":" isabspath(path::AbstractString) -> Bool\n\nDetermine whether a path is absolute (begins at the root directory).\n\n# Examples\n```jldoctest\njulia> isabspath(\"/home\")\ntrue\n\njulia> isabspath(\"home\")\nfalse\n```\n"}],"Base.Filesystem.isdir":[{"Tuple{Base.Filesystem.StatStruct}":" isdir(path) -> Bool\n\nReturn `true` if `path` is a directory, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isdir(homedir())\ntrue\n\njulia> isdir(\"not/a/directory\")\nfalse\n```\n\nSee also: [`isfile`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.realpath":[{"Tuple{AbstractString}":" realpath(path::AbstractString) -> String\n\nCanonicalize a path by expanding symbolic links and removing \".\" and \"..\" entries.\nOn case-insensitive case-preserving filesystems (typically Mac and Windows), the\nfilesystem's stored case for the path is returned.\n\n(This function throws an exception if `path` does not exist in the filesystem.)\n"}],"Base.Filesystem.filesize":[{"Tuple{Base.Filesystem.StatStruct}":" filesize(path...)\n\nEquivalent to `stat(file).size`.\n"}],"Base.Filesystem.issticky":[{"Tuple{Base.Filesystem.StatStruct}":" issticky(path) -> Bool\n\nReturn `true` if `path` has the sticky bit set, `false` otherwise.\n"}],"Base.Filesystem.isdirpath":[{"Tuple{String}":" isdirpath(path::AbstractString) -> Bool\n\nDetermine whether a path refers to a directory (for example, ends with a path separator).\n\n# Examples\n```jldoctest\njulia> isdirpath(\"/home\")\nfalse\n\njulia> isdirpath(\"/home/\")\ntrue\n```\n"}],"Base.Filesystem.isfile":[{"Tuple{Base.Filesystem.StatStruct}":" isfile(path) -> Bool\n\nReturn `true` if `path` is a regular file, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isfile(homedir())\nfalse\n\njulia> f = open(\"test_file.txt\", \"w\");\n\njulia> isfile(f)\ntrue\n\njulia> close(f); rm(\"test_file.txt\")\n```\n\nSee also: [`isdir`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.symlink":[{"Tuple{AbstractString,AbstractString}":" symlink(target::AbstractString, link::AbstractString)\n\nCreates a symbolic link to `target` with the name `link`.\n\n!!! note\n This function raises an error under operating systems that do not support\n soft symbolic links, such as Windows XP.\n"}],"Base.Filesystem.splitext":[{"Tuple{String}":" splitext(path::AbstractString) -> (AbstractString, AbstractString)\n\nIf the last component of a path contains a dot, split the path into everything before the\ndot and everything including and after the dot. Otherwise, return a tuple of the argument\nunmodified and the empty string.\n\n# Examples\n```jldoctest\njulia> splitext(\"/home/myuser/example.jl\")\n(\"/home/myuser/example\", \".jl\")\n\njulia> splitext(\"/home/myuser/example\")\n(\"/home/myuser/example\", \"\")\n```\n"}],"Base.Filesystem.lstat":[{"Tuple":" lstat(file)\n\nLike [`stat`](@ref), but for symbolic links gets the info for the link\nitself rather than the file it refers to.\nThis function must be called on a file path rather than a file object or a file\ndescriptor.\n"}],"Base.Filesystem.ispath":[{"Tuple{Base.Filesystem.StatStruct}":" ispath(path) -> Bool\n\nReturn `true` if a valid filesystem entity exists at `path`,\notherwise returns `false`.\nThis is the generalization of [`isfile`](@ref), [`isdir`](@ref) etc.\n"}],"Base.Filesystem.joinpath":[{"Union{}":" joinpath(parts::AbstractString...) -> String\n\nJoin path components into a full path. If some argument is an absolute path or\n(on Windows) has a drive specification that doesn't match the drive computed for\nthe join of the preceding paths, then prior components are dropped.\n\nNote on Windows since there is a current directory for each drive, `joinpath(\"c:\", \"foo\")`\nrepresents a path relative to the current directory on drive \"c:\" so this is equal to \"c:foo\",\nnot \"c:\\foo\". Furthermore, `joinpath` treats this as a non-absolute path and ignores the drive\nletter casing, hence `joinpath(\"C:\\A\",\"c:b\") = \"C:\\A\\b\"`.\n\n# Examples\n```jldoctest\njulia> joinpath(\"/home/myuser\", \"example.jl\")\n\"/home/myuser/example.jl\"\n```\n"}],"Base.Filesystem.tempdir":[{"Tuple{}":" tempdir()\n\nGets the path of the temporary directory. On Windows, `tempdir()` uses the first environment\nvariable found in the ordered list `TMP`, `TEMP`, `USERPROFILE`. On all other operating\nsystems, `tempdir()` uses the first environment variable found in the ordered list `TMPDIR`,\n`TMP`, `TEMP`, and `TEMPDIR`. If none of these are found, the path `\"/tmp\"` is used.\n"}],"Base.Filesystem.readdir":[{"Tuple{AbstractString}":" readdir(dir::AbstractString=pwd();\n join::Bool = false,\n sort::Bool = true,\n ) -> Vector{String}\n\nReturn the names in the directory `dir` or the current working directory if not\ngiven. When `join` is false, `readdir` returns just the names in the directory\nas is; when `join` is true, it returns `joinpath(dir, name)` for each `name` so\nthat the returned strings are full paths. If you want to get absolute paths\nback, call `readdir` with an absolute directory path and `join` set to true.\n\nBy default, `readdir` sorts the list of names it returns. If you want to skip\nsorting the names and get them in the order that the file system lists them,\nyou can use `readir(dir, sort=false)` to opt out of sorting.\n\n!!! compat \"Julia 1.4\"\n The `join` and `sort` keyword arguments require at least Julia 1.4.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/dev/julia\")\n\njulia> readdir()\n30-element Array{String,1}:\n \".appveyor.yml\"\n \".git\"\n \".gitattributes\"\n ⋮\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> readdir(join=true)\n30-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/.appveyor.yml\"\n \"/home/JuliaUser/dev/julia/.git\"\n \"/home/JuliaUser/dev/julia/.gitattributes\"\n ⋮\n \"/home/JuliaUser/dev/julia/ui\"\n \"/home/JuliaUser/dev/julia/usr\"\n \"/home/JuliaUser/dev/julia/usr-staging\"\n\njulia> readdir(\"base\")\n145-element Array{String,1}:\n \".gitignore\"\n \"Base.jl\"\n \"Enums.jl\"\n ⋮\n \"version_git.sh\"\n \"views.jl\"\n \"weakkeydict.jl\"\n\njulia> readdir(\"base\", join=true)\n145-element Array{String,1}:\n \"base/.gitignore\"\n \"base/Base.jl\"\n \"base/Enums.jl\"\n ⋮\n \"base/version_git.sh\"\n \"base/views.jl\"\n \"base/weakkeydict.jl\"```\n\njulia> readdir(abspath(\"base\"), join=true)\n145-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/base/.gitignore\"\n \"/home/JuliaUser/dev/julia/base/Base.jl\"\n \"/home/JuliaUser/dev/julia/base/Enums.jl\"\n ⋮\n \"/home/JuliaUser/dev/julia/base/version_git.sh\"\n \"/home/JuliaUser/dev/julia/base/views.jl\"\n \"/home/JuliaUser/dev/julia/base/weakkeydict.jl\"\n```\n"}],"Base.Filesystem.walkdir":[{"Tuple{Any}":" walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)\n\nReturn an iterator that walks the directory tree of a directory.\nThe iterator returns a tuple containing `(rootpath, dirs, files)`.\nThe directory tree can be traversed top-down or bottom-up.\nIf `walkdir` encounters a [`SystemError`](@ref)\nit will rethrow the error by default.\nA custom error handling function can be provided through `onerror` keyword argument.\n`onerror` is called with a `SystemError` as argument.\n\n# Examples\n```julia\nfor (root, dirs, files) in walkdir(\".\")\n println(\"Directories in $root\")\n for dir in dirs\n println(joinpath(root, dir)) # path to directories\n end\n println(\"Files in $root\")\n for file in files\n println(joinpath(root, file)) # path to files\n end\nend\n```\n\n```julia-repl\njulia> mkpath(\"my/test/dir\");\n\njulia> itr = walkdir(\"my\");\n\njulia> (root, dirs, files) = first(itr)\n(\"my\", [\"test\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test\", [\"dir\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test/dir\", String[], String[])\n```\n"}],"Base.Filesystem.chmod":[{"Tuple{AbstractString,Integer}":" chmod(path::AbstractString, mode::Integer; recursive::Bool=false)\n\nChange the permissions mode of `path` to `mode`. Only integer `mode`s (e.g. `0o777`) are\ncurrently supported. If `recursive=true` and the path is a directory all permissions in\nthat directory will be recursively changed.\nReturn `path`.\n"}],"Base.Filesystem.basename":[{"Tuple{AbstractString}":" basename(path::AbstractString) -> AbstractString\n\nGet the file name part of a path.\n\n# Examples\n```jldoctest\njulia> basename(\"/home/myuser/example.jl\")\n\"example.jl\"\n```\n\nSee also: [`dirname`](@ref)\n"}],"Base.Filesystem.mktemp":[{"Tuple{Any}":" mktemp(parent=tempdir(); cleanup=true) -> (path, io)\n\nReturn `(path, io)`, where `path` is the path of a new temporary file in `parent`\nand `io` is an open file object for this path. The `cleanup` option controls whether\nthe temporary file is automatically deleted when the process exits.\n"},{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktemp(f::Function, parent=tempdir())\n\nApply the function `f` to the result of [`mktemp(parent)`](@ref) and remove the\ntemporary file upon completion.\n"}],"Base.Filesystem.expanduser":[{"Tuple{AbstractString}":" expanduser(path::AbstractString) -> AbstractString\n\nOn Unix systems, replace a tilde character at the start of a path with the current user's home directory.\n"}],"Base.Filesystem.splitpath":[{"Tuple{AbstractString}":" splitpath(path::AbstractString) -> Vector{String}\n\nSplit a file path into all its path components. This is the opposite of\n`joinpath`. Returns an array of substrings, one for each directory or file in\nthe path, including the root directory if present.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> splitpath(\"/home/myuser/example.jl\")\n4-element Array{String,1}:\n \"/\"\n \"home\"\n \"myuser\"\n \"example.jl\"\n```\n"}],"Base.Filesystem.readlink":[{"Tuple{AbstractString}":" readlink(path::AbstractString) -> AbstractString\n\nReturn the target location a symbolic link `path` points to.\n"}],"Base.Filesystem.cd":[{"Tuple{AbstractString}":" cd(dir::AbstractString=homedir())\n\nSet the current working directory.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n\njulia> cd()\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"},{"Tuple{Function}":" cd(f::Function, dir::AbstractString=homedir())\n\nTemporarily change the current working directory to `dir`, apply function `f` and\nfinally return to the original directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(readdir, \"/home/JuliaUser/Projects/julia\")\n34-element Array{String,1}:\n \".circleci\"\n \".freebsdci.sh\"\n \".git\"\n \".gitattributes\"\n \".github\"\n ⋮\n \"test\"\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"}],"Base.Filesystem.mkdir":[{"Tuple{AbstractString}":" mkdir(path::AbstractString; mode::Unsigned = 0o777)\n\nMake a new directory with name `path` and permissions `mode`. `mode` defaults to `0o777`,\nmodified by the current file creation mask. This function never creates more than one\ndirectory. If the directory already exists, or some intermediate directories do not exist,\nthis function throws an error. See [`mkpath`](@ref) for a function which creates all\nrequired intermediate directories.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n```\n"}],"Base.Filesystem.issetgid":[{"Tuple{Base.Filesystem.StatStruct}":" issetgid(path) -> Bool\n\nReturn `true` if `path` has the setgid flag set, `false` otherwise.\n"}],"Base.Filesystem.mktempdir":[{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktempdir(f::Function, parent=tempdir(); prefix=\"jl_\")\n\nApply the function `f` to the result of [`mktempdir(parent; prefix)`](@ref) and remove the\ntemporary directory all of its contents upon completion.\n"},{"Union{Tuple{}, Tuple{AbstractString}}":" mktempdir(parent=tempdir(); prefix=\"jl_\", cleanup=true) -> path\n\nCreate a temporary directory in the `parent` directory with a name\nconstructed from the given prefix and a random suffix, and return its path.\nAdditionally, any trailing `X` characters may be replaced with random characters.\nIf `parent` does not exist, throw an error. The `cleanup` option controls whether\nthe temporary directory is automatically deleted when the process exits.\n"}],"Base.Filesystem.abspath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" abspath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to an absolute path by joining them together and adding the\ncurrent directory if necessary. Equivalent to `abspath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" abspath(path::AbstractString) -> String\n\nConvert a path to an absolute path by adding the current directory if necessary.\nAlso normalizes the path as in [`normpath`](@ref).\n"}],"Base.Filesystem.mv":[{"Tuple{AbstractString,AbstractString}":" mv(src::AbstractString, dst::AbstractString; force::Bool=false)\n\nMove the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\nReturn `dst`.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> write(\"hello.txt\", \"world\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\n\"goodbye.txt\"\n\njulia> \"hello.txt\" in readdir()\nfalse\n\njulia> readline(\"goodbye.txt\")\n\"world\"\n\njulia> write(\"hello.txt\", \"world2\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\nERROR: ArgumentError: 'goodbye.txt' exists. `force=true` is required to remove 'goodbye.txt' before moving.\nStacktrace:\n [1] #checkfor_mv_cp_cptree#10(::Bool, ::Function, ::String, ::String, ::String) at ./file.jl:293\n[...]\n\njulia> mv(\"hello.txt\", \"goodbye.txt\", force=true)\n\"goodbye.txt\"\n\njulia> rm(\"goodbye.txt\");\n\n```\n"}],"Base.Filesystem.mtime":[{"Tuple{Base.Filesystem.StatStruct}":" mtime(file)\n\nEquivalent to `stat(file).mtime`.\n"}],"Base.Filesystem.isfifo":[{"Tuple{Base.Filesystem.StatStruct}":" isfifo(path) -> Bool\n\nReturn `true` if `path` is a FIFO, `false` otherwise.\n"}],"Base.Filesystem.rm":[{"Tuple{AbstractString}":" rm(path::AbstractString; force::Bool=false, recursive::Bool=false)\n\nDelete the file, link, or empty directory at the given path. If `force=true` is passed, a\nnon-existing path is not treated as error. If `recursive=true` is passed and the path is a\ndirectory, then all contents are removed recursively.\n\n# Examples\n```jldoctest\njulia> mkpath(\"my/test/dir\");\n\njulia> rm(\"my\", recursive=true)\n\njulia> rm(\"this_file_does_not_exist\", force=true)\n\njulia> rm(\"this_file_does_not_exist\")\nERROR: IOError: unlink: no such file or directory (ENOENT)\nStacktrace:\n[...]\n```\n"}],"Base.Filesystem.ischardev":[{"Tuple{Base.Filesystem.StatStruct}":" ischardev(path) -> Bool\n\nReturn `true` if `path` is a character device, `false` otherwise.\n"}],"Base.Filesystem.splitdir":[{"Tuple{String}":" splitdir(path::AbstractString) -> (AbstractString, AbstractString)\n\nSplit a path into a tuple of the directory name and file name.\n\n# Examples\n```jldoctest\njulia> splitdir(\"/home/myuser\")\n(\"/home\", \"myuser\")\n```\n"}],"Base.Filesystem.cp":[{"Tuple{AbstractString,AbstractString}":" cp(src::AbstractString, dst::AbstractString; force::Bool=false, follow_symlinks::Bool=false)\n\nCopy the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\n\nIf `follow_symlinks=false`, and `src` is a symbolic link, `dst` will be created as a\nsymbolic link. If `follow_symlinks=true` and `src` is a symbolic link, `dst` will be a copy\nof the file or directory `src` refers to.\nReturn `dst`.\n"}],"Base.Filesystem.pwd":[{"Tuple{}":" pwd() -> AbstractString\n\nGet the current working directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n```\n"}],"Base.Filesystem.normpath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" normpath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to a normalized path by joining them together and removing\n\".\" and \"..\" entries. Equivalent to `normpath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" normpath(path::AbstractString) -> String\n\nNormalize a path, removing \".\" and \"..\" entries.\n\n# Examples\n```jldoctest\njulia> normpath(\"/home/myuser/../example.jl\")\n\"/home/example.jl\"\n```\n"}],"Base.Filesystem.contractuser":[{"Tuple{AbstractString}":" contractuser(path::AbstractString) -> AbstractString\n\nOn Unix systems, if the path starts with `homedir()`, replace it with a tilde character.\n"}],"Base.Filesystem.tempname":[{"Tuple{}":" tempname(parent=tempdir(); cleanup=true) -> String\n\nGenerate a temporary file path. This function only returns a path; no file is\ncreated. The path is likely to be unique, but this cannot be guaranteed due to\nthe very remote posibility of two simultaneous calls to `tempname` generating\nthe same file name. The name is guaranteed to differ from all files already\nexisting at the time of the call to `tempname`.\n\nWhen called with no arguments, the temporary name will be an absolute path to a\ntemporary name in the system temporary directory as given by `tempdir()`. If a\n`parent` directory argument is given, the temporary path will be in that\ndirectory instead.\n\nThe `cleanup` option controls whether the process attempts to delete the\nreturned path automatically when the process exits. Note that the `tempname`\nfunction does not create any file or directory at the returned location, so\nthere is nothing to cleanup unless you create a file or directory there. If\nyou do and `clean` is `true` it will be deleted upon process termination.\n\n!!! compat \"Julia 1.4\"\n The `parent` and `cleanup` arguments were added in 1.4. Prior to Julia 1.4\n the path `tempname` would never be cleaned up at process termination.\n\n!!! warning\n\n This can lead to security holes if another process obtains the same\n file name and creates the file before you are able to. Open the file with\n `JL_O_EXCL` if this is a concern. Using [`mktemp()`](@ref) is also\n recommended instead.\n"}],"Base.Filesystem.islink":[{"Tuple{Base.Filesystem.StatStruct}":" islink(path) -> Bool\n\nReturn `true` if `path` is a symbolic link, `false` otherwise.\n"}],"Base.Filesystem.ismount":[{"Tuple":" ismount(path) -> Bool\n\nReturn `true` if `path` is a mount point, `false` otherwise.\n"}]} \ No newline at end of file +{"Base.Filesystem.pwd":[{"Tuple{}":" pwd() -> AbstractString\n\nGet the current working directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n```\n"}],"Base.Filesystem.mktempdir":[{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktempdir(f::Function, parent=tempdir(); prefix=\"jl_\")\n\nApply the function `f` to the result of [`mktempdir(parent; prefix)`](@ref) and remove the\ntemporary directory all of its contents upon completion.\n"},{"Union{Tuple{}, Tuple{AbstractString}}":" mktempdir(parent=tempdir(); prefix=\"jl_\", cleanup=true) -> path\n\nCreate a temporary directory in the `parent` directory with a name\nconstructed from the given prefix and a random suffix, and return its path.\nAdditionally, any trailing `X` characters may be replaced with random characters.\nIf `parent` does not exist, throw an error. The `cleanup` option controls whether\nthe temporary directory is automatically deleted when the process exits.\n"}],"Base.Filesystem.symlink":[{"Tuple{AbstractString,AbstractString}":" symlink(target::AbstractString, link::AbstractString)\n\nCreates a symbolic link to `target` with the name `link`.\n\n!!! note\n This function raises an error under operating systems that do not support\n soft symbolic links, such as Windows XP.\n"}],"Base.Filesystem.splitdrive":[{"Tuple{AbstractString}":" splitdrive(path::AbstractString) -> (AbstractString, AbstractString)\n\nOn Windows, split a path into the drive letter part and the path part. On Unix systems, the\nfirst component is always the empty string.\n"}],"Base.Filesystem.ispath":[{"Tuple{Base.Filesystem.StatStruct}":" ispath(path) -> Bool\n\nReturn `true` if a valid filesystem entity exists at `path`,\notherwise returns `false`.\nThis is the generalization of [`isfile`](@ref), [`isdir`](@ref) etc.\n"}],"Base.Filesystem.issetgid":[{"Tuple{Base.Filesystem.StatStruct}":" issetgid(path) -> Bool\n\nReturn `true` if `path` has the setgid flag set, `false` otherwise.\n"}],"Base.Filesystem.readdir":[{"Tuple{AbstractString}":" readdir(dir::AbstractString=pwd();\n join::Bool = false,\n sort::Bool = true,\n ) -> Vector{String}\n\nReturn the names in the directory `dir` or the current working directory if not\ngiven. When `join` is false, `readdir` returns just the names in the directory\nas is; when `join` is true, it returns `joinpath(dir, name)` for each `name` so\nthat the returned strings are full paths. If you want to get absolute paths\nback, call `readdir` with an absolute directory path and `join` set to true.\n\nBy default, `readdir` sorts the list of names it returns. If you want to skip\nsorting the names and get them in the order that the file system lists them,\nyou can use `readir(dir, sort=false)` to opt out of sorting.\n\n!!! compat \"Julia 1.4\"\n The `join` and `sort` keyword arguments require at least Julia 1.4.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/dev/julia\")\n\njulia> readdir()\n30-element Array{String,1}:\n \".appveyor.yml\"\n \".git\"\n \".gitattributes\"\n ⋮\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> readdir(join=true)\n30-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/.appveyor.yml\"\n \"/home/JuliaUser/dev/julia/.git\"\n \"/home/JuliaUser/dev/julia/.gitattributes\"\n ⋮\n \"/home/JuliaUser/dev/julia/ui\"\n \"/home/JuliaUser/dev/julia/usr\"\n \"/home/JuliaUser/dev/julia/usr-staging\"\n\njulia> readdir(\"base\")\n145-element Array{String,1}:\n \".gitignore\"\n \"Base.jl\"\n \"Enums.jl\"\n ⋮\n \"version_git.sh\"\n \"views.jl\"\n \"weakkeydict.jl\"\n\njulia> readdir(\"base\", join=true)\n145-element Array{String,1}:\n \"base/.gitignore\"\n \"base/Base.jl\"\n \"base/Enums.jl\"\n ⋮\n \"base/version_git.sh\"\n \"base/views.jl\"\n \"base/weakkeydict.jl\"```\n\njulia> readdir(abspath(\"base\"), join=true)\n145-element Array{String,1}:\n \"/home/JuliaUser/dev/julia/base/.gitignore\"\n \"/home/JuliaUser/dev/julia/base/Base.jl\"\n \"/home/JuliaUser/dev/julia/base/Enums.jl\"\n ⋮\n \"/home/JuliaUser/dev/julia/base/version_git.sh\"\n \"/home/JuliaUser/dev/julia/base/views.jl\"\n \"/home/JuliaUser/dev/julia/base/weakkeydict.jl\"\n```\n"}],"Base.Filesystem.expanduser":[{"Tuple{AbstractString}":" expanduser(path::AbstractString) -> AbstractString\n\nOn Unix systems, replace a tilde character at the start of a path with the current user's home directory.\n"}],"Base.Filesystem.splitext":[{"Tuple{String}":" splitext(path::AbstractString) -> (AbstractString, AbstractString)\n\nIf the last component of a path contains a dot, split the path into everything before the\ndot and everything including and after the dot. Otherwise, return a tuple of the argument\nunmodified and the empty string.\n\n# Examples\n```jldoctest\njulia> splitext(\"/home/myuser/example.jl\")\n(\"/home/myuser/example\", \".jl\")\n\njulia> splitext(\"/home/myuser/example\")\n(\"/home/myuser/example\", \"\")\n```\n"}],"Base.Filesystem.lstat":[{"Tuple":" lstat(file)\n\nLike [`stat`](@ref), but for symbolic links gets the info for the link\nitself rather than the file it refers to.\nThis function must be called on a file path rather than a file object or a file\ndescriptor.\n"}],"Base.Filesystem.issetuid":[{"Tuple{Base.Filesystem.StatStruct}":" issetuid(path) -> Bool\n\nReturn `true` if `path` has the setuid flag set, `false` otherwise.\n"}],"Base.Filesystem.mv":[{"Tuple{AbstractString,AbstractString}":" mv(src::AbstractString, dst::AbstractString; force::Bool=false)\n\nMove the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\nReturn `dst`.\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> write(\"hello.txt\", \"world\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\n\"goodbye.txt\"\n\njulia> \"hello.txt\" in readdir()\nfalse\n\njulia> readline(\"goodbye.txt\")\n\"world\"\n\njulia> write(\"hello.txt\", \"world2\");\n\njulia> mv(\"hello.txt\", \"goodbye.txt\")\nERROR: ArgumentError: 'goodbye.txt' exists. `force=true` is required to remove 'goodbye.txt' before moving.\nStacktrace:\n [1] #checkfor_mv_cp_cptree#10(::Bool, ::Function, ::String, ::String, ::String) at ./file.jl:293\n[...]