-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSim_Pres.thy
755 lines (703 loc) · 74.4 KB
/
Sim_Pres.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
theory Sim_Pres
imports Simulation
begin
context env begin
lemma input_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes P_relQ: "\<And>Tvec. length xvec = length Tvec \<Longrightarrow> (\<Psi>, P[xvec::=Tvec], Q[xvec::=Tvec]) \<in> Rel"
shows "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<leadsto>[Rel] M\<lparr>\<lambda>*xvec N\<rparr>.Q"
proof(auto simp add: simulation_def residual.inject psi.inject)
fix \<alpha> \<pi> Q'
assume "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.Q \<longmapsto>\<pi> @ \<alpha> \<prec> Q'"
thus "\<exists>\<pi> P'. \<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<longmapsto>\<pi> @ \<alpha> \<prec> P' \<and> (\<Psi>, P', Q') \<in> Rel"
by(induct rule: input_cases) (auto intro: Input P_relQ)
qed
lemma output_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and N :: 'a
assumes P_relQ: "(\<Psi>, P, Q) \<in> Rel"
shows "\<Psi> \<rhd> M\<langle>N\<rangle>.P \<leadsto>[Rel] M\<langle>N\<rangle>.Q"
proof(auto simp add: simulation_def residual.inject psi.inject)
fix \<alpha> \<pi> Q'
assume "\<Psi> \<rhd> M\<langle>N\<rangle>.Q \<longmapsto>\<pi> @ \<alpha> \<prec> Q'"
thus "\<exists>\<pi> P'. \<Psi> \<rhd> M\<langle>N\<rangle>.P \<longmapsto>\<pi> @ \<alpha> \<prec> P' \<and> (\<Psi>, P', Q') \<in> Rel"
by(induct rule: output_cases) (auto intro: Output P_relQ)
qed
lemma case_pres:
fixes \<Psi> :: 'b
and CsP :: "('c \<times> ('a, 'b, 'c) psi) list"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and CsQ :: "('c \<times> ('a, 'b, 'c) psi) list"
and M :: 'a
and N :: 'a
assumes P_relQ: "\<And>\<phi> Q. (\<phi>, Q) mem CsQ \<Longrightarrow> \<exists>P. (\<phi>, P) mem CsP \<and> guarded P \<and> (\<Psi>, P, Q) \<in> Rel"
and Sim: "\<And>\<Psi>' R S. (\<Psi>', R, S) \<in> Rel \<Longrightarrow> \<Psi>' \<rhd> R \<leadsto>[Rel] S"
and "Rel \<subseteq> Rel'"
shows "\<Psi> \<rhd> Cases CsP \<leadsto>[Rel'] Cases CsQ"
proof(auto simp add: simulation_def residual.inject psi.inject)
fix \<alpha> \<pi> Q'
assume "\<Psi> \<rhd> Cases CsQ \<longmapsto>\<pi> @ \<alpha> \<prec> Q'" and "bn \<alpha> \<sharp>* CsP" and "bn \<alpha> \<sharp>* \<Psi>"
thus "\<exists>\<pi> P'. \<Psi> \<rhd> Cases CsP \<longmapsto>\<pi> @ \<alpha> \<prec> P' \<and> (\<Psi>, P', Q') \<in> Rel'"
proof(induct rule: case_cases)
case(c_case \<phi> Q \<pi>')
from `(\<phi>, Q) mem CsQ` obtain P where "(\<phi>, P) mem CsP" and "guarded P" and "(\<Psi>, P, Q) \<in> Rel"
by(metis P_relQ)
from `(\<Psi>, P, Q) \<in> Rel` have "\<Psi> \<rhd> P \<leadsto>[Rel] Q" by(rule Sim)
moreover from `bn \<alpha> \<sharp>* CsP` `(\<phi>, P) mem CsP` have "bn \<alpha> \<sharp>* P"
by(drule_tac mem_fresh_chain) auto
moreover note `\<Psi> \<rhd> Q \<longmapsto>\<pi>' @ \<alpha> \<prec> Q'` `bn \<alpha> \<sharp>* \<Psi>`
ultimately obtain \<pi>'' P' where P_trans: "\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'" and P'_rel_q': "(\<Psi>, P', Q') \<in> Rel"
by(blast dest: simE)
from P_trans `(\<phi>, P) mem CsP` `\<Psi> \<turnstile> \<phi>` `guarded P` have "\<Psi> \<rhd> Cases CsP \<longmapsto>map_option (F_assert o push_prov) \<pi>'' @ \<alpha> \<prec> P'"
