forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
134 lines (111 loc) · 4.73 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for training adversarial text models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
# Dependency imports
import numpy as np
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'Master address.')
flags.DEFINE_integer('task', 0, 'Task id of the replica running the training.')
flags.DEFINE_integer('ps_tasks', 0, 'Number of parameter servers.')
flags.DEFINE_string('train_dir', '/tmp/text_train',
'Directory for logs and checkpoints.')
flags.DEFINE_integer('max_steps', 1000000, 'Number of batches to run.')
flags.DEFINE_boolean('log_device_placement', False,
'Whether to log device placement.')
def run_training(train_op,
loss,
global_step,
variables_to_restore=None,
pretrained_model_dir=None):
"""Sets up and runs training loop."""
tf.gfile.MakeDirs(FLAGS.train_dir)
# Create pretrain Saver
if pretrained_model_dir:
assert variables_to_restore
tf.logging.info('Will attempt restore from %s: %s', pretrained_model_dir,
variables_to_restore)
saver_for_restore = tf.train.Saver(variables_to_restore)
# Init ops
if FLAGS.sync_replicas:
local_init_op = tf.get_collection('local_init_op')[0]
ready_for_local_init_op = tf.get_collection('ready_for_local_init_op')[0]
else:
local_init_op = tf.train.Supervisor.USE_DEFAULT
ready_for_local_init_op = tf.train.Supervisor.USE_DEFAULT
is_chief = FLAGS.task == 0
sv = tf.train.Supervisor(
logdir=FLAGS.train_dir,
is_chief=is_chief,
save_summaries_secs=5 * 60,
save_model_secs=5 * 60,
local_init_op=local_init_op,
ready_for_local_init_op=ready_for_local_init_op,
global_step=global_step)
# Delay starting standard services to allow possible pretrained model restore.
with sv.managed_session(
master=FLAGS.master,
config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement),
start_standard_services=False) as sess:
# Initialization
if is_chief:
if pretrained_model_dir:
maybe_restore_pretrained_model(sess, saver_for_restore,
pretrained_model_dir)
if FLAGS.sync_replicas:
sess.run(tf.get_collection('chief_init_op')[0])
sv.start_standard_services(sess)
sv.start_queue_runners(sess)
# Training loop
global_step_val = 0
while not sv.should_stop() and global_step_val < FLAGS.max_steps:
global_step_val = train_step(sess, train_op, loss, global_step)
sv.stop()
# Final checkpoint
if is_chief:
sv.saver.save(sess, sv.save_path, global_step=global_step)
def maybe_restore_pretrained_model(sess, saver_for_restore, model_dir):
"""Restores pretrained model if there is no ckpt model."""
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
checkpoint_exists = ckpt and ckpt.model_checkpoint_path
if checkpoint_exists:
tf.logging.info('Checkpoint exists in FLAGS.train_dir; skipping '
'pretraining restore')
return
pretrain_ckpt = tf.train.get_checkpoint_state(model_dir)
if not (pretrain_ckpt and pretrain_ckpt.model_checkpoint_path):
raise ValueError(
'Asked to restore model from %s but no checkpoint found.' % model_dir)
saver_for_restore.restore(sess, pretrain_ckpt.model_checkpoint_path)
def train_step(sess, train_op, loss, global_step):
"""Runs a single training step."""
start_time = time.time()
_, loss_val, global_step_val = sess.run([train_op, loss, global_step])
duration = time.time() - start_time
# Logging
if global_step_val % 10 == 0:
examples_per_sec = FLAGS.batch_size / duration
sec_per_batch = float(duration)
format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)')
tf.logging.info(format_str % (global_step_val, loss_val, examples_per_sec,
sec_per_batch))
if np.isnan(loss_val):
raise OverflowError('Loss is nan')
return global_step_val