forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
457 lines (415 loc) · 15.8 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Neural GPU -- data generation and batching utilities."""
import math
import os
import random
import sys
import time
import numpy as np
import tensorflow as tf
import program_utils
FLAGS = tf.app.flags.FLAGS
bins = [2 + bin_idx_i for bin_idx_i in xrange(256)]
all_tasks = ["sort", "kvsort", "id", "rev", "rev2", "incr", "add", "left",
"right", "left-shift", "right-shift", "bmul", "mul", "dup",
"badd", "qadd", "search", "progeval", "progsynth"]
log_filename = ""
vocab, rev_vocab = None, None
def pad(l):
for b in bins:
if b >= l: return b
return bins[-1]
def bin_for(l):
for i, b in enumerate(bins):
if b >= l: return i
return len(bins) - 1
train_set = {}
test_set = {}
for some_task in all_tasks:
train_set[some_task] = []
test_set[some_task] = []
for all_max_len in xrange(10000):
train_set[some_task].append([])
test_set[some_task].append([])
def read_tmp_file(name):
"""Read from a file with the given name in our log directory or above."""
dirname = os.path.dirname(log_filename)
fname = os.path.join(dirname, name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
fname = os.path.join(dirname, "../" + name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
fname = os.path.join(dirname, "../../" + name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
return None
print_out("== found file: " + fname)
res = []
with tf.gfile.GFile(fname, mode="r") as f:
for line in f:
res.append(line.strip())
return res
def write_tmp_file(name, lines):
dirname = os.path.dirname(log_filename)
fname = os.path.join(dirname, name + ".txt")
with tf.gfile.GFile(fname, mode="w") as f:
for line in lines:
f.write(line + "\n")
def add(n1, n2, base=10):
"""Add two numbers represented as lower-endian digit lists."""
k = max(len(n1), len(n2)) + 1
d1 = n1 + [0 for _ in xrange(k - len(n1))]
d2 = n2 + [0 for _ in xrange(k - len(n2))]
res = []
carry = 0
for i in xrange(k):
if d1[i] + d2[i] + carry < base:
res.append(d1[i] + d2[i] + carry)
carry = 0
else:
res.append(d1[i] + d2[i] + carry - base)
carry = 1
while res and res[-1] == 0:
res = res[:-1]
if res: return res
return [0]
def init_data(task, length, nbr_cases, nclass):
"""Data initialization."""
def rand_pair(l, task):
"""Random data pair for a task. Total length should be <= l."""
k = (l-1)/2
base = 10
if task[0] == "b": base = 2
if task[0] == "q": base = 4
d1 = [np.random.randint(base) for _ in xrange(k)]
d2 = [np.random.randint(base) for _ in xrange(k)]
if task in ["add", "badd", "qadd"]:
res = add(d1, d2, base)
elif task in ["mul", "bmul"]:
d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
if task == "bmul":
res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
else:
res = [int(x) for x in list(reversed(str(d1n * d2n)))]
else:
sys.exit()
sep = [12]
if task in ["add", "badd", "qadd"]: sep = [11]
inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
return inp, [r + 1 for r in res]
def rand_dup_pair(l):
"""Random data pair for duplication task. Total length should be <= l."""
k = l/2
x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
inp = x + [0 for _ in xrange(l - k)]
res = x + x + [0 for _ in xrange(l - 2*k)]
return inp, res
def rand_rev2_pair(l):
"""Random data pair for reverse2 task. Total length should be <= l."""
inp = [(np.random.randint(nclass - 1) + 1,
np.random.randint(nclass - 1) + 1) for _ in xrange(l/2)]
res = [i for i in reversed(inp)]
return [x for p in inp for x in p], [x for p in res for x in p]
def rand_search_pair(l):
"""Random data pair for search task. Total length should be <= l."""
inp = [(np.random.randint(nclass - 1) + 1,
np.random.randint(nclass - 1) + 1) for _ in xrange(l-1/2)]
q = np.random.randint(nclass - 1) + 1
res = 0
for (k, v) in reversed(inp):
if k == q:
res = v
return [x for p in inp for x in p] + [q], [res]
def rand_kvsort_pair(l):
"""Random data pair for key-value sort. Total length should be <= l."""
keys = [(np.random.randint(nclass - 1) + 1, i) for i in xrange(l/2)]
vals = [np.random.randint(nclass - 1) + 1 for _ in xrange(l/2)]
kv = [(k, vals[i]) for (k, i) in keys]
sorted_kv = [(k, vals[i]) for (k, i) in sorted(keys)]
return [x for p in kv for x in p], [x for p in sorted_kv for x in p]
def prog_io_pair(prog, max_len, counter=0):
try:
ilen = np.random.randint(max_len - 3) + 1
bound = max(15 - (counter / 20), 1)
inp = [random.choice(range(-bound, bound)) for _ in range(ilen)]
inp_toks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(str(inp)) if t != ","]
out = program_utils.evaluate(prog, {"a": inp})
out_toks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(str(out)) if t != ","]
if counter > 400:
out_toks = []
if (out_toks and out_toks[0] == program_utils.prog_rev_vocab["["] and
len(out_toks) != len([o for o in out if o == ","]) + 3):
raise ValueError("generated list with too long ints")
if (out_toks and out_toks[0] != program_utils.prog_rev_vocab["["] and
len(out_toks) > 1):
raise ValueError("generated one int but tokenized it to many")
if len(out_toks) > max_len:
raise ValueError("output too long")
return (inp_toks, out_toks)
except ValueError:
return prog_io_pair(prog, max_len, counter+1)
def spec(inp):
"""Return the target given the input for some tasks."""
if task == "sort":
return sorted(inp)
elif task == "id":
return inp
elif task == "rev":
return [i for i in reversed(inp)]
elif task == "incr":
carry = 1
res = []
for i in xrange(len(inp)):
if inp[i] + carry < nclass:
res.append(inp[i] + carry)
carry = 0
else:
res.append(1)
carry = 1
return res
elif task == "left":
return [inp[0]]
elif task == "right":
return [inp[-1]]
elif task == "left-shift":
return [inp[l-1] for l in xrange(len(inp))]
elif task == "right-shift":
return [inp[l+1] for l in xrange(len(inp))]
else:
print_out("Unknown spec for task " + str(task))
sys.exit()
l = length
cur_time = time.time()
total_time = 0.0
is_prog = task in ["progeval", "progsynth"]
if is_prog:
inputs_per_prog = 5
program_utils.make_vocab()
progs = read_tmp_file("programs_len%d" % (l / 10))
if not progs:
progs = program_utils.gen(l / 10, 1.2 * nbr_cases / inputs_per_prog)
write_tmp_file("programs_len%d" % (l / 10), progs)
prog_ios = read_tmp_file("programs_len%d_io" % (l / 10))
nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
if not prog_ios:
# Generate program io data.
prog_ios = []
for pidx, prog in enumerate(progs):
if pidx % 500 == 0:
print_out("== generating io pairs for program %d" % pidx)
if pidx * inputs_per_prog > nbr_cases * 1.2:
break
ptoks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(prog)]
ptoks.append(program_utils.prog_rev_vocab["_EOS"])
plen = len(ptoks)
for _ in xrange(inputs_per_prog):
if task == "progeval":
inp, out = prog_io_pair(prog, plen)
prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
elif task == "progsynth":
plen = max(len(ptoks), 8)
for _ in xrange(3):
inp, out = prog_io_pair(prog, plen / 2)
prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
write_tmp_file("programs_len%d_io" % (l / 10), prog_ios)
prog_ios_dict = {}
for s in prog_ios:
i, o, p = s.split("\t")
i_clean = "".join([c for c in i if c.isdigit() or c == " "])
o_clean = "".join([c for c in o if c.isdigit() or c == " "])
inp = [int(x) for x in i_clean.split()]
out = [int(x) for x in o_clean.split()]
if inp and out:
if p in prog_ios_dict:
prog_ios_dict[p].append([inp, out])
else:
prog_ios_dict[p] = [[inp, out]]
# Use prog_ios_dict to create data.
progs = []
for prog in prog_ios_dict:
if len([c for c in prog if c == ";"]) <= (l / 10):
progs.append(prog)
nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
print_out("== %d training cases on %d progs" % (nbr_cases, len(progs)))
for pidx, prog in enumerate(progs):
if pidx * inputs_per_prog > nbr_cases * 1.2:
break
ptoks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(prog)]
ptoks.append(program_utils.prog_rev_vocab["_EOS"])
plen = len(ptoks)
dset = train_set if pidx < nbr_cases / inputs_per_prog else test_set
for _ in xrange(inputs_per_prog):
if task == "progeval":
inp, out = prog_ios_dict[prog].pop()
dset[task][bin_for(plen)].append([[ptoks, inp, [], []], [out]])
elif task == "progsynth":
plen, ilist = max(len(ptoks), 8), [[]]
for _ in xrange(3):
inp, out = prog_ios_dict[prog].pop()
ilist.append(inp + out)
dset[task][bin_for(plen)].append([ilist, [ptoks]])
for case in xrange(0 if is_prog else nbr_cases):
total_time += time.time() - cur_time
cur_time = time.time()
if l > 10000 and case % 100 == 1:
print_out(" avg gen time %.4f s" % (total_time / float(case)))
if task in ["add", "badd", "qadd", "bmul", "mul"]:
i, t = rand_pair(l, task)
train_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
i, t = rand_pair(l, task)
test_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
elif task == "dup":
i, t = rand_dup_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_dup_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "rev2":
i, t = rand_rev2_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_rev2_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "search":
i, t = rand_search_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_search_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "kvsort":
i, t = rand_kvsort_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_kvsort_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task not in ["progeval", "progsynth"]:
inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
target = spec(inp)
train_set[task][bin_for(l)].append([[inp], [target]])
inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
target = spec(inp)
test_set[task][bin_for(l)].append([[inp], [target]])
def to_symbol(i):
"""Covert ids to text."""
