-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVA_MentalIllness_Map_2015.Rmd
144 lines (111 loc) · 4.3 KB
/
VA_MentalIllness_Map_2015.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
title: "VA_MentalIllness_Map"
author: "Jenny"
date: "10/10/2017"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
load packages
```{r}
library(jsonlite)
library(tidyverse)
library(ggplot2)
library(choroplethr)
library(choroplethrMaps)
```
Load data from GitHub account https://github.com/mihiriyer/mental
```{r}
#Code from https://github.com/mihiriyer/mental
#load station number - name -visn crosswalk from data dictionary
sta <- xlsx::read.xlsx("NepecPtsdDataDictionary.xlsx", sheetIndex=4, stringsAsFactors=FALSE)
#load le data locally (less resource intensive)
mental <- jsonlite::fromJSON("NEPEC_AnnualDataSheet_MH_FY15.json")
#combine mental and sta
mental <- left_join(mental, sta, by="Station")
#rearrange columns
mental <- mental[, c(6,3,7,1,2,4,5)]
#remove % and , signs from values and then set to numeric data type (this is needed to sort and perform computations)
mental$Value <- gsub("%", "", mental$Value)
mental$Value <- gsub(",", "", mental$Value)
mental$Value <- as.numeric(mental$Value)
```
Turn multiple variables from character to factor, at the same time.
```{r}
cols <- c("ValueType", "Station", "Station.Name", "Category", "Item")
mental <- mental %>%
mutate_at(cols, funs(factor(.)))
```
Create dataframe using Prevalence
```{r}
View(subset(mental, Category == "Prevalence of Mental Illness"))
Prevalence <- (subset(mental, Category == "Prevalence of Mental Illness"))
Prevalence <- droplevels(Prevalence)
Prevalence <- Prevalence[,-c(4,7)]
Prevalence <- Prevalence %>%
spread(Item, Value)
## 141 different stations
```
Import location data for all VA facilities
```{r}
library(readxl)
VA_locations <- read_excel("~/Downloads/mental-master/VA_Locations.xlsx",
sheet = "All VA Facilities")
View(head(VA_locations))
## 1920 locations, most of which are not medical, but administrative or providing non-medical services
```
Make sure zipcodes are read as such
```{r}
library(zipcode)
VA_locations$Zip <- clean.zipcodes(VA_locations$Zip)
names(VA_locations)[1] <- "Station"
```
Most VA locations are administrative or provide non-medical services. Extract only medical locations.
```{r}
library(stringr)
VA_locations_Med <- VA_locations %>%
filter(str_detect(Facility, 'Medical|Health'))
## 235 locations of possible medical facilities included in Prevalence
VA_locations_Med <- VA_locations_Med[,-c(2,3,6)]
VA_locations_Med <- unique(VA_locations_Med)
## now 219 unique locations
```
Add Zip and State to Prevalence dataframe and calculate totals of diagnoses by State
```{r}
Prevalence <- merge(Prevalence, VA_locations_Med, by = "Station")
Prevalence$State <- as.factor(Prevalence$State)
Prevalence <- Prevalence %>%
group_by(State) %>%
mutate(TotStateConfirmedMI = sum(`Number of Service Users with Confirmed Mental Illness`))
```
Add state names in format needed for choropleth map
```{r}
data(state.regions)
Prevalence <- merge(Prevalence, state.regions, by.x = "State", by.y = "abb")
Prevalence_mapdata <- unique(Prevalence[,c(12,13)])
Prevalence_mapdata$value <- Prevalence_mapdata$TotStateConfirmedMI
```
Calculate total number of veterans diagnosed and total as a percentage of all VA patients
```{r}
totalserviceusers <- unique(Prevalence[,c(1,9)])
totalusers <- sum(totalserviceusers$`Total Service Users`)
totaltreatedUS <- sum(Prevalence_mapdata$value)
percentdiagnosed <- totaltreatedUS/totalusers
```
Make title and variables for a reasonably presentable legend
```{r}
title <- " Over 1,500,000 Veterans (23.6% of all VA patients) Treated for Mental Illness at VA Health Facilities in 2015"
Prevalence_mapdata$factorvalue <- factor(
cut(Prevalence_mapdata$value, c(3000, 10000, 25000, 50000, 80000, 140000)),
labels = c("3,000 to 10,000", "10,000 to 25,000", "25,000 to 50,000", "50,000 to 80,000", "80,000 to 140,000"))
Prevalence_mapdata$value_absolute<- Prevalence_mapdata$value
Prevalence_mapdata$value <- Prevalence_mapdata$factorvalue
```
Make map. I don't like how it looks. Did this quickly, but will return to prettify.
```{r}
VA_patientmap <- state_choropleth(Prevalence_mapdata, title = title,
legend = "Veterans Treated Per State") +
labs(caption="@jblistman. Data source: Veterans Administration NEPEC Annual Data Sheet 2015")
VA_patientmap
```