forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_simd.cpp
687 lines (544 loc) · 16.3 KB
/
utils_simd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "utils.h"
#include <cstdio>
#include <cassert>
#include <cstring>
#include <cmath>
#ifdef __SSE__
#include <immintrin.h>
#endif
#ifdef __aarch64__
#include <arm_neon.h>
#endif
#include <omp.h>
/**************************************************
* Get some stats about the system
**************************************************/
namespace faiss {
#ifdef __AVX__
#define USE_AVX
#endif
/*********************************************************
* Optimized distance computations
*********************************************************/
/* Functions to compute:
- L2 distance between 2 vectors
- inner product between 2 vectors
- L2 norm of a vector
The functions should probably not be invoked when a large number of
vectors are be processed in batch (in which case Matrix multiply
is faster), but may be useful for comparing vectors isolated in
memory.
Works with any vectors of any dimension, even unaligned (in which
case they are slower).
*/
/*********************************************************
* Reference implementations
*/
/* same without SSE */
float fvec_L2sqr_ref (const float * x,
const float * y,
size_t d)
{
size_t i;
float res = 0;
for (i = 0; i < d; i++) {
const float tmp = x[i] - y[i];
res += tmp * tmp;
}
return res;
}
float fvec_inner_product_ref (const float * x,
const float * y,
size_t d)
{
size_t i;
float res = 0;
for (i = 0; i < d; i++)
res += x[i] * y[i];
return res;
}
float fvec_norm_L2sqr_ref (const float *x, size_t d)
{
size_t i;
double res = 0;
for (i = 0; i < d; i++)
res += x[i] * x[i];
return res;
}
void fvec_L2sqr_ny_ref (float * dis,
const float * x,
const float * y,
size_t d, size_t ny)
{
for (size_t i = 0; i < ny; i++) {
dis[i] = fvec_L2sqr (x, y, d);
y += d;
}
}
/*********************************************************
* SSE and AVX implementations
*/
#ifdef __SSE__
// reads 0 <= d < 4 floats as __m128
static inline __m128 masked_read (int d, const float *x)
{
assert (0 <= d && d < 4);
__attribute__((__aligned__(16))) float buf[4] = {0, 0, 0, 0};
switch (d) {
case 3:
buf[2] = x[2];
case 2:
buf[1] = x[1];
case 1:
buf[0] = x[0];
}
return _mm_load_ps (buf);
// cannot use AVX2 _mm_mask_set1_epi32
}
float fvec_norm_L2sqr (const float * x,
size_t d)
{
__m128 mx;
__m128 msum1 = _mm_setzero_ps();
while (d >= 4) {
mx = _mm_loadu_ps (x); x += 4;
msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, mx));
d -= 4;
}
mx = masked_read (d, x);
msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, mx));
msum1 = _mm_hadd_ps (msum1, msum1);
msum1 = _mm_hadd_ps (msum1, msum1);
return _mm_cvtss_f32 (msum1);
}
namespace {
float sqr (float x) {
return x * x;
}
void fvec_L2sqr_ny_D1 (float * dis, const float * x,
const float * y, size_t ny)
{
float x0s = x[0];
__m128 x0 = _mm_set_ps (x0s, x0s, x0s, x0s);
size_t i;
for (i = 0; i + 3 < ny; i += 4) {
__m128 tmp, accu;
tmp = x0 - _mm_loadu_ps (y); y += 4;
accu = tmp * tmp;
dis[i] = _mm_cvtss_f32 (accu);
tmp = _mm_shuffle_ps (accu, accu, 1);
dis[i + 1] = _mm_cvtss_f32 (tmp);
tmp = _mm_shuffle_ps (accu, accu, 2);