if i == 0: return ""
if i == 11: return "+"
if i == 12: return "*"
return str(i-1)
def to_id(s):
"""Covert text to ids."""
if s == "+": return 11
if s == "*": return 12
return int(s) + 1
def get_batch(bin_id, batch_size, data_set, height, offset=None, preset=None):
"""Get a batch of data, training or testing."""
inputs, targets = [], []
pad_length = bins[bin_id]
for b in xrange(batch_size):
if preset is None:
elem = random.choice(data_set[bin_id])
if offset is not None and offset + b < len(data_set[bin_id]):
elem = data_set[bin_id][offset + b]
else:
elem = preset
inpt, targett, inpl, targetl = elem[0], elem[1], [], []
for inp in inpt:
inpl.append(inp + [0 for _ in xrange(pad_length - len(inp))])
if len(inpl) == 1:
for _ in xrange(height - 1):
inpl.append([0 for _ in xrange(pad_length)])
for target in targett:
targetl.append(target + [0 for _ in xrange(pad_length - len(target))])
inputs.append(inpl)
targets.append(targetl)
res_input = np.array(inputs, dtype=np.int32)
res_target = np.array(targets, dtype=np.int32)
assert list(res_input.shape) == [batch_size, height, pad_length]
assert list(res_target.shape) == [batch_size, 1, pad_length]
return res_input, res_target
def print_out(s, newline=True):
"""Print a message out and log it to file."""
if log_filename:
try:
with tf.gfile.GFile(log_filename, mode="a") as f:
f.write(s + ("\n" if newline else ""))
# pylint: disable=bare-except
except:
sys.stderr.write("Error appending to %s\n" % log_filename)
sys.stdout.write(s + ("\n" if newline else ""))
sys.stdout.flush()
def decode(output):
return [np.argmax(o, axis=1) for o in output]
def accuracy(inpt_t, output, target_t, batch_size, nprint,
beam_out=None, beam_scores=None):
"""Calculate output accuracy given target."""
assert nprint < batch_size + 1
inpt = []
for h in xrange(inpt_t.shape[1]):
inpt.extend([inpt_t[:, h, l] for l in xrange(inpt_t.shape[2])])
target = [target_t[:, 0, l] for l in xrange(target_t.shape[2])]
def tok(i):
if rev_vocab and i < len(rev_vocab):
return rev_vocab[i]
return str(i - 1)
def task_print(inp, output, target):
stop_bound = 0
print_len = 0
while print_len < len(target) and target[print_len] > stop_bound:
print_len += 1
print_out(" i: " + " ".join([tok(i) for i in inp if i > 0]))
print_out(" o: " +
" ".join([tok(output[l]) for l in xrange(print_len)]))
print_out(" t: " +
" ".join([tok(target[l]) for l in xrange(print_len)]))
decoded_target = target
decoded_output = decode(output)
# Use beam output if given and score is high enough.
if beam_out is not None:
for b in xrange(batch_size):
if beam_scores[b] >= 10.0:
for l in xrange(min(len(decoded_output), beam_out.shape[2])):
decoded_output[l][b] = int(beam_out[b, 0, l])
total = 0
errors = 0
seq = [0 for b in xrange(batch_size)]
for l in xrange(len(decoded_output)):
for b in xrange(batch_size):
if decoded_target[l][b] > 0:
total += 1
if decoded_output[l][b] != decoded_target[l][b]:
seq[b] = 1
errors += 1
e = 0 # Previous error index
for _ in xrange(min(nprint, sum(seq))):
while seq[e] == 0:
e += 1
task_print([inpt[l][e] for l in xrange(len(inpt))],
[decoded_output[l][e] for l in xrange(len(decoded_target))],
[decoded_target[l][e] for l in xrange(len(decoded_target))])
e += 1
for b in xrange(nprint - errors):
task_print([inpt[l][b] for l in xrange(len(inpt))],
[decoded_output[l][b] for l in xrange(len(decoded_target))],
[decoded_target[l][b] for l in xrange(len(decoded_target))])
return errors, total, sum(seq)
def safe_exp(x):
perp = 10000
x = float(x)
if x < 100: perp = math.exp(x)
if perp > 10000: return 10000
return perp