-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbucketeer.py
275 lines (239 loc) · 9.33 KB
/
bucketeer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torchvision
import numpy as np
from torchtools.transforms import SmartCrop
import math
from PIL import Image
import warnings
import copy
class Bucketeer():
def __init__(
self,
density=256*256,
factor=8,
ratios=[1/1, 1/2, 3/4, 3/5, 4/5, 6/9, 9/16],
reverse_list=True,
randomize_p=0.3,
randomize_q=0.2,
crop_mode='center',
p_random_ratio=0.0,
interpolate_nearest=False,
transforms=None,
settings=None
):
assert crop_mode in ['center', 'random', 'smart']
self.crop_mode = crop_mode
self.ratios = ratios
if reverse_list:
for r in list(ratios):
if 1/r not in self.ratios:
self.ratios.append(1/r)
self.sizes = [(int(((density/r)**0.5//factor)*factor), int(((density*r)**0.5//factor)*factor)) for r in ratios]
self.smartcrop = SmartCrop(int(density**0.5), randomize_p, randomize_q) if self.crop_mode=='smart' else None
self.p_random_ratio = p_random_ratio
self.interpolate_nearest = interpolate_nearest
self.transforms = transforms
self.density = density
self.settings = settings
self.factor = factor
def clean_up_duplicate_buckets(self, emit_print=False):
new_ratios = []
latent_res = {}
# Deduplicate using the fact that dicts are hashmaps
for r in self.ratios:
base_size = math.sqrt(self.density*2)
if r < 1:
lx, ly = self.test_resize(base_size, base_size/r, emit_print=False)
else:
lx, ly = self.test_resize(base_size*r, base_size, emit_print=False)
latent_size = f"{int(lx)}x{int(ly)}"
if latent_size not in latent_res:
latent_res[latent_size] = True
new_ratios.append(r)
elif emit_print:
print(f"Detected duplicate ratio: {r}, {latent_size}")
# Finally
self.ratios = new_ratios
self.sizes = [(int(((self.density/r)**0.5//self.factor)*self.factor), int(((self.density*r)**0.5//self.factor)*self.factor)) for r in new_ratios]
def get_closest_size(self, x, y):
if self.p_random_ratio > 0 and np.random.rand() < self.p_random_ratio:
best_size_idx = np.random.randint(len(self.ratios))
else:
w, h = x, y
best_size_idx = np.argmin([abs(w/h-r) for r in self.ratios])
size = self.sizes[best_size_idx]
return (round(size[0] / self.factor) * self.factor,
round(size[1] / self.factor) * self.factor)
def get_resize_size(self, orig_size, tgt_size):
if (tgt_size[1]/tgt_size[0] - 1) * (orig_size[1]/orig_size[0] - 1) >= 0:
alt_min = int(math.ceil(max(tgt_size)*min(orig_size)/max(orig_size)))
resize_size = max(alt_min, min(tgt_size))
else:
alt_max = int(math.ceil(min(tgt_size)*max(orig_size)/min(orig_size)))
resize_size = max(alt_max, max(tgt_size))
return resize_size
def load_and_resize(self, item, ratio):
# Silences random warnings from PIL about "potential" DOS attacks
with warnings.catch_warnings():
warnings.simplefilter("ignore")
path = item
image = Image.open(path).convert("RGB")
w, h = image.size
actual_ratio = w/h
img = self.transforms(image)
del image
# Get crop and resizing info for the bucket's ratio
crop_size = self.get_closest_size(w, h)
crop_size = (round(crop_size[0] / self.factor) * self.factor,
round(crop_size[1] / self.factor) * self.factor)
resize_size = self.get_resize_size(img.shape[-2:], crop_size)
resize_size = (round(resize_size / self.factor) * self.factor,
round(resize_size / self.factor) * self.factor)
# Resize image
img = torchvision.transforms.functional.resize(
img,
resize_size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True
)
# Crop image to target dimensions
if self.crop_mode == 'center':
img = torchvision.transforms.functional.center_crop(img, crop_size)
elif self.crop_mode == 'random':
img = torchvision.transforms.RandomCrop(crop_size)(img)
elif self.crop_mode == 'smart':
self.smartcrop.output_size = crop_size
img = self.smartcrop(img)
else:
img = torchvision.transforms.functional.center_crop(img, crop_size)
# Ensure final size is correct
if img.shape[-2:] != crop_size:
img = torchvision.transforms.functional.resize(
img,
crop_size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True
)
# file_path = f"{self.settings['checkpoint_path']}/{self.settings['experiment_id']}/dataset_debug.csv"
# with open(file_path, "a") as f:
# f.write(f"{actual_ratio:.2f},{w}x{h},{nw}x{nh},{crop_size[1]}x{crop_size[0]},{crop_img[1]}x{crop_img[0]}\n")
return img
def test_resize(self, w, h, emit_print=False):
# Get crop and resizing info for the bucket's ratio
actual_ratio = w/h
crop_size = self.get_closest_size(w, h)
crop_se = min(crop_size)
crop_le = max(crop_size)
resize_size = self.get_resize_size((h, w), crop_size)
rs_se = resize_size
rs_le = int(resize_size * actual_ratio) if actual_ratio >= 1 else int(resize_size / actual_ratio)
# A note on TorchVision CenterCrop and PIL resize:
# They're H,W and not W,H oriented
if actual_ratio >= 1:
crop_size = [crop_le, crop_se]
rs_w = rs_le
rs_h = rs_se
else:
crop_size = [crop_se, crop_le]
rs_w = rs_se
rs_h = rs_le
latent_w = crop_size[0] / self.factor
latent_h = crop_size[1] / self.factor
if emit_print:
print(f"image: {int(w)}x{int(h)}, resize: {rs_w}x{rs_h}, crop: {crop_size[0]}x{crop_size[1]}, latent: {latent_w}x{latent_h}, ratio: {actual_ratio:.4f}, resize ratio: {rs_w/rs_h:.4f}")
return latent_w, latent_h
class StrictBucketeer:
def __init__(
self,
density=256*256,
factor=8,
aspect_ratios=[], # Pre-calculated w/h ratios
crop_mode='center',
transforms=None
):
assert crop_mode in ['center', 'random', 'smart']
self.crop_mode = crop_mode
self.density = density
self.factor = factor
# Generate bucket sizes and store in a dict
self.buckets = self._generate_bucket_sizes(aspect_ratios)
self.smartcrop = SmartCrop(int(density**0.5)) if self.crop_mode == 'smart' else None
self.transforms = transforms
def _generate_bucket_sizes(self, aspect_ratios):
buckets = {}
for ratio in aspect_ratios:
if ratio <= 1:
w = int(((self.density/ratio)**0.5//self.factor)*self.factor)
h = int(((self.density*ratio)**0.5//self.factor)*self.factor)
else:
w = int(((self.density*ratio)**0.5//self.factor)*self.factor)
h = int(((self.density/ratio)**0.5//self.factor)*self.factor)
w = (w // self.factor) * self.factor
h = (h // self.factor) * self.factor
ratio_str = f"{ratio:.2f}"
buckets[ratio_str] = (w, h)
return buckets
def get_resize_and_crop_sizes(self, w, h, ratio=None):
# Round off decimal places until .2f to prevent rare cases of an input batch mismatching
# Or dependning on the latent caching function, use the aspect provided from the original bucketised dataset
aspect_ratio = float(f"{w / h:.2f}") if ratio is None else float(ratio)
closest_ratio = min(self.buckets.keys(), key=lambda x: abs(float(x) - aspect_ratio))
target_size = self.buckets[closest_ratio]
# # Determine resize dimensions (resize smallest side to match target)
# if w <= h:
# resize_size = (target_size[0], int(h * target_size[0] / w))
# else:
# resize_size = (int(w * target_size[1] / h), target_size[1])
return target_size[0], target_size[1], closest_ratio
def load_and_resize(self, item, ratio=None):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
image = Image.open(item).convert("RGB")
w, h = image.size
actual_ratio = max(w, h) / min(w, h)
# Get the resize and crop sizes
crop_w, crop_h, closest_ratio = self.get_resize_and_crop_sizes(w, h, ratio=ratio)
# Calculate resize dimensions to exceed or match crop size
# if w == h:
# # For square images, directly use the crop size
# resize_size = (crop_h, crop_w)
# elif w < h:
# resize_w = copy.deepcopy(crop_w) # Don't make a variable alias, causes problems
# resize_h = int(resize_w * actual_ratio)
# while resize_h <= crop_h:
# resize_w += 1
# resize_h = int(resize_w * actual_ratio)
# resize_size = (resize_w, resize_h)
# else:
# resize_h = copy.deepcopy(crop_h) # Don't make a variable alias, causes problems
# resize_w = int(resize_h * actual_ratio)
# while resize_w <= crop_w:
# resize_h += 1
# resize_w = int(resize_h * actual_ratio)
# resize_size = (resize_w, resize_h)
# Resize image
crop_size = (crop_w, crop_h) if float(closest_ratio) <= 1 else (crop_h, crop_w)
resize_size = min(crop_w, crop_h)
# image = image.resize(resize_size, Image.Resampling.LANCZOS)
img = self.transforms(image) if self.transforms else torchvision.transforms.ToTensor()(image)
img = torchvision.transforms.functional.resize(
img,
resize_size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True
)
del image
# Crop if necessary
if img.shape[-2:] != crop_size:
if self.crop_mode == 'center':
img = torchvision.transforms.functional.center_crop(img, crop_size)
elif self.crop_mode == 'random':
img = torchvision.transforms.RandomCrop(crop_size)(img)
elif self.crop_mode == 'smart':
self.smartcrop.output_size = crop_size
img = self.smartcrop(img)
# file_path = f"dataset_debug.csv"
# with open(file_path, "a") as f:
# f.write(f"{w/h:.2f},{ratio},{w}x{h},{crop_w}x{crop_h},{item}\n")
return img, closest_ratio
def __call__(self, item, ratio=None):
return self.load_and_resize(item, ratio=ratio)