dis[i + 2] = _mm_cvtss_f32 (tmp);
tmp = _mm_shuffle_ps (accu, accu, 3);
dis[i + 3] = _mm_cvtss_f32 (tmp);
}
while (i < ny) { // handle non-multiple-of-4 case
dis[i++] = sqr(x0s - *y++);
}
}
void fvec_L2sqr_ny_D2 (float * dis, const float * x,
const float * y, size_t ny)
{
__m128 x0 = _mm_set_ps (x[1], x[0], x[1], x[0]);
size_t i;
for (i = 0; i + 1 < ny; i += 2) {
__m128 tmp, accu;
tmp = x0 - _mm_loadu_ps (y); y += 4;
accu = tmp * tmp;
accu = _mm_hadd_ps (accu, accu);
dis[i] = _mm_cvtss_f32 (accu);
accu = _mm_shuffle_ps (accu, accu, 3);
dis[i + 1] = _mm_cvtss_f32 (accu);
}
if (i < ny) { // handle odd case
dis[i] = sqr(x[0] - y[0]) + sqr(x[1] - y[1]);
}
}
void fvec_L2sqr_ny_D4 (float * dis, const float * x,
const float * y, size_t ny)
{
__m128 x0 = _mm_loadu_ps(x);
for (size_t i = 0; i < ny; i++) {
__m128 tmp, accu;
tmp = x0 - _mm_loadu_ps (y); y += 4;
accu = tmp * tmp;
accu = _mm_hadd_ps (accu, accu);
accu = _mm_hadd_ps (accu, accu);
dis[i] = _mm_cvtss_f32 (accu);
}
}
void fvec_L2sqr_ny_D8 (float * dis, const float * x,
const float * y, size_t ny)
{
__m128 x0 = _mm_loadu_ps(x);
__m128 x1 = _mm_loadu_ps(x + 4);
for (size_t i = 0; i < ny; i++) {
__m128 tmp, accu;
tmp = x0 - _mm_loadu_ps (y); y += 4;
accu = tmp * tmp;
tmp = x1 - _mm_loadu_ps (y); y += 4;
accu += tmp * tmp;
accu = _mm_hadd_ps (accu, accu);
accu = _mm_hadd_ps (accu, accu);
dis[i] = _mm_cvtss_f32 (accu);
}
}
void fvec_L2sqr_ny_D12 (float * dis, const float * x,
const float * y, size_t ny)
{
__m128 x0 = _mm_loadu_ps(x);
__m128 x1 = _mm_loadu_ps(x + 4);
__m128 x2 = _mm_loadu_ps(x + 8);
for (size_t i = 0; i < ny; i++) {
__m128 tmp, accu;
tmp = x0 - _mm_loadu_ps (y); y += 4;
accu = tmp * tmp;
tmp = x1 - _mm_loadu_ps (y); y += 4;
accu += tmp * tmp;
tmp = x2 - _mm_loadu_ps (y); y += 4;
accu += tmp * tmp;
accu = _mm_hadd_ps (accu, accu);
accu = _mm_hadd_ps (accu, accu);
dis[i] = _mm_cvtss_f32 (accu);
}
}
} // anonymous namespace
void fvec_L2sqr_ny (float * dis, const float * x,
const float * y, size_t d, size_t ny) {
// optimized for a few special cases
switch(d) {
case 1:
fvec_L2sqr_ny_D1 (dis, x, y, ny);
return;
case 2:
fvec_L2sqr_ny_D2 (dis, x, y, ny);
return;
case 4:
fvec_L2sqr_ny_D4 (dis, x, y, ny);
return;
case 8:
fvec_L2sqr_ny_D8 (dis, x, y, ny);
return;
case 12:
fvec_L2sqr_ny_D12 (dis, x, y, ny);
return;
default:
fvec_L2sqr_ny_ref (dis, x, y, d, ny);
return;
}
}
#endif
#ifdef USE_AVX
// reads 0 <= d < 8 floats as __m256
static inline __m256 masked_read_8 (int d, const float *x)
{
assert (0 <= d && d < 8);
if (d < 4) {
__m256 res = _mm256_setzero_ps ();
res = _mm256_insertf128_ps (res, masked_read (d, x), 0);
return res;
} else {
__m256 res = _mm256_setzero_ps ();
res = _mm256_insertf128_ps (res, _mm_loadu_ps (x), 0);
res = _mm256_insertf128_ps (res, masked_read (d - 4, x + 4), 1);
return res;
}
}
float fvec_inner_product (const float * x,
const float * y,
size_t d)
{
__m256 msum1 = _mm256_setzero_ps();
while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
msum1 = _mm256_add_ps (msum1, _mm256_mul_ps (mx, my));
d -= 8;
}
__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);
if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