\n\njulia> mv(\"hello.txt\", \"goodbye.txt\", force=true)\n\"goodbye.txt\"\n\njulia> rm(\"goodbye.txt\");\n\n```\n"}],"Base.Filesystem.issticky":[{"Tuple{Base.Filesystem.StatStruct}":" issticky(path) -> Bool\n\nReturn `true` if `path` has the sticky bit set, `false` otherwise.\n"}],"Base.Filesystem.filesize":[{"Tuple{Base.Filesystem.StatStruct}":" filesize(path...)\n\nEquivalent to `stat(file).size`.\n"}],"Base.Filesystem.tempdir":[{"Tuple{}":" tempdir()\n\nGets the path of the temporary directory. On Windows, `tempdir()` uses the first environment\nvariable found in the ordered list `TMP`, `TEMP`, `USERPROFILE`. On all other operating\nsystems, `tempdir()` uses the first environment variable found in the ordered list `TMPDIR`,\n`TMP`, `TEMP`, and `TEMPDIR`. If none of these are found, the path `\"/tmp\"` is used.\n"}],"Base.Filesystem.joinpath":[{"Union{}":" joinpath(parts::AbstractString...) -> String\n\nJoin path components into a full path. If some argument is an absolute path or\n(on Windows) has a drive specification that doesn't match the drive computed for\nthe join of the preceding paths, then prior components are dropped.\n\nNote on Windows since there is a current directory for each drive, `joinpath(\"c:\", \"foo\")`\nrepresents a path relative to the current directory on drive \"c:\" so this is equal to \"c:foo\",\nnot \"c:\\foo\". Furthermore, `joinpath` treats this as a non-absolute path and ignores the drive\nletter casing, hence `joinpath(\"C:\\A\",\"c:b\") = \"C:\\A\\b\"`.\n\n# Examples\n```jldoctest\njulia> joinpath(\"/home/myuser\", \"example.jl\")\n\"/home/myuser/example.jl\"\n```\n"}],"Base.Filesystem.filemode":[{"Tuple{Base.Filesystem.StatStruct}":" filemode(file)\n\nEquivalent to `stat(file).mode`.\n"}],"Base.Filesystem.splitpath":[{"Tuple{AbstractString}":" splitpath(path::AbstractString) -> Vector{String}\n\nSplit a file path into all its path components. This is the opposite of\n`joinpath`. Returns an array of substrings, one for each directory or file in\nthe path, including the root directory if present.\n\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n\n# Examples\n```jldoctest\njulia> splitpath(\"/home/myuser/example.jl\")\n4-element Array{String,1}:\n \"/\"\n \"home\"\n \"myuser\"\n \"example.jl\"\n```\n"}],"Base.Filesystem.ischardev":[{"Tuple{Base.Filesystem.StatStruct}":" ischardev(path) -> Bool\n\nReturn `true` if `path` is a character device, `false` otherwise.\n"}],"Base.Filesystem.homedir":[{"Tuple{}":" homedir() -> String\n\nReturn the current user's home directory.\n\n!!! note\n `homedir` determines the home directory via `libuv`'s `uv_os_homedir`. For details\n (for example on how to specify the home directory via environment variables), see the\n [`uv_os_homedir` documentation](http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir).\n"}],"Base.Filesystem.walkdir":[{"Tuple{Any}":" walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)\n\nReturn an iterator that walks the directory tree of a directory.\nThe iterator returns a tuple containing `(rootpath, dirs, files)`.\nThe directory tree can be traversed top-down or bottom-up.\nIf `walkdir` encounters a [`SystemError`](@ref)\nit will rethrow the error by default.\nA custom error handling function can be provided through `onerror` keyword argument.\n`onerror` is called with a `SystemError` as argument.\n\n# Examples\n```julia\nfor (root, dirs, files) in walkdir(\".\")\n println(\"Directories in $root\")\n for dir in dirs\n println(joinpath(root, dir)) # path to directories\n end\n println(\"Files in $root\")\n for file in files\n println(joinpath(root, file)) # path to files\n end\nend\n```\n\n```julia-repl\njulia> mkpath(\"my/test/dir\");\n\njulia> itr = walkdir(\"my\");\n\njulia> (root, dirs, files) = first(itr)\n(\"my\", [\"test\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test\", [\"dir\"], String[])\n\njulia> (root, dirs, files) = first(itr)\n(\"my/test/dir\", String[], String[])\n```\n"}],"Base.Filesystem.mkdir":[{"Tuple{AbstractString}":" mkdir(path::AbstractString; mode::Unsigned = 0o777)\n\nMake a new directory with name `path` and permissions `mode`. `mode` defaults to `0o777`,\nmodified by the current file creation mask. This function never creates more than one\ndirectory. If the directory already exists, or some intermediate directories do not exist,\nthis function throws an error. See [`mkpath`](@ref) for a function which creates all\nrequired intermediate directories.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n```\n"}],"Base.Filesystem.basename":[{"Tuple{AbstractString}":" basename(path::AbstractString) -> AbstractString\n\nGet the file name part of a path.\n\n# Examples\n```jldoctest\njulia> basename(\"/home/myuser/example.jl\")\n\"example.jl\"\n```\n\nSee also: [`dirname`](@ref)\n"}],"Base.Filesystem.readlink":[{"Tuple{AbstractString}":" readlink(path::AbstractString) -> AbstractString\n\nReturn the target location a symbolic link `path` points to.\n"}],"Base.Filesystem.ismount":[{"Tuple":" ismount(path) -> Bool\n\nReturn `true` if `path` is a mount point, `false` otherwise.\n"}],"Base.Filesystem.isfile":[{"Tuple{Base.Filesystem.StatStruct}":" isfile(path) -> Bool\n\nReturn `true` if `path` is a regular file, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isfile(homedir())\nfalse\n\njulia> f = open(\"test_file.txt\", \"w\");\n\njulia> isfile(f)\ntrue\n\njulia> close(f); rm(\"test_file.txt\")\n```\n\nSee also: [`isdir`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.cd":[{"Tuple{AbstractString}":" cd(dir::AbstractString=homedir())\n\nSet the current working directory.\n\n# Examples\n```julia-repl\njulia> cd(\"/home/JuliaUser/Projects/julia\")\n\njulia> pwd()\n\"/home/JuliaUser/Projects/julia\"\n\njulia> cd()\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"},{"Tuple{Function}":" cd(f::Function, dir::AbstractString=homedir())\n\nTemporarily change the current working directory to `dir`, apply function `f` and\nfinally return to the original directory.\n\n# Examples\n```julia-repl\njulia> pwd()\n\"/home/JuliaUser\"\n\njulia> cd(readdir, \"/home/JuliaUser/Projects/julia\")\n34-element Array{String,1}:\n \".circleci\"\n \".freebsdci.sh\"\n \".git\"\n \".gitattributes\"\n \".github\"\n ⋮\n \"test\"\n \"ui\"\n \"usr\"\n \"usr-staging\"\n\njulia> pwd()\n\"/home/JuliaUser\"\n```\n"}],"Base.Filesystem.operm":[{"Tuple{Base.Filesystem.StatStruct}":" operm(file)\n\nLike [`uperm`](@ref) but gets the permissions for people who neither own the file nor are a member of\nthe group owning the file\n"}],"Base.Filesystem.abspath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" abspath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to an absolute path by joining them together and adding the\ncurrent directory if necessary. Equivalent to `abspath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" abspath(path::AbstractString) -> String\n\nConvert a path to an absolute path by adding the current directory if necessary.\nAlso normalizes the path as in [`normpath`](@ref).\n"}],"Base.Filesystem.gperm":[{"Tuple{Base.Filesystem.StatStruct}":" gperm(file)\n\nLike [`uperm`](@ref) but gets the permissions of the group owning the file.\n"}],"Base.Filesystem.issocket":[{"Tuple{Base.Filesystem.StatStruct}":" issocket(path) -> Bool\n\nReturn `true` if `path` is a socket, `false` otherwise.\n"}],"Base.Filesystem.rm":[{"Tuple{AbstractString}":" rm(path::AbstractString; force::Bool=false, recursive::Bool=false)\n\nDelete the file, link, or empty directory at the given path. If `force=true` is passed, a\nnon-existing path is not treated as error. If `recursive=true` is passed and the path is a\ndirectory, then all contents are removed recursively.\n\n# Examples\n```jldoctest\njulia> mkpath(\"my/test/dir\");\n\njulia> rm(\"my\", recursive=true)\n\njulia> rm(\"this_file_does_not_exist\", force=true)\n\njulia> rm(\"this_file_does_not_exist\")\nERROR: IOError: unlink: no such file or directory (ENOENT)\nStacktrace:\n[...]\n```\n"}],"Base.Filesystem.isdir":[{"Tuple{Base.Filesystem.StatStruct}":" isdir(path) -> Bool\n\nReturn `true` if `path` is a directory, `false` otherwise.\n\n# Examples\n```jldoctest\njulia> isdir(homedir())\ntrue\n\njulia> isdir(\"not/a/directory\")\nfalse\n```\n\nSee also: [`isfile`](@ref) and [`ispath`](@ref).\n"}],"Base.Filesystem.isabspath":[{"Tuple{AbstractString}":" isabspath(path::AbstractString) -> Bool\n\nDetermine whether a path is absolute (begins at the root directory).\n\n# Examples\n```jldoctest\njulia> isabspath(\"/home\")\ntrue\n\njulia> isabspath(\"home\")\nfalse\n```\n"}],"Base.Filesystem.isdirpath":[{"Tuple{String}":" isdirpath(path::AbstractString) -> Bool\n\nDetermine whether a path refers to a directory (for example, ends with a path separator).\n\n# Examples\n```jldoctest\njulia> isdirpath(\"/home\")\nfalse\n\njulia> isdirpath(\"/home/\")\ntrue\n```\n"}],"Base.Filesystem.touch":[{"Tuple{AbstractString}":" touch(path::AbstractString)\n\nUpdate the last-modified timestamp on a file to the current time.\n\nIf the file does not exist a new file is created.\n\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> write(\"my_little_file\", 2);\n\njulia> mtime(\"my_little_file\")\n1.5273815391135583e9\n\njulia> touch(\"my_little_file\");\n\njulia> mtime(\"my_little_file\")\n1.527381559163435e9\n```\n\nWe can see the [`mtime`](@ref) has been modified by `touch`.\n"}],"Base.Filesystem.contractuser":[{"Tuple{AbstractString}":" contractuser(path::AbstractString) -> AbstractString\n\nOn Unix systems, if the path starts with `homedir()`, replace it with a tilde character.\n"}],"Base.Filesystem.isblockdev":[{"Tuple{Base.Filesystem.StatStruct}":" isblockdev(path) -> Bool\n\nReturn `true` if `path` is a block device, `false` otherwise.\n"}],"Base.Filesystem.isfifo":[{"Tuple{Base.Filesystem.StatStruct}":" isfifo(path) -> Bool\n\nReturn `true` if `path` is a FIFO, `false` otherwise.\n"}],"Base.Filesystem.mktemp":[{"Tuple{Any}":" mktemp(parent=tempdir(); cleanup=true) -> (path, io)\n\nReturn `(path, io)`, where `path` is the path of a new temporary file in `parent`\nand `io` is an open file object for this path. The `cleanup` option controls whether\nthe temporary file is automatically deleted when the process exits.\n"},{"Union{Tuple{Function}, Tuple{Function,AbstractString}}":" mktemp(f::Function, parent=tempdir())\n\nApply the function `f` to the result of [`mktemp(parent)`](@ref) and remove the\ntemporary file upon completion.\n"}],"Base.Filesystem.chmod":[{"Tuple{AbstractString,Integer}":" chmod(path::AbstractString, mode::Integer; recursive::Bool=false)\n\nChange the permissions mode of `path` to `mode`. Only integer `mode`s (e.g. `0o777`) are\ncurrently supported. If `recursive=true` and the path is a directory all permissions in\nthat directory will be recursively changed.\nReturn `path`.\n"}],"Base.Filesystem.uperm":[{"Tuple{Base.Filesystem.StatStruct}":" uperm(file)\n\nGet the permissions of the owner of the file as a bitfield of\n\n| Value | Description |\n|:------|:-------------------|\n| 01 | Execute Permission |\n| 02 | Write Permission |\n| 04 | Read Permission |\n\nFor allowed arguments, see [`stat`](@ref).\n"}],"Base.Filesystem.normpath":[{"Tuple{AbstractString,Vararg{AbstractString,N} where N}":" normpath(path::AbstractString, paths::AbstractString...) -> String\n\nConvert a set of paths to a normalized path by joining them together and removing\n\".\" and \"..\" entries. Equivalent to `normpath(joinpath(path, paths...))`.\n"},{"Tuple{String}":" normpath(path::AbstractString) -> String\n\nNormalize a path, removing \".\" and \"..\" entries.\n\n# Examples\n```jldoctest\njulia> normpath(\"/home/myuser/../example.jl\")\n\"/home/example.jl\"\n```\n"}],"Base.Filesystem.cp":[{"Tuple{AbstractString,AbstractString}":" cp(src::AbstractString, dst::AbstractString; force::Bool=false, follow_symlinks::Bool=false)\n\nCopy the file, link, or directory from `src` to `dst`.\n`force=true` will first remove an existing `dst`.\n\nIf `follow_symlinks=false`, and `src` is a symbolic link, `dst` will be created as a\nsymbolic link. If `follow_symlinks=true` and `src` is a symbolic link, `dst` will be a copy\nof the file or directory `src` refers to.\nReturn `dst`.\n"}],"Base.Filesystem.relpath":[{"Union{Tuple{String}, Tuple{String,String}}":" relpath(path::AbstractString, startpath::AbstractString = \".\") -> AbstractString\n\nReturn a relative filepath to `path` either from the current directory or from an optional\nstart directory. This is a path computation: the filesystem is not accessed to confirm the\nexistence or nature of `path` or `startpath`.\n"}],"Base.Filesystem.tempname":[{"Tuple{}":" tempname(parent=tempdir(); cleanup=true) -> String\n\nGenerate a temporary file path. This function only returns a path; no file is\ncreated. The path is likely to be unique, but this cannot be guaranteed due to\nthe very remote posibility of two simultaneous calls to `tempname` generating\nthe same file name. The name is guaranteed to differ from all files already\nexisting at the time of the call to `tempname`.\n\nWhen called with no arguments, the temporary name will be an absolute path to a\ntemporary name in the system temporary directory as given by `tempdir()`. If a\n`parent` directory argument is given, the temporary path will be in that\ndirectory instead.\n\nThe `cleanup` option controls whether the process attempts to delete the\nreturned path automatically when the process exits. Note that the `tempname`\nfunction does not create any file or directory at the returned location, so\nthere is nothing to cleanup unless you create a file or directory there. If\nyou do and `clean` is `true` it will be deleted upon process termination.\n\n!!! compat \"Julia 1.4\"\n The `parent` and `cleanup` arguments were added in 1.4. Prior to Julia 1.4\n the path `tempname` would never be cleaned up at process termination.\n\n!!! warning\n\n This can lead to security holes if another process obtains the same\n file name and creates the file before you are able to. Open the file with\n `JL_O_EXCL` if this is a concern. Using [`mktemp()`](@ref) is also\n recommended instead.\n"}],"Base.Filesystem.realpath":[{"Tuple{AbstractString}":" realpath(path::AbstractString) -> String\n\nCanonicalize a path by expanding symbolic links and removing \".\" and \"..\" entries.\nOn case-insensitive case-preserving filesystems (typically Mac and Windows), the\nfilesystem's stored case for the path is returned.\n\n(This function throws an exception if `path` does not exist in the filesystem.)\n"}],"Base.Filesystem.dirname":[{"Tuple{AbstractString}":" dirname(path::AbstractString) -> AbstractString\n\nGet the directory part of a path. Trailing characters ('/' or '\\') in the path are\ncounted as part of the path.\n\n# Examples\n```jldoctest\njulia> dirname(\"/home/myuser\")\n\"/home\"\n\njulia> dirname(\"/home/myuser/\")\n\"/home/myuser\"\n```\n\nSee also: [`basename`](@ref)\n"}],"Base.Filesystem.mkpath":[{"Tuple{AbstractString}":" mkpath(path::AbstractString; mode::Unsigned = 0o777)\n\nCreate all directories in the given `path`, with permissions `mode`. `mode` defaults to\n`0o777`, modified by the current file creation mask.\nReturn `path`.\n\n# Examples\n```julia-repl\njulia> mkdir(\"testingdir\")\n\"testingdir\"\n\njulia> cd(\"testingdir\")\n\njulia> pwd()\n\"/home/JuliaUser/testingdir\"\n\njulia> mkpath(\"my/test/dir\")\n\"my/test/dir\"\n\njulia> readdir()\n1-element Array{String,1}:\n \"my\"\n\njulia> cd(\"my\")\n\njulia> readdir()\n1-element Array{String,1}:\n \"test\"\n\njulia> readdir(\"test\")\n1-element Array{String,1}:\n \"dir\"\n```\n"}],"Base.Filesystem.splitdir":[{"Tuple{String}":" splitdir(path::AbstractString) -> (AbstractString, AbstractString)\n\nSplit a path into a tuple of the directory name and file name.\n\n# Examples\n```jldoctest\njulia> splitdir(\"/home/myuser\")\n(\"/home\", \"myuser\")\n```\n"}],"Base.Filesystem.chown":[{"Union{Tuple{AbstractString,Integer}, Tuple{AbstractString,Integer,Integer}}":" chown(path::AbstractString, owner::Integer, group::Integer=-1)\n\nChange the owner and/or group of `path` to `owner` and/or `group`. If the value entered for `owner` or `group`\nis `-1` the corresponding ID will not change. Only integer `owner`s and `group`s are currently supported.\nReturn `path`.\n"}],"Base.Filesystem.islink":[{"Tuple{Base.Filesystem.StatStruct}":" islink(path) -> Bool\n\nReturn `true` if `path` is a symbolic link, `false` otherwise.\n"}],"Base.Filesystem.ctime":[{"Tuple{Base.Filesystem.StatStruct}":" ctime(file)\n\nEquivalent to `stat(file).ctime`.\n"}],"Base.Filesystem.mtime":[{"Tuple{Base.Filesystem.StatStruct}":" mtime(file)\n\nEquivalent to `stat(file).mtime`.\n"}]} \ No newline at end of file diff --git a/en/docstrings/GC_docstrings.json b/en/docstrings/GC_docstrings.json index 642c2f36..d247254c 100644 --- a/en/docstrings/GC_docstrings.json +++ b/en/docstrings/GC_docstrings.json @@ -1 +1 @@ -{"Base.GC.enable":[{"Tuple{Bool}":" GC.enable(on::Bool)\n\nControl whether garbage collection is enabled using a boolean argument (`true` for enabled,\n`false` for disabled). Return previous GC state.\n\n!!! warning\n Disabling garbage collection should be used only with caution, as it can cause memory\n use to grow without bound.\n"}],"Base.GC.safepoint":[{"Tuple{}":" GC.safepoint()\n\nInserts a point in the program where garbage collection may run.\nThis can be useful in rare cases in multi-threaded programs where some threads\nare allocating memory (and hence may need to run GC) but other threads are doing\nonly simple operations (no allocation, task switches, or I/O).\nCalling this function periodically in non-allocating threads allows garbage\ncollection to run.\n\n!!! compat \"Julia 1.4\"\n This function is available as of Julia 1.4.\n"}],"Base.GC.gc":[{"Union{Tuple{}, Tuple{Bool}}":" GC.gc([full=true])\n\nPerform garbage collection. The argument `full` determines the kind of\ncollection: A full collection (default) sweeps all objects, which makes the\nnext GC scan much slower, while an incremental collection may only sweep\nso-called young objects.\n\n!!! warning\n Excessive use will likely lead to poor performance.\n"}],"Base.GC.@preserve":[{"Tuple":" GC.@preserve x1 x2 ... xn expr\n\nTemporarily protect the given objects from being garbage collected, even if they would\notherwise be unreferenced.\n\nThe last argument is the expression during which the object(s) will be preserved.\nThe previous arguments are the objects to preserve.\n"}]} \ No newline at end of file +{"Base.GC.gc":[{"Union{Tuple{}, Tuple{Bool}}":" GC.gc([full=true])\n\nPerform garbage collection. The argument `full` determines the kind of\ncollection: A full collection (default) sweeps all objects, which makes the\nnext GC scan much slower, while an incremental collection may only sweep\nso-called young objects.\n\n!!! warning\n Excessive use will likely lead to poor performance.\n"}],"Base.GC.enable":[{"Tuple{Bool}":" GC.enable(on::Bool)\n\nControl whether garbage collection is enabled using a boolean argument (`true` for enabled,\n`false` for disabled). Return previous GC state.\n\n!!! warning\n Disabling garbage collection should be used only with caution, as it can cause memory\n use to grow without bound.\n"}],"Base.GC.@preserve":[{"Tuple":" GC.@preserve x1 x2 ... xn expr\n\nTemporarily protect the given objects from being garbage collected, even if they would\notherwise be unreferenced.\n\nThe last argument is the expression during which the object(s) will be preserved.\nThe previous arguments are the objects to preserve.\n"}],"Base.GC.safepoint":[{"Tuple{}":" GC.safepoint()\n\nInserts a point in the program where garbage collection may run.\nThis can be useful in rare cases in multi-threaded programs where some threads\nare allocating memory (and hence may need to run GC) but other threads are doing\nonly simple operations (no allocation, task switches, or I/O).\nCalling this function periodically in non-allocating threads allows garbage\ncollection to run.\n\n!!! compat \"Julia 1.4\"\n This function is available as of Julia 1.4.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Grisu_docstrings.json b/en/docstrings/Grisu_docstrings.json index 801ab27a..c52b6a38 100644 --- a/en/docstrings/Grisu_docstrings.json +++ b/en/docstrings/Grisu_docstrings.json @@ -1 +1 @@ -{"Base.Grisu.grisu":[{"Union{Tuple{AbstractFloat,Any,Any}, Tuple{AbstractFloat,Any,Any,Any}, Tuple{AbstractFloat,Any,Any,Any,Any}}":" (len, point, neg) = Grisu.grisu(v::AbstractFloat, mode, requested_digits, [buffer], [bignums])\n\nConvert the number `v` to decimal using the Grisu algorithm.\n\n`mode` can be one of:\n - `Grisu.SHORTEST`: convert to the shortest decimal representation which can be \"round-tripped\" back to `v`.\n - `Grisu.FIXED`: round to `requested_digits` digits.\n - `Grisu.PRECISION`: round to `requested_digits` significant digits.\n\nThe characters are written as bytes to `buffer`, with a terminating NUL byte, and `bignums` are used internally as part of the correction step. You can call `Grisu.getbuf()` to obtain a suitable task-local buffer.\n\nThe returned tuple contains:\n\n - `len`: the number of digits written to `buffer` (excluding NUL)\n - `point`: the location of the radix point relative to the start of the array (e.g. if\n `point == 3`, then the radix point should be inserted between the 3rd and 4th\n digit). Note that this can be negative (for very small values), or greater than `len`\n (for very large values).\n - `neg`: the signbit of `v` (see [`signbit`](@ref)).\n"}],"Base.Grisu.print_shortest":[{"Tuple{IO,AbstractFloat,Bool}":" print_shortest(io::IO, x)\n\nPrint the shortest possible representation, with the minimum number of consecutive non-zero\ndigits, of number `x`, ensuring that it would parse to the exact same number.\n"}]} \ No newline at end of file +{"Base.Grisu.print_shortest":[{"Tuple{IO,AbstractFloat,Bool}":" print_shortest(io::IO, x)\n\nPrint the shortest possible representation, with the minimum number of consecutive non-zero\ndigits, of number `x`, ensuring that it would parse to the exact same number.\n"}],"Base.Grisu.grisu":[{"Union{Tuple{AbstractFloat,Any,Any}, Tuple{AbstractFloat,Any,Any,Any}, Tuple{AbstractFloat,Any,Any,Any,Any}}":" (len, point, neg) = Grisu.grisu(v::AbstractFloat, mode, requested_digits, [buffer], [bignums])\n\nConvert the number `v` to decimal using the Grisu algorithm.\n\n`mode` can be one of:\n - `Grisu.SHORTEST`: convert to the shortest decimal representation which can be \"round-tripped\" back to `v`.\n - `Grisu.FIXED`: round to `requested_digits` digits.\n - `Grisu.PRECISION`: round to `requested_digits` significant digits.\n\nThe characters are written as bytes to `buffer`, with a terminating NUL byte, and `bignums` are used internally as part of the correction step. You can call `Grisu.getbuf()` to obtain a suitable task-local buffer.\n\nThe returned tuple contains:\n\n - `len`: the number of digits written to `buffer` (excluding NUL)\n - `point`: the location of the radix point relative to the start of the array (e.g. if\n `point == 3`, then the radix point should be inserted between the 3rd and 4th\n digit). Note that this can be negative (for very small values), or greater than `len`\n (for very large values).\n - `neg`: the signbit of `v` (see [`signbit`](@ref)).\n"}]} \ No newline at end of file diff --git a/en/docstrings/Iterators_docstrings.json b/en/docstrings/Iterators_docstrings.json index e95efd23..1fdada58 100644 --- a/en/docstrings/Iterators_docstrings.json +++ b/en/docstrings/Iterators_docstrings.json @@ -1 +1 @@ -{"Base.Iterators.dropwhile":[{"Tuple{Any,Any}":" dropwhile(pred, iter)\n\nAn iterator that drops element from `iter` as long as predicate `pred` is true,\nafterwards, returns every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.dropwhile(<(3),s))\n3-element Array{Int64,1}:\n 3\n 4\n 5\n```\n"}],"Base.Iterators.partition":[{"Tuple{Any,Integer}":" partition(collection, n)\n\nIterate over a collection `n` elements at a time.