-
Notifications
You must be signed in to change notification settings - Fork 3
/
gridslamprocessor.cpp
601 lines (464 loc) · 20.1 KB
/
gridslamprocessor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#include <string>
#include <deque>
#include <list>
#include <map>
#include <set>
#include <fstream>
#include <iomanip>
#include <utils/stat.h>
#include "gridslamprocessor.h"
//#define MAP_CONSISTENCY_CHECK
//#define GENERATE_TRAJECTORIES
namespace GMapping
{
const double m_distanceThresholdCheck = 20;
using namespace std;
GridSlamProcessor::GridSlamProcessor(): m_infoStream(cout) {
m_obsSigmaGain = 1;
m_resampleThreshold = 0.5;
m_minimumScore = 0.;
}
GridSlamProcessor::GridSlamProcessor(const GridSlamProcessor & gsp): m_particles(gsp.m_particles),
m_infoStream(cout) {
m_obsSigmaGain = gsp.m_obsSigmaGain;
m_resampleThreshold = gsp.m_resampleThreshold;
m_minimumScore = gsp.m_minimumScore;
m_beams = gsp.m_beams;
m_indexes = gsp.m_indexes;
m_motionModel = gsp.m_motionModel;
m_resampleThreshold = gsp.m_resampleThreshold;
m_matcher = gsp.m_matcher;
m_count = gsp.m_count;
m_readingCount = gsp.m_readingCount;
m_lastPartPose = gsp.m_lastPartPose;
m_pose = gsp.m_pose;
m_odoPose = gsp.m_odoPose;
m_linearDistance = gsp.m_linearDistance;
m_angularDistance = gsp.m_angularDistance;
m_neff = gsp.m_neff;
cerr << "FILTER COPY CONSTRUCTOR" << endl;
cerr << "m_odoPose=" << m_odoPose.x << " " << m_odoPose.y << " " << m_odoPose.theta << endl;
cerr << "m_lastPartPose=" << m_lastPartPose.x << " " << m_lastPartPose.y << " " << m_lastPartPose.theta << endl;
cerr << "m_linearDistance=" << m_linearDistance << endl;
cerr << "m_angularDistance=" << m_linearDistance << endl;
m_xmin = gsp.m_xmin;
m_ymin = gsp.m_ymin;
m_xmax = gsp.m_xmax;
m_ymax = gsp.m_ymax;
m_delta = gsp.m_delta;
m_regScore = gsp.m_regScore;
m_critScore = gsp.m_critScore;
m_maxMove = gsp.m_maxMove;
m_linearThresholdDistance = gsp.m_linearThresholdDistance;
m_angularThresholdDistance = gsp.m_angularThresholdDistance;
m_obsSigmaGain = gsp.m_obsSigmaGain;
#ifdef MAP_CONSISTENCY_CHECK
cerr << __PRETTY_FUNCTION__ << ": trajectories copy.... ";
#endif
TNodeVector v = gsp.getTrajectories();
for (unsigned int i = 0; i < v.size(); i++) {
m_particles[i].node = v[i];
}
#ifdef MAP_CONSISTENCY_CHECK
cerr << "end" << endl;
#endif
cerr << "Tree: normalizing, resetting and propagating weights within copy construction/cloneing ...";
updateTreeWeights(false);
cerr << ".done!" << endl;
}
GridSlamProcessor::GridSlamProcessor(std::ostream & infoS): m_infoStream(infoS) {
m_obsSigmaGain = 1;
m_resampleThreshold = 0.5;
m_minimumScore = 0.;
}
GridSlamProcessor * GridSlamProcessor::clone()
const {
#ifdef MAP_CONSISTENCY_CHECK
cerr << __PRETTY_FUNCTION__ << ": performing preclone_fit_test" << endl;
typedef std::map < autoptr < Array2D < PointAccumulator > >::reference * const, int > PointerMap;
PointerMap pmap;
for (ParticleVector::const_iterator it = m_particles.begin(); it != m_particles.end(); it++) {
const ScanMatcherMap & m1(it->map);
const HierarchicalArray2D < PointAccumulator > &h1(m1.storage());
for (int x = 0; x < h1.getXSize(); x++) {
for (int y = 0; y < h1.getYSize(); y++) {
const autoptr < Array2D < PointAccumulator > > &a1(h1.m_cells[x][y]);
if (a1.m_reference) {
PointerMap::iterator f = pmap.find(a1.m_reference);
if (f == pmap.end())
pmap.insert(make_pair(a1.m_reference, 1));
else
f->second++;
}
}
}
}
cerr << __PRETTY_FUNCTION__ << ": Number of allocated chunks" << pmap.size() << endl;
for (PointerMap::const_iterator it = pmap.begin(); it != pmap.end(); it++)
assert(it->first->shares == (unsigned int) it->second);
