Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error while training Video model with Vimeo-90k Dataset #325

Open
gopi77 opened this issue Dec 16, 2024 · 1 comment
Open

Error while training Video model with Vimeo-90k Dataset #325

gopi77 opened this issue Dec 16, 2024 · 1 comment

Comments

@gopi77
Copy link

gopi77 commented Dec 16, 2024

Bug

Got error while training Video model with Vimeo-90k Dataset
Training data: http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip

To Reproduce

Steps to reproduce the behavior:
python ../compressai/examples/train_video.py --cuda -m ssf2020 --save -d vimeo_triplet/ --checkpoint . --seed 17122024/usr/local/lib/python3.11/dist-packages/compressai/models/video/google.py:353: FutureWarning: torch.cuda.amp.autocast(args...) is deprecated. Please use torch.amp.autocast('cuda', args...) instead. @amp.autocast(enabled=False)
Traceback (most recent call last):
File "/workspace/../compressai/examples/train_video.py", line 475, in main(sys.argv[1:])
File "/workspace/../compressai/examples/train_video.py", line 392, in main train_dataset = VideoFolder( ^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/datasets/video.py", line 93, in init
raise RuntimeError(f'Missing file "{splitfile}"')RuntimeError: Missing file "vimeo_triplet/train.list"
1.
1.
1.

Expected behavior

Environment

Please copy and paste the output from python3 -m torch.utils.collect_env
python3 -m torch.utils.collect_env
:128: RuntimeWarning: 'torch.utils.collect_env' found in sys.modules after import of package 'torch.utils', but prior to execution of 'torch.utils.collect_env'; this may result in unpredictable behaviourCollecting environment information...PyTorch version: 2.4.1+cu124Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Python version: 3.11.10 (main, Sep 7 2024, 18:35:41) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.8.0-47-generic-x86_64-with-glibc2.35Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 550.127.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 7950X 16-Core Processor
CPU family: 25
Model: 97
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
Stepping: 2
CPU max MHz: 5881.0000
CPU min MHz: 400.0000
BogoMIPS: 8983.04
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthresholdavic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization: AMD-V
L1d cache: 512 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 16 MiB (16 instances)
L3 cache: 64 MiB (2 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.3
[pip3] pytorch-msssim==1.0.0
[pip3] torch==2.4.1+cu124
[pip3] torch-geometric==2.6.1
[pip3] torchaudio==2.4.1+cu124
[pip3] torchvision==0.19.1+cu124
[pip3] triton==3.0.0
[conda] Could not collect

- PyTorch / CompressAI Version (e.g., 1.0 / 0.4.0):
- OS (e.g., Linux):
- How you installed PyTorch / CompressAI (`pip`, source):
- Build command you used (if compiling from source):
- Python version:
- CUDA/cuDNN version:
- GPU models and configuration:
- Any other relevant information:

Additional context

@gopi77
Copy link
Author

gopi77 commented Dec 17, 2024

I have updated the code of train_video.py as below ( and created a new file named train_video_vimeo.py) and solved the mentioned issue. (Ref: #105)

from compressai.datasets import Vimeo90kDataset

train_dataset = Vimeo90kDataset(
    args.dataset, split="train", transform=train_transforms
)
test_dataset = Vimeo90kDataset(
    args.dataset, split="valid", transform=test_transforms
)

<<<

But got another error. Copied below.

python ../../compressai/examples/train_video_vimeo.py --cuda -m ssf2020 --save -d ../dataset/vimeo_triplet/
/usr/local/lib/python3.11/dist-packages/compressai/models/video/google.py:353: FutureWarning: torch.cuda.amp.autocast(args...) is deprecated. Please use torch.amp.autocast('cuda', args...) instead.
@amp.autocast(enabled=False)
Learning rate: 0.0001
Traceback (most recent call last):
File "/workspace/train/../../compressai/examples/train_video_vimeo.py", line 469, in
main(sys.argv[1:])
File "/workspace/train/../../compressai/examples/train_video_vimeo.py", line 439, in main
train_one_epoch(
File "/workspace/train/../../compressai/examples/train_video_vimeo.py", line 239, in train_one_epoch
out_net = model(d)
^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/models/video/google.py", line 217, in forward
x_hat, likelihoods = self.forward_keyframe(frames[0])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/models/video/google.py", line 235, in forward_keyframe
y_hat, likelihoods = self.img_hyperprior(y)
^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/models/video/google.py", line 158, in forward
z_hat, z_likelihoods = self.entropy_bottleneck(z)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/entropy_models/entropy_models.py", line 493, in forward
likelihood, _, _ = self._likelihood(outputs)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/entropy_models/entropy_models.py", line 458, in _likelihood
lower = self._logits_cumulative(inputs - half, stop_gradient=stop_gradient)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/compressai/entropy_models/entropy_models.py", line 439, in _logits_cumulative
logits = torch.matmul(F.softplus(matrix), logits)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: The size of tensor a (192) must match the size of tensor b (2) at non-singleton dimension 0

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant