forked from brightmart/text_classification
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patha8_predict.py
142 lines (132 loc) · 9.01 KB
/
a8_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
#prediction using model.
#process--->1.load data(X:list of lint,y:int). 2.create session. 3.feed data. 4.predict
import sys
reload(sys)
sys.setdefaultencoding('utf8')
import tensorflow as tf
import numpy as np
from data_util_zhihu import load_data_predict,load_final_test_data,create_voabulary,create_voabulary_label
from tflearn.data_utils import pad_sequences #to_categorical
import os
import codecs
from a8_dynamic_memory_network import DynamicMemoryNetwork
#configuration
FLAGS=tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("num_classes",1999,"number of label")
tf.app.flags.DEFINE_float("learning_rate",0.01,"learning rate")
tf.app.flags.DEFINE_integer("batch_size", 80, "Batch size for training/evaluating.") #批处理的大小 32-->128
tf.app.flags.DEFINE_integer("decay_steps", 6000, "how many steps before decay learning rate.") #6000批处理的大小 32-->128
tf.app.flags.DEFINE_float("decay_rate", 1.0, "Rate of decay for learning rate.") #0.65一次衰减多少
tf.app.flags.DEFINE_string("ckpt_dir","../checkpoint_dynamic_memory_network/","checkpoint location for the model")
tf.app.flags.DEFINE_integer("sequence_length",60,"max sentence length")
tf.app.flags.DEFINE_integer("embed_size",100,"embedding size")
tf.app.flags.DEFINE_boolean("is_training",False,"is traning.true:tranining,false:testing/inference")
tf.app.flags.DEFINE_integer("num_epochs",1,"number of epochs to run.")
tf.app.flags.DEFINE_integer("validate_every", 1, "Validate every validate_every epochs.") #每10轮做一次验证
tf.app.flags.DEFINE_boolean("use_embedding",True,"whether to use embedding or not.")
#tf.app.flags.DEFINE_string("cache_path","text_cnn_checkpoint/data_cache.pik","checkpoint location for the model")
tf.app.flags.DEFINE_string("traning_data_path","../train-zhihu4-only-title-all.txt","path of traning data.") #O.K.train-zhihu4-only-title-all.txt-->training-data/test-zhihu4-only-title.txt--->'training-data/train-zhihu5-only-title-multilabel.txt'
tf.app.flags.DEFINE_string("word2vec_model_path","../zhihu-word2vec-title-desc.bin-100","word2vec's vocabulary and vectors") #zhihu-word2vec.bin-100-->zhihu-word2vec-multilabel-minicount15.bin-100
tf.app.flags.DEFINE_boolean("multi_label_flag",True,"use multi label or single label.")
tf.app.flags.DEFINE_integer("hidden_size",100,"hidden size")
tf.app.flags.DEFINE_string("predict_target_file","../checkpoint_dynamic_memory_network/zhihu_result_dynamic_memory_network.csv","target file path for final prediction")
tf.app.flags.DEFINE_string("predict_source_file",'../test-zhihu-forpredict-title-desc-v6.txt',"target file path for final prediction") #test-zhihu-forpredict-v4only-title.txt
tf.app.flags.DEFINE_integer("story_length",1,"story length")
tf.app.flags.DEFINE_boolean("use_gated_gru",False,"whether to use gated gru as memory update mechanism. if false,use weighted sum of candidate sentences according to gate")
tf.app.flags.DEFINE_integer("num_pass",2,"number of pass to run") #e.g. num_pass=1,2,3,4.
tf.app.flags.DEFINE_float("l2_lambda", 0.0001, "l2 regularization")
tf.app.flags.DEFINE_boolean("decode_with_sequences",False,"if your task is sequence generating, you need to set this true.default is false, for predict a label")
#1.load data(X:list of lint,y:int). 2.create session. 3.feed data. 4.training (5.validation) ,(6.prediction)
# 1.load data with vocabulary of words and labels
def main(_):
# 1.load data with vocabulary of words and labels
vocabulary_word2index, vocabulary_index2word = create_voabulary(word2vec_model_path=FLAGS.word2vec_model_path,name_scope="dynamic_memory_network")
vocab_size = len(vocabulary_word2index)
vocabulary_word2index_label, vocabulary_index2word_label = create_voabulary_label(name_scope="dynamic_memory_network")
questionid_question_lists=load_final_test_data(FLAGS.predict_source_file)
test= load_data_predict(vocabulary_word2index,vocabulary_word2index_label,questionid_question_lists)
testX=[]
question_id_list=[]
for tuple in test:
question_id,question_string_list=tuple
question_id_list.append(question_id)
testX.append(question_string_list)
# 2.Data preprocessing: Sequence padding
print("start padding....")
testX2 = pad_sequences(testX, maxlen=FLAGS.sequence_length, value=0.) # padding to max length
print("end padding...")
