forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_ptn.py
231 lines (188 loc) · 8.06 KB
/
model_ptn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementations for Im2Vox PTN (NIPS16) model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
import losses
import metrics
import model_voxel_generation
import utils
from nets import im2vox_factory
slim = tf.contrib.slim
class model_PTN(model_voxel_generation.Im2Vox): # pylint:disable=invalid-name
"""Inherits the generic Im2Vox model class and implements the functions."""
def __init__(self, params):
super(model_PTN, self).__init__(params)
# For testing, this selects all views in input
def preprocess_with_all_views(self, raw_inputs):
(quantity, num_views) = raw_inputs['images'].get_shape().as_list()[:2]
inputs = dict()
inputs['voxels'] = []
inputs['images_1'] = []
for k in xrange(num_views):
inputs['matrix_%d' % (k + 1)] = []
inputs['matrix_1'] = []
for n in xrange(quantity):
for k in xrange(num_views):
inputs['images_1'].append(raw_inputs['images'][n, k, :, :, :])
inputs['voxels'].append(raw_inputs['voxels'][n, :, :, :, :])
tf_matrix = self.get_transform_matrix(k)
inputs['matrix_%d' % (k + 1)].append(tf_matrix)
inputs['images_1'] = tf.stack(inputs['images_1'])
inputs['voxels'] = tf.stack(inputs['voxels'])
for k in xrange(num_views):
inputs['matrix_%d' % (k + 1)] = tf.stack(inputs['matrix_%d' % (k + 1)])
return inputs
def get_model_fn(self, is_training=True, reuse=False, run_projection=True):
return im2vox_factory.get(self._params, is_training, reuse, run_projection)
def get_regularization_loss(self, scopes):
return losses.regularization_loss(scopes, self._params)
def get_loss(self, inputs, outputs):
"""Computes the loss used for PTN paper (projection + volume loss)."""
g_loss = tf.zeros(dtype=tf.float32, shape=[])
if self._params.proj_weight:
g_loss += losses.add_volume_proj_loss(
inputs, outputs, self._params.step_size, self._params.proj_weight)
if self._params.volume_weight:
g_loss += losses.add_volume_loss(inputs, outputs, 1,
self._params.volume_weight)
slim.summaries.add_scalar_summary(g_loss, 'im2vox_loss', prefix='losses')
return g_loss
def get_metrics(self, inputs, outputs):
"""Aggregate the metrics for voxel generation model.
Args:
inputs: Input dictionary of the voxel generation model.
outputs: Output dictionary returned by the voxel generation model.
Returns:
names_to_values: metrics->values (dict).
names_to_updates: metrics->ops (dict).
"""
names_to_values = dict()
names_to_updates = dict()
tmp_values, tmp_updates = metrics.add_volume_iou_metrics(inputs, outputs)
names_to_values.update(tmp_values)
names_to_updates.update(tmp_updates)
for name, value in names_to_values.iteritems():
slim.summaries.add_scalar_summary(
value, name, prefix='eval', print_summary=True)
return names_to_values, names_to_updates
def write_disk_grid(self,
global_step,
log_dir,
input_images,
gt_projs,
pred_projs,
input_voxels=None,
output_voxels=None):
"""Function called by TF to save the prediction periodically."""
summary_freq = self._params.save_every
def write_grid(input_images, gt_projs, pred_projs, global_step,
input_voxels, output_voxels):
"""Native python function to call for writing images to files."""
grid = _build_image_grid(
input_images,
gt_projs,
pred_projs,
input_voxels=input_voxels,
output_voxels=output_voxels)
if global_step % summary_freq == 0:
img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
utils.save_image(grid, img_path)
return grid
save_op = tf.py_func(write_grid, [
input_images, gt_projs, pred_projs, global_step, input_voxels,
output_voxels
], [tf.uint8], 'write_grid')[0]
slim.summaries.add_image_summary(
tf.expand_dims(save_op, axis=0), name='grid_vis')
return save_op
def get_transform_matrix(self, view_out):
"""Get the 4x4 Perspective Transfromation matrix used for PTN."""
num_views = self._params.num_views
focal_length = self._params.focal_length
focal_range = self._params.focal_range
phi = 30
theta_interval = 360.0 / num_views
theta = theta_interval * view_out
# pylint: disable=invalid-name
camera_matrix = np.zeros((4, 4), dtype=np.float32)
intrinsic_matrix = np.eye(4, dtype=np.float32)
extrinsic_matrix = np.eye(4, dtype=np.float32)
sin_phi = np.sin(float(phi) / 180.0 * np.pi)
cos_phi = np.cos(float(phi) / 180.0 * np.pi)
sin_theta = np.sin(float(-theta) / 180.0 * np.pi)
cos_theta = np.cos(float(-theta) / 180.0 * np.pi)
rotation_azimuth = np.zeros((3, 3), dtype=np.float32)
rotation_azimuth[0, 0] = cos_theta
rotation_azimuth[2, 2] = cos_theta
rotation_azimuth[0, 2] = -sin_theta
rotation_azimuth[2, 0] = sin_theta
rotation_azimuth[1, 1] = 1.0
## rotation axis -- x
rotation_elevation = np.zeros((3, 3), dtype=np.float32)
rotation_elevation[0, 0] = cos_phi
rotation_elevation[0, 1] = sin_phi
rotation_elevation[1, 0] = -sin_phi
rotation_elevation[1, 1] = cos_phi
rotation_elevation[2, 2] = 1.0
rotation_matrix = np.matmul(rotation_azimuth, rotation_elevation)
displacement = np.zeros((3, 1), dtype=np.float32)
displacement[0, 0] = float(focal_length) + float(focal_range) / 2.0
displacement = np.matmul(rotation_matrix, displacement)
extrinsic_matrix[0:3, 0:3] = rotation_matrix
extrinsic_matrix[0:3, 3:4] = -displacement
intrinsic_matrix[2, 2] = 1.0 / float(focal_length)
intrinsic_matrix[1, 1] = 1.0 / float(focal_length)
camera_matrix = np.matmul(extrinsic_matrix, intrinsic_matrix)
return camera_matrix
def _build_image_grid(input_images,
gt_projs,
pred_projs,
input_voxels,
output_voxels,
vis_size=128):
"""Builds a grid image by concatenating the input images."""
quantity = input_images.shape[0]
for row in xrange(int(quantity / 3)):
for col in xrange(3):
index = row * 3 + col
input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size,
vis_size)
gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size,
vis_size)
pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size,
vis_size)
gt_voxel_vis = utils.resize_image(
utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size,
vis_size)
pred_voxel_vis = utils.resize_image(
utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size,
vis_size)
if col == 0:
tmp_ = np.concatenate(
[input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1)
else:
tmp_ = np.concatenate([
tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis
], 1)
if row == 0:
out_grid = tmp_
else:
out_grid = np.concatenate([out_grid, tmp_], 0)
return out_grid