cerr << __PRETTY_FUNCTION__ << ": SUCCESS, the error is somewhere else" << endl;
#endif
GridSlamProcessor * cloned = new GridSlamProcessor(*this);
#ifdef MAP_CONSISTENCY_CHECK
cerr << __PRETTY_FUNCTION__ << ": trajectories end" << endl;
cerr << __PRETTY_FUNCTION__ << ": performing afterclone_fit_test" << endl;
ParticleVector::const_iterator jt = cloned->m_particles.begin();
for (ParticleVector::const_iterator it = m_particles.begin(); it != m_particles.end(); it++) {
const ScanMatcherMap & m1(it->map);
const ScanMatcherMap & m2(jt->map);
const HierarchicalArray2D < PointAccumulator > &h1(m1.storage());
const HierarchicalArray2D < PointAccumulator > &h2(m2.storage());
jt++;
for (int x = 0; x < h1.getXSize(); x++) {
for (int y = 0; y < h1.getYSize(); y++) {
const autoptr < Array2D < PointAccumulator > > &a1(h1.m_cells[x][y]);
const autoptr < Array2D < PointAccumulator > > &a2(h2.m_cells[x][y]);
assert(a1.m_reference == a2.m_reference);
assert((!a1.m_reference) || ! (a1.m_reference->shares % 2));
}
}
}
cerr << __PRETTY_FUNCTION__ << ": SUCCESS, the error is somewhere else" << endl;
#endif
return cloned;
}
GridSlamProcessor::~GridSlamProcessor() {
cerr << __PRETTY_FUNCTION__ << ": Start" << endl;
cerr << __PRETTY_FUNCTION__ << ": Deeting tree" << endl;
for (std::vector < Particle >::iterator it = m_particles.begin(); it != m_particles.end(); it++) {
#ifdef TREE_CONSISTENCY_CHECK
TNode * node = it->node;
while (node)
node = node->parent;
cerr << "@" << endl;
#endif
if (it->node)
delete it->node;
//cout << "l=" << it->weight<< endl;
}
#ifdef MAP_CONSISTENCY_CHECK
cerr << __PRETTY_FUNCTION__ << ": performing predestruction_fit_test" << endl;
typedef std::map < autoptr < Array2D < PointAccumulator > >::reference * const, int > PointerMap;
PointerMap pmap;
for (ParticleVector::const_iterator it = m_particles.begin(); it != m_particles.end(); it++) {
const ScanMatcherMap & m1(it->map);
const HierarchicalArray2D < PointAccumulator > &h1(m1.storage());
for (int x = 0; x < h1.getXSize(); x++) {
for (int y = 0; y < h1.getYSize(); y++) {
const autoptr < Array2D < PointAccumulator > > &a1(h1.m_cells[x][y]);
if (a1.m_reference) {
PointerMap::iterator f = pmap.find(a1.m_reference);
if (f == pmap.end())
pmap.insert(make_pair(a1.m_reference, 1));
else
f->second++;
}
}
}
}
cerr << __PRETTY_FUNCTION__ << ": Number of allocated chunks" << pmap.size() << endl;
for (PointerMap::const_iterator it = pmap.begin(); it != pmap.end(); it++)
assert(it->first->shares >= (unsigned int) it->second);
cerr << __PRETTY_FUNCTION__ << ": SUCCESS, the error is somewhere else" << endl;
#endif
}
void GridSlamProcessor::setMatchingParameters(double urange, double range, double sigma, int kernsize,
double lopt, double aopt,
int iterations, double likelihoodSigma, double likelihoodGain, unsigned int likelihoodSkip) {
m_obsSigmaGain = likelihoodGain;
m_matcher.setMatchingParameters(urange, range, sigma, kernsize, lopt, aopt, iterations, likelihoodSigma,
likelihoodSkip);
if (m_infoStream)
m_infoStream << " -maxUrange " << urange << " -maxUrange " << range << " -sigma " << sigma << " -kernelSize " << kernsize << " -lstep " << lopt << " -lobsGain " << m_obsSigmaGain << " -astep " << aopt << endl;
}
void GridSlamProcessor::setMotionModelParameters(double srr, double srt, double str, double stt) {
m_motionModel.srr = srr;
m_motionModel.srt = srt;
m_motionModel.str = str;
m_motionModel.stt = stt;
if (m_infoStream)
m_infoStream << " -srr " << srr << " -srt " << srt << " -str " << str << " -stt " << stt << endl;
}
void GridSlamProcessor::setUpdateDistances(double linear, double angular, double resampleThreshold) {
m_linearThresholdDistance = linear;