msum2 = _mm_add_ps (msum2, _mm_mul_ps (mx, my));
d -= 4;
}
if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
msum2 = _mm_add_ps (msum2, _mm_mul_ps (mx, my));
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss_f32 (msum2);
}
float fvec_L2sqr (const float * x,
const float * y,
size_t d)
{
__m256 msum1 = _mm256_setzero_ps();
while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;
}
__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);
if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;
}
if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return _mm_cvtss_f32 (msum2);
}
#elif defined(__SSE__)
/* SSE-implementation of L2 distance */
float fvec_L2sqr (const float * x,
const float * y,
size_t d)
{
__m128 msum1 = _mm_setzero_ps();
while (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 4;
}
if (d > 0) {
// add the last 1, 2 or 3 values
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
}
msum1 = _mm_hadd_ps (msum1, msum1);
msum1 = _mm_hadd_ps (msum1, msum1);
return _mm_cvtss_f32 (msum1);
}
float fvec_inner_product (const float * x,
const float * y,
size_t d)
{
__m128 mx, my;
__m128 msum1 = _mm_setzero_ps();
while (d >= 4) {
mx = _mm_loadu_ps (x); x += 4;
my = _mm_loadu_ps (y); y += 4;
msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, my));
d -= 4;
}
// add the last 1, 2, or 3 values
mx = masked_read (d, x);
my = masked_read (d, y);
__m128 prod = _mm_mul_ps (mx, my);
msum1 = _mm_add_ps (msum1, prod);
msum1 = _mm_hadd_ps (msum1, msum1);
msum1 = _mm_hadd_ps (msum1, msum1);
return _mm_cvtss_f32 (msum1);
}
#elif defined(__aarch64__)
float fvec_L2sqr (const float * x,
const float * y,
size_t d)
{
if (d & 3) return fvec_L2sqr_ref (x, y, d);
float32x4_t accu = vdupq_n_f32 (0);
for (size_t i = 0; i < d; i += 4) {
float32x4_t xi = vld1q_f32 (x + i);
float32x4_t yi = vld1q_f32 (y + i);
float32x4_t sq = vsubq_f32 (xi, yi);
accu = vfmaq_f32 (accu, sq, sq);
}
float32x4_t a2 = vpaddq_f32 (accu, accu);
return vdups_laneq_f32 (a2, 0) + vdups_laneq_f32 (a2, 1);
}
float fvec_inner_product (const float * x,
const float * y,
size_t d)
{
if (d & 3) return fvec_inner_product_ref (x, y, d);
float32x4_t accu = vdupq_n_f32 (0);
for (size_t i = 0; i < d; i += 4) {
float32x4_t xi = vld1q_f32 (x + i);
float32x4_t yi = vld1q_f32 (y + i);
accu = vfmaq_f32 (accu, xi, yi);
}
float32x4_t a2 = vpaddq_f32 (accu, accu);
return vdups_laneq_f32 (a2, 0) + vdups_laneq_f32 (a2, 1);
}
float fvec_norm_L2sqr (const float *x, size_t d)
{
if (d & 3) return fvec_norm_L2sqr_ref (x, d);
float32x4_t accu = vdupq_n_f32 (0);
for (size_t i = 0; i < d; i += 4) {
float32x4_t xi = vld1q_f32 (x + i);
accu = vfmaq_f32 (accu, xi, xi);
}
float32x4_t a2 = vpaddq_f32 (accu, accu);
return vdups_laneq_f32 (a2, 0) + vdups_laneq_f32 (a2, 1);
}
// not optimized for ARM
void fvec_L2sqr_ny (float * dis, const float * x,
const float * y, size_t d, size_t ny) {
fvec_L2sqr_ny_ref (dis, x, y, d, ny);
}
#else
// scalar implementation
float fvec_L2sqr (const float * x,
const float * y,
size_t d)
{
return fvec_L2sqr_ref (x, y, d);
}
float fvec_inner_product (const float * x,
const float * y,
size_t d)
{
return fvec_inner_product_ref (x, y, d);
}
float fvec_norm_L2sqr (const float *x, size_t d)