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.partition([1,2,3,4,5], 2))\n3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:\n [1, 2]\n [3, 4]\n [5]\n```\n"}],"Base.Iterators.only":[{"Tuple{Any}":" only(x)\n\nReturns the one and only element of collection `x`, and throws an `ArgumentError` if the\ncollection has zero or multiple elements.\n\nSee also: [`first`](@ref), [`last`](@ref).\n\n!!! compat \"Julia 1.4\"\n This method requires at least Julia 1.4.\n"}],"Base.Iterators.product":[{"Tuple":" product(iters...)\n\nReturn an iterator over the product of several iterators. Each generated element is\na tuple whose `i`th element comes from the `i`th argument iterator. The first iterator\nchanges the fastest.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.product(1:2, 3:5))\n2×3 Array{Tuple{Int64,Int64},2}:\n (1, 3) (1, 4) (1, 5)\n (2, 3) (2, 4) (2, 5)\n```\n"}],"Base.Iterators.enumerate":[{"Tuple{Any}":" enumerate(iter)\n\nAn iterator that yields `(i, x)` where `i` is a counter starting at 1,\nand `x` is the `i`th value from the given iterator. It's useful when\nyou need not only the values `x` over which you are iterating, but\nalso the number of iterations so far. Note that `i` may not be valid\nfor indexing `iter`; it's also possible that `x != iter[i]`, if `iter`\nhas indices that do not start at 1. See the `pairs(IndexLinear(),\niter)` method if you want to ensure that `i` is an index.\n\n# Examples\n```jldoctest\njulia> a = [\"a\", \"b\", \"c\"];\n\njulia> for (index, value) in enumerate(a)\n println(\"$index $value\")\n end\n1 a\n2 b\n3 c\n```\n"}],"Base.Iterators.countfrom":[{"Tuple{Number,Number}":" countfrom(start=1, step=1)\n\nAn iterator that counts forever, starting at `start` and incrementing by `step`.\n\n# Examples\n```jldoctest\njulia> for v in Iterators.countfrom(5, 2)\n v > 10 && break\n println(v)\n end\n5\n7\n9\n```\n"}],"Base.Iterators.take":[{"Tuple{Any,Integer}":" take(iter, n)\n\nAn iterator that generates at most the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.take(a,3))\n3-element Array{Int64,1}:\n 1\n 3\n 5\n```\n"}],"Base.Iterators.takewhile":[{"Tuple{Any,Any}":" takewhile(pred, iter)\n\nAn iterator that generates element from `iter` as long as predicate `pred` is true,\nafterwards, drops every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.takewhile(<(3),s))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.Iterators.accumulate":[{"Tuple{Any,Any}":" Iterators.accumulate(f, itr)\n\nGiven a 2-argument function `f` and an iterator `itr`, return a new\niterator that successively applies `f` to the previous value and the\nnext element of `itr`.\n\nThis is effectively a lazy version of [`Base.accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> f = Iterators.accumulate(+, [1,2,3,4])\nBase.Iterators.Accumulate{typeof(+),Array{Int64,1}}(+, [1, 2, 3, 4])\n\njulia> foreach(println, f)\n1\n3\n6\n10\n```\n"}],"Base.Iterators.cycle":[{"Tuple{Any}":" cycle(iter)\n\nAn iterator that cycles through `iter` forever.\nIf `iter` is empty, so is `cycle(iter)`.\n\n# Examples\n```jldoctest\njulia> for (i, v) in enumerate(Iterators.cycle(\"hello\"))\n print(v)\n i > 10 && break\n end\nhellohelloh\n```\n"}],"Base.Iterators.rest":[{"Tuple{Any,Any}":" rest(iter, state)\n\nAn iterator that yields the same elements as `iter`, but starting at the given `state`.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.rest([1,2,3,4], 2))\n3-element Array{Int64,1}:\n 2\n 3\n 4\n```\n"}],"Base.Iterators.zip":[{"Tuple":" zip(iters...)\n\nRun multiple iterators at the same time, until any of them is exhausted. The value type of\nthe `zip` iterator is a tuple of values of its subiterators.\n\n!!! note\n `zip` orders the calls to its subiterators in such a way that stateful iterators will\n not advance when another iterator finishes in the current iteration.\n\n# Examples\n```jldoctest\njulia> a = 1:5\n1:5\n\njulia> b = [\"e\",\"d\",\"b\",\"c\",\"a\"]\n5-element Array{String,1}:\n \"e\"\n \"d\"\n \"b\"\n \"c\"\n \"a\"\n\njulia> c = zip(a,b)\nBase.Iterators.Zip{Tuple{UnitRange{Int64},Array{String,1}}}((1:5, [\"e\", \"d\", \"b\", \"c\", \"a\"]))\n\njulia> length(c)\n5\n\njulia> first(c)\n(1, \"e\")\n```\n"}],"Base.Iterators.repeated":[{"Tuple{Any,Integer}":" repeated(x[, n::Int])\n\nAn iterator that generates the value `x` forever. If `n` is specified, generates `x` that\nmany times (equivalent to `take(repeated(x), n)`).\n\n# Examples\n```jldoctest\njulia> a = Iterators.repeated([1 2], 4);\n\njulia> collect(a)\n4-element Array{Array{Int64,2},1}:\n [1 2]\n [1 2]\n [1 2]\n [1 2]\n```\n"}],"Base.Iterators.peel":[{"Tuple{Any}":" peel(iter)\n\nReturns the first element and an iterator over the remaining elements.\n\n# Examples\n```jldoctest\njulia> (a, rest) = Iterators.peel(\"abc\");\n\njulia> a\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(rest)\n2-element Array{Char,1}:\n 'b'\n 'c'\n```\n"}],"Base.Iterators.Stateful":[{"Union{}":" Stateful(itr)\n\nThere are several different ways to think about this iterator wrapper:\n\n1. It provides a mutable wrapper around an iterator and\n its iteration state.\n2. It turns an iterator-like abstraction into a `Channel`-like\n abstraction.\n3. It's an iterator that mutates to become its own rest iterator\n whenever an item is produced.\n\n`Stateful` provides the regular iterator interface. Like other mutable iterators\n(e.g. [`Channel`](@ref)), if iteration is stopped early (e.g. by a [`break`](@ref) in a [`for`](@ref) loop),\niteration can be resumed from the same spot by continuing to iterate over the\nsame iterator object (in contrast, an immutable iterator would restart from the\nbeginning).\n\n# Examples\n```jldoctest\njulia> a = Iterators.Stateful(\"abcdef\");\n\njulia> isempty(a)\nfalse\n\njulia> popfirst!(a)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(Iterators.take(a, 3))\n3-element Array{Char,1}:\n 'b'\n 'c'\n 'd'\n\njulia> collect(a)\n2-element Array{Char,1}:\n 'e'\n 'f'\n```\n\n```jldoctest\njulia> a = Iterators.Stateful([1,1,1,2,3,4]);\n\njulia> for x in a; x == 1 || break; end\n\njulia> Base.peek(a)\n3\n\njulia> sum(a) # Sum the remaining elements\n7\n```\n"}],"Base.Iterators.drop":[{"Tuple{Any,Integer}":" drop(iter, n)\n\nAn iterator that generates all but the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.drop(a,4))\n2-element Array{Int64,1}:\n 9\n 11\n```\n"}],"Base.Iterators.reverse":[{"Tuple{Any}":" Iterators.reverse(itr)\n\nGiven an iterator `itr`, then `reverse(itr)` is an iterator over the\nsame collection but in the reverse order.\n\nThis iterator is \"lazy\" in that it does not make a copy of the collection in\norder to reverse it; see [`Base.reverse`](@ref) for an eager implementation.\n\nNot all iterator types `T` support reverse-order iteration. If `T`\ndoesn't, then iterating over `Iterators.reverse(itr::T)` will throw a [`MethodError`](@ref)\nbecause of the missing [`iterate`](@ref) methods for `Iterators.Reverse{T}`.\n(To implement these methods, the original iterator\n`itr::T` can be obtained from `r = Iterators.reverse(itr)` by `r.itr`.)\n\n# Examples\n```jldoctest\njulia> foreach(println, Iterators.reverse(1:5))\n5\n4\n3\n2\n1\n```\n"}],"Base.Iterators.flatten":[{"Tuple{Any}":" flatten(iter)\n\nGiven an iterator that yields iterators, return an iterator that yields the\nelements of those iterators.\nPut differently, the elements of the argument iterator are concatenated.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.flatten((1:2, 8:9)))\n4-element Array{Int64,1}:\n 1\n 2\n 8\n 9\n```\n"}],"Base.Iterators.Pairs":[{"Union{}":" Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}\n\nTransforms an indexable container into an Dictionary-view of the same data.\nModifying the key-space of the underlying data may invalidate this object.\n"}],"Base.Iterators.filter":[{"Tuple{Any,Any}":" Iterators.filter(flt, itr)\n\nGiven a predicate function `flt` and an iterable object `itr`, return an\niterable object which upon iteration yields the elements `x` of `itr` that\nsatisfy `flt(x)`. The order of the original iterator is preserved.\n\nThis function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time\nand use ``Θ(1)`` additional space, and `flt` will not be called by an\ninvocation of `filter`. Calls to `flt` will be made when iterating over the\nreturned iterable object. These calls are not cached and repeated calls will be\nmade when reiterating.\n\nSee [`Base.filter`](@ref) for an eager implementation of filtering for arrays.\n\n# Examples\n```jldoctest\njulia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])\nBase.Iterators.Filter{typeof(isodd),Array{Int64,1}}(isodd, [1, 2, 3, 4, 5])\n\njulia> foreach(println, f)\n1\n3\n5\n```\n"}]} \ No newline at end of file +{"Base.Iterators.cycle":[{"Tuple{Any}":" cycle(iter)\n\nAn iterator that cycles through `iter` forever.\nIf `iter` is empty, so is `cycle(iter)`.\n\n# Examples\n```jldoctest\njulia> for (i, v) in enumerate(Iterators.cycle(\"hello\"))\n print(v)\n i > 10 && break\n end\nhellohelloh\n```\n"}],"Base.Iterators.Stateful":[{"Union{}":" Stateful(itr)\n\nThere are several different ways to think about this iterator wrapper:\n\n1. It provides a mutable wrapper around an iterator and\n its iteration state.\n2. It turns an iterator-like abstraction into a `Channel`-like\n abstraction.\n3. It's an iterator that mutates to become its own rest iterator\n whenever an item is produced.\n\n`Stateful` provides the regular iterator interface. Like other mutable iterators\n(e.g. [`Channel`](@ref)), if iteration is stopped early (e.g. by a [`break`](@ref) in a [`for`](@ref) loop),\niteration can be resumed from the same spot by continuing to iterate over the\nsame iterator object (in contrast, an immutable iterator would restart from the\nbeginning).\n\n# Examples\n```jldoctest\njulia> a = Iterators.Stateful(\"abcdef\");\n\njulia> isempty(a)\nfalse\n\njulia> popfirst!(a)\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(Iterators.take(a, 3))\n3-element Array{Char,1}:\n 'b'\n 'c'\n 'd'\n\njulia> collect(a)\n2-element Array{Char,1}:\n 'e'\n 'f'\n```\n\n```jldoctest\njulia> a = Iterators.Stateful([1,1,1,2,3,4]);\n\njulia> for x in a; x == 1 || break; end\n\njulia> Base.peek(a)\n3\n\njulia> sum(a) # Sum the remaining elements\n7\n```\n"}],"Base.Iterators.partition":[{"Tuple{Any,Integer}":" partition(collection, n)\n\nIterate over a collection `n` elements at a time.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.partition([1,2,3,4,5], 2))\n3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:\n [1, 2]\n [3, 4]\n [5]\n```\n"}],"Base.Iterators.only":[{"Tuple{Any}":" only(x)\n\nReturns the one and only element of collection `x`, and throws an `ArgumentError` if the\ncollection has zero or multiple elements.\n\nSee also: [`first`](@ref), [`last`](@ref).\n\n!!! compat \"Julia 1.4\"\n This method requires at least Julia 1.4.\n"}],"Base.Iterators.reverse":[{"Tuple{Any}":" Iterators.reverse(itr)\n\nGiven an iterator `itr`, then `reverse(itr)` is an iterator over the\nsame collection but in the reverse order.\n\nThis iterator is \"lazy\" in that it does not make a copy of the collection in\norder to reverse it; see [`Base.reverse`](@ref) for an eager implementation.\n\nNot all iterator types `T` support reverse-order iteration. If `T`\ndoesn't, then iterating over `Iterators.reverse(itr::T)` will throw a [`MethodError`](@ref)\nbecause of the missing [`iterate`](@ref) methods for `Iterators.Reverse{T}`.\n(To implement these methods, the original iterator\n`itr::T` can be obtained from `r = Iterators.reverse(itr)` by `r.itr`.)\n\n# Examples\n```jldoctest\njulia> foreach(println, Iterators.reverse(1:5))\n5\n4\n3\n2\n1\n```\n"}],"Base.Iterators.product":[{"Tuple":" product(iters...)\n\nReturn an iterator over the product of several iterators. Each generated element is\na tuple whose `i`th element comes from the `i`th argument iterator. The first iterator\nchanges the fastest.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.product(1:2, 3:5))\n2×3 Array{Tuple{Int64,Int64},2}:\n (1, 3) (1, 4) (1, 5)\n (2, 3) (2, 4) (2, 5)\n```\n"}],"Base.Iterators.enumerate":[{"Tuple{Any}":" enumerate(iter)\n\nAn iterator that yields `(i, x)` where `i` is a counter starting at 1,\nand `x` is the `i`th value from the given iterator. It's useful when\nyou need not only the values `x` over which you are iterating, but\nalso the number of iterations so far. Note that `i` may not be valid\nfor indexing `iter`; it's also possible that `x != iter[i]`, if `iter`\nhas indices that do not start at 1. See the `pairs(IndexLinear(),\niter)` method if you want to ensure that `i` is an index.\n\n# Examples\n```jldoctest\njulia> a = [\"a\", \"b\", \"c\"];\n\njulia> for (index, value) in enumerate(a)\n println(\"$index $value\")\n end\n1 a\n2 b\n3 c\n```\n"}],"Base.Iterators.dropwhile":[{"Tuple{Any,Any}":" dropwhile(pred, iter)\n\nAn iterator that drops element from `iter` as long as predicate `pred` is true,\nafterwards, returns every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.dropwhile(<(3),s))\n3-element Array{Int64,1}:\n 3\n 4\n 5\n```\n"}],"Base.Iterators.take":[{"Tuple{Any,Integer}":" take(iter, n)\n\nAn iterator that generates at most the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.take(a,3))\n3-element Array{Int64,1}:\n 1\n 3\n 5\n```\n"}],"Base.Iterators.flatten":[{"Tuple{Any}":" flatten(iter)\n\nGiven an iterator that yields iterators, return an iterator that yields the\nelements of those iterators.\nPut differently, the elements of the argument iterator are concatenated.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.flatten((1:2, 8:9)))\n4-element Array{Int64,1}:\n 1\n 2\n 8\n 9\n```\n"}],"Base.Iterators.Pairs":[{"Union{}":" Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}\n\nTransforms an indexable container into an Dictionary-view of the same data.\nModifying the key-space of the underlying data may invalidate this object.\n"}],"Base.Iterators.takewhile":[{"Tuple{Any,Any}":" takewhile(pred, iter)\n\nAn iterator that generates element from `iter` as long as predicate `pred` is true,\nafterwards, drops every element.\n\n!!! compat \"Julia 1.4\"\n This function requires at least Julia 1.4.\n\n# Examples\n\n```jldoctest\njulia> s = collect(1:5)\n5-element Array{Int64,1}:\n 1\n 2\n 3\n 4\n 5\n\njulia> collect(Iterators.takewhile(<(3),s))\n2-element Array{Int64,1}:\n 1\n 2\n```\n"}],"Base.Iterators.drop":[{"Tuple{Any,Integer}":" drop(iter, n)\n\nAn iterator that generates all but the first `n` elements of `iter`.\n\n# Examples\n```jldoctest\njulia> a = 1:2:11\n1:2:11\n\njulia> collect(a)\n6-element Array{Int64,1}:\n 1\n 3\n 5\n 7\n 9\n 11\n\njulia> collect(Iterators.drop(a,4))\n2-element Array{Int64,1}:\n 9\n 11\n```\n"}],"Base.Iterators.filter":[{"Tuple{Any,Any}":" Iterators.filter(flt, itr)\n\nGiven a predicate function `flt` and an iterable object `itr`, return an\niterable object which upon iteration yields the elements `x` of `itr` that\nsatisfy `flt(x)`. The order of the original iterator is preserved.\n\nThis function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time\nand use ``Θ(1)`` additional space, and `flt` will not be called by an\ninvocation of `filter`. Calls to `flt` will be made when iterating over the\nreturned iterable object. These calls are not cached and repeated calls will be\nmade when reiterating.\n\nSee [`Base.filter`](@ref) for an eager implementation of filtering for arrays.\n\n# Examples\n```jldoctest\njulia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])\nBase.Iterators.Filter{typeof(isodd),Array{Int64,1}}(isodd, [1, 2, 3, 4, 5])\n\njulia> foreach(println, f)\n1\n3\n5\n```\n"}],"Base.Iterators.countfrom":[{"Tuple{Number,Number}":" countfrom(start=1, step=1)\n\nAn iterator that counts forever, starting at `start` and incrementing by `step`.\n\n# Examples\n```jldoctest\njulia> for v in Iterators.countfrom(5, 2)\n v > 10 && break\n println(v)\n end\n5\n7\n9\n```\n"}],"Base.Iterators.accumulate":[{"Tuple{Any,Any}":" Iterators.accumulate(f, itr)\n\nGiven a 2-argument function `f` and an iterator `itr`, return a new\niterator that successively applies `f` to the previous value and the\nnext element of `itr`.\n\nThis is effectively a lazy version of [`Base.accumulate`](@ref).\n\n# Examples\n```jldoctest\njulia> f = Iterators.accumulate(+, [1,2,3,4])\nBase.Iterators.Accumulate{typeof(+),Array{Int64,1}}(+, [1, 2, 3, 4])\n\njulia> foreach(println, f)\n1\n3\n6\n10\n```\n"}],"Base.Iterators.peel":[{"Tuple{Any}":" peel(iter)\n\nReturns the first element and an iterator over the remaining elements.\n\n# Examples\n```jldoctest\njulia> (a, rest) = Iterators.peel(\"abc\");\n\njulia> a\n'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)\n\njulia> collect(rest)\n2-element Array{Char,1}:\n 'b'\n 'c'\n```\n"}],"Base.Iterators.repeated":[{"Tuple{Any,Integer}":" repeated(x[, n::Int])\n\nAn iterator that generates the value `x` forever. If `n` is specified, generates `x` that\nmany times (equivalent to `take(repeated(x), n)`).\n\n# Examples\n```jldoctest\njulia> a = Iterators.repeated([1 2], 4);\n\njulia> collect(a)\n4-element Array{Array{Int64,2},1}:\n [1 2]\n [1 2]\n [1 2]\n [1 2]\n```\n"}],"Base.Iterators.zip":[{"Tuple":" zip(iters...)\n\nRun multiple iterators at the same time, until any of them is exhausted. The value type of\nthe `zip` iterator is a tuple of values of its subiterators.\n\n!!! note\n `zip` orders the calls to its subiterators in such a way that stateful iterators will\n not advance when another iterator finishes in the current iteration.\n\n# Examples\n```jldoctest\njulia> a = 1:5\n1:5\n\njulia> b = [\"e\",\"d\",\"b\",\"c\",\"a\"]\n5-element Array{String,1}:\n \"e\"\n \"d\"\n \"b\"\n \"c\"\n \"a\"\n\njulia> c = zip(a,b)\nBase.Iterators.Zip{Tuple{UnitRange{Int64},Array{String,1}}}((1:5, [\"e\", \"d\", \"b\", \"c\", \"a\"]))\n\njulia> length(c)\n5\n\njulia> first(c)\n(1, \"e\")\n```\n"}],"Base.Iterators.rest":[{"Tuple{Any,Any}":" rest(iter, state)\n\nAn iterator that yields the same elements as `iter`, but starting at the given `state`.\n\n# Examples\n```jldoctest\njulia> collect(Iterators.rest([1,2,3,4], 2))\n3-element Array{Int64,1}:\n 2\n 3\n 4\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Libc_docstrings.json b/en/docstrings/Libc_docstrings.json index 11baabff..0a3886bd 100644 --- a/en/docstrings/Libc_docstrings.json +++ b/en/docstrings/Libc_docstrings.json @@ -1 +1 @@ -{"Base.Libc.getpid":[{"Tuple{}":" getpid() -> Int32\n\nGet Julia's process ID.\n"}],"Base.Libc.time":[{"Tuple{}":" time()\n\nGet the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.\n"},{"Tuple{Base.Libc.TmStruct}":" time(t::TmStruct)\n\nConverts a `TmStruct` struct to a number of seconds since the epoch.\n"}],"Base.Libc.calloc":[{"Tuple{Integer,Integer}":" calloc(num::Integer, size::Integer) -> Ptr{Cvoid}\n\nCall `calloc` from the C standard library.\n"}],"Base.Libc.malloc":[{"Tuple{Integer}":" malloc(size::Integer) -> Ptr{Cvoid}\n\nCall `malloc` from the C standard library.\n"}],"Base.Libc.systemsleep":[{"Union{}":" systemsleep(s::Real)\n\nSuspends execution for `s` seconds.\nThis function does not yield to Julia's scheduler and therefore blocks\nthe Julia thread that it is running on for the duration of the sleep time.\n\nSee also: [`sleep`](@ref)\n"}],"Base.Libc.FormatMessage":[{"Union{}":" FormatMessage(n=GetLastError())\n\nConvert a Win32 system call error code to a descriptive string [only available on Windows].\n"}],"Base.Libc.realloc":[{"Tuple{Ptr,Integer}":" realloc(addr::Ptr, size::Integer) -> Ptr{Cvoid}\n\nCall `realloc` from the C standard library.\n\nSee warning in the documentation for [`free`](@ref) regarding only using this on memory originally\nobtained from [`malloc`](@ref).\n"}],"Base.Libc.rand":[{"Tuple{}":" rand([T::Type])\n\nInterface to the C `rand()` function. If `T` is provided, generate a value of type `T`\nby composing two calls to `rand()`. `T` can be `UInt32` or `Float64`.\n"}],"Base.Libc.gethostname":[{"Tuple{}":" gethostname() -> AbstractString\n\nGet the local machine's host name.\n"}],"Base.Libc.free":[{"Tuple{Ptr}":" free(addr::Ptr)\n\nCall `free` from the C standard library. Only use this on memory obtained from [`malloc`](@ref), not\non pointers retrieved from other C libraries. [`Ptr`](@ref) objects obtained from C libraries should\nbe freed by the free functions defined in that library, to avoid assertion failures if\nmultiple `libc` libraries exist on the system.\n"}],"Base.Libc.GetLastError":[{"Union{}":" GetLastError()\n\nCall the Win32 `GetLastError` function [only available on Windows].\n"}],"Base.Libc.strptime":[{"Tuple{AbstractString}":" strptime([format], timestr)\n\nParse a formatted time string into a `TmStruct` giving the seconds, minute, hour, date, etc.\nSupported formats are the same as those in the standard C library. On some platforms,\ntimezones will not be parsed correctly. If the result of this function will be passed to\n`time` to convert it to seconds since the epoch, the `isdst` field should be filled in\nmanually. Setting it to `-1` will tell the C library to use the current system settings to\ndetermine the timezone.\n"}],"Base.Libc.strerror":[{"Tuple{Integer}":" strerror(n=errno())\n\nConvert a system call error code to a descriptive string\n"}],"Base.Libc.srand":[{"Union{Tuple{}, Tuple{Any}}":" srand([seed])\n\nInterface to the C `srand(seed)` function.\n"}],"Base.Libc.TmStruct":[{"Union{}":" TmStruct([seconds])\n\nConvert a number of seconds since the epoch to broken-down format, with fields `sec`, `min`,\n`hour`, `mday`, `month`, `year`, `wday`, `yday`, and `isdst`.\n"}],"Base.Libc.errno":[{"Tuple{}":" errno([code])\n\nGet the value of the C library's `errno`. If an argument is specified, it is used to set the\nvalue of `errno`.\n\nThe value of `errno` is only valid immediately after a `ccall` to a C library routine that\nsets it. Specifically, you cannot call `errno` at the next prompt in a REPL, because lots of\ncode is executed between prompts.\n"}],"Base.Libc.strftime":[{"Tuple{Any}":" strftime([format], time)\n\nConvert time, given as a number of seconds since the epoch or a `TmStruct`, to a formatted\nstring using the given format. Supported formats are the same as those in the standard C\nlibrary.\n"}],"Base.Libc.flush_cstdio":[{"Tuple{}":" flush_cstdio()\n\nFlushes the C `stdout` and `stderr` streams (which may have been written to by external C code).\n"}],"Base.Libc.RawFD":[{"Union{}":" RawFD\n\nPrimitive type which wraps the native OS file descriptor.\n`RawFD`s can be passed to methods like [`stat`](@ref) to\ndiscover information about the underlying file, and can\nalso be used to open streams, with the `RawFD` describing\nthe OS file backing the stream.\n"}]} \ No newline at end of file +{"Base.Libc.srand":[{"Union{Tuple{}, Tuple{Any}}":" srand([seed])\n\nInterface to the C `srand(seed)` function.\n"}],"Base.Libc.strftime":[{"Tuple{Any}":" strftime([format], time)\n\nConvert time, given as a number of seconds since the epoch or a `TmStruct`, to a formatted\nstring using the given format. Supported formats are the same as those in the standard C\nlibrary.\n"}],"Base.Libc.free":[{"Tuple{Ptr}":" free(addr::Ptr)\n\nCall `free` from the C standard library. Only use this on memory obtained from [`malloc`](@ref), not\non pointers retrieved from other C libraries. [`Ptr`](@ref) objects obtained from C libraries should\nbe freed by the free functions defined in that library, to avoid assertion failures if\nmultiple `libc` libraries exist on the system.\n"}],"Base.Libc.gethostname":[{"Tuple{}":" gethostname() -> AbstractString\n\nGet the local machine's host name.\n"}],"Base.Libc.time":[{"Tuple{}":" time()\n\nGet the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.\n"},{"Tuple{Base.Libc.TmStruct}":" time(t::TmStruct)\n\nConverts a `TmStruct` struct to a number of seconds since the epoch.\n"}],"Base.Libc.strerror":[{"Tuple{Integer}":" strerror(n=errno())\n\nConvert a system call error code to a descriptive string\n"}],"Base.Libc.rand":[{"Tuple{}":" rand([T::Type])\n\nInterface to the C `rand()` function. If `T` is provided, generate a value of type `T`\nby composing two calls to `rand()`. `T` can be `UInt32` or `Float64`.