by(rule Case)
moreover from P'_rel_q' `Rel \<subseteq> Rel'` have "(\<Psi>, P', Q') \<in> Rel'" by blast
ultimately show ?case by blast
qed
qed
lemma res_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and x :: name
and Rel' :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes P_simQ: "\<Psi> \<rhd> P \<leadsto>[Rel] Q"
and "eqvt Rel'"
and "x \<sharp> \<Psi>"
and "Rel \<subseteq> Rel'"
and C1: "\<And>\<Psi>' R S y. \<lbrakk>(\<Psi>', R, S) \<in> Rel; y \<sharp> \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>y\<rparr>R, \<lparr>\<nu>y\<rparr>S) \<in> Rel'"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<leadsto>[Rel'] \<lparr>\<nu>x\<rparr>Q"
proof -
note `eqvt Rel'` `x \<sharp> \<Psi>`
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>P" and "x \<sharp> \<lparr>\<nu>x\<rparr>Q" by(simp add: abs_fresh)+
ultimately show ?thesis
proof(induct rule: sim_i_fresh[where C="()"])
case(c_sim \<pi> \<alpha> Q')
from `bn \<alpha> \<sharp>* \<lparr>\<nu>x\<rparr>P` `bn \<alpha> \<sharp>* \<lparr>\<nu>x\<rparr>Q` `x \<sharp> \<alpha>` have "bn \<alpha> \<sharp>* P" and "bn \<alpha> \<sharp>* Q" by simp+
from `\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>Q \<longmapsto>\<pi> @ \<alpha> \<prec> Q'` `x \<sharp> \<Psi>` `x \<sharp> \<alpha>` `x \<sharp> Q'` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* Q` `bn \<alpha> \<sharp>* subject \<alpha>`
`bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P` `x \<sharp> \<alpha>`
show ?case
proof(induct rule: res_cases)
case(c_open M \<pi>' xvec1 xvec2 y N Q')
from `bn (M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* \<Psi>` have "xvec1 \<sharp>* \<Psi>" and "y \<sharp> \<Psi>" and "xvec2 \<sharp>* \<Psi>" by simp+
from `bn (M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* P` have "xvec1 \<sharp>* P" and "y \<sharp> P" and "xvec2 \<sharp>* P" by simp+
from `x \<sharp> (M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>)` have "x \<sharp> xvec1" and "x \<noteq> y" and "x \<sharp> xvec2" and "x \<sharp> M" by simp+
from P_simQ `\<Psi> \<rhd> Q \<longmapsto>Some \<pi>' @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> Q')`
`xvec1 \<sharp>* \<Psi>` `xvec2 \<sharp>* \<Psi>` `xvec1 \<sharp>* P` `xvec2 \<sharp>* P`
obtain \<pi>'' P' where P_trans: "\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> P'" and P'_rel_q': "(\<Psi>, P', ([(x, y)] \<bullet> Q')) \<in> Rel"
by(force dest: simE)
from `\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> P'`
obtain \<pi>''' where \<pi>'': "\<pi>'' = Some \<pi>'''"
unfolding residual_inject
by(auto dest: output_provenance)
from `y \<in> supp N` `x \<noteq> y` have "x \<in> supp([(x, y)] \<bullet> N)"
by(drule_tac pt_set_bij2[OF pt_name_inst, OF at_name_inst, where pi="[(x, y)]"]) (simp add: eqvts calc_atm)
with P_trans `x \<sharp> \<Psi>` `x \<sharp> M` `x \<sharp> xvec1` `x \<sharp> xvec2`
have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto>Some(\<lparr>\<nu>x\<rparr>\<pi>''') @ M\<lparr>\<nu>*(xvec1@x#xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> P'"
unfolding \<pi>''
by(rule_tac Open)
hence "([(x, y)] \<bullet> \<Psi>) \<rhd> ([(x, y)] \<bullet> \<lparr>\<nu>x\<rparr>P) \<longmapsto>([(x, y)] \<bullet> Some(\<lparr>\<nu>x\<rparr>\<pi>''')) @ ([(x, y)] \<bullet> (M\<lparr>\<nu>*(xvec1@x#xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> P'))"