m_angularThresholdDistance = angular;
m_resampleThreshold = resampleThreshold;
if (m_infoStream)
m_infoStream << " -linearUpdate " << linear << " -angularUpdate " << angular << " -resampleThreshold " << m_resampleThreshold << endl;
}
//HERE STARTS THE BEEF
GridSlamProcessor::Particle::Particle(const ScanMatcherMap & m): map(m), pose(0, 0, 0), weight(0),
weightSum(0),
gweight(0), previousIndex(0) {
node = 0;
}
// 设置绑定的激光雷达传感器测距参数及初始位姿
void GridSlamProcessor::setSensorMap(const SensorMap & smap) {
/*
Construct the angle table for the sensor
FIXME For now detect the readings of only the front laser, and assume its pose is in the center of the
robot
*/
SensorMap::const_iterator laser_it = smap.find(std::string("FLASER"));
if (laser_it == smap.end()) {
cerr << "Attempting to load the new carmen log format" << endl;
laser_it = smap.find(std::string("ROBOTLASER1"));
assert(laser_it != smap.end());
}
const RangeSensor * rangeSensor = dynamic_cast < const RangeSensor * > ((laser_it->second));
assert(rangeSensor && rangeSensor->beams().size());
m_beams = static_cast < unsigned int > (rangeSensor->beams().size());
double * angles = new double[rangeSensor->beams().size()];
for (unsigned int i = 0; i < m_beams; i++) {
angles[i] = rangeSensor->beams()[i].pose.theta;
}
m_matcher.setLaserParameters(m_beams, angles, rangeSensor->getPose());
delete[] angles;
}
void GridSlamProcessor::init(unsigned int size, double xmin, double ymin, double xmax, double ymax, double delta,
OrientedPoint initialPose) {
m_xmin = xmin;
m_ymin = ymin;
m_xmax = xmax;
m_ymax = ymax;
m_delta = delta;
if (m_infoStream)
m_infoStream << " -xmin " << m_xmin << " -xmax " << m_xmax << " -ymin " << m_ymin << " -ymax " << m_ymax << " -delta " << m_delta << " -particles " << size << endl;
m_particles.clear();
TNode * node = new TNode(initialPose, 0, 0, 0);
/*
Map<PointAccumulator,HierarchicalArray2D<PointAccumulator> > ScanMatcherMap;
template <class Cell, class Storage, const bool isClass=true>
对比Map的模板参数句可以知道
cell = PointAccumulator, Storage = HierarchicalArray2D<PointAccumulator>
template <class Cell>
class HierarchicalArray2D: public Array2D<autoptr< Array2D<Cell> > >
一切都明了了 ~~~!!!!
*/
// 关键是这地图是局部变量呀,用完就释放了?
ScanMatcherMap lmap(Point(xmin + xmax, ymin + ymax) *.5, xmax - xmin, ymax - ymin, delta);
// 初始化 粒子
for (unsigned int i = 0; i < size; i++) {
// 每个粒子都绑定地图
m_particles.push_back(Particle(lmap));
m_particles.back().pose = initialPose;
m_particles.back().previousPose = initialPose;
m_particles.back().setWeight(0);
m_particles.back().previousIndex = 0;
// this is not needed
// m_particles.back().node=new TNode(initialPose, 0, node, 0);
// we use the root directly
// 绑定第一个轨迹节点
m_particles.back().node = node;
}
// m_neff = 粒子数量
m_neff = (double)
size;
m_count = 0;
m_readingCount = 0;
m_linearDistance = m_angularDistance = 0;
}
void GridSlamProcessor::processTruePos(const OdometryReading & o) {
const OdometrySensor * os = dynamic_cast < const OdometrySensor * > (o.getSensor());
if (os && os->isIdeal() && m_outputStream) {
m_outputStream << setiosflags(ios::fixed) << setprecision(3);
m_outputStream << "SIMULATOR_POS " << o.getPose().x << " " << o.getPose().y << " ";
m_outputStream << setiosflags(ios::fixed) << setprecision(6) << o.getPose().theta << " " << o.getTime() << endl;
}
}
// adaptParticles默认 = 0
// 返回值标识当前帧扫描数据是否使用了
bool GridSlamProcessor::processScan(const RangeReading & reading, int adaptParticles) {
/**retireve the position from the reading, and compute the odometry*/
// 取出扫描数据中记录的里程计位姿
OrientedPoint relPose = reading.getPose();
// GridSlamProcessor::init 中将 m_count 初始化为 0