\n"}],"Base.Libc.getpid":[{"Tuple{}":" getpid() -> Int32\n\nGet Julia's process ID.\n"}],"Base.Libc.realloc":[{"Tuple{Ptr,Integer}":" realloc(addr::Ptr, size::Integer) -> Ptr{Cvoid}\n\nCall `realloc` from the C standard library.\n\nSee warning in the documentation for [`free`](@ref) regarding only using this on memory originally\nobtained from [`malloc`](@ref).\n"}],"Base.Libc.GetLastError":[{"Union{}":" GetLastError()\n\nCall the Win32 `GetLastError` function [only available on Windows].\n"}],"Base.Libc.RawFD":[{"Union{}":" RawFD\n\nPrimitive type which wraps the native OS file descriptor.\n`RawFD`s can be passed to methods like [`stat`](@ref) to\ndiscover information about the underlying file, and can\nalso be used to open streams, with the `RawFD` describing\nthe OS file backing the stream.\n"}],"Base.Libc.errno":[{"Tuple{}":" errno([code])\n\nGet the value of the C library's `errno`. If an argument is specified, it is used to set the\nvalue of `errno`.\n\nThe value of `errno` is only valid immediately after a `ccall` to a C library routine that\nsets it. Specifically, you cannot call `errno` at the next prompt in a REPL, because lots of\ncode is executed between prompts.\n"}],"Base.Libc.malloc":[{"Tuple{Integer}":" malloc(size::Integer) -> Ptr{Cvoid}\n\nCall `malloc` from the C standard library.\n"}],"Base.Libc.systemsleep":[{"Union{}":" systemsleep(s::Real)\n\nSuspends execution for `s` seconds.\nThis function does not yield to Julia's scheduler and therefore blocks\nthe Julia thread that it is running on for the duration of the sleep time.\n\nSee also: [`sleep`](@ref)\n"}],"Base.Libc.flush_cstdio":[{"Tuple{}":" flush_cstdio()\n\nFlushes the C `stdout` and `stderr` streams (which may have been written to by external C code).\n"}],"Base.Libc.calloc":[{"Tuple{Integer,Integer}":" calloc(num::Integer, size::Integer) -> Ptr{Cvoid}\n\nCall `calloc` from the C standard library.\n"}],"Base.Libc.FormatMessage":[{"Union{}":" FormatMessage(n=GetLastError())\n\nConvert a Win32 system call error code to a descriptive string [only available on Windows].\n"}],"Base.Libc.TmStruct":[{"Union{}":" TmStruct([seconds])\n\nConvert a number of seconds since the epoch to broken-down format, with fields `sec`, `min`,\n`hour`, `mday`, `month`, `year`, `wday`, `yday`, and `isdst`.\n"}],"Base.Libc.strptime":[{"Tuple{AbstractString}":" strptime([format], timestr)\n\nParse a formatted time string into a `TmStruct` giving the seconds, minute, hour, date, etc.\nSupported formats are the same as those in the standard C library. On some platforms,\ntimezones will not be parsed correctly. If the result of this function will be passed to\n`time` to convert it to seconds since the epoch, the `isdst` field should be filled in\nmanually. Setting it to `-1` will tell the C library to use the current system settings to\ndetermine the timezone.\n"}]} \ No newline at end of file diff --git a/en/docstrings/MPFR_docstrings.json b/en/docstrings/MPFR_docstrings.json index e7e6de64..c1a3e835 100644 --- a/en/docstrings/MPFR_docstrings.json +++ b/en/docstrings/MPFR_docstrings.json @@ -1 +1 @@ -{"Base.MPFR.unsafe_cast":[{"Tuple{Any,BigFloat,RoundingMode}":" MPFR.unsafe_cast(T, x::BigFloat, r::RoundingMode)\n\nConvert `x` to integer type `T`, rounding the direction of `r`. If the value is not\nrepresentable by T, an arbitrary value will be returned.\n"}],"Base.MPFR.MPFRRoundingMode":[{"Union{}":" MPFR.MPFRRoundingMode\n\nMatches the `mpfr_rnd_t` enum provided by MPFR, see\nhttps://www.mpfr.org/mpfr-current/mpfr.html#Rounding-Modes\n\nThis is for internal use, and ensures that `ROUNDING_MODE[]` is type-stable.\n"}],"Base.MPFR.setprecision":[{"Tuple{Type{BigFloat},Integer}":" setprecision([T=BigFloat,] precision::Int)\n\nSet the precision (in bits) to be used for `T` arithmetic.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},Integer}} where T":" setprecision(f::Function, [T=BigFloat,] precision::Integer)\n\nChange the `T` arithmetic precision (in bits) for the duration of `f`.\nIt is logically equivalent to:\n\n old = precision(BigFloat)\n setprecision(BigFloat, precision)\n f()\n setprecision(BigFloat, old)\n\nOften used as `setprecision(T, precision) do ... end`\n\nNote: `nextfloat()`, `prevfloat()` do not use the precision mentioned by\n`setprecision`\n"}],"Base.MPFR.BigFloat":[{"Union{}":" BigFloat <: AbstractFloat\n\nArbitrary precision floating point number type.\n"},{"Tuple{Any,RoundingMode}":" BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])\n\nCreate an arbitrary precision floating point number from `x`, with precision\n`precision`. The `rounding` argument specifies the direction in which the result should be\nrounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.\n\n`BigFloat(x::Real)` is the same as `convert(BigFloat,x)`, except if `x` itself is already\n`BigFloat`, in which case it will return a value with the precision set to the current\nglobal precision; `convert` will always return `x`.\n\n`BigFloat(x::AbstractString)` is identical to [`parse`](@ref). This is provided for\nconvenience since decimal literals are converted to `Float64` when parsed, so\n`BigFloat(2.1)` may not yield what you expect.\n\n!!! compat \"Julia 1.1\"\n `precision` as a keyword argument requires at least Julia 1.1.\n In Julia 1.0 `precision` is the second positional argument (`BigFloat(x, precision)`).\n\n# Examples\n```jldoctest\njulia> BigFloat(2.1) # 2.1 here is a Float64\n2.100000000000000088817841970012523233890533447265625\n\njulia> BigFloat(\"2.1\") # the closest BigFloat to 2.1\n2.099999999999999999999999999999999999999999999999999999999999999999999999999986\n\njulia> BigFloat(\"2.1\", RoundUp)\n2.100000000000000000000000000000000000000000000000000000000000000000000000000021\n\njulia> BigFloat(\"2.1\", RoundUp, precision=128)\n2.100000000000000000000000000000000000007\n```\n\n# See also\n- [`@big_str`](@ref)\n- [`rounding`](@ref) and [`setrounding`](@ref)\n- [`precision`](@ref) and [`setprecision`](@ref)\n"}]} \ No newline at end of file +{"Base.MPFR.unsafe_cast":[{"Tuple{Any,BigFloat,RoundingMode}":" MPFR.unsafe_cast(T, x::BigFloat, r::RoundingMode)\n\nConvert `x` to integer type `T`, rounding the direction of `r`. If the value is not\nrepresentable by T, an arbitrary value will be returned.\n"}],"Base.MPFR.BigFloat":[{"Union{}":" BigFloat <: AbstractFloat\n\nArbitrary precision floating point number type.\n"},{"Tuple{Any,RoundingMode}":" BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])\n\nCreate an arbitrary precision floating point number from `x`, with precision\n`precision`. The `rounding` argument specifies the direction in which the result should be\nrounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.\n\n`BigFloat(x::Real)` is the same as `convert(BigFloat,x)`, except if `x` itself is already\n`BigFloat`, in which case it will return a value with the precision set to the current\nglobal precision; `convert` will always return `x`.\n\n`BigFloat(x::AbstractString)` is identical to [`parse`](@ref). This is provided for\nconvenience since decimal literals are converted to `Float64` when parsed, so\n`BigFloat(2.1)` may not yield what you expect.\n\n!!! compat \"Julia 1.1\"\n `precision` as a keyword argument requires at least Julia 1.1.\n In Julia 1.0 `precision` is the second positional argument (`BigFloat(x, precision)`).\n\n# Examples\n```jldoctest\njulia> BigFloat(2.1) # 2.1 here is a Float64\n2.100000000000000088817841970012523233890533447265625\n\njulia> BigFloat(\"2.1\") # the closest BigFloat to 2.1\n2.099999999999999999999999999999999999999999999999999999999999999999999999999986\n\njulia> BigFloat(\"2.1\", RoundUp)\n2.100000000000000000000000000000000000000000000000000000000000000000000000000021\n\njulia> BigFloat(\"2.1\", RoundUp, precision=128)\n2.100000000000000000000000000000000000007\n```\n\n# See also\n- [`@big_str`](@ref)\n- [`rounding`](@ref) and [`setrounding`](@ref)\n- [`precision`](@ref) and [`setprecision`](@ref)\n"}],"Base.MPFR.setprecision":[{"Tuple{Type{BigFloat},Integer}":" setprecision([T=BigFloat,] precision::Int)\n\nSet the precision (in bits) to be used for `T` arithmetic.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},Integer}} where T":" setprecision(f::Function, [T=BigFloat,] precision::Integer)\n\nChange the `T` arithmetic precision (in bits) for the duration of `f`.\nIt is logically equivalent to:\n\n old = precision(BigFloat)\n setprecision(BigFloat, precision)\n f()\n setprecision(BigFloat, old)\n\nOften used as `setprecision(T, precision) do ... end`\n\nNote: `nextfloat()`, `prevfloat()` do not use the precision mentioned by\n`setprecision`\n"}],"Base.MPFR.MPFRRoundingMode":[{"Union{}":" MPFR.MPFRRoundingMode\n\nMatches the `mpfr_rnd_t` enum provided by MPFR, see\nhttps://www.mpfr.org/mpfr-current/mpfr.html#Rounding-Modes\n\nThis is for internal use, and ensures that `ROUNDING_MODE[]` is type-stable.\n"}]} \ No newline at end of file diff --git a/en/docstrings/MathConstants_docstrings.json b/en/docstrings/MathConstants_docstrings.json index f935bdb4..0039acf1 100644 --- a/en/docstrings/MathConstants_docstrings.json +++ b/en/docstrings/MathConstants_docstrings.json @@ -1 +1 @@ -{"Base.MathConstants.eulergamma":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.catalan":[{"Union{}":" catalan\n\nCatalan's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.catalan\ncatalan = 0.9159655941772...\n```\n"}],"Base.MathConstants.golden":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.ℯ":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}],"Base.MathConstants.pi":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.π":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.γ":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.φ":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.e":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}]} \ No newline at end of file +{"Base.MathConstants.pi":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.φ":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.eulergamma":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.catalan":[{"Union{}":" catalan\n\nCatalan's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.catalan\ncatalan = 0.9159655941772...\n```\n"}],"Base.MathConstants.π":[{"Union{}":" π\n pi\n\nThe constant pi.\n\n# Examples\n```jldoctest\njulia> pi\nπ = 3.1415926535897...\n```\n"}],"Base.MathConstants.γ":[{"Union{}":" γ\n eulergamma\n\nEuler's constant.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.eulergamma\nγ = 0.5772156649015...\n```\n"}],"Base.MathConstants.golden":[{"Union{}":" φ\n golden\n\nThe golden ratio.\n\n# Examples\n```jldoctest\njulia> Base.MathConstants.golden\nφ = 1.6180339887498...\n```\n"}],"Base.MathConstants.ℯ":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}],"Base.MathConstants.e":[{"Union{}":" ℯ\n e\n\nThe constant ℯ.\n\n# Examples\n```jldoctest\njulia> ℯ\nℯ = 2.7182818284590...\n```\n"}]} \ No newline at end of file diff --git a/en/docstrings/Math_docstrings.json b/en/docstrings/Math_docstrings.json index 2a98f595..2b6a8d3a 100644 --- a/en/docstrings/Math_docstrings.json +++ b/en/docstrings/Math_docstrings.json @@ -1 +1 @@ -{"Base.Math.sec":[{"Tuple{Number}":" sec(x)\n\nCompute the secant of `x`, where `x` is in radians.\n"}],"Base.Math.sincos":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" sincos(x)\n\nSimultaneously compute the sine and cosine of `x`, where the `x` is in radians.\n"}],"Base.Math.cosd":[{"Tuple{Any}":" cosd(x)\nCompute cosine of `x`, where `x` is in degrees. "}],"Base.Math.exponent":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" exponent(x) -> Int\n\nGet the exponent of a normalized floating-point number.\n"}],"Base.Math.sinpi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" sinpi(x)\n\nCompute ``\\sin(\\pi x)`` more accurately than `sin(pi*x)`, especially for large `x`.\n"}],"Base.Math.hypot":[{"Tuple{Number,Number}":" hypot(x, y)\n\nCompute the hypotenuse ``\\sqrt{|x|^2+|y|^2}`` avoiding overflow and underflow.\n\nThis code is an implementation of the algorithm described in:\nAn Improved Algorithm for `hypot(a,b)`\nby Carlos F. Borges\nThe article is available online at ArXiv at the link\n https://arxiv.org/abs/1904.09481\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> a = Int64(10)^10;\n\njulia> hypot(a, a)\n1.4142135623730951e10\n\njulia> √(a^2 + a^2) # a^2 overflows\nERROR: DomainError with -2.914184810805068e18:\nsqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).\nStacktrace:\n[...]\n\njulia> hypot(3, 4im)\n5.0\n```\n"},{"Tuple{Vararg{Number,N} where N}":" hypot(x...)\n\nCompute the hypotenuse ``\\sqrt{\\sum |x_i|^2}`` avoiding overflow and underflow.\n\n# Examples\n```jldoctest\njulia> hypot(-5.7)\n5.7\n\njulia> hypot(3, 4im, 12.0)\n13.0\n```\n"}],"Base.Math.asech":[{"Tuple{Number}":" asech(x)\nCompute the inverse hyperbolic secant of `x`. "}],"Base.Math.clamp":[{"Union{Tuple{H}, Tuple{L}, Tuple{X}, Tuple{X,L,H}} where H where L where X":" clamp(x, lo, hi)\n\nReturn `x` if `lo <= x <= hi`. If `x > hi`, return `hi`. If `x < lo`, return `lo`. Arguments\nare promoted to a common type.\n\n# Examples\n```jldoctest\njulia> clamp.([pi, 1.0, big(10.)], 2., 9.)\n3-element Array{BigFloat,1}:\n 3.141592653589793238462643383279502884197169399375105820974944592307816406286198\n 2.0\n 9.0\n\njulia> clamp.([11,8,5],10,6) # an example where lo > hi\n3-element Array{Int64,1}:\n 6\n 6\n 10\n```\n"}],"Base.Math.rem2pi":[{"Union{}":" rem2pi(x, r::RoundingMode)\n\nCompute the remainder of `x` after integer division by `2π`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - 2π*round(x/(2π),r)\n\nwithout any intermediate rounding. This internally uses a high precision approximation of\n2π, and so will give a more accurate result than `rem(x,2π,r)`\n\n- if `r == RoundNearest`, then the result is in the interval ``[-π, π]``. This will generally\n be the most accurate result. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero`, then the result is in the interval ``[0, 2π]`` if `x` is positive,.\n or ``[-2π, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, 2π]``.\n See also [`RoundDown`](@ref).\n- if `r == RoundUp`, then the result is in the interval ``[-2π, 0]``.\n See also [`RoundUp`](@ref).\n\n# Examples\n```jldoctest\njulia> rem2pi(7pi/4, RoundNearest)\n-0.7853981633974485\n\njulia> rem2pi(7pi/4, RoundDown)\n5.497787143782138\n```\n"}],"Base.Math.acscd":[{"Tuple{Any}":" acscd(x)\n\nCompute the inverse cosecant of `x`, where the output is in degrees. "}],"Base.Math.fromfraction":[{"Tuple{Int128}":" fromfraction(f::Int128)\n\nCompute a tuple of values `(z1,z2)` such that\n ``z1 + z2 == f / 2^128``\nand the significand of `z1` has 27 trailing zeros.\n"}],"Base.Math.cos_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" cos_kernel(y)\n\nCompute the cosine on the interval y∈[-π/4; π/4].\n"}],"Base.Math.deg2rad":[{"Tuple{AbstractFloat}":" deg2rad(x)\n\nConvert `x` from degrees to radians.\n\n# Examples\n```jldoctest\njulia> deg2rad(90)\n1.5707963267948966\n```\n"}],"Base.Math.sind":[{"Tuple{Any}":" sind(x)\nCompute sine of `x`, where `x` is in degrees. "}],"Base.Math.sincosd":[{"Tuple{Real}":" sincosd(x)\n\nSimultaneously compute the sine and cosine of `x`, where `x` is in degrees.\n\n!!! compat \"Julia 1.3\"\n This function requires at least Julia 1.3.\n"}],"Base.Math.rem_pio2_kernel":[{"Tuple{Float64}":" rem_pio2_kernel(x)\n\nReturn the remainder of `x` modulo π/2 as a double-double pair, along with a `k`\nsuch that ``k \\mod 3 == K \\mod 3`` where ``K*π/2 = x - rem``. Note, that it is\nonly meant for use when ``|x|>=π/4``, and that ``π/2`` is always subtracted or\nadded for ``π/4<|x|<=π/2`` instead of simply returning `x`.\n"}],"Base.Math.ldexp":[{"Union{Tuple{T}, Tuple{T,Integer}} where T<:Union{Float16, Float32, Float64}":" ldexp(x, n)\n\nCompute ``x \\times 2^n``.\n\n# Examples\n```jldoctest\njulia> ldexp(5., 2)\n20.0\n```\n"}],"Base.Math.asecd":[{"Tuple{Any}":" asecd(x)\n\nCompute the inverse secant of `x`, where the output is in degrees. "}],"Base.Math.evalpoly":[{"Tuple{Any,Tuple}":" evalpoly(x, p)\n\nEvaluate the polynomial ``\\sum_k p[k] x^{k-1}`` for the coefficients `p[1]`, `p[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `x`.\nLoops are unrolled at compile time if the number of coefficients is statically known, i.e.\nwhen `p` is a `Tuple`.\nThis function generates efficient code using Horner's method if `x` is real, or using\na Goertzel-like [^DK62] algorithm if `x` is complex.\n\n[^DK62]: Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.\n\n!!! compat \"Julia 1.4\"\n This function requires Julia 1.4 or later.\n\n# Example\n```jldoctest\njulia> evalpoly(2, (1, 2, 3))\n17\n```\n"}],"Base.Math.@evalpoly":[{"Tuple{Any,Vararg{Any,N} where N}":" @evalpoly(z, c...)\n\nEvaluate the polynomial ``\\sum_k c[k] z^{k-1}`` for the coefficients `c[1]`, `c[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `z`. This macro expands\nto efficient inline code that uses either Horner's method or, for complex `z`, a more\nefficient Goertzel-like algorithm.\n\n# Examples\n```jldoctest\njulia> @evalpoly(3, 1, 0, 1)\n10\n\njulia> @evalpoly(2, 1, 0, 1)\n5\n\njulia> @evalpoly(2, 1, 1, 1)\n7\n```\n"}],"Base.Math.rad2deg":[{"Tuple{AbstractFloat}":" rad2deg(x)\n\nConvert `x` from radians to degrees.\n\n# Examples\n```jldoctest\njulia> rad2deg(pi)\n180.0\n```\n"}],"Base.Math.coth":[{"Tuple{Number}":" coth(x)\n\nCompute the hyperbolic cotangent of `x`.\n"}],"Base.Math.sin_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" sin_kernel(yhi, ylo)\n\nComputes the sine on the interval [-π/4; π/4].\n"}],"Base.Math.tand":[{"Tuple{Any}":" tand(x)\nCompute tangent of `x`, where `x` is in degrees. "}],"Base.Math.significand":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" significand(x)\n\nExtract the `significand(s)` (a.k.a. mantissa), in binary representation, of a\nfloating-point number. If `x` is a non-zero finite number, then the result will be\na number of the same type on the interval ``[1,2)``. Otherwise `x` is returned.\n\n# Examples\n```jldoctest\njulia> significand(15.2)/15.2\n0.125\n\njulia> significand(15.2)*8\n15.2\n```\n"}],"Base.Math.clamp!":[{"Tuple{AbstractArray,Any,Any}":" clamp!(array::AbstractArray, lo, hi)\n\nRestrict values in `array` to the specified range, in-place.\nSee also [`clamp`](@ref).\n"}],"Base.Math._frexp_exp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" exp_x, k2 = _frexp_exp(x)\n\nCalculate exp(x) as exp_x*2^k2 and return exp_x = exp(x-kr*log(w))*2^ks where kr\nis a type dependant range reduction constant, ks scales exp_x towards the largest\nfinite number, and k2 is used to absorb the remaning scale to allow for exp(x)\nto be outside the normal floating point range.\n\nThis function is intended for use in our hyperbolic and exponential functions.\n"}],"Base.Math.csc":[{"Tuple{Number}":" csc(x)\n\nCompute the cosecant of `x`, where `x` is in radians.\n"}],"Base.Math.acsch":[{"Tuple{Number}":" acsch(x)\nCompute the inverse hyperbolic cosecant of `x`. "}],"Base.Math.cot":[{"Tuple{Number}":" cot(x)\n\nCompute the cotangent of `x`, where `x` is in radians.\n"}],"Base.Math.poshighword":[{"Tuple{Float64}":" poshighword(x)\n\nReturn positive part of the high word of `x` as a `UInt32`.\n"}],"Base.Math.cosc":[{"Tuple{Number}":" cosc(x)\n\nCompute ``\\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2)`` if ``x \\neq 0``, and ``0`` if\n``x = 0``. This is the derivative of `sinc(x)`.\n"}],"Base.Math.sinc":[{"Tuple{Number}":" sinc(x)\n\nCompute ``\\sin(\\pi x) / (\\pi x)`` if ``x \\neq 0``, and ``1`` if ``x = 0``.\n"}],"Base.Math.asec":[{"Tuple{Number}":" asec(x)\nCompute the inverse secant of `x`, where the output is in radians. "}],"Base.Math.atand":[{"Tuple{Any}":" atand(y)\n atand(y,x)\n\nCompute the inverse tangent of `y` or `y/x`, respectively, where the output is in degrees.\n"}],"Base.Math._ldexp_exp":[{"Union{Tuple{T}, Tuple{T,Any}} where T<:Union{Float32, Float64}":" _ldexp_exp(x, l2)\nReturns exp(x) * 2^l2. The function is intended for large arguments, x, where\nx >= ln(prevfloat(typemax(x)) and care is needed to avoid overflow.\n\nThe present implementation is narrowly tailored for our hyperbolic and\nexponential functions. We assume l2 is small (0 or -1), and the caller\nhas filtered out very large x, for which overflow would be inevitable.\n"}],"Base.Math.mod2pi":[{"Tuple{Any}":" mod2pi(x)\n\nModulus after division by `2π`, returning in the range ``[0,2π)``.\n\nThis function computes a floating point representation of the modulus after division by\nnumerically exact `2π`, and is therefore not exactly the same as `mod(x,2π)`, which would\ncompute the modulus of `x` relative to division by the floating-point number `2π`.\n\n!!! note\n Depending on the format of the input value, the closest representable value to 2π may\n be less than 2π. For example, the expression `mod2pi(2π)` will not return `0`, because\n the intermediate value of `2*π` is a `Float64` and `2*Float64(π) < 2*big(π)`. See\n [`rem2pi`](@ref) for more refined control of this behavior.\n\n# Examples\n```jldoctest\njulia> mod2pi(9*pi/4)\n0.7853981633974481\n```\n"}],"Base.Math.acsc":[{"Tuple{Number}":" acsc(x)\nCompute the inverse cosecant of `x`, where the output is in radians. "}],"Base.Math.secd":[{"Tuple{Number}":" secd(x)\n\nCompute the secant of `x`, where `x` is in degrees.\n"}],"Base.Math.highword":[{"Tuple{Float64}":" highword(x)\n\nReturn the high word of `x` as a `UInt32`.\n"}],"Base.Math.cotd":[{"Tuple{Number}":" cotd(x)\n\nCompute the cotangent of `x`, where `x` is in degrees.\n"}],"Base.Math.csch":[{"Tuple{Number}":" csch(x)\n\nCompute the hyperbolic cosecant of `x`.\n"}],"Base.Math.acotd":[{"Tuple{Any}":" acotd(x)\n\nCompute the inverse cotangent of `x`, where the output is in degrees. "}],"Base.Math.asind":[{"Tuple{Any}":" asind(x)\n\nCompute the inverse sine of `x`, where the output is in degrees. "}],"Base.Math.modf":[{"Tuple{Any}":" modf(x)\n\nReturn a tuple `(fpart, ipart)` of the fractional and integral parts of a number. Both parts\nhave the same sign as the argument.\n\n# Examples\n```jldoctest\njulia> modf(3.5)\n(0.5, 3.0)\n\njulia> modf(-3.5)\n(-0.5, -3.0)\n```\n"}],"Base.Math.frexp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" frexp(val)\n\nReturn `(x,exp)` such that `x` has a magnitude in the interval ``[1/2, 1)`` or 0,\nand `val` is equal to ``x \\times 2^{exp}``.\n"}],"Base.Math._approx_cbrt":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" _approx_cbrt(x)\n\nApproximate `cbrt` to 5 bits precision\n\n cbrt(2^e * (1+m)) ≈ 2^(e÷3) * (1 + (e%3+m)÷3)\n\nwhere:\n - `e` is integral and >= 0\n - `m` is real and in [0, 1),\n - `÷` is integer division\n - `%` is integer remainder\n\nThe RHS is always >= the LHS and has a maximum relative error of about 1 in 16.\nAdding a bias of -0.03306235651 to the `(e%3+m)÷3` term reduces the error to about 1 in\n32.\n\nWith the IEEE floating point representation, for finite positive normal values, ordinary\ninteger division of the value in bits magically gives almost exactly the RHS of the above\nprovided we first subtract the exponent bias and later add it back. We do the\nsubtraction virtually to keep e >= 0 so that ordinary integer division rounds towards\nminus infinity; this is also efficient. All operations can be done in 32-bit.\n\nThese implementations assume that NaNs, infinities and zeros have already been filtered.\n"}],"Base.Math.acoth":[{"Tuple{Number}":" acoth(x)\nCompute the inverse hyperbolic cotangent of `x`. "}],"Base.Math.sech":[{"Tuple{Number}":" sech(x)\n\nCompute the hyperbolic secant of `x`.\n"}],"Base.Math.cospi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" cospi(x)\n\nCompute ``\\cos(\\pi x)`` more accurately than `cos(pi*x)`, especially for large `x`.\n"}],"Base.Math.cbrt":[{"Tuple{Real}":" cbrt(x::Real)\n\nReturn the cube root of `x`, i.e. ``x^{1/3}``. Negative values are accepted\n(returning the negative real root when ``x < 0``).\n\nThe prefix operator `∛` is equivalent to `cbrt`.