# 3.create session.
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
# 4.Instantiate Model
model = DynamicMemoryNetwork(FLAGS.num_classes, FLAGS.learning_rate, FLAGS.batch_size, FLAGS.decay_steps, FLAGS.decay_rate, FLAGS.sequence_length,
FLAGS.story_length,vocab_size, FLAGS.embed_size, FLAGS.hidden_size, FLAGS.is_training,num_pass=FLAGS.num_pass,
use_gated_gru=FLAGS.use_gated_gru,decode_with_sequences=FLAGS.decode_with_sequences,multi_label_flag=FLAGS.multi_label_flag,l2_lambda=FLAGS.l2_lambda)
saver=tf.train.Saver()
if os.path.exists(FLAGS.ckpt_dir+"checkpoint"):
print("Restoring Variables from Checkpoint of EntityNet.")
saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir))
else:
print("Can't find the checkpoint.going to stop")
return
# 5.feed data, to get logits
number_of_training_data=len(testX2);print("number_of_training_data:",number_of_training_data)
index=0
predict_target_file_f = codecs.open(FLAGS.predict_target_file, 'a', 'utf8')
for start, end in zip(range(0, number_of_training_data, FLAGS.batch_size),range(FLAGS.batch_size, number_of_training_data+1, FLAGS.batch_size)):
logits=sess.run(model.logits,feed_dict={model.query:testX2[start:end],model.story: np.expand_dims(testX2[start:end],axis=1),
model.dropout_keep_prob:1.0}) #'shape of logits:', ( 1, 1999)
# 6. get lable using logtis
#predicted_labels=get_label_using_logits(logits[0],vocabulary_index2word_label)
# 7. write question id and labels to file system.
#write_question_id_with_labels(question_id_list[index],predicted_labels,predict_target_file_f)
question_id_sublist=question_id_list[start:end]
get_label_using_logits_batch(question_id_sublist, logits, vocabulary_index2word_label, predict_target_file_f)
index=index+1
predict_target_file_f.close()
# get label using logits
def get_label_using_logits(logits,vocabulary_index2word_label,top_number=5):
index_list=np.argsort(logits)[-top_number:] #print("sum_p", np.sum(1.0 / (1 + np.exp(-logits))))
index_list=index_list[::-1]
label_list=[]
for index in index_list:
label=vocabulary_index2word_label[index]
label_list.append(label) #('get_label_using_logits.label_list:', [u'-3423450385060590478', u'2838091149470021485', u'-3174907002942471215', u'-1812694399780494968', u'6815248286057533876'])
return label_list
# get label using logits
def get_label_using_logits_with_value(logits,vocabulary_index2word_label,top_number=5):
index_list=np.argsort(logits)[-top_number:] #print("sum_p", np.sum(1.0 / (1 + np.exp(-logits))))
index_list=index_list[::-1]
value_list=[]
label_list=[]
for index in index_list:
label=vocabulary_index2word_label[index]
label_list.append(label) #('get_label_using_logits.label_list:', [u'-3423450385060590478', u'2838091149470021485', u'-3174907002942471215', u'-1812694399780494968', u'6815248286057533876'])
value_list.append(logits[index])
return label_list,value_list
# write question id and labels to file system.
def write_question_id_with_labels(question_id,labels_list,f):
labels_string=",".join(labels_list)
f.write(question_id+","+labels_string+"\n")
# get label using logits
def get_label_using_logits_batch(question_id_sublist,logits_batch,vocabulary_index2word_label,f,top_number=5):
#print("get_label_using_logits.shape:", logits_batch.shape) # (10, 1999))=[batch_size,num_labels]===>需要(10,5)
for i,logits in enumerate(logits_batch):
index_list=np.argsort(logits)[-top_number:] #print("sum_p", np.sum(1.0 / (1 + np.exp(-logits))))
index_list=index_list[::-1]
label_list=[]
for index in index_list:
label=vocabulary_index2word_label[index]
label_list.append(label) #('get_label_using_logits.label_list:', [u'-3423450385060590478', u'2838091149470021485', u'-3174907002942471215', u'-1812694399780494968', u'6815248286057533876'])
#print("get_label_using_logits.label_list",label_list)
write_question_id_with_labels(question_id_sublist[i], label_list, f)
f.flush()
#return label_list
# write question id and labels to file system.
def write_question_id_with_labels(question_id,labels_list,f):
labels_string=",".join(labels_list)
f.write(question_id+","+labels_string+"\n")
if __name__ == "__main__":
tf.app.run()