-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
executable file
·59 lines (43 loc) · 1.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
import sys
import dotenv
import hydra
import os
from hydra.core.hydra_config import HydraConfig
from omegaconf import OmegaConf
from pckg_util import check_gpu_and_torch_compatibility
check_gpu_and_torch_compatibility()
# os.environ["WANDB_DISABLED"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
logging.getLogger("torch").setLevel(logging.WARNING)
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
from innofw.utils.loggers import setup_clear_ml, setup_wandb
dotenv.load_dotenv(override=True)
@hydra.main(
config_path="config/", config_name="train.yaml", version_base="1.2"
)
def main(config) -> float:
# Imports can be nested inside @hydra.main to optimize tab completion
# https://github.com/facebookresearch/hydra/issues/934
from innofw.pipeline import run_pipeline
if not config.get("experiment_name"):
hydra_cfg = HydraConfig.get()
experiment_name = OmegaConf.to_container(hydra_cfg.runtime.choices)[
"experiments"
]
config.experiment_name = experiment_name
setup_clear_ml(config)
setup_wandb(config)
# Train model
return run_pipeline(config, test=False, train=True, predict=False)
if __name__ == "__main__":
if os.environ.get("CLEARML_EXPERIMENT_NAME") is not None:
sys.argv.append(
f"experiments={os.environ.get('CLEARML_EXPERIMENT_NAME')}"
)
sys.argv.append("hydra.run.dir=./logs")
sys.argv.append("hydra.job.chdir=True")
main()