\n\n# Examples\n```jldoctest\njulia> cbrt(big(27))\n3.0\n\njulia> cbrt(big(-27))\n-3.0\n```\n"}],"Base.Math.acosd":[{"Tuple{Any}":" acosd(x)\n\nCompute the inverse cosine of `x`, where the output is in degrees. "}],"Base.Math.cscd":[{"Tuple{Number}":" cscd(x)\n\nCompute the cosecant of `x`, where `x` is in degrees.\n"}],"Base.Math.@horner":[{"Tuple{Any,Vararg{Any,N} where N}":" @horner(x, p...)\n\nEvaluate `p[1] + x * (p[2] + x * (....))`, i.e. a polynomial via Horner's rule.\n"}],"Base.Math.acot":[{"Tuple{Number}":" acot(x)\nCompute the inverse cotangent of `x`, where the output is in radians. "}]} \ No newline at end of file +{"Base.Math.cbrt":[{"Tuple{Real}":" cbrt(x::Real)\n\nReturn the cube root of `x`, i.e. ``x^{1/3}``. Negative values are accepted\n(returning the negative real root when ``x < 0``).\n\nThe prefix operator `∛` is equivalent to `cbrt`.\n\n# Examples\n```jldoctest\njulia> cbrt(big(27))\n3.0\n\njulia> cbrt(big(-27))\n-3.0\n```\n"}],"Base.Math.hypot":[{"Tuple{Number,Number}":" hypot(x, y)\n\nCompute the hypotenuse ``\\sqrt{|x|^2+|y|^2}`` avoiding overflow and underflow.\n\nThis code is an implementation of the algorithm described in:\nAn Improved Algorithm for `hypot(a,b)`\nby Carlos F. Borges\nThe article is available online at ArXiv at the link\n https://arxiv.org/abs/1904.09481\n\n# Examples\n```jldoctest; filter = r\"Stacktrace:(\\n \\[[0-9]+\\].*)*\"\njulia> a = Int64(10)^10;\n\njulia> hypot(a, a)\n1.4142135623730951e10\n\njulia> √(a^2 + a^2) # a^2 overflows\nERROR: DomainError with -2.914184810805068e18:\nsqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).\nStacktrace:\n[...]\n\njulia> hypot(3, 4im)\n5.0\n```\n"},{"Tuple{Vararg{Number,N} where N}":" hypot(x...)\n\nCompute the hypotenuse ``\\sqrt{\\sum |x_i|^2}`` avoiding overflow and underflow.\n\n# Examples\n```jldoctest\njulia> hypot(-5.7)\n5.7\n\njulia> hypot(3, 4im, 12.0)\n13.0\n```\n"}],"Base.Math.sin_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" sin_kernel(yhi, ylo)\n\nComputes the sine on the interval [-π/4; π/4].\n"}],"Base.Math.rem_pio2_kernel":[{"Tuple{Float64}":" rem_pio2_kernel(x)\n\nReturn the remainder of `x` modulo π/2 as a double-double pair, along with a `k`\nsuch that ``k \\mod 3 == K \\mod 3`` where ``K*π/2 = x - rem``. Note, that it is\nonly meant for use when ``|x|>=π/4``, and that ``π/2`` is always subtracted or\nadded for ``π/4<|x|<=π/2`` instead of simply returning `x`.\n"}],"Base.Math.clamp":[{"Union{Tuple{H}, Tuple{L}, Tuple{X}, Tuple{X,L,H}} where H where L where X":" clamp(x, lo, hi)\n\nReturn `x` if `lo <= x <= hi`. If `x > hi`, return `hi`. If `x < lo`, return `lo`. Arguments\nare promoted to a common type.\n\n# Examples\n```jldoctest\njulia> clamp.([pi, 1.0, big(10.)], 2., 9.)\n3-element Array{BigFloat,1}:\n 3.141592653589793238462643383279502884197169399375105820974944592307816406286198\n 2.0\n 9.0\n\njulia> clamp.([11,8,5],10,6) # an example where lo > hi\n3-element Array{Int64,1}:\n 6\n 6\n 10\n```\n"}],"Base.Math.atand":[{"Tuple{Any}":" atand(y)\n atand(y,x)\n\nCompute the inverse tangent of `y` or `y/x`, respectively, where the output is in degrees.\n"}],"Base.Math.clamp!":[{"Tuple{AbstractArray,Any,Any}":" clamp!(array::AbstractArray, lo, hi)\n\nRestrict values in `array` to the specified range, in-place.\nSee also [`clamp`](@ref).\n"}],"Base.Math.evalpoly":[{"Tuple{Any,Tuple}":" evalpoly(x, p)\n\nEvaluate the polynomial ``\\sum_k p[k] x^{k-1}`` for the coefficients `p[1]`, `p[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `x`.\nLoops are unrolled at compile time if the number of coefficients is statically known, i.e.\nwhen `p` is a `Tuple`.\nThis function generates efficient code using Horner's method if `x` is real, or using\na Goertzel-like [^DK62] algorithm if `x` is complex.\n\n[^DK62]: Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.\n\n!!! compat \"Julia 1.4\"\n This function requires Julia 1.4 or later.\n\n# Example\n```jldoctest\njulia> evalpoly(2, (1, 2, 3))\n17\n```\n"}],"Base.Math.sind":[{"Tuple{Any}":" sind(x)\nCompute sine of `x`, where `x` is in degrees. "}],"Base.Math.csc":[{"Tuple{Number}":" csc(x)\n\nCompute the cosecant of `x`, where `x` is in radians.\n"}],"Base.Math.cos_kernel":[{"Tuple{Base.Math.DoubleFloat64}":" cos_kernel(y)\n\nCompute the cosine on the interval y∈[-π/4; π/4].\n"}],"Base.Math.acsc":[{"Tuple{Number}":" acsc(x)\nCompute the inverse cosecant of `x`, where the output is in radians. "}],"Base.Math.cot":[{"Tuple{Number}":" cot(x)\n\nCompute the cotangent of `x`, where `x` is in radians.\n"}],"Base.Math.ldexp":[{"Union{Tuple{T}, Tuple{T,Integer}} where T<:Union{Float16, Float32, Float64}":" ldexp(x, n)\n\nCompute ``x \\times 2^n``.\n\n# Examples\n```jldoctest\njulia> ldexp(5., 2)\n20.0\n```\n"}],"Base.Math.modf":[{"Tuple{Any}":" modf(x)\n\nReturn a tuple `(fpart, ipart)` of the fractional and integral parts of a number. Both parts\nhave the same sign as the argument.\n\n# Examples\n```jldoctest\njulia> modf(3.5)\n(0.5, 3.0)\n\njulia> modf(-3.5)\n(-0.5, -3.0)\n```\n"}],"Base.Math.rem2pi":[{"Union{}":" rem2pi(x, r::RoundingMode)\n\nCompute the remainder of `x` after integer division by `2π`, with the quotient rounded\naccording to the rounding mode `r`. In other words, the quantity\n\n x - 2π*round(x/(2π),r)\n\nwithout any intermediate rounding. This internally uses a high precision approximation of\n2π, and so will give a more accurate result than `rem(x,2π,r)`\n\n- if `r == RoundNearest`, then the result is in the interval ``[-π, π]``. This will generally\n be the most accurate result. See also [`RoundNearest`](@ref).\n\n- if `r == RoundToZero`, then the result is in the interval ``[0, 2π]`` if `x` is positive,.\n or ``[-2π, 0]`` otherwise. See also [`RoundToZero`](@ref).\n\n- if `r == RoundDown`, then the result is in the interval ``[0, 2π]``.\n See also [`RoundDown`](@ref).\n- if `r == RoundUp`, then the result is in the interval ``[-2π, 0]``.\n See also [`RoundUp`](@ref).\n\n# Examples\n```jldoctest\njulia> rem2pi(7pi/4, RoundNearest)\n-0.7853981633974485\n\njulia> rem2pi(7pi/4, RoundDown)\n5.497787143782138\n```\n"}],"Base.Math.exponent":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" exponent(x) -> Int\n\nGet the exponent of a normalized floating-point number.\n"}],"Base.Math._approx_cbrt":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" _approx_cbrt(x)\n\nApproximate `cbrt` to 5 bits precision\n\n cbrt(2^e * (1+m)) ≈ 2^(e÷3) * (1 + (e%3+m)÷3)\n\nwhere:\n - `e` is integral and >= 0\n - `m` is real and in [0, 1),\n - `÷` is integer division\n - `%` is integer remainder\n\nThe RHS is always >= the LHS and has a maximum relative error of about 1 in 16.\nAdding a bias of -0.03306235651 to the `(e%3+m)÷3` term reduces the error to about 1 in\n32.\n\nWith the IEEE floating point representation, for finite positive normal values, ordinary\ninteger division of the value in bits magically gives almost exactly the RHS of the above\nprovided we first subtract the exponent bias and later add it back. We do the\nsubtraction virtually to keep e >= 0 so that ordinary integer division rounds towards\nminus infinity; this is also efficient. All operations can be done in 32-bit.\n\nThese implementations assume that NaNs, infinities and zeros have already been filtered.\n"}],"Base.Math.cosc":[{"Tuple{Number}":" cosc(x)\n\nCompute ``\\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2)`` if ``x \\neq 0``, and ``0`` if\n``x = 0``. This is the derivative of `sinc(x)`.\n"}],"Base.Math.acot":[{"Tuple{Number}":" acot(x)\nCompute the inverse cotangent of `x`, where the output is in radians. "}],"Base.Math._frexp_exp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" exp_x, k2 = _frexp_exp(x)\n\nCalculate exp(x) as exp_x*2^k2 and return exp_x = exp(x-kr*log(w))*2^ks where kr\nis a type dependant range reduction constant, ks scales exp_x towards the largest\nfinite number, and k2 is used to absorb the remaning scale to allow for exp(x)\nto be outside the normal floating point range.\n\nThis function is intended for use in our hyperbolic and exponential functions.\n"}],"Base.Math.@horner":[{"Tuple{Any,Vararg{Any,N} where N}":" @horner(x, p...)\n\nEvaluate `p[1] + x * (p[2] + x * (....))`, i.e. a polynomial via Horner's rule.\n"}],"Base.Math.significand":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" significand(x)\n\nExtract the `significand(s)` (a.k.a. mantissa), in binary representation, of a\nfloating-point number. If `x` is a non-zero finite number, then the result will be\na number of the same type on the interval ``[1,2)``. Otherwise `x` is returned.\n\n# Examples\n```jldoctest\njulia> significand(15.2)/15.2\n0.125\n\njulia> significand(15.2)*8\n15.2\n```\n"}],"Base.Math.asech":[{"Tuple{Number}":" asech(x)\nCompute the inverse hyperbolic secant of `x`. "}],"Base.Math.acsch":[{"Tuple{Number}":" acsch(x)\nCompute the inverse hyperbolic cosecant of `x`. "}],"Base.Math.rad2deg":[{"Tuple{AbstractFloat}":" rad2deg(x)\n\nConvert `x` from radians to degrees.\n\n# Examples\n```jldoctest\njulia> rad2deg(pi)\n180.0\n```\n"}],"Base.Math.acscd":[{"Tuple{Any}":" acscd(x)\n\nCompute the inverse cosecant of `x`, where the output is in degrees. "}],"Base.Math.secd":[{"Tuple{Number}":" secd(x)\n\nCompute the secant of `x`, where `x` is in degrees.\n"}],"Base.Math.@evalpoly":[{"Tuple{Any,Vararg{Any,N} where N}":" @evalpoly(z, c...)\n\nEvaluate the polynomial ``\\sum_k c[k] z^{k-1}`` for the coefficients `c[1]`, `c[2]`, ...;\nthat is, the coefficients are given in ascending order by power of `z`. This macro expands\nto efficient inline code that uses either Horner's method or, for complex `z`, a more\nefficient Goertzel-like algorithm.\n\n# Examples\n```jldoctest\njulia> @evalpoly(3, 1, 0, 1)\n10\n\njulia> @evalpoly(2, 1, 0, 1)\n5\n\njulia> @evalpoly(2, 1, 1, 1)\n7\n```\n"}],"Base.Math.asecd":[{"Tuple{Any}":" asecd(x)\n\nCompute the inverse secant of `x`, where the output is in degrees. "}],"Base.Math.sec":[{"Tuple{Number}":" sec(x)\n\nCompute the secant of `x`, where `x` is in radians.\n"}],"Base.Math.mod2pi":[{"Tuple{Any}":" mod2pi(x)\n\nModulus after division by `2π`, returning in the range ``[0,2π)``.\n\nThis function computes a floating point representation of the modulus after division by\nnumerically exact `2π`, and is therefore not exactly the same as `mod(x,2π)`, which would\ncompute the modulus of `x` relative to division by the floating-point number `2π`.\n\n!!! note\n Depending on the format of the input value, the closest representable value to 2π may\n be less than 2π. For example, the expression `mod2pi(2π)` will not return `0`, because\n the intermediate value of `2*π` is a `Float64` and `2*Float64(π) < 2*big(π)`. See\n [`rem2pi`](@ref) for more refined control of this behavior.\n\n# Examples\n```jldoctest\njulia> mod2pi(9*pi/4)\n0.7853981633974481\n```\n"}],"Base.Math.asec":[{"Tuple{Number}":" asec(x)\nCompute the inverse secant of `x`, where the output is in radians. "}],"Base.Math.sinpi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" sinpi(x)\n\nCompute ``\\sin(\\pi x)`` more accurately than `sin(pi*x)`, especially for large `x`.\n"}],"Base.Math.deg2rad":[{"Tuple{AbstractFloat}":" deg2rad(x)\n\nConvert `x` from degrees to radians.\n\n# Examples\n```jldoctest\njulia> deg2rad(90)\n1.5707963267948966\n```\n"}],"Base.Math.frexp":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float16, Float32, Float64}":" frexp(val)\n\nReturn `(x,exp)` such that `x` has a magnitude in the interval ``[1/2, 1)`` or 0,\nand `val` is equal to ``x \\times 2^{exp}``.\n"}],"Base.Math.cospi":[{"Union{Tuple{T}, Tuple{T}} where T<:AbstractFloat":" cospi(x)\n\nCompute ``\\cos(\\pi x)`` more accurately than `cos(pi*x)`, especially for large `x`.\n"}],"Base.Math.sincosd":[{"Tuple{Real}":" sincosd(x)\n\nSimultaneously compute the sine and cosine of `x`, where `x` is in degrees.\n\n!!! compat \"Julia 1.3\"\n This function requires at least Julia 1.3.\n"}],"Base.Math.coth":[{"Tuple{Number}":" coth(x)\n\nCompute the hyperbolic cotangent of `x`.\n"}],"Base.Math._ldexp_exp":[{"Union{Tuple{T}, Tuple{T,Any}} where T<:Union{Float32, Float64}":" _ldexp_exp(x, l2)\nReturns exp(x) * 2^l2. The function is intended for large arguments, x, where\nx >= ln(prevfloat(typemax(x)) and care is needed to avoid overflow.\n\nThe present implementation is narrowly tailored for our hyperbolic and\nexponential functions. We assume l2 is small (0 or -1), and the caller\nhas filtered out very large x, for which overflow would be inevitable.\n"}],"Base.Math.csch":[{"Tuple{Number}":" csch(x)\n\nCompute the hyperbolic cosecant of `x`.\n"}],"Base.Math.poshighword":[{"Tuple{Float64}":" poshighword(x)\n\nReturn positive part of the high word of `x` as a `UInt32`.\n"}],"Base.Math.sinc":[{"Tuple{Number}":" sinc(x)\n\nCompute ``\\sin(\\pi x) / (\\pi x)`` if ``x \\neq 0``, and ``1`` if ``x = 0``.\n"}],"Base.Math.cotd":[{"Tuple{Number}":" cotd(x)\n\nCompute the cotangent of `x`, where `x` is in degrees.\n"}],"Base.Math.fromfraction":[{"Tuple{Int128}":" fromfraction(f::Int128)\n\nCompute a tuple of values `(z1,z2)` such that\n ``z1 + z2 == f / 2^128``\nand the significand of `z1` has 27 trailing zeros.\n"}],"Base.Math.acosd":[{"Tuple{Any}":" acosd(x)\n\nCompute the inverse cosine of `x`, where the output is in degrees. "}],"Base.Math.cscd":[{"Tuple{Number}":" cscd(x)\n\nCompute the cosecant of `x`, where `x` is in degrees.\n"}],"Base.Math.highword":[{"Tuple{Float64}":" highword(x)\n\nReturn the high word of `x` as a `UInt32`.\n"}],"Base.Math.acoth":[{"Tuple{Number}":" acoth(x)\nCompute the inverse hyperbolic cotangent of `x`. "}],"Base.Math.tand":[{"Tuple{Any}":" tand(x)\nCompute tangent of `x`, where `x` is in degrees. "}],"Base.Math.sech":[{"Tuple{Number}":" sech(x)\n\nCompute the hyperbolic secant of `x`.\n"}],"Base.Math.acotd":[{"Tuple{Any}":" acotd(x)\n\nCompute the inverse cotangent of `x`, where the output is in degrees. "}],"Base.Math.asind":[{"Tuple{Any}":" asind(x)\n\nCompute the inverse sine of `x`, where the output is in degrees. "}],"Base.Math.sincos":[{"Union{Tuple{T}, Tuple{T}} where T<:Union{Float32, Float64}":" sincos(x)\n\nSimultaneously compute the sine and cosine of `x`, where the `x` is in radians.\n"}],"Base.Math.cosd":[{"Tuple{Any}":" cosd(x)\nCompute cosine of `x`, where `x` is in degrees. "}]} \ No newline at end of file diff --git a/en/docstrings/Meta_docstrings.json b/en/docstrings/Meta_docstrings.json index 7b8c55d0..b4980e7a 100644 --- a/en/docstrings/Meta_docstrings.json +++ b/en/docstrings/Meta_docstrings.json @@ -1 +1 @@ -{"Base.Meta.isexpr":[{"Tuple{Any,Symbol}":" Meta.isexpr(ex, head[, n])::Bool\n\nCheck if `ex` is an expression with head `head` and `n` arguments.\n\n# Examples\n```jldoctest\njulia> ex = :(f(x))\n:(f(x))\n\njulia> Meta.isexpr(ex, :block)\nfalse\n\njulia> Meta.isexpr(ex, :call)\ntrue\n\njulia> Meta.isexpr(ex, [:block, :call]) # multiple possible heads\ntrue\n\njulia> Meta.isexpr(ex, :call, 1)\nfalse\n\njulia> Meta.isexpr(ex, :call, 2)\ntrue\n```\n"}],"Base.Meta.@dump":[{"Tuple{Any}":" @dump expr\n\nShow every part of the representation of the given expression. Equivalent to\n[`dump(:(expr))`](@ref dump).\n"}],"Base.Meta.@lower":[{"Tuple{Any}":" @lower [m] x\n\nReturn lowered form of the expression `x` in module `m`.\nBy default `m` is the module in which the macro is called.\nSee also [`lower`](@ref).\n"}],"Base.Meta.show_sexpr":[{"Tuple{Any}":" Meta.show_sexpr([io::IO,], ex)\n\nShow expression `ex` as a lisp style S-expression.\n\n# Examples\n```jldoctest\njulia> Meta.show_sexpr(:(f(x, g(y,z))))\n(:call, :f, :x, (:call, :g, :y, :z))\n```\n"}],"Base.Meta.lower":[{"Tuple{Module,Any}":" lower(m, x)\n\nTakes the expression `x` and returns an equivalent expression in lowered form\nfor executing in module `m`.\nSee also [`code_lowered`](@ref).\n"}],"Base.Meta.ParseError":[{"Union{}":" ParseError(msg)\n\nThe expression passed to the [`parse`](@ref) function could not be interpreted as a valid Julia\nexpression.\n"}],"Base.Meta.quot":[{"Tuple{Any}":" Meta.quot(ex)::Expr\n\nQuote expression `ex` to produce an expression with head `quote`. This can for instance be used to represent objects of type `Expr` in the AST.\nSee also the manual section about [QuoteNode](@ref man-quote-node).\n\n# Examples\n```jldoctest\njulia> eval(Meta.quot(:x))\n:x\n\njulia> dump(Meta.quot(:x))\nExpr\n head: Symbol quote\n args: Array{Any}((1,))\n 1: Symbol x\n\njulia> eval(Meta.quot(:(1+2)))\n:(1 + 2)\n```\n"}],"Base.Meta.parse":[{"Tuple{AbstractString}":" parse(str; raise=true, depwarn=true)\n\nParse the expression string greedily, returning a single expression. An error is thrown if\nthere are additional characters after the first expression. If `raise` is `true` (default),\nsyntax errors will raise an error; otherwise, `parse` will return an expression that will\nraise an error upon evaluation. If `depwarn` is `false`, deprecation warnings will be\nsuppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3\")\n:(x = 3)\n\njulia> Meta.parse(\"x = \")\n:($(Expr(:incomplete, \"incomplete: premature end of input\")))\n\njulia> Meta.parse(\"1.0.2\")\nERROR: Base.Meta.ParseError(\"invalid numeric constant \\\"1.0.\\\"\")\nStacktrace:\n[...]\n\njulia> Meta.parse(\"1.0.2\"; raise = false)\n:($(Expr(:error, \"invalid numeric constant \\\"1.0.\\\"\")))\n```\n"},{"Tuple{AbstractString,Integer}":" parse(str, start; greedy=true, raise=true, depwarn=true)\n\nParse the expression string and return an expression (which could later be passed to eval\nfor execution). `start` is the index of the first character to start parsing. If `greedy` is\n`true` (default), `parse` will try to consume as much input as it can; otherwise, it will\nstop as soon as it has parsed a valid expression. Incomplete but otherwise syntactically\nvalid expressions will return `Expr(:incomplete, \"(error message)\")`. If `raise` is `true`\n(default), syntax errors other than incomplete expressions will raise an error. If `raise`\nis `false`, `parse` will return an expression that will raise an error upon evaluation. If\n`depwarn` is `false`, deprecation warnings will be suppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3, y = 5\", 7)\n(:(y = 5), 13)\n\njulia> Meta.parse(\"x = 3, y = 5\", 5)\n(:((3, y) = 5), 13)\n```\n"}],"Base.Meta.partially_inline!":[{"Tuple{Array{Any,1},Array{Any,1},Any,Array{Any,1},Int64,Int64,Symbol}":" partially_inline!(code::Vector{Any}, slot_replacements::Vector{Any},\n type_signature::Type{<:Tuple}, static_param_values::Vector{Any},\n slot_offset::Int, statement_offset::Int,\n boundscheck::Symbol)\n\nReturn `code` after performing an in-place partial inlining pass on the Julia IR stored\nwithin it.\n\nThe kind of inlining transformations performed by this function are those that are generally\npossible given only a runtime type signature for a method invocation and the corresponding\nmethod's lowered IR. Thus, this function is mainly useful when preparing Julia IR to be\nemitted from a `@generated` function.\n\nThe performed transformations are:\n\n- replace slot numbers in the range `1:length(slot_replacements)` with the corresponding items in `slot_replacements`\n- increment other slot numbers by `slot_offset`\n- substitute static parameter placeholders (e.g. `Expr(:static_parameter, 1)`) with the corresponding\nvalues in `static_param_values`\n- increment any statement indices present in the IR (`GotoNode`s, `SSAValue`s, etc.) by `statement_offset`\n(useful when the caller plans to prepend new statements to the IR)\n- turn off boundschecking (if `boundscheck === :off`) or propagate boundschecking (if `boundscheck === :propagate`)\n\nThis function is similar to `Core.Compiler.ssa_substitute!`, but works on pre-type-inference\nIR instead of the optimizer's IR.\n"}]} \ No newline at end of file +{"Base.Meta.lower":[{"Tuple{Module,Any}":" lower(m, x)\n\nTakes the expression `x` and returns an equivalent expression in lowered form\nfor executing in module `m`.\nSee also [`code_lowered`](@ref).\n"}],"Base.Meta.parse":[{"Tuple{AbstractString}":" parse(str; raise=true, depwarn=true)\n\nParse the expression string greedily, returning a single expression. An error is thrown if\nthere are additional characters after the first expression. If `raise` is `true` (default),\nsyntax errors will raise an error; otherwise, `parse` will return an expression that will\nraise an error upon evaluation. If `depwarn` is `false`, deprecation warnings will be\nsuppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3\")\n:(x = 3)\n\njulia> Meta.parse(\"x = \")\n:($(Expr(:incomplete, \"incomplete: premature end of input\")))\n\njulia> Meta.parse(\"1.0.2\")\nERROR: Base.Meta.ParseError(\"invalid numeric constant \\\"1.0.\\\"\")\nStacktrace:\n[...]\n\njulia> Meta.parse(\"1.0.2\"; raise = false)\n:($(Expr(:error, \"invalid numeric constant \\\"1.0.\\\"\")))\n```\n"},{"Tuple{AbstractString,Integer}":" parse(str, start; greedy=true, raise=true, depwarn=true)\n\nParse the expression string and return an expression (which could later be passed to eval\nfor execution). `start` is the index of the first character to start parsing. If `greedy` is\n`true` (default), `parse` will try to consume as much input as it can; otherwise, it will\nstop as soon as it has parsed a valid expression. Incomplete but otherwise syntactically\nvalid expressions will return `Expr(:incomplete, \"(error message)\")`. If `raise` is `true`\n(default), syntax errors other than incomplete expressions will raise an error. If `raise`\nis `false`, `parse` will return an expression that will raise an error upon evaluation. If\n`depwarn` is `false`, deprecation warnings will be suppressed.\n\n```jldoctest\njulia> Meta.parse(\"x = 3, y = 5\", 7)\n(:(y = 5), 13)\n\njulia> Meta.parse(\"x = 3, y = 5\", 5)\n(:((3, y) = 5), 13)\n```\n"}],"Base.Meta.show_sexpr":[{"Tuple{Any}":" Meta.show_sexpr([io::IO,], ex)\n\nShow expression `ex` as a lisp style S-expression.\n\n# Examples\n```jldoctest\njulia> Meta.show_sexpr(:(f(x, g(y,z))))\n(:call, :f, :x, (:call, :g, :y, :z))\n```\n"}],"Base.Meta.quot":[{"Tuple{Any}":" Meta.quot(ex)::Expr\n\nQuote expression `ex` to produce an expression with head `quote`. This can for instance be used to represent objects of type `Expr` in the AST.\nSee also the manual section about [QuoteNode](@ref man-quote-node).\n\n# Examples\n```jldoctest\njulia> eval(Meta.quot(:x))\n:x\n\njulia> dump(Meta.quot(:x))\nExpr\n head: Symbol quote\n args: Array{Any}((1,))\n 1: Symbol x\n\njulia> eval(Meta.quot(:(1+2)))\n:(1 + 2)\n```\n"}],"Base.Meta.@lower":[{"Tuple{Any}":" @lower [m] x\n\nReturn lowered form of the expression `x` in module `m`.\nBy default `m` is the module in which the macro is called.\nSee also [`lower`](@ref).\n"}],"Base.Meta.ParseError":[{"Union{}":" ParseError(msg)\n\nThe expression passed to the [`parse`](@ref) function could not be interpreted as a valid Julia\nexpression.\n"}],"Base.Meta.@dump":[{"Tuple{Any}":" @dump expr\n\nShow every part of the representation of the given expression. Equivalent to\n[`dump(:(expr))`](@ref dump).\n"}],"Base.Meta.isexpr":[{"Tuple{Any,Symbol}":" Meta.isexpr(ex, head[, n])::Bool\n\nCheck if `ex` is an expression with head `head` and `n` arguments.\n\n# Examples\n```jldoctest\njulia> ex = :(f(x))\n:(f(x))\n\njulia> Meta.isexpr(ex, :block)\nfalse\n\njulia> Meta.isexpr(ex, :call)\ntrue\n\njulia> Meta.isexpr(ex, [:block, :call]) # multiple possible heads\ntrue\n\njulia> Meta.isexpr(ex, :call, 1)\nfalse\n\njulia> Meta.isexpr(ex, :call, 2)\ntrue\n```\n"}],"Base.Meta.partially_inline!":[{"Tuple{Array{Any,1},Array{Any,1},Any,Array{Any,1},Int64,Int64,Symbol}":" partially_inline!(code::Vector{Any}, slot_replacements::Vector{Any},\n type_signature::Type{<:Tuple}, static_param_values::Vector{Any},\n slot_offset::Int, statement_offset::Int,\n boundscheck::Symbol)\n\nReturn `code` after performing an in-place partial inlining pass on the Julia IR stored\nwithin it.\n\nThe kind of inlining transformations performed by this function are those that are generally\npossible given only a runtime type signature for a method invocation and the corresponding\nmethod's lowered IR. Thus, this function is mainly useful when preparing Julia IR to be\nemitted from a `@generated` function.