// m_odoPose 实际用作记录上一时刻的位姿,由于是第一次循环,故直接等于0时刻位姿
if (!m_count) {
m_lastPartPose = m_odoPose = relPose;
}
//write the state of the reading and update all the particles using the motion model
for (ParticleVector::iterator it = m_particles.begin(); it != m_particles.end(); it++) {
OrientedPoint & pose(it->pose);
// 粒子新的位姿,relPose 当前时刻位姿,也是激光中心的位姿, m_odoPose 上一时刻位姿
pose = m_motionModel.drawFromMotion(it->pose, relPose, m_odoPose);
}
// update the output file
if (m_outputStream.is_open()) {
m_outputStream << setiosflags(ios::fixed) << setprecision(6);
m_outputStream << "ODOM ";
m_outputStream << setiosflags(ios::fixed) << setprecision(3) << m_odoPose.x << " " << m_odoPose.y << " ";
m_outputStream << setiosflags(ios::fixed) << setprecision(6) << m_odoPose.theta << " ";
m_outputStream << reading.getTime();
m_outputStream << endl;
}
if (m_outputStream.is_open()) {
m_outputStream << setiosflags(ios::fixed) << setprecision(6);
m_outputStream << "ODO_UPDATE " << m_particles.size() << " ";
for (ParticleVector::iterator it = m_particles.begin(); it != m_particles.end(); it++) {
OrientedPoint & pose(it->pose);
m_outputStream << setiosflags(ios::fixed) << setprecision(3) << pose.x << " " << pose.y << " ";
m_outputStream << setiosflags(ios::fixed) << setprecision(6) << pose.theta << " " << it->weight << " ";
}
m_outputStream << reading.getTime();
m_outputStream << endl;
}
//invoke the callback
// 空函数,不明觉厉~
onOdometryUpdate();
// accumulate the robot translation and rotation
// 上一时刻位姿与当前时刻位姿的相对运动
OrientedPoint move = relPose - m_odoPose;
move.theta = atan2(sin(move.theta), cos(move.theta));
// 累计旋转和平移
m_linearDistance += sqrt(move * move);
m_angularDistance += fabs(move.theta);
// if the robot jumps throw a warning
if (m_linearDistance > m_distanceThresholdCheck) {
cerr << "***********************************************************************" << endl;
cerr << "********** Error: m_distanceThresholdCheck overridden!!!! *************" << endl;
cerr << "m_distanceThresholdCheck=" << m_distanceThresholdCheck << endl;
cerr << "Old Odometry Pose= " << m_odoPose.x << " " << m_odoPose.y << " " << m_odoPose.theta << endl;
cerr << "New Odometry Pose (reported from observation)= " << relPose.x << " " << relPose.y << " " << relPose.theta << endl;
cerr << "***********************************************************************" << endl;
cerr << "** The Odometry has a big jump here. This is probably a bug in the **" << endl;
cerr << "** odometry/laser input. We continue now, but the result is probably **" << endl;
cerr << "** crap or can lead to a core dump since the map doesn't fit.... C&G **" << endl;
cerr << "***********************************************************************" << endl;
}
// 原来 m_odoPose 是记录当前时刻的位姿 relPose,以备下次循环使用
m_odoPose = relPose;
bool processed = false;
// process a scan only if the robot has traveled a given distance
// 第一次 肯定要执行该分支
// 后续帧只在 平移距离够远、旋转角够大时才执行,控制执行频率
// m_*记录的是绝对值的和,即它记录的变化的和,并不是真正的平移了多远、或者旋转了多大角
// 而是变化的动作是否够多了
if (!m_count || m_linearDistance > m_linearThresholdDistance ||
m_angularDistance > m_angularThresholdDistance) {
if (m_outputStream.is_open()) {
m_outputStream << setiosflags(ios::fixed) << setprecision(6);
m_outputStream << "FRAME " << m_readingCount;
m_outputStream << " " << m_linearDistance;
m_outputStream << " " << m_angularDistance << endl;
}
if (m_infoStream)
m_infoStream << "update frame " << m_readingCount << endl << "update ld=" << m_linearDistance << " ad=" << m_angularDistance << endl;
cerr << "Laser Pose= " << reading.getPose().x << " " << reading.getPose().y << " " << reading.getPose().theta << endl;
//this is for converting the reading in a scan-matcher feedable form