by(rule eqvts)
with `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` `y \<sharp> P` `x \<sharp> M` `y \<sharp> M` `x \<sharp> xvec1` `y \<sharp> xvec1` `x \<sharp> xvec2` `y \<sharp> xvec2` `x \<noteq> y`
have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto>([(x, y)] \<bullet> Some(\<lparr>\<nu>x\<rparr>\<pi>''')) @ M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle> \<prec> ([(x, y)] \<bullet> P')" by(simp add: eqvts calc_atm alpha_res)
moreover from P'_rel_q' `Rel \<subseteq> Rel'` `eqvt Rel'` have "([(y, x)] \<bullet> \<Psi>, [(y, x)] \<bullet> P', [(y, x)] \<bullet> [(x, y)] \<bullet> Q') \<in> Rel'"
by(force simp add: eqvt_def)
with `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` have "(\<Psi>, [(x, y)] \<bullet> P', Q') \<in> Rel'" by(simp add: name_swap)
ultimately show ?case by blast
next
case(c_res \<pi>' Q')
from P_simQ `\<Psi> \<rhd> Q \<longmapsto>\<pi>' @ \<alpha> \<prec> Q'` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P`
obtain \<pi>'' P' where P_trans: "\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'" and P'_rel_q': "(\<Psi>, P', Q') \<in> Rel"
by(blast dest: simE)
from P_trans `x \<sharp> \<Psi>` `x \<sharp> \<alpha>` have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto>map_option (F_res x) \<pi>'' @ \<alpha> \<prec> \<lparr>\<nu>x\<rparr>P'"
by(rule Scope)
moreover from P'_rel_q' `x \<sharp> \<Psi>` have "(\<Psi>, \<lparr>\<nu>x\<rparr>P', \<lparr>\<nu>x\<rparr>Q') \<in> Rel'" by(rule C1)
ultimately show ?case by blast
qed
qed
qed
lemma res_chain_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and xvec :: "name list"
assumes P_simQ: "\<Psi> \<rhd> P \<leadsto>[Rel] Q"
and "eqvt Rel"
and "xvec \<sharp>* \<Psi>"
and C1: "\<And>\<Psi>' R S y. \<lbrakk>(\<Psi>', R, S) \<in> Rel; y \<sharp> \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>y\<rparr>R, \<lparr>\<nu>y\<rparr>S) \<in> Rel"
shows "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>P \<leadsto>[Rel] \<lparr>\<nu>*xvec\<rparr>Q"
using `xvec \<sharp>* \<Psi>`
proof(induct xvec)
case Nil
from P_simQ show ?case by simp
next
case(Cons x xvec)
from `(x#xvec) \<sharp>* \<Psi>` have "x \<sharp> \<Psi>" and "xvec \<sharp>* \<Psi>" by simp+
from `xvec \<sharp>* \<Psi>` have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>P \<leadsto>[Rel] \<lparr>\<nu>*xvec\<rparr>Q" by(rule Cons)
moreover note `eqvt Rel` `x \<sharp> \<Psi>`
moreover have "Rel \<subseteq> Rel" by simp
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>P) \<leadsto>[Rel] \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>Q)" using C1
by(rule res_pres)
thus ?case by simp
qed
lemma par_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and Rel' :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes P_relQ: "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q\<rbrakk> \<Longrightarrow> (\<Psi> \<otimes> \<Psi>\<^sub>R, P, Q) \<in> Rel"
and Eqvt: "eqvt Rel"
and Eqvt': "eqvt Rel'"
and Stat_imp: "\<And>\<Psi>' S T. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> insert_assertion (extract_frame T) \<Psi>' \<hookrightarrow>\<^sub>F insert_assertion (extract_frame S) \<Psi>'"
and