{
return fvec_norm_L2sqr_ref (x, d);
}
void fvec_L2sqr_ny (float * dis, const float * x,
const float * y, size_t d, size_t ny) {
fvec_L2sqr_ny_ref (dis, x, y, d, ny);
}
#endif
/***************************************************************************
* heavily optimized table computations
***************************************************************************/
static inline void fvec_madd_ref (size_t n, const float *a,
float bf, const float *b, float *c) {
for (size_t i = 0; i < n; i++)
c[i] = a[i] + bf * b[i];
}
#ifdef __SSE__
static inline void fvec_madd_sse (size_t n, const float *a,
float bf, const float *b, float *c) {
n >>= 2;
__m128 bf4 = _mm_set_ps1 (bf);
__m128 * a4 = (__m128*)a;
__m128 * b4 = (__m128*)b;
__m128 * c4 = (__m128*)c;
while (n--) {
*c4 = _mm_add_ps (*a4, _mm_mul_ps (bf4, *b4));
b4++;
a4++;
c4++;
}
}
void fvec_madd (size_t n, const float *a,
float bf, const float *b, float *c)
{
if ((n & 3) == 0 &&
((((long)a) | ((long)b) | ((long)c)) & 15) == 0)
fvec_madd_sse (n, a, bf, b, c);
else
fvec_madd_ref (n, a, bf, b, c);
}
#else
void fvec_madd (size_t n, const float *a,
float bf, const float *b, float *c)
{
fvec_madd_ref (n, a, bf, b, c);
}
#endif
static inline int fvec_madd_and_argmin_ref (size_t n, const float *a,
float bf, const float *b, float *c) {
float vmin = 1e20;
int imin = -1;
for (size_t i = 0; i < n; i++) {
c[i] = a[i] + bf * b[i];
if (c[i] < vmin) {
vmin = c[i];
imin = i;
}
}
return imin;
}
#ifdef __SSE__
static inline int fvec_madd_and_argmin_sse (
size_t n, const float *a,
float bf, const float *b, float *c) {
n >>= 2;
__m128 bf4 = _mm_set_ps1 (bf);
__m128 vmin4 = _mm_set_ps1 (1e20);
__m128i imin4 = _mm_set1_epi32 (-1);
__m128i idx4 = _mm_set_epi32 (3, 2, 1, 0);
__m128i inc4 = _mm_set1_epi32 (4);
__m128 * a4 = (__m128*)a;
__m128 * b4 = (__m128*)b;
__m128 * c4 = (__m128*)c;
while (n--) {
__m128 vc4 = _mm_add_ps (*a4, _mm_mul_ps (bf4, *b4));
*c4 = vc4;
__m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
// imin4 = _mm_blendv_epi8 (imin4, idx4, mask); // slower!
imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
_mm_andnot_si128 (mask, imin4));
vmin4 = _mm_min_ps (vmin4, vc4);
b4++;
a4++;
c4++;
idx4 = _mm_add_epi32 (idx4, inc4);
}
// 4 values -> 2
{
idx4 = _mm_shuffle_epi32 (imin4, 3 << 2 | 2);
__m128 vc4 = _mm_shuffle_ps (vmin4, vmin4, 3 << 2 | 2);
__m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
_mm_andnot_si128 (mask, imin4));
vmin4 = _mm_min_ps (vmin4, vc4);
}
// 2 values -> 1
{
idx4 = _mm_shuffle_epi32 (imin4, 1);
__m128 vc4 = _mm_shuffle_ps (vmin4, vmin4, 1);
__m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
_mm_andnot_si128 (mask, imin4));
// vmin4 = _mm_min_ps (vmin4, vc4);
}
return _mm_cvtsi128_si32 (imin4);
}
int fvec_madd_and_argmin (size_t n, const float *a,
float bf, const float *b, float *c)
{
if ((n & 3) == 0 &&
((((long)a) | ((long)b) | ((long)c)) & 15) == 0)
return fvec_madd_and_argmin_sse (n, a, bf, b, c);
else
return fvec_madd_and_argmin_ref (n, a, bf, b, c);
}
#else
int fvec_madd_and_argmin (size_t n, const float *a,
float bf, const float *b, float *c)
{
return fvec_madd_and_argmin_ref (n, a, bf, b, c);
}
#endif
} // namespace faiss