forked from Kaiyotech/Opti
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConstants_selector.py
57 lines (50 loc) · 1.36 KB
/
Constants_selector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from pretrained_agents.nexto.nexto_v2 import NextoV2
from pretrained_agents.necto.necto_v1 import NectoV1
from pretrained_agents.KBB.kbb import KBB
FRAME_SKIP = 4
TIME_HORIZON = 7 # horizon in seconds
T_STEP = FRAME_SKIP / 120 # real time per rollout step
ZERO_SUM = True
STEP_SIZE = 1_000_000
DB_NUM = 7
STACK_SIZE = 5
SELECTION_CHANNEL = "on_model_selection"
SUB_MODEL_NAMES = [
"kickoff",
"GP",
"aerial",
"flick_bump",
"flip_reset",
"recover_b_post",
"recover_ball",
"walldash",
"doubletap",
"wall_play",
]
model_name = "nexto-model.pt"
nexto = NextoV2(model_string=model_name, n_players=6)
model_name = "kbb.pt"
kbb = KBB(model_string=model_name)
model_name = "necto-model-30Y.pt"
necto = NectoV1(model_string=model_name, n_players=6)
pretrained_agents = {
nexto: {'prob': 0.33, 'eval': True, 'p_deterministic_training': 1., 'key': "Nexto"},
kbb: {'prob': 0.33, 'eval': True, 'p_deterministic_training': 1., 'key': "KBB"},
necto: {'prob': 0.33, 'eval': True, 'p_deterministic_training': 1., 'key': "Necto"},
}
# "recover_0",
# "recover_-45",
# "recover_-90",
# "recover_-135",
# "recover_180",
# "recover_135",
# "recover_90",
# "recover_45",
# "recover_12oclock",
# "recover_1030oclock",
# "recover_9oclock",
# "recover_730oclock",
# "recover_6oclock",
# "recover_430oclock",
# "recover_3oclock",
# "recover_130oclock",