\n\nThe performed transformations are:\n\n- replace slot numbers in the range `1:length(slot_replacements)` with the corresponding items in `slot_replacements`\n- increment other slot numbers by `slot_offset`\n- substitute static parameter placeholders (e.g. `Expr(:static_parameter, 1)`) with the corresponding\nvalues in `static_param_values`\n- increment any statement indices present in the IR (`GotoNode`s, `SSAValue`s, etc.) by `statement_offset`\n(useful when the caller plans to prepend new statements to the IR)\n- turn off boundschecking (if `boundscheck === :off`) or propagate boundschecking (if `boundscheck === :propagate`)\n\nThis function is similar to `Core.Compiler.ssa_substitute!`, but works on pre-type-inference\nIR instead of the optimizer's IR.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Multimedia_docstrings.json b/en/docstrings/Multimedia_docstrings.json index 915485ac..a6a0a481 100644 --- a/en/docstrings/Multimedia_docstrings.json +++ b/en/docstrings/Multimedia_docstrings.json @@ -1 +1 @@ -{"Base.Multimedia.showable":[{"Union{Tuple{mime}, Tuple{MIME{mime},Any}} where mime":" showable(mime, x)\n\nReturns a boolean value indicating whether or not the object `x` can be written\nas the given `mime` type.\n\n(By default, this is determined automatically by the existence of the\ncorresponding [`show`](@ref) method for `typeof(x)`. Some types provide custom `showable`\nmethods; for example, if the available MIME formats depend on the *value* of `x`.)\n\n# Examples\n```jldoctest\njulia> showable(MIME(\"text/plain\"), rand(5))\ntrue\n\njulia> showable(\"img/png\", rand(5))\nfalse\n```\n"}],"Base.Multimedia.redisplay":[{"Tuple{Any}":" redisplay(x)\n redisplay(d::AbstractDisplay, x)\n redisplay(mime, x)\n redisplay(d::AbstractDisplay, mime, x)\n\nBy default, the `redisplay` functions simply call [`display`](@ref).\nHowever, some display backends may override `redisplay` to modify an existing\ndisplay of `x` (if any).\nUsing `redisplay` is also a hint to the backend that `x` may be redisplayed\nseveral times, and the backend may choose to defer the display until\n(for example) the next interactive prompt.\n"}],"Base.Multimedia.istextmime":[{"Tuple{MIME}":" istextmime(m::MIME)\n\nDetermine whether a MIME type is text data. MIME types are assumed to be binary\ndata except for a set of types known to be text data (possibly Unicode).\n\n# Examples\n```jldoctest\njulia> istextmime(MIME(\"text/plain\"))\ntrue\n\njulia> istextmime(MIME(\"img/png\"))\nfalse\n```\n"}],"Base.Multimedia.MIME":[{"Union{}":" MIME\n\nA type representing a standard internet data format. \"MIME\" stands for\n\"Multipurpose Internet Mail Extensions\", since the standard was originally\nused to describe multimedia attachments to email messages.\n\nA `MIME` object can be passed as the second argument to [`show`](@ref) to\nrequest output in that format.\n\n# Examples\n```jldoctest\njulia> show(stdout, MIME(\"text/plain\"), \"hi\")\n\"hi\"\n```\n"}],"Base.Multimedia.displayable":[{"Tuple{AbstractDisplay,AbstractString}":" displayable(mime) -> Bool\n displayable(d::AbstractDisplay, mime) -> Bool\n\nReturns a boolean value indicating whether the given `mime` type (string) is displayable by\nany of the displays in the current display stack, or specifically by the display `d` in the\nsecond variant.\n"}],"Base.Multimedia.display":[{"Tuple{Any}":" display(x)\n display(d::AbstractDisplay, x)\n display(mime, x)\n display(d::AbstractDisplay, mime, x)\n\nAbstractDisplay `x` using the topmost applicable display in the display stack, typically using the\nrichest supported multimedia output for `x`, with plain-text [`stdout`](@ref) output as a fallback.\nThe `display(d, x)` variant attempts to display `x` on the given display `d` only, throwing\na [`MethodError`](@ref) if `d` cannot display objects of this type.\n\nIn general, you cannot assume that `display` output goes to `stdout` (unlike [`print(x)`](@ref) or\n[`show(x)`](@ref)). For example, `display(x)` may open up a separate window with an image.\n`display(x)` means \"show `x` in the best way you can for the current output device(s).\"\nIf you want REPL-like text output that is guaranteed to go to `stdout`, use\n[`show(stdout, \"text/plain\", x)`](@ref) instead.\n\nThere are also two variants with a `mime` argument (a MIME type string, such as\n`\"image/png\"`), which attempt to display `x` using the requested MIME type *only*, throwing\na `MethodError` if this type is not supported by either the display(s) or by `x`. With these\nvariants, one can also supply the \"raw\" data in the requested MIME type by passing\n`x::AbstractString` (for MIME types with text-based storage, such as text/html or\napplication/postscript) or `x::Vector{UInt8}` (for binary MIME types).\n"}],"Base.Multimedia.pushdisplay":[{"Tuple{AbstractDisplay}":" pushdisplay(d::AbstractDisplay)\n\nPushes a new display `d` on top of the global display-backend stack. Calling `display(x)` or\n`display(mime, x)` will display `x` on the topmost compatible backend in the stack (i.e.,\nthe topmost backend that does not throw a [`MethodError`](@ref)).\n"}],"Base.Multimedia.@MIME_str":[{"Tuple{Any}":" @MIME_str\n\nA convenience macro for writing [`MIME`](@ref) types, typically used when\nadding methods to [`show`](@ref).\nFor example the syntax `show(io::IO, ::MIME\"text/html\", x::MyType) = ...`\ncould be used to define how to write an HTML representation of `MyType`.\n"}],"Base.Multimedia.popdisplay":[{"Tuple{}":" popdisplay()\n popdisplay(d::AbstractDisplay)\n\nPop the topmost backend off of the display-backend stack, or the topmost copy of `d` in the\nsecond variant.\n"}],"Base.Multimedia.TextDisplay":[{"Union{}":" TextDisplay(io::IO)\n\nReturns a `TextDisplay <: AbstractDisplay`, which displays any object as the text/plain MIME type\n(by default), writing the text representation to the given I/O stream. (This is how\nobjects are printed in the Julia REPL.)\n"}],"Base.Multimedia.AbstractDisplay":[{"Union{}":" AbstractDisplay\n\nAbstract supertype for rich display output devices. [`TextDisplay`](@ref) is a subtype\nof this.\n"}]} \ No newline at end of file +{"Base.Multimedia.TextDisplay":[{"Union{}":" TextDisplay(io::IO)\n\nReturns a `TextDisplay <: AbstractDisplay`, which displays any object as the text/plain MIME type\n(by default), writing the text representation to the given I/O stream. (This is how\nobjects are printed in the Julia REPL.)\n"}],"Base.Multimedia.redisplay":[{"Tuple{Any}":" redisplay(x)\n redisplay(d::AbstractDisplay, x)\n redisplay(mime, x)\n redisplay(d::AbstractDisplay, mime, x)\n\nBy default, the `redisplay` functions simply call [`display`](@ref).\nHowever, some display backends may override `redisplay` to modify an existing\ndisplay of `x` (if any).\nUsing `redisplay` is also a hint to the backend that `x` may be redisplayed\nseveral times, and the backend may choose to defer the display until\n(for example) the next interactive prompt.\n"}],"Base.Multimedia.MIME":[{"Union{}":" MIME\n\nA type representing a standard internet data format. \"MIME\" stands for\n\"Multipurpose Internet Mail Extensions\", since the standard was originally\nused to describe multimedia attachments to email messages.\n\nA `MIME` object can be passed as the second argument to [`show`](@ref) to\nrequest output in that format.\n\n# Examples\n```jldoctest\njulia> show(stdout, MIME(\"text/plain\"), \"hi\")\n\"hi\"\n```\n"}],"Base.Multimedia.popdisplay":[{"Tuple{}":" popdisplay()\n popdisplay(d::AbstractDisplay)\n\nPop the topmost backend off of the display-backend stack, or the topmost copy of `d` in the\nsecond variant.\n"}],"Base.Multimedia.AbstractDisplay":[{"Union{}":" AbstractDisplay\n\nAbstract supertype for rich display output devices. [`TextDisplay`](@ref) is a subtype\nof this.\n"}],"Base.Multimedia.pushdisplay":[{"Tuple{AbstractDisplay}":" pushdisplay(d::AbstractDisplay)\n\nPushes a new display `d` on top of the global display-backend stack. Calling `display(x)` or\n`display(mime, x)` will display `x` on the topmost compatible backend in the stack (i.e.,\nthe topmost backend that does not throw a [`MethodError`](@ref)).\n"}],"Base.Multimedia.showable":[{"Union{Tuple{mime}, Tuple{MIME{mime},Any}} where mime":" showable(mime, x)\n\nReturns a boolean value indicating whether or not the object `x` can be written\nas the given `mime` type.\n\n(By default, this is determined automatically by the existence of the\ncorresponding [`show`](@ref) method for `typeof(x)`. Some types provide custom `showable`\nmethods; for example, if the available MIME formats depend on the *value* of `x`.)\n\n# Examples\n```jldoctest\njulia> showable(MIME(\"text/plain\"), rand(5))\ntrue\n\njulia> showable(\"img/png\", rand(5))\nfalse\n```\n"}],"Base.Multimedia.istextmime":[{"Tuple{MIME}":" istextmime(m::MIME)\n\nDetermine whether a MIME type is text data. MIME types are assumed to be binary\ndata except for a set of types known to be text data (possibly Unicode).\n\n# Examples\n```jldoctest\njulia> istextmime(MIME(\"text/plain\"))\ntrue\n\njulia> istextmime(MIME(\"img/png\"))\nfalse\n```\n"}],"Base.Multimedia.@MIME_str":[{"Tuple{Any}":" @MIME_str\n\nA convenience macro for writing [`MIME`](@ref) types, typically used when\nadding methods to [`show`](@ref).\nFor example the syntax `show(io::IO, ::MIME\"text/html\", x::MyType) = ...`\ncould be used to define how to write an HTML representation of `MyType`.\n"}],"Base.Multimedia.display":[{"Tuple{Any}":" display(x)\n display(d::AbstractDisplay, x)\n display(mime, x)\n display(d::AbstractDisplay, mime, x)\n\nAbstractDisplay `x` using the topmost applicable display in the display stack, typically using the\nrichest supported multimedia output for `x`, with plain-text [`stdout`](@ref) output as a fallback.\nThe `display(d, x)` variant attempts to display `x` on the given display `d` only, throwing\na [`MethodError`](@ref) if `d` cannot display objects of this type.\n\nIn general, you cannot assume that `display` output goes to `stdout` (unlike [`print(x)`](@ref) or\n[`show(x)`](@ref)). For example, `display(x)` may open up a separate window with an image.\n`display(x)` means \"show `x` in the best way you can for the current output device(s).\"\nIf you want REPL-like text output that is guaranteed to go to `stdout`, use\n[`show(stdout, \"text/plain\", x)`](@ref) instead.\n\nThere are also two variants with a `mime` argument (a MIME type string, such as\n`\"image/png\"`), which attempt to display `x` using the requested MIME type *only*, throwing\na `MethodError` if this type is not supported by either the display(s) or by `x`. With these\nvariants, one can also supply the \"raw\" data in the requested MIME type by passing\n`x::AbstractString` (for MIME types with text-based storage, such as text/html or\napplication/postscript) or `x::Vector{UInt8}` (for binary MIME types).\n"}],"Base.Multimedia.displayable":[{"Tuple{AbstractDisplay,AbstractString}":" displayable(mime) -> Bool\n displayable(d::AbstractDisplay, mime) -> Bool\n\nReturns a boolean value indicating whether the given `mime` type (string) is displayable by\nany of the displays in the current display stack, or specifically by the display `d` in the\nsecond variant.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Rounding_docstrings.json b/en/docstrings/Rounding_docstrings.json index 6f8bcbef..13b59526 100644 --- a/en/docstrings/Rounding_docstrings.json +++ b/en/docstrings/Rounding_docstrings.json @@ -1 +1 @@ -{"Base.Rounding.get_zero_subnormals":[{"Tuple{}":" get_zero_subnormals() -> Bool\n\nReturn `false` if operations on subnormal floating-point values (\"denormals\") obey rules\nfor IEEE arithmetic, and `true` if they might be converted to zeros.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.RoundNearestTiesUp":[{"Union{}":" RoundNearestTiesUp\n\nRounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.RoundUp":[{"Union{}":" RoundUp\n\n[`round`](@ref) using this rounding mode is an alias for [`ceil`](@ref).\n"}],"Base.Rounding.setrounding":[{"Tuple{Type,Any}":" setrounding(T, mode)\n\nSet the rounding mode of floating point type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref),\n[`/`](@ref) and [`sqrt`](@ref)) and type conversion. Other numerical\nfunctions may give incorrect or invalid values when using rounding modes other than the\ndefault [`RoundNearest`](@ref).\n\nNote that this is currently only supported for `T == BigFloat`.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},RoundingMode}} where T":" setrounding(f::Function, T, mode)\n\nChange the rounding mode of floating point type `T` for the duration of `f`. It is logically\nequivalent to:\n\n old = rounding(T)\n setrounding(T, mode)\n f()\n setrounding(T, old)\n\nSee [`RoundingMode`](@ref) for available rounding modes.\n"}],"Base.Rounding.RoundDown":[{"Union{}":" RoundDown\n\n[`round`](@ref) using this rounding mode is an alias for [`floor`](@ref).\n"}],"Base.Rounding.RoundFromZero":[{"Union{}":" RoundFromZero\n\nRounds away from zero.\nThis rounding mode may only be used with `T == BigFloat` inputs to [`round`](@ref).\n\n# Examples\n```jldoctest\njulia> BigFloat(\"1.0000000000000001\", 5, RoundFromZero)\n1.06\n```\n"}],"Base.Rounding.set_zero_subnormals":[{"Tuple{Bool}":" set_zero_subnormals(yes::Bool) -> Bool\n\nIf `yes` is `false`, subsequent floating-point operations follow rules for IEEE arithmetic\non subnormal values (\"denormals\"). Otherwise, floating-point operations are permitted (but\nnot required) to convert subnormal inputs or outputs to zero. Returns `true` unless\n`yes==true` but the hardware does not support zeroing of subnormal numbers.\n\n`set_zero_subnormals(true)` can speed up some computations on some hardware. However, it can\nbreak identities such as `(x-y==0) == (x==y)`.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.rounding":[{"Union{}":" rounding(T)\n\nGet the current floating point rounding mode for type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref), [`/`](@ref)\nand [`sqrt`](@ref)) and type conversion.\n\nSee [`RoundingMode`](@ref) for available modes.\n"}],"Base.Rounding.RoundNearest":[{"Union{}":" RoundNearest\n\nThe default rounding mode. Rounds to the nearest integer, with ties (fractional values of\n0.5) being rounded to the nearest even integer.\n"}],"Base.Rounding.RoundToZero":[{"Union{}":" RoundToZero\n\n[`round`](@ref) using this rounding mode is an alias for [`trunc`](@ref).\n"}],"Base.Rounding.RoundNearestTiesAway":[{"Union{}":" RoundNearestTiesAway\n\nRounds to nearest integer, with ties rounded away from zero (C/C++\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.RoundingMode":[{"Union{}":" RoundingMode\n\nA type used for controlling the rounding mode of floating point operations (via\n[`rounding`](@ref)/[`setrounding`](@ref) functions), or as\noptional arguments for rounding to the nearest integer (via the [`round`](@ref)\nfunction).\n\nCurrently supported rounding modes are:\n\n- [`RoundNearest`](@ref) (default)\n- [`RoundNearestTiesAway`](@ref)\n- [`RoundNearestTiesUp`](@ref)\n- [`RoundToZero`](@ref)\n- [`RoundFromZero`](@ref) ([`BigFloat`](@ref) only)\n- [`RoundUp`](@ref)\n- [`RoundDown`](@ref)\n"}]} \ No newline at end of file +{"Base.Rounding.RoundNearest":[{"Union{}":" RoundNearest\n\nThe default rounding mode. Rounds to the nearest integer, with ties (fractional values of\n0.5) being rounded to the nearest even integer.\n"}],"Base.Rounding.RoundUp":[{"Union{}":" RoundUp\n\n[`round`](@ref) using this rounding mode is an alias for [`ceil`](@ref).\n"}],"Base.Rounding.RoundFromZero":[{"Union{}":" RoundFromZero\n\nRounds away from zero.\nThis rounding mode may only be used with `T == BigFloat` inputs to [`round`](@ref).\n\n# Examples\n```jldoctest\njulia> BigFloat(\"1.0000000000000001\", 5, RoundFromZero)\n1.06\n```\n"}],"Base.Rounding.RoundDown":[{"Union{}":" RoundDown\n\n[`round`](@ref) using this rounding mode is an alias for [`floor`](@ref).\n"}],"Base.Rounding.RoundNearestTiesAway":[{"Union{}":" RoundNearestTiesAway\n\nRounds to nearest integer, with ties rounded away from zero (C/C++\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.rounding":[{"Union{}":" rounding(T)\n\nGet the current floating point rounding mode for type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref), [`/`](@ref)\nand [`sqrt`](@ref)) and type conversion.\n\nSee [`RoundingMode`](@ref) for available modes.\n"}],"Base.Rounding.get_zero_subnormals":[{"Tuple{}":" get_zero_subnormals() -> Bool\n\nReturn `false` if operations on subnormal floating-point values (\"denormals\") obey rules\nfor IEEE arithmetic, and `true` if they might be converted to zeros.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.RoundNearestTiesUp":[{"Union{}":" RoundNearestTiesUp\n\nRounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript\n[`round`](@ref) behaviour).\n"}],"Base.Rounding.set_zero_subnormals":[{"Tuple{Bool}":" set_zero_subnormals(yes::Bool) -> Bool\n\nIf `yes` is `false`, subsequent floating-point operations follow rules for IEEE arithmetic\non subnormal values (\"denormals\"). Otherwise, floating-point operations are permitted (but\nnot required) to convert subnormal inputs or outputs to zero. Returns `true` unless\n`yes==true` but the hardware does not support zeroing of subnormal numbers.\n\n`set_zero_subnormals(true)` can speed up some computations on some hardware. However, it can\nbreak identities such as `(x-y==0) == (x==y)`.\n\n!!! warning\n\n This function only affects the current thread.\n"}],"Base.Rounding.setrounding":[{"Tuple{Type,Any}":" setrounding(T, mode)\n\nSet the rounding mode of floating point type `T`, controlling the rounding of basic\narithmetic functions ([`+`](@ref), [`-`](@ref), [`*`](@ref),\n[`/`](@ref) and [`sqrt`](@ref)) and type conversion. Other numerical\nfunctions may give incorrect or invalid values when using rounding modes other than the\ndefault [`RoundNearest`](@ref).\n\nNote that this is currently only supported for `T == BigFloat`.\n\n!!! warning\n\n This function is not thread-safe. It will affect code running on all threads, but\n its behavior is undefined if called concurrently with computations that use the\n setting.\n"},{"Union{Tuple{T}, Tuple{Function,Type{T},RoundingMode}} where T":" setrounding(f::Function, T, mode)\n\nChange the rounding mode of floating point type `T` for the duration of `f`. It is logically\nequivalent to:\n\n old = rounding(T)\n setrounding(T, mode)\n f()\n setrounding(T, old)\n\nSee [`RoundingMode`](@ref) for available rounding modes.\n"}],"Base.Rounding.RoundingMode":[{"Union{}":" RoundingMode\n\nA type used for controlling the rounding mode of floating point operations (via\n[`rounding`](@ref)/[`setrounding`](@ref) functions), or as\noptional arguments for rounding to the nearest integer (via the [`round`](@ref)\nfunction).\n\nCurrently supported rounding modes are:\n\n- [`RoundNearest`](@ref) (default)\n- [`RoundNearestTiesAway`](@ref)\n- [`RoundNearestTiesUp`](@ref)\n- [`RoundToZero`](@ref)\n- [`RoundFromZero`](@ref) ([`BigFloat`](@ref) only)\n- [`RoundUp`](@ref)\n- [`RoundDown`](@ref)\n"}],"Base.Rounding.RoundToZero":[{"Union{}":" RoundToZero\n\n[`round`](@ref) using this rounding mode is an alias for [`trunc`](@ref).\n"}]} \ No newline at end of file diff --git a/en/docstrings/Sys_docstrings.json b/en/docstrings/Sys_docstrings.json index b600f389..9e33bcac 100644 --- a/en/docstrings/Sys_docstrings.json +++ b/en/docstrings/Sys_docstrings.json @@ -1 +1 @@ -{"Base.Sys.islinux":[{"Tuple{Symbol}":" Sys.islinux([os])\n\nPredicate for testing if the OS is a derivative of Linux.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isnetbsd":[{"Tuple{Symbol}":" Sys.isnetbsd([os])\n\nPredicate for testing if the OS is a derivative of NetBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on NetBSD but also on\n other BSD-based systems. `Sys.isnetbsd()` refers only to NetBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.isjsvm":[{"Tuple{Symbol}":" Sys.isjsvm([os])\n\nPredicate for testing if Julia is running in a JavaScript VM (JSVM),\nincluding e.g. a WebAssembly JavaScript embedding in a web browser.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.Sys.STDLIB":[{"Union{}":" Sys.STDLIB\n\nA string containing the full path to the directory containing the `stdlib` packages.\n"}],"Base.Sys.set_process_title":[{"Tuple{AbstractString}":" Sys.set_process_title(title::AbstractString)\n\nSet the process title. No-op on some operating systems.\n"}],"Base.Sys.isopenbsd":[{"Tuple{Symbol}":" Sys.isopenbsd([os])\n\nPredicate for testing if the OS is a derivative of OpenBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on OpenBSD but also on\n other BSD-based systems. `Sys.isopenbsd()` refers only to OpenBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.free_memory":[{"Tuple{}":" Sys.free_memory()\n\nGet the total free memory in RAM in kilobytes.\n"}],"Base.Sys.windows_version":[{"Union{}":" Sys.windows_version()\n\nReturn the version number for the Windows NT Kernel as a `VersionNumber`,\ni.e. `v\"major.minor.build\"`, or `v\"0.0.0\"` if this is not running on Windows.\n"}],"Base.Sys.BINDIR":[{"Union{}":" Sys.BINDIR\n\nA string containing the full path to the directory containing the `julia` executable.\n"}],"Base.Sys.WORD_SIZE":[{"Union{}":" Sys.WORD_SIZE\n\nStandard word size on the current machine, in bits.\n"}],"Base.Sys.isapple":[{"Tuple{Symbol}":" Sys.isapple([os])\n\nPredicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.maxrss":[{"Tuple{}":" Sys.maxrss()\n\nGet the maximum resident set size utilized in bytes.\nSee also:\n - man page of getrusage(2) on Linux and FreeBSD.\n - windows api `GetProcessMemoryInfo`\n"}],"Base.Sys.MACHINE":[{"Union{}":" Sys.MACHINE\n\nA string containing the build triple.\n"}],"Base.Sys.CPU_THREADS":[{"Union{}":" Sys.CPU_THREADS\n\nThe number of logical CPU cores available in the system, i.e. the number of threads\nthat the CPU can run concurrently. Note that this is not necessarily the number of\nCPU cores, for example, in the presence of\n[hyper-threading](https://en.wikipedia.org/wiki/Hyper-threading).\n\nSee Hwloc.jl or CpuId.jl for extended information, including number of physical cores.\n"}],"Base.Sys.isexecutable":[{"Tuple{String}":" Sys.isexecutable(path::String)\n\nReturn `true` if the given `path` has executable permissions.\n"}],"Base.Sys.isbsd":[{"Tuple{Symbol}":" Sys.isbsd([os])\n\nPredicate for testing if the OS is a derivative of BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n The Darwin kernel descends from BSD, which means that `Sys.isbsd()` is\n `true` on macOS systems. To exclude macOS from a predicate, use\n `Sys.isbsd() && !Sys.isapple()`.\n"}],"Base.Sys.KERNEL":[{"Union{}":" Sys.KERNEL\n\nA symbol representing the name of the operating system, as returned by `uname` of the build configuration.\n"}],"Base.Sys.which":[{"Tuple{String}":" Sys.which(program_name::String)\n\nGiven a program name, search the current `PATH` to find the first binary with\nthe proper executable permissions that can be run and return an absolute path\nto it, or return `nothing` if no such program is available. If a path with\na directory in it is passed in for `program_name`, tests that exact path\nfor executable permissions only (with `.exe` and `.com` extensions added on\nWindows platforms); no searching of `PATH` is performed.\n"}],"Base.Sys.loadavg":[{"Tuple{}":" Sys.loadavg()\n\nGet the load average. See: https://en.wikipedia.org/wiki/Load_(computing).\n"}],"Base.Sys.isunix":[{"Tuple{Symbol}":" Sys.isunix([os])\n\nPredicate for testing if the OS provides a Unix-like interface.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isfreebsd":[{"Tuple{Symbol}":" Sys.isfreebsd([os])\n\nPredicate for testing if the OS is a derivative of FreeBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on FreeBSD but also on\n other BSD-based systems. `Sys.isfreebsd()` refers only to FreeBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.get_process_title":[{"Tuple{}":" Sys.get_process_title()\n\nGet the process title. On some systems, will always return an empty string.