forked from compdyn/rl_grid_coarsen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCycle.py
99 lines (80 loc) · 2.92 KB
/
Cycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import scipy
from scipy import sparse
import copy
from Unstructured import grid
def cycle(grid_):
init_fpts = grid_.fine_nodes
init_cpts = grid_.coarse_nodes
A = grid_.A#.toarray()
min_dominance = 0.56
eps = (2.0 - 2.0*min_dominance) / (2.0*min_dominance - 1.0)
sigma = 2.0 / (2.0 + eps)
#h = 1.0/(no_nodes_1d + 1)
#A = (1.0/h**2) * A
## form B, separating the F- and C-points.
B = sparse.csr_matrix(A.shape)
#lenB = sa.N
lenB = B.shape[0]
#sqrt_lenB = sa.sqrt_N
#sqrt_lenB = int(np.sqrt(lenB))
lenfpts = len(init_fpts)
lencpts = len(init_cpts)
fcpts_perm = np.zeros(A.shape[0], dtype='int64')
fcpts_perm[0:lenfpts] = init_fpts
fcpts_perm[lenfpts:] = init_cpts
Bff = A[np.ix_(init_fpts, init_fpts)]
B = A[fcpts_perm[:, None], fcpts_perm]
## Calculate theta-i and Dff
theta_inv = np.sum(np.abs(Bff), axis=0) / Bff.diagonal()
Dff = np.multiply(2.0-theta_inv, Bff.diagonal()) # (2.0-theta_inv)*Bff.diagonal()
Dffinv = 1.0 / Dff
#Dffinv = np.array(1.0 / Dff)[0]
## Minv from reduction based AMG (REL)
Minv = sparse.csr_matrix(A.shape)
Minv[np.arange(lenfpts), np.arange(lenfpts)]= sigma*Dffinv
## Form P, the interpolation matrix
DinvBfc = -B[0:lenfpts, lenfpts:lenB]
DinvBfc = sparse.spdiags(Dffinv,0,lenfpts,lenfpts, format='csr').dot(DinvBfc)
P = sparse.csr_matrix((lenB,lencpts))
P[0:lenfpts, :] = DinvBfc
P[lenfpts:lenB, :] = sparse.identity(lencpts, format='csr')
#B = scipy.sparse.csr_matrix(B)
AA = (P.transpose()).dot(B.dot(P))
return AA
def make_coarse_grid(grid_):
c_nodes = grid_.coarse_nodes
points = np.concatenate((np.expand_dims(grid_.mesh.X, axis=1), np.expand_dims(grid_.mesh.Y, axis=1)), axis=1)
c_V = points[c_nodes]
c_nv = c_V.shape[0]
c_X = grid_.mesh.X[c_nodes]
c_Y = grid_.mesh.Y[c_nodes]
old_E = np.array(grid_.mesh.E)
list_c_E = []
for i in range(len(grid_.mesh.E)):
if old_E[i,0] in c_nodes and old_E[i,1] in c_nodes and old_E[i,2] in c_nodes:
list_c_E.append(i)
c_E = old_E[list_c_E]
c_ne = c_E.shape[0]
c_mesh = copy.deepcopy(grid_.mesh)
c_mesh.X = c_X
c_mesh.Y = c_Y
c_mesh.V = c_V
c_mesh.E = c_E
c_mesh.nv = c_nv
c_mesh.ne = c_ne
c_A = cycle(grid_)
c_rows = c_A.tocoo().row
c_cols = c_A.tocoo().col
c_Edges = np.concatenate((np.expand_dims(c_rows, axis=1), np.expand_dims(c_cols, axis=1)), axis=1)
c_Edges = list(tuple(map(tuple, c_Edges)))
c_N = [i for i in range(c_X.shape[0])]
c_num_edges = len(c_Edges)
c_mesh.Edges = c_Edges
c_mesh.N = c_N
c_mesh.num_edges = c_num_edges
c_fine_nodes = [i for i in range(c_nv)]
c_coarse_nodes = []
Theta = grid_.Theta
coarse_grid = grid(c_A, c_fine_nodes, c_coarse_nodes, c_mesh, Theta)
return coarse_grid