assert(reading.size() == m_beams);
double * plainReading = new double[m_beams];
// 取出当前帧激光测距数据
for (unsigned int i = 0; i < m_beams; i++) {
plainReading[i] = reading[i];
}
m_infoStream << "m_count " << m_count << endl;
// 第一次循环不会执行这个分支,因为现在只有一帧激光数据,没法进行 scanMatch
// 后续帧执行这里
if (m_count > 0) {
// 方法实现在:gridslamprocessor.hxx 中
// 遍历粒子集,通过对初始位姿添加扰动,然后根据得分得到最优的位姿,然后更新粒子权重
// 然后计算在最优位姿下的活跃栅格点
scanMatch(plainReading);
if (m_outputStream.is_open()) {
m_outputStream << "LASER_READING " << reading.size() << " ";
m_outputStream << setiosflags(ios::fixed) << setprecision(2);
for (RangeReading::const_iterator b = reading.begin(); b != reading.end(); b++) {
m_outputStream << *b << " ";
}
OrientedPoint p = reading.getPose();
m_outputStream << setiosflags(ios::fixed) << setprecision(6);
m_outputStream << p.x << " " << p.y << " " << p.theta << " " << reading.getTime() << endl;
m_outputStream << "SM_UPDATE " << m_particles.size() << " ";
for (ParticleVector::const_iterator it = m_particles.begin(); it != m_particles.end(); it++) {
const OrientedPoint & pose = it->pose;
m_outputStream << setiosflags(ios::fixed) << setprecision(3) << pose.x << " " << pose.y << " ";
m_outputStream << setiosflags(ios::fixed) << setprecision(6) << pose.theta << " " << it->weight << " ";
}
m_outputStream << endl;
}
// 又是空?
onScanmatchUpdate();
updateTreeWeights(false);
if (m_infoStream) {
m_infoStream << "neff= " << m_neff << endl;
}
if (m_outputStream.is_open()) {
m_outputStream << setiosflags(ios::fixed) << setprecision(6);
m_outputStream << "NEFF " << m_neff << endl;
}
// adaptParticles 为 0
// bool resample(const double* plainReading, int adaptParticles,
// const RangeReading* rr=0)
// 在 gridslamprocessor.hxx 中实现
resample(plainReading, adaptParticles);
}
// 第一次执行该分支
else {
m_infoStream << "Registering First Scan" << endl;
for (ParticleVector::iterator it = m_particles.begin(); it != m_particles.end(); it++) {
// 设置需要更新活跃区域
m_matcher.invalidateActiveArea();
// 更新机器人位置和各个障碍物之间连线所覆盖的map中的栅格,及障碍物所在栅格状态
m_matcher.computeActiveArea(it->map, it->pose, plainReading);
m_matcher.registerScan(it->map, it->pose, plainReading);
// cyr: not needed anymore, particles refer to the root in the beginning!
// 输入参数:粒子位姿、权重、父节点、孩子数量
// 此时的 it->node == NULL, 所以第一个节点的 parent = NULL
TNode * node = new TNode(it->pose, 0., it->node, 0);
// 需要关联的激光数据
node->reading = 0;
// 粒子绑定该节点
it->node = node;
}
}
// cerr << "Tree: normalizing, resetting and propagating weights at the end..." ;
updateTreeWeights(false);
// cerr << ".done!" <<endl;
// 删除激光扫描数据
delete[] plainReading;
m_lastPartPose = m_odoPose; //update the past pose for the next iteration
m_linearDistance = 0;
m_angularDistance = 0;
// 该分支每进来一次 m_count++
m_count++;
processed = true;
//keep ready for the next step
// 迭代当前位姿状态
for (ParticleVector::iterator it = m_particles.begin(); it != m_particles.end(); it++) {
it->previousPose = it->pose;
}
}
if (m_outputStream.is_open())
m_outputStream << flush;
// 记录总的 scan 数量
m_readingCount++;
// 标识是否正常处理了
return processed;
}
std::ofstream & GridSlamProcessor::outputStream() {
return m_outputStream;
}
std::ostream & GridSlamProcessor::infoStream() {
return m_infoStream;
}
int GridSlamProcessor::getBestParticleIndex()
const {
unsigned int bi = 0;
double bw = -std::numeric_limits < double >::max();
for (unsigned int i = 0; i < m_particles.size(); i++)
if (bw < m_particles[i].weightSum) {
bw = m_particles[i].weightSum;
bi = i;
}
return (int)
bi;
}
void GridSlamProcessor::onScanmatchUpdate() {
}
void GridSlamProcessor::onResampleUpdate() {
}
void GridSlamProcessor::onOdometryUpdate() {
}
};
// end namespace