\n"}],"Base.Sys.total_memory":[{"Tuple{}":" Sys.total_memory()\n\nGet the total memory in RAM (including that which is currently used) in kilobytes.\n"}],"Base.Sys.ARCH":[{"Union{}":" Sys.ARCH\n\nA symbol representing the architecture of the build configuration.\n"}],"Base.Sys.uptime":[{"Tuple{}":" Sys.uptime()\n\nGets the current system uptime in seconds.\n"}],"Base.Sys.isdragonfly":[{"Tuple{Symbol}":" Sys.isdragonfly([os])\n\nPredicate for testing if the OS is a derivative of DragonFly BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on DragonFly but also on\n other BSD-based systems. `Sys.isdragonfly()` refers only to DragonFly.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.iswindows":[{"Tuple{Symbol}":" Sys.iswindows([os])\n\nPredicate for testing if the OS is a derivative of Microsoft Windows NT.\nSee documentation in [Handling Operating System Variation](@ref).\n"}]} \ No newline at end of file +{"Base.Sys.total_memory":[{"Tuple{}":" Sys.total_memory()\n\nGet the total memory in RAM (including that which is currently used) in kilobytes.\n"}],"Base.Sys.uptime":[{"Tuple{}":" Sys.uptime()\n\nGets the current system uptime in seconds.\n"}],"Base.Sys.WORD_SIZE":[{"Union{}":" Sys.WORD_SIZE\n\nStandard word size on the current machine, in bits.\n"}],"Base.Sys.isjsvm":[{"Tuple{Symbol}":" Sys.isjsvm([os])\n\nPredicate for testing if Julia is running in a JavaScript VM (JSVM),\nincluding e.g. a WebAssembly JavaScript embedding in a web browser.\n\n!!! compat \"Julia 1.2\"\n This function requires at least Julia 1.2.\n"}],"Base.Sys.isexecutable":[{"Tuple{String}":" Sys.isexecutable(path::String)\n\nReturn `true` if the given `path` has executable permissions.\n"}],"Base.Sys.CPU_THREADS":[{"Union{}":" Sys.CPU_THREADS\n\nThe number of logical CPU cores available in the system, i.e. the number of threads\nthat the CPU can run concurrently. Note that this is not necessarily the number of\nCPU cores, for example, in the presence of\n[hyper-threading](https://en.wikipedia.org/wiki/Hyper-threading).\n\nSee Hwloc.jl or CpuId.jl for extended information, including number of physical cores.\n"}],"Base.Sys.islinux":[{"Tuple{Symbol}":" Sys.islinux([os])\n\nPredicate for testing if the OS is a derivative of Linux.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.ARCH":[{"Union{}":" Sys.ARCH\n\nA symbol representing the architecture of the build configuration.\n"}],"Base.Sys.MACHINE":[{"Union{}":" Sys.MACHINE\n\nA string containing the build triple.\n"}],"Base.Sys.get_process_title":[{"Tuple{}":" Sys.get_process_title()\n\nGet the process title. On some systems, will always return an empty string.\n"}],"Base.Sys.maxrss":[{"Tuple{}":" Sys.maxrss()\n\nGet the maximum resident set size utilized in bytes.\nSee also:\n - man page of getrusage(2) on Linux and FreeBSD.\n - windows api `GetProcessMemoryInfo`\n"}],"Base.Sys.isopenbsd":[{"Tuple{Symbol}":" Sys.isopenbsd([os])\n\nPredicate for testing if the OS is a derivative of OpenBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on OpenBSD but also on\n other BSD-based systems. `Sys.isopenbsd()` refers only to OpenBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.isbsd":[{"Tuple{Symbol}":" Sys.isbsd([os])\n\nPredicate for testing if the OS is a derivative of BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n The Darwin kernel descends from BSD, which means that `Sys.isbsd()` is\n `true` on macOS systems. To exclude macOS from a predicate, use\n `Sys.isbsd() && !Sys.isapple()`.\n"}],"Base.Sys.free_memory":[{"Tuple{}":" Sys.free_memory()\n\nGet the total free memory in RAM in kilobytes.\n"}],"Base.Sys.which":[{"Tuple{String}":" Sys.which(program_name::String)\n\nGiven a program name, search the current `PATH` to find the first binary with\nthe proper executable permissions that can be run and return an absolute path\nto it, or return `nothing` if no such program is available. If a path with\na directory in it is passed in for `program_name`, tests that exact path\nfor executable permissions only (with `.exe` and `.com` extensions added on\nWindows platforms); no searching of `PATH` is performed.\n"}],"Base.Sys.KERNEL":[{"Union{}":" Sys.KERNEL\n\nA symbol representing the name of the operating system, as returned by `uname` of the build configuration.\n"}],"Base.Sys.isunix":[{"Tuple{Symbol}":" Sys.isunix([os])\n\nPredicate for testing if the OS provides a Unix-like interface.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.windows_version":[{"Union{}":" Sys.windows_version()\n\nReturn the version number for the Windows NT Kernel as a `VersionNumber`,\ni.e. `v\"major.minor.build\"`, or `v\"0.0.0\"` if this is not running on Windows.\n"}],"Base.Sys.isnetbsd":[{"Tuple{Symbol}":" Sys.isnetbsd([os])\n\nPredicate for testing if the OS is a derivative of NetBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on NetBSD but also on\n other BSD-based systems. `Sys.isnetbsd()` refers only to NetBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.BINDIR":[{"Union{}":" Sys.BINDIR\n\nA string containing the full path to the directory containing the `julia` executable.\n"}],"Base.Sys.isapple":[{"Tuple{Symbol}":" Sys.isapple([os])\n\nPredicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.loadavg":[{"Tuple{}":" Sys.loadavg()\n\nGet the load average. See: https://en.wikipedia.org/wiki/Load_(computing).\n"}],"Base.Sys.STDLIB":[{"Union{}":" Sys.STDLIB\n\nA string containing the full path to the directory containing the `stdlib` packages.\n"}],"Base.Sys.iswindows":[{"Tuple{Symbol}":" Sys.iswindows([os])\n\nPredicate for testing if the OS is a derivative of Microsoft Windows NT.\nSee documentation in [Handling Operating System Variation](@ref).\n"}],"Base.Sys.isdragonfly":[{"Tuple{Symbol}":" Sys.isdragonfly([os])\n\nPredicate for testing if the OS is a derivative of DragonFly BSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on DragonFly but also on\n other BSD-based systems. `Sys.isdragonfly()` refers only to DragonFly.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}],"Base.Sys.set_process_title":[{"Tuple{AbstractString}":" Sys.set_process_title(title::AbstractString)\n\nSet the process title. No-op on some operating systems.\n"}],"Base.Sys.isfreebsd":[{"Tuple{Symbol}":" Sys.isfreebsd([os])\n\nPredicate for testing if the OS is a derivative of FreeBSD.\nSee documentation in [Handling Operating System Variation](@ref).\n\n!!! note\n Not to be confused with `Sys.isbsd()`, which is `true` on FreeBSD but also on\n other BSD-based systems. `Sys.isfreebsd()` refers only to FreeBSD.\n!!! compat \"Julia 1.1\"\n This function requires at least Julia 1.1.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Threads_docstrings.json b/en/docstrings/Threads_docstrings.json index f2c21a82..af4a3ce4 100644 --- a/en/docstrings/Threads_docstrings.json +++ b/en/docstrings/Threads_docstrings.json @@ -1 +1 @@ -{"Base.Threads.atomic_max!":[{"Union{}":" Threads.atomic_max!(x::Atomic{T}, val::T) where T\n\nAtomically store the maximum of `x` and `val` in `x`\n\nPerforms `x[] = max(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw max` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_max!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.resize_nthreads!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}}":" resize_nthreads!(A, copyvalue=A[1])\n\nResize the array `A` to length [`nthreads()`](@ref). Any new\nelements that are allocated are initialized to `deepcopy(copyvalue)`,\nwhere `copyvalue` defaults to `A[1]`.\n\nThis is typically used to allocate per-thread variables, and\nshould be called in `__init__` if `A` is a global constant.\n"}],"Base.Threads.atomic_fence":[{"Tuple{}":" Threads.atomic_fence()\n\nInsert a sequential-consistency memory fence\n\nInserts a memory fence with sequentially-consistent ordering\nsemantics. There are algorithms where this is needed, i.e. where an\nacquire/release ordering is insufficient.\n\nThis is likely a very expensive operation. Given that all other atomic\noperations in Julia already have acquire/release semantics, explicit\nfences should not be necessary in most cases.\n\nFor further details, see LLVM's `fence` instruction.\n"}],"Base.Threads.Atomic":[{"Union{}":" Threads.Atomic{T}\n\nHolds a reference to an object of type `T`, ensuring that it is only\naccessed atomically, i.e. in a thread-safe manner.\n\nOnly certain \"simple\" types can be used atomically, namely the\nprimitive boolean, integer, and float-point types. These are `Bool`,\n`Int8`...`Int128`, `UInt8`...`UInt128`, and `Float16`...`Float64`.\n\nNew atomic objects can be created from a non-atomic values; if none is\nspecified, the atomic object is initialized with zero.\n\nAtomic objects can be accessed using the `[]` notation:\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> x[] = 1\n1\n\njulia> x[]\n1\n```\n\nAtomic operations use an `atomic_` prefix, such as [`atomic_add!`](@ref),\n[`atomic_xchg!`](@ref), etc.\n"}],"Base.Threads.atomic_nand!":[{"Union{}":" Threads.atomic_nand!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-nand (not-and) `x` with `val`\n\nPerforms `x[] = ~(x[] & val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw nand` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_nand!(x, 2)\n3\n\njulia> x[]\n-3\n```\n"}],"Base.Threads.atomic_min!":[{"Union{}":" Threads.atomic_min!(x::Atomic{T}, val::T) where T\n\nAtomically store the minimum of `x` and `val` in `x`\n\nPerforms `x[] = min(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw min` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(7)\nBase.Threads.Atomic{Int64}(7)\n\njulia> Threads.atomic_min!(x, 5)\n7\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@spawn":[{"Tuple{Any}":" Threads.@spawn expr\n\nCreate and run a [`Task`](@ref) on any available thread. To wait for the task to\nfinish, call [`wait`](@ref) on the result of this macro, or call [`fetch`](@ref)\nto wait and then obtain its return value.\n\nValues can be interpolated into `@spawn` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! note\n This feature is currently considered experimental.\n\n!!! compat \"Julia 1.3\"\n This macro is available as of Julia 1.3.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.Threads.Condition":[{"Union{}":" Threads.Condition([lock])\n\nA thread-safe version of [`Base.Condition`](@ref).\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"}],"Base.Threads.atomic_sub!":[{"Union{}":" Threads.atomic_sub!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically subtract `val` from `x`\n\nPerforms `x[] -= val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw sub` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_sub!(x, 2)\n3\n\njulia> x[]\n1\n```\n"}],"Base.Threads.threadid":[{"Tuple{}":" Threads.threadid()\n\nGet the ID number of the current thread of execution. The master thread has ID `1`.\n"}],"Base.Threads.atomic_cas!":[{"Union{}":" Threads.atomic_cas!(x::Atomic{T}, cmp::T, newval::T) where T\n\nAtomically compare-and-set `x`\n\nAtomically compares the value in `x` with `cmp`. If equal, write\n`newval` to `x`. Otherwise, leaves `x` unmodified. Returns the old\nvalue in `x`. By comparing the returned value to `cmp` (via `===`) one\nknows whether `x` was modified and now holds the new value `newval`.\n\nFor further details, see LLVM's `cmpxchg` instruction.\n\nThis function can be used to implement transactional semantics. Before\nthe transaction, one records the value in `x`. After the transaction,\nthe new value is stored only if `x` has not been modified in the mean\ntime.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 4, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 3, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(2)\n```\n"}],"Base.Threads.atomic_xor!":[{"Union{}":" Threads.atomic_xor!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-xor (exclusive-or) `x` with `val`\n\nPerforms `x[] $= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw xor` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_xor!(x, 7)\n5\n\njulia> x[]\n2\n```\n"}],"Base.Threads.atomic_and!":[{"Union{}":" Threads.atomic_and!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-and `x` with `val`\n\nPerforms `x[] &= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw and` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_and!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}],"Base.Threads.nthreads":[{"Tuple{}":" Threads.nthreads()\n\nGet the number of threads available to the Julia process. This is the inclusive upper bound\non `threadid()`.\n"}],"Base.Threads.atomic_add!":[{"Union{}":" Threads.atomic_add!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically add `val` to `x`\n\nPerforms `x[] += val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw add` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_add!(x, 2)\n3\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@threads":[{"Tuple":" Threads.@threads\n\nA macro to parallelize a for-loop to run with multiple threads. This spawns `nthreads()`\nnumber of threads, splits the iteration space amongst them, and iterates in parallel.\nA barrier is placed at the end of the loop which waits for all the threads to finish\nexecution, and the loop returns.\n"}],"Base.Threads.atomic_or!":[{"Union{}":" Threads.atomic_or!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-or `x` with `val`\n\nPerforms `x[] |= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw or` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_or!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.SpinLock":[{"Union{}":" SpinLock()\n\nCreate a non-reentrant, test-and-test-and-set spin lock.\nRecursive use will result in a deadlock.\nThis kind of lock should only be used around code that takes little time\nto execute and does not block (e.g. perform I/O).\nIn general, [`ReentrantLock`](@ref) should be used instead.\n\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n\nTest-and-test-and-set spin locks are quickest up to about 30ish\ncontending threads. If you have more contention than that, different\nsynchronization approaches should be considered.\n"}],"Base.Threads.atomic_xchg!":[{"Union{}":" Threads.atomic_xchg!(x::Atomic{T}, newval::T) where T\n\nAtomically exchange the value in `x`\n\nAtomically exchanges the value in `x` with `newval`. Returns the **old**\nvalue.\n\nFor further details, see LLVM's `atomicrmw xchg` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_xchg!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}]} \ No newline at end of file +{"Base.Threads.atomic_min!":[{"Union{}":" Threads.atomic_min!(x::Atomic{T}, val::T) where T\n\nAtomically store the minimum of `x` and `val` in `x`\n\nPerforms `x[] = min(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw min` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(7)\nBase.Threads.Atomic{Int64}(7)\n\njulia> Threads.atomic_min!(x, 5)\n7\n\njulia> x[]\n5\n```\n"}],"Base.Threads.@threads":[{"Tuple":" Threads.@threads\n\nA macro to parallelize a for-loop to run with multiple threads. This spawns `nthreads()`\nnumber of threads, splits the iteration space amongst them, and iterates in parallel.\nA barrier is placed at the end of the loop which waits for all the threads to finish\nexecution, and the loop returns.\n"}],"Base.Threads.atomic_max!":[{"Union{}":" Threads.atomic_max!(x::Atomic{T}, val::T) where T\n\nAtomically store the maximum of `x` and `val` in `x`\n\nPerforms `x[] = max(x[], val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw max` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_max!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.atomic_xor!":[{"Union{}":" Threads.atomic_xor!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-xor (exclusive-or) `x` with `val`\n\nPerforms `x[] $= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw xor` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_xor!(x, 7)\n5\n\njulia> x[]\n2\n```\n"}],"Base.Threads.Condition":[{"Union{}":" Threads.Condition([lock])\n\nA thread-safe version of [`Base.Condition`](@ref).\n\n!!! compat \"Julia 1.2\"\n This functionality requires at least Julia 1.2.\n"}],"Base.Threads.nthreads":[{"Tuple{}":" Threads.nthreads()\n\nGet the number of threads available to the Julia process. This is the inclusive upper bound\non `threadid()`.\n"}],"Base.Threads.atomic_cas!":[{"Union{}":" Threads.atomic_cas!(x::Atomic{T}, cmp::T, newval::T) where T\n\nAtomically compare-and-set `x`\n\nAtomically compares the value in `x` with `cmp`. If equal, write\n`newval` to `x`. Otherwise, leaves `x` unmodified. Returns the old\nvalue in `x`. By comparing the returned value to `cmp` (via `===`) one\nknows whether `x` was modified and now holds the new value `newval`.\n\nFor further details, see LLVM's `cmpxchg` instruction.\n\nThis function can be used to implement transactional semantics. Before\nthe transaction, one records the value in `x`. After the transaction,\nthe new value is stored only if `x` has not been modified in the mean\ntime.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 4, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_cas!(x, 3, 2);\n\njulia> x\nBase.Threads.Atomic{Int64}(2)\n```\n"}],"Base.Threads.SpinLock":[{"Union{}":" SpinLock()\n\nCreate a non-reentrant, test-and-test-and-set spin lock.\nRecursive use will result in a deadlock.\nThis kind of lock should only be used around code that takes little time\nto execute and does not block (e.g. perform I/O).\nIn general, [`ReentrantLock`](@ref) should be used instead.\n\nEach [`lock`](@ref) must be matched with an [`unlock`](@ref).\n\nTest-and-test-and-set spin locks are quickest up to about 30ish\ncontending threads. If you have more contention than that, different\nsynchronization approaches should be considered.\n"}],"Base.Threads.atomic_add!":[{"Union{}":" Threads.atomic_add!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically add `val` to `x`\n\nPerforms `x[] += val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw add` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_add!(x, 2)\n3\n\njulia> x[]\n5\n```\n"}],"Base.Threads.atomic_and!":[{"Union{}":" Threads.atomic_and!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-and `x` with `val`\n\nPerforms `x[] &= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw and` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_and!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}],"Base.Threads.atomic_nand!":[{"Union{}":" Threads.atomic_nand!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-nand (not-and) `x` with `val`\n\nPerforms `x[] = ~(x[] & val)` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw nand` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_nand!(x, 2)\n3\n\njulia> x[]\n-3\n```\n"}],"Base.Threads.Atomic":[{"Union{}":" Threads.Atomic{T}\n\nHolds a reference to an object of type `T`, ensuring that it is only\naccessed atomically, i.e. in a thread-safe manner.\n\nOnly certain \"simple\" types can be used atomically, namely the\nprimitive boolean, integer, and float-point types. These are `Bool`,\n`Int8`...`Int128`, `UInt8`...`UInt128`, and `Float16`...`Float64`.\n\nNew atomic objects can be created from a non-atomic values; if none is\nspecified, the atomic object is initialized with zero.\n\nAtomic objects can be accessed using the `[]` notation:\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> x[] = 1\n1\n\njulia> x[]\n1\n```\n\nAtomic operations use an `atomic_` prefix, such as [`atomic_add!`](@ref),\n[`atomic_xchg!`](@ref), etc.\n"}],"Base.Threads.atomic_xchg!":[{"Union{}":" Threads.atomic_xchg!(x::Atomic{T}, newval::T) where T\n\nAtomically exchange the value in `x`\n\nAtomically exchanges the value in `x` with `newval`. Returns the **old**\nvalue.\n\nFor further details, see LLVM's `atomicrmw xchg` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_xchg!(x, 2)\n3\n\njulia> x[]\n2\n```\n"}],"Base.Threads.atomic_fence":[{"Tuple{}":" Threads.atomic_fence()\n\nInsert a sequential-consistency memory fence\n\nInserts a memory fence with sequentially-consistent ordering\nsemantics. There are algorithms where this is needed, i.e. where an\nacquire/release ordering is insufficient.\n\nThis is likely a very expensive operation. Given that all other atomic\noperations in Julia already have acquire/release semantics, explicit\nfences should not be necessary in most cases.\n\nFor further details, see LLVM's `fence` instruction.\n"}],"Base.Threads.atomic_sub!":[{"Union{}":" Threads.atomic_sub!(x::Atomic{T}, val::T) where T <: ArithmeticTypes\n\nAtomically subtract `val` from `x`\n\nPerforms `x[] -= val` atomically. Returns the **old** value. Not defined for\n`Atomic{Bool}`.\n\nFor further details, see LLVM's `atomicrmw sub` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(3)\nBase.Threads.Atomic{Int64}(3)\n\njulia> Threads.atomic_sub!(x, 2)\n3\n\njulia> x[]\n1\n```\n"}],"Base.Threads.atomic_or!":[{"Union{}":" Threads.atomic_or!(x::Atomic{T}, val::T) where T\n\nAtomically bitwise-or `x` with `val`\n\nPerforms `x[] |= val` atomically. Returns the **old** value.\n\nFor further details, see LLVM's `atomicrmw or` instruction.\n\n# Examples\n```jldoctest\njulia> x = Threads.Atomic{Int}(5)\nBase.Threads.Atomic{Int64}(5)\n\njulia> Threads.atomic_or!(x, 7)\n5\n\njulia> x[]\n7\n```\n"}],"Base.Threads.@spawn":[{"Tuple{Any}":" Threads.@spawn expr\n\nCreate and run a [`Task`](@ref) on any available thread. To wait for the task to\nfinish, call [`wait`](@ref) on the result of this macro, or call [`fetch`](@ref)\nto wait and then obtain its return value.\n\nValues can be interpolated into `@spawn` via `$`, which copies the value directly into the\nconstructed underlying closure. This allows you to insert the _value_ of a variable,\nisolating the aysnchronous code from changes to the variable's value in the current task.\n\n!!! note\n This feature is currently considered experimental.\n\n!!! compat \"Julia 1.3\"\n This macro is available as of Julia 1.3.\n\n!!! compat \"Julia 1.4\"\n Interpolating values via `$` is available as of Julia 1.4.\n"}],"Base.Threads.threadid":[{"Tuple{}":" Threads.threadid()\n\nGet the ID number of the current thread of execution. The master thread has ID `1`.\n"}],"Base.Threads.resize_nthreads!":[{"Union{Tuple{AbstractArray{T,1} where T}, Tuple{AbstractArray{T,1} where T,Any}}":" resize_nthreads!(A, copyvalue=A[1])\n\nResize the array `A` to length [`nthreads()`](@ref). Any new\nelements that are allocated are initialized to `deepcopy(copyvalue)`,\nwhere `copyvalue` defaults to `A[1]`.\n\nThis is typically used to allocate per-thread variables, and\nshould be called in `__init__` if `A` is a global constant.\n"}]} \ No newline at end of file diff --git a/en/docstrings/Unicode_docstrings.json b/en/docstrings/Unicode_docstrings.json index 2a3de9a5..3a2c61ef 100644 --- a/en/docstrings/Unicode_docstrings.json +++ b/en/docstrings/Unicode_docstrings.json @@ -1 +1 @@ -{"Base.Unicode.lowercasefirst":[{"Tuple{AbstractString}":" lowercasefirst(s::AbstractString)\n\nReturn `s` with the first character converted to lowercase.\n\nSee also: [`uppercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> lowercasefirst(\"Julia\")\n\"julia\"\n```\n"}],"Base.Unicode.titlecase":[{"Tuple{AbstractString}":" titlecase(s::AbstractString; [wordsep::Function], strict::Bool=true) -> String\n\nCapitalize the first character of each word in `s`;\nif `strict` is true, every other character is\nconverted to lowercase, otherwise they are left unchanged.\nBy default, all non-letters are considered as word separators;\na predicate can be passed as the `wordsep` keyword to determine\nwhich characters should be considered as word separators.\nSee also [`uppercasefirst`](@ref) to capitalize only the first\ncharacter in `s`.\n\n# Examples\n```jldoctest\njulia> titlecase(\"the JULIA programming language\")\n\"The Julia Programming Language\"\n\njulia> titlecase(\"ISS - international space station\", strict=false)\n\"ISS - International Space Station\"\n\njulia> titlecase(\"a-a b-b\", wordsep = c->c==' ')\n\"A-a B-b\"\n```\n"}],"Base.Unicode.textwidth":[{"Tuple{AbstractChar}":" textwidth(c)\n\nGive the number of columns needed to print a character.\n\n# Examples\n```jldoctest\njulia> textwidth('α')\n1\n\njulia> textwidth('⛵')\n2\n```\n"},{"Tuple{AbstractString}":" textwidth(s::AbstractString)\n\nGive the number of columns needed to print a string.\n\n# Examples\n```jldoctest\njulia> textwidth(\"March\")\n5\n```\n"}],"Base.Unicode.isletter":[{"Tuple{AbstractChar}":" isletter(c::AbstractChar) -> Bool\n\nTest whether a character is a letter.\nA character is classified as a letter if it belongs to the Unicode general\ncategory Letter, i.e. a character whose category code begins with 'L'.\n\n# Examples\n```jldoctest\njulia> isletter('❤')\nfalse\n\njulia> isletter('α')\ntrue\n\njulia> isletter('9')\nfalse\n```\n"}],"Base.Unicode.lowercase":[{"Tuple{AbstractString}":" lowercase(s::AbstractString)\n\nReturn `s` with all characters converted to lowercase.\n\n# Examples\n```jldoctest\njulia> lowercase(\"STRINGS AND THINGS\")\n\"strings and things\"\n```\n"}],"Base.Unicode.iscased":[{"Tuple{AbstractChar}":" iscased(c::AbstractChar) -> Bool\n\nTests whether a character is cased, i.e. is lower-, upper- or title-cased.\n"}],"Base.Unicode.iscntrl":[{"Tuple{AbstractChar}":" iscntrl(c::AbstractChar) -> Bool\n\nTests whether a character is a control character.\nControl characters are the non-printing characters of the Latin-1 subset of Unicode.\n\n# Examples\n```jldoctest\njulia> iscntrl('\\x01')\ntrue\n\njulia> iscntrl('a')\nfalse\n```\n"}],"Base.Unicode.uppercasefirst":[{"Tuple{AbstractString}":" uppercasefirst(s::AbstractString) -> String\n\nReturn `s` with the first character converted to uppercase (technically \"title\ncase\" for Unicode). See also [`titlecase`](@ref) to capitalize the first\ncharacter of every word in `s`.\n\nSee also: [`lowercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> uppercasefirst(\"python\")\n\"Python\"\n```\n"}],"Base.Unicode.isuppercase":[{"Tuple{AbstractChar}":" isuppercase(c::AbstractChar) -> Bool\n\nTests whether a character is an uppercase letter.\nA character is classified as uppercase if it belongs to Unicode category Lu,\nLetter: Uppercase, or Lt, Letter: Titlecase.\n\n# Examples\n```jldoctest\njulia> isuppercase('γ')\nfalse\n\njulia> isuppercase('Γ')\ntrue\n\njulia> isuppercase('❤')\nfalse\n```\n"}],"Base.Unicode.ispunct":[{"Tuple{AbstractChar}":" ispunct(c::AbstractChar) -> Bool\n\nTests whether a character belongs to the Unicode general category Punctuation, i.e. a\ncharacter whose category code begins with 'P'.\n\n# Examples\n```jldoctest\njulia> ispunct('α')\nfalse\n\njulia> ispunct('/')\ntrue\n\njulia> ispunct(';')\ntrue\n```\n"}],"Base.Unicode.isnumeric":[{"Tuple{AbstractChar}":" isnumeric(c::AbstractChar) -> Bool\n\nTests whether a character is numeric.\nA character is classified as numeric if it belongs to the Unicode general category Number,\ni.e. a character whose category code begins with 'N'.\n\nNote that this broad category includes characters such as ¾ and ௰.\nUse [`isdigit`](@ref) to check whether a character a decimal digit between 0 and 9.\n\n# Examples\n```jldoctest\njulia> isnumeric('௰')\ntrue\n\njulia> isnumeric('9')\ntrue\n\njulia> isnumeric('α')\nfalse\n\njulia> isnumeric('❤')\nfalse\n```\n"}],"Base.Unicode.isxdigit":[{"Tuple{AbstractChar}":" isxdigit(c::AbstractChar) -> Bool\n\nTest whether a character is a valid hexadecimal digit. Note that this does not\ninclude `x` (as in the standard `0x` prefix).\n\n# Examples\n```jldoctest\njulia> isxdigit('a')\ntrue\n\njulia> isxdigit('x')\nfalse\n```\n"}],"Base.Unicode.islowercase":[{"Tuple{AbstractChar}":" islowercase(c::AbstractChar) -> Bool\n\nTests whether a character is a lowercase letter.\nA character is classified as lowercase if it belongs to Unicode category Ll,\nLetter: Lowercase.\n\n# Examples\n```jldoctest\njulia> islowercase('α')\ntrue\n\njulia> islowercase('Γ')\nfalse\n\njulia> islowercase('❤')\nfalse\n```\n"}],"Base.Unicode.isdigit":[{"Tuple{AbstractChar}":" isdigit(c::AbstractChar) -> Bool\n\nTests whether a character is a decimal digit (0-9).\n\n# Examples\n```jldoctest\njulia> isdigit('❤')\nfalse\n\njulia> isdigit('9')\ntrue\n\njulia> isdigit('α')\nfalse\n```\n"}],"Base.Unicode.isspace":[{"Tuple{AbstractChar}":" isspace(c::AbstractChar) -> Bool\n\nTests whether a character is any whitespace character. Includes ASCII characters '\\t',\n'\\n', '\\v', '\\f', '\\r', and ' ', Latin-1 character U+0085, and characters in Unicode\ncategory Zs.\n\n# Examples\n```jldoctest\njulia> isspace('\\n')\ntrue\n\njulia> isspace('\\r')\ntrue\n\njulia> isspace(' ')\ntrue\n\njulia> isspace('\\x20')\ntrue\n```\n"}],"Base.Unicode.isprint":[{"Tuple{AbstractChar}":" isprint(c::AbstractChar) -> Bool\n\nTests whether a character is printable, including spaces, but not a control character.\n\n# Examples\n```jldoctest\njulia> isprint('\\x01')\nfalse\n\njulia> isprint('A')\ntrue\n```\n"}],"Base.Unicode.uppercase":[{"Tuple{AbstractString}":" uppercase(s::AbstractString)\n\nReturn `s` with all characters converted to uppercase.\n\n# Examples\n```jldoctest\njulia> uppercase(\"Julia\")\n\"JULIA\"\n```\n"}]} \ No newline at end of file +{"Base.Unicode.iscased":[{"Tuple{AbstractChar}":" iscased(c::AbstractChar) -> Bool\n\nTests whether a character is cased, i.e. is lower-, upper- or title-cased.\n"}],"Base.Unicode.uppercasefirst":[{"Tuple{AbstractString}":" uppercasefirst(s::AbstractString) -> String\n\nReturn `s` with the first character converted to uppercase (technically \"title\ncase\" for Unicode). See also [`titlecase`](@ref) to capitalize the first\ncharacter of every word in `s`.\n\nSee also: [`lowercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> uppercasefirst(\"python\")\n\"Python\"\n```\n"}],"Base.Unicode.textwidth":[{"Tuple{AbstractChar}":" textwidth(c)\n\nGive the number of columns needed to print a character.\n\n# Examples\n```jldoctest\njulia> textwidth('α')\n1\n\njulia> textwidth('⛵')\n2\n```\n"},{"Tuple{AbstractString}":" textwidth(s::AbstractString)\n\nGive the number of columns needed to print a string.\n\n# Examples\n```jldoctest\njulia> textwidth(\"March\")\n5\n```\n"}],"Base.Unicode.isxdigit":[{"Tuple{AbstractChar}":" isxdigit(c::AbstractChar) -> Bool\n\nTest whether a character is a valid hexadecimal digit. Note that this does not\ninclude `x` (as in the standard `0x` prefix).\n\n# Examples\n```jldoctest\njulia> isxdigit('a')\ntrue\n\njulia> isxdigit('x')\nfalse\n```\n"}],"Base.Unicode.ispunct":[{"Tuple{AbstractChar}":" ispunct(c::AbstractChar) -> Bool\n\nTests whether a character belongs to the Unicode general category Punctuation, i.e. a\ncharacter whose category code begins with 'P'.\n\n# Examples\n```jldoctest\njulia> ispunct('α')\nfalse\n\njulia> ispunct('/')\ntrue\n\njulia> ispunct(';')\ntrue\n```\n"}],"Base.Unicode.isprint":[{"Tuple{AbstractChar}":" isprint(c::AbstractChar) -> Bool\n\nTests whether a character is printable, including spaces, but not a control character.\n\n# Examples\n```jldoctest\njulia> isprint('\\x01')\nfalse\n\njulia> isprint('A')\ntrue\n```\n"}],"Base.Unicode.titlecase":[{"Tuple{AbstractString}":" titlecase(s::AbstractString; [wordsep::Function], strict::Bool=true) -> String\n\nCapitalize the first character of each word in `s`;\nif `strict` is true, every other character is\nconverted to lowercase, otherwise they are left unchanged.\nBy default, all non-letters are considered as word separators;\na predicate can be passed as the `wordsep` keyword to determine\nwhich characters should be considered as word separators.\nSee also [`uppercasefirst`](@ref) to capitalize only the first\ncharacter in `s`.\n\n# Examples\n```jldoctest\njulia> titlecase(\"the JULIA programming language\")\n\"The Julia Programming Language\"\n\njulia> titlecase(\"ISS - international space station\", strict=false)\n\"ISS - International Space Station\"\n\njulia> titlecase(\"a-a b-b\", wordsep = c->c==' ')\n\"A-a B-b\"\n```\n"}],"Base.Unicode.lowercasefirst":[{"Tuple{AbstractString}":" lowercasefirst(s::AbstractString)\n\nReturn `s` with the first character converted to lowercase.\n\nSee also: [`uppercasefirst`](@ref), [`uppercase`](@ref), [`lowercase`](@ref),\n[`titlecase`](@ref)\n\n# Examples\n```jldoctest\njulia> lowercasefirst(\"Julia\")\n\"julia\"\n```\n"}],"Base.Unicode.isspace":[{"Tuple{AbstractChar}":" isspace(c::AbstractChar) -> Bool\n\nTests whether a character is any whitespace character. Includes ASCII characters '\\t',\n'\\n', '\\v', '\\f', '\\r', and ' ', Latin-1 character U+0085, and characters in Unicode\ncategory Zs.\n\n# Examples\n```jldoctest\njulia> isspace('\\n')\ntrue\n\njulia> isspace('\\r')\ntrue\n\njulia> isspace(' ')\ntrue\n\njulia> isspace('\\x20')\ntrue\n```\n"}],"Base.Unicode.islowercase":[{"Tuple{AbstractChar}":" islowercase(c::AbstractChar) -> Bool\n\nTests whether a character is a lowercase letter.\nA character is classified as lowercase if it belongs to Unicode category Ll,\nLetter: Lowercase.\n\n# Examples\n```jldoctest\njulia> islowercase('α')\ntrue\n\njulia> islowercase('Γ')\nfalse\n\njulia> islowercase('❤')\nfalse\n```\n"}],"Base.Unicode.uppercase":[{"Tuple{AbstractString}":" uppercase(s::AbstractString)\n\nReturn `s` with all characters converted to uppercase.\n\n# Examples\n```jldoctest\njulia> uppercase(\"Julia\")\n\"JULIA\"\n```\n"}],"Base.Unicode.isnumeric":[{"Tuple{AbstractChar}":" isnumeric(c::AbstractChar) -> Bool\n\nTests whether a character is numeric.\nA character is classified as numeric if it belongs to the Unicode general category Number,\ni.e. a character whose category code begins with 'N'.\n\nNote that this broad category includes characters such as ¾ and ௰.\nUse [`isdigit`](@ref) to check whether a character a decimal digit between 0 and 9.\n\n# Examples\n```jldoctest\njulia> isnumeric('௰')\ntrue\n\njulia> isnumeric('9')\ntrue\n\njulia> isnumeric('α')\nfalse\n\njulia> isnumeric('❤')\nfalse\n```\n"}],"Base.Unicode.isletter":[{"Tuple{AbstractChar}":" isletter(c::AbstractChar) -> Bool\n\nTest whether a character is a letter.\nA character is classified as a letter if it belongs to the Unicode general\ncategory Letter, i.e. a character whose category code begins with 'L'.\n\n# Examples\n```jldoctest\njulia> isletter('❤')\nfalse\n\njulia> isletter('α')\ntrue\n\njulia> isletter('9')\nfalse\n```\n"}],"Base.Unicode.isdigit":[{"Tuple{AbstractChar}":" isdigit(c::AbstractChar) -> Bool\n\nTests whether a character is a decimal digit (0-9).\n\n# Examples\n```jldoctest\njulia> isdigit('❤')\nfalse\n\njulia> isdigit('9')\ntrue\n\njulia> isdigit('α')\nfalse\n```\n"}],"Base.Unicode.lowercase":[{"Tuple{AbstractString}":" lowercase(s::AbstractString)\n\nReturn `s` with all characters converted to lowercase.\n\n# Examples\n```jldoctest\njulia> lowercase(\"STRINGS AND THINGS\")\n\"strings and things\"\n```\n"}],"Base.Unicode.iscntrl":[{"Tuple{AbstractChar}":" iscntrl(c::AbstractChar) -> Bool\n\nTests whether a character is a control character.\nControl characters are the non-printing characters of the Latin-1 subset of Unicode.\n\n# Examples\n```jldoctest\njulia> iscntrl('\\x01')\ntrue\n\njulia> iscntrl('a')\nfalse\n```\n"}],"Base.Unicode.isuppercase":[{"Tuple{AbstractChar}":" isuppercase(c::AbstractChar) -> Bool\n\nTests whether a character is an uppercase letter.\nA character is classified as uppercase if it belongs to Unicode category Lu,\nLetter: Uppercase, or Lt, Letter: Titlecase.\n\n# Examples\n```jldoctest\njulia> isuppercase('γ')\nfalse\n\njulia> isuppercase('Γ')\ntrue\n\njulia> isuppercase('❤')\nfalse\n```\n"}]} \ No newline at end of file diff --git a/src/docstrings.jl b/src/docstrings.jl index dbd88994..0f1a527c 100644 --- a/src/docstrings.jl +++ b/src/docstrings.jl @@ -27,6 +27,9 @@ const MODULE_MAP = Dict( "Unicode" => Base.Unicode, ) +const DEFAULT_PREFIX = joinpath(@__DIR__, "..", "en", "docstrings") +const DEFAULT_SUFFIX = "_docstrings.json" + function dump_docstrings(m::Module) doc = getfield(m, Base.Docs.META) docstrings = "{" @@ -48,8 +51,9 @@ function dump_docstrings(m::Module) return docstrings[1:end-1] * "}" end -function dump_all_docstrings(prefix = joinpath(@__DIR__, "..", "en", "docstrings"), - suffix = "_docstrings.json") +function dump_all_docstrings() + prefix = haskey(ENV, "JULIAZH_DOCSTRINGS_PREFIX") ? ENV["JULIAZH_DOCSTRINGS_PREFIX"] : DEFAULT_PREFIX + suffix = haskey(ENV, "JULIAZH_DOCSTRINGS_SUFFIX") ? ENV["JULIAZH_DOCSTRINGS_SUFFIX"] : DEFAULT_SUFFIX for (k, v) in MODULE_MAP s = dump_docstrings(v) write(joinpath(prefix, k*suffix), s) From 25d6122c7f41e93ff82dd1f5e8db28b36f1f29a3 Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 16:28:10 +0800 Subject: [PATCH 6/8] Add source paths for `tx push -s` --- .tx/config | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/.tx/config b/.tx/config index df3f2d45..8b7d5d20 100644 --- a/.tx/config +++ b/.tx/config @@ -643,119 +643,139 @@ type = GITHUBMARKDOWN [docstrings-zh_cn.base_docstringsjson] file_filter = /docstrings/Base_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Base_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.cartesian_docstringsjson] file_filter = /docstrings/Cartesian_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Cartesian_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.enums_docstringsjson] file_filter = /docstrings/Enums_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Enums_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.experimental_docstringsjson] file_filter = /docstrings/Experimental_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Experimental_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.fastmath_docstringsjson] file_filter = /docstrings/FastMath_docstrings.json minimum_perc = 0 +source_file = en/docstrings/FastMath_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.filesystem_docstringsjson] file_filter = /docstrings/Filesystem_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Filesystem_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.gc_docstringsjson] file_filter = /docstrings/GC_docstrings.json minimum_perc = 0 +source_file = en/docstrings/GC_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.grisu_docstringsjson] file_filter = /docstrings/Grisu_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Grisu_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.iterators_docstringsjson] file_filter = /docstrings/Iterators_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Iterators_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.libc_docstringsjson] file_filter = /docstrings/Libc_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Libc_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.math_docstringsjson] file_filter = /docstrings/Math_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Math_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.mathconstants_docstringsjson] file_filter = /docstrings/MathConstants_docstrings.json minimum_perc = 0 +source_file = en/docstrings/MathConstants_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.meta_docstringsjson] file_filter = /docstrings/Meta_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Meta_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.mpfr_docstringsjson] file_filter = /docstrings/MPFR_docstrings.json minimum_perc = 0 +source_file = en/docstrings/MPFR_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.multimedia_docstringsjson] file_filter = /docstrings/Multimedia_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Multimedia_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.rounding_docstringsjson] file_filter = /docstrings/Rounding_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Rounding_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.simdloop_docstringsjson] file_filter = /docstrings/SimdLoop_docstrings.json minimum_perc = 0 +source_file = en/docstrings/SimdLoop_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.sys_docstringsjson] file_filter = /docstrings/Sys_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Sys_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.threads_docstringsjson] file_filter = /docstrings/Threads_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Threads_docstrings.json source_lang = en type = KEYVALUEJSON [docstrings-zh_cn.unicode_docstringsjson] file_filter = /docstrings/Unicode_docstrings.json minimum_perc = 0 +source_file = en/docstrings/Unicode_docstrings.json source_lang = en type = KEYVALUEJSON From e81d5e99de7e68ed381ce762d93fa96162cce03a Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 17:25:11 +0800 Subject: [PATCH 7/8] Add support for replacing docstrings --- .gitignore | 2 +- Project.toml | 1 + doc/Manifest.toml | 88 +++++++++++++++++++++++++++++++++++++++++++++++ doc/Project.toml | 1 + doc/make.jl | 3 ++ src/JuliaZH.jl | 5 +++ src/docstrings.jl | 28 +++++++++++++-- 7 files changed, 125 insertions(+), 3 deletions(-) create mode 100644 doc/Manifest.toml diff --git a/.gitignore b/.gitignore index 9ece80e6..fb6152c6 100644 --- a/.gitignore +++ b/.gitignore @@ -23,4 +23,4 @@ doc/deps _*.dat *.swp __pycache__/ -Manifest.toml +/Manifest.toml diff --git a/Project.toml b/Project.toml index b3b70dc8..085dbd9e 100644 --- a/Project.toml +++ b/Project.toml @@ -3,6 +3,7 @@ uuid = "652e05fd-ed22-5b6c-bf99-44e63a676e5f" version = "1.5.0" [deps] +JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" JSON3 = "0f8b85d8-7281-11e9-16c2-39a750bddbf1" REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" diff --git a/doc/Manifest.toml b/doc/Manifest.toml new file mode 100644 index 00000000..3dbd6f5a --- /dev/null +++ b/doc/Manifest.toml @@ -0,0 +1,88 @@ +# This file is machine-generated - editing it directly is not advised + +[[Base64]] +uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" + +[[Dates]] +deps = ["Printf"] +uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" + +[[Distributed]] +deps = ["Random", "Serialization", "Sockets"] +uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" + +[[InteractiveUtils]] +deps = ["Markdown"] +uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" + +[[JSON]] +deps = ["Dates", "Mmap", "Parsers", "Unicode"] +git-tree-sha1 = "b34d7cef7b337321e97d22242c3c2b91f476748e" +uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" +version = "0.21.0" + +[[JSON3]] +deps = ["Dates", "Mmap", "Parsers", "StructTypes", "UUIDs"] +git-tree-sha1 = "6e34f9da882f28e05c8f790bbfd150bd7b5d8de7" +uuid = "0f8b85d8-7281-11e9-16c2-39a750bddbf1" +version = "1.0.3" + +[[JuliaZH]] +deps = ["JSON", "JSON3", "REPL"] +path = ".." +uuid = "652e05fd-ed22-5b6c-bf99-44e63a676e5f" +version = "1.5.0" + +[[Logging]] +uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" + +[[Markdown]] +deps = ["Base64"] +uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" + +[[Mmap]] +uuid = "a63ad114-7e13-5084-954f-fe012c677804" + +[[Parsers]] +deps = ["Dates", "Test"] +git-tree-sha1 = "20ef902ea02f7000756a4bc19f7b9c24867c6211" +uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" +version = "1.0.6" + +[[Printf]] +deps = ["Unicode"] +uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" + +[[REPL]] +deps = ["InteractiveUtils", "Markdown", "Sockets"] +uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" + +[[Random]] +deps = ["Serialization"] +uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" + +[[SHA]] +uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" + +[[Serialization]] +uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" + +[[Sockets]] +uuid = "6462fe0b-24de-5631-8697-dd941f90decc" + +[[StructTypes]] +deps = ["Dates", "UUIDs"] +git-tree-sha1 = "1ed04f622a39d2e5a6747c3a70be040c00333933" +uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4" +version = "1.1.0" + +[[Test]] +deps = ["Distributed", "InteractiveUtils", "Logging", "Random"] +uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" + +[[UUIDs]] +deps = ["Random", "SHA"] +uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" + +[[Unicode]] +uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" diff --git a/doc/Project.toml b/doc/Project.toml index 70dd5fc2..93f07763 100644 --- a/doc/Project.toml +++ b/doc/Project.toml @@ -2,3 +2,4 @@ Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" DocumenterLaTeX = "cd674d7a-5f81-5cf3-af33-235ef1834b99" Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a" +JuliaZH = "652e05fd-ed22-5b6c-bf99-44e63a676e5f" diff --git a/doc/make.jl b/doc/make.jl index e6dfd8d0..a94c57a7 100644 --- a/doc/make.jl +++ b/doc/make.jl @@ -11,6 +11,9 @@ using Documenter, DocumenterLaTeX include("../contrib/HTMLWriter.jl") include("../contrib/LaTeXWriter.jl") +using JuliaZH +zh_CN() + # Include the `build_sysimg` file. baremodule GenStdLib end diff --git a/src/JuliaZH.jl b/src/JuliaZH.jl index 1ecfce2c..5c1370bc 100644 --- a/src/JuliaZH.jl +++ b/src/JuliaZH.jl @@ -2,6 +2,11 @@ module JuliaZH include("docstrings.jl") export dump_docstrings, dump_all_docstrings +export replace_docstrings, replace_all_docstrings + +zh_CN() = replace_all_docstrings(:zh_CN) +en() = replace_all_docstrings(:en) +export zh_CN, en import Base.Docs: DocStr diff --git a/src/docstrings.jl b/src/docstrings.jl index 0f1a527c..1b3790fa 100644 --- a/src/docstrings.jl +++ b/src/docstrings.jl @@ -1,4 +1,4 @@ -using JSON3 +using JSON, JSON3 const MODULE_MAP = Dict( "Base" => Base, @@ -47,7 +47,6 @@ function dump_docstrings(m::Module) docstrings *= String(take!(buffer)) |> s -> strip(s, ['{', '}']) docstrings *= "," end - return docstrings[1:end-1] * "}" end @@ -59,3 +58,28 @@ function dump_all_docstrings() write(joinpath(prefix, k*suffix), s) end end + +function replace_docstrings(m::Module, locale=:en) + doc = getfield(m, Base.Docs.META) + module_name = string(m) |> s->split(s, ".") |> last + path = joinpath(@__DIR__, "..", string(locale), "docstrings", module_name*"_docstrings.json") + depot = JSON.parsefile(path) + for bind in keys(doc) + multidoc = doc[bind] + bind.mod == m || continue # only dump current module + name = string(bind.mod) * "." * string(bind.var) + docvec = depot[name] + for (i,signature) in enumerate(keys(multidoc.docs)) + for (sig,text) in docvec[i] + multidoc.docs[signature].text = Core.svec(text) + end + end + end + return true +end + +function replace_all_docstrings(locale=:en) + for (k, v) in MODULE_MAP + replace_docstrings(v, locale) + end +end From 9d5cab31a237f2d33c986919806b33fa432584ff Mon Sep 17 00:00:00 2001 From: Gnimuc Date: Fri, 26 Jun 2020 17:39:12 +0800 Subject: [PATCH 8/8] Update Manifest.toml --- doc/Manifest.toml | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) diff --git a/doc/Manifest.toml b/doc/Manifest.toml index 3dbd6f5a..5436aa25 100644 --- a/doc/Manifest.toml +++ b/doc/Manifest.toml @@ -11,6 +11,24 @@ uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" +[[DocStringExtensions]] +deps = ["LibGit2", "Markdown", "Pkg", "Test"] +git-tree-sha1 = "c5714d9bcdba66389612dc4c47ed827c64112997" +uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" +version = "0.8.2" + +[[Documenter]] +deps = ["Base64", "Dates", "DocStringExtensions", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Markdown", "REPL", "Test", "Unicode"] +git-tree-sha1 = "395fa1554c69735802bba37d9e7d9586fd44326c" +uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4" +version = "0.24.11" + +[[DocumenterLaTeX]] +deps = ["Documenter", "Test"] +git-tree-sha1 = "653299370be20ff580bccd707dc9f360c0852d7f" +uuid = "cd674d7a-5f81-5cf3-af33-235ef1834b99" +version = "0.2.0" + [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" @@ -33,6 +51,13 @@ path = ".." uuid = "652e05fd-ed22-5b6c-bf99-44e63a676e5f" version = "1.5.0" +[[LibGit2]] +deps = ["Printf"] +uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" + +[[Libdl]] +uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" + [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" @@ -49,6 +74,10 @@ git-tree-sha1 = "20ef902ea02f7000756a4bc19f7b9c24867c6211" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "1.0.6" +[[Pkg]] +deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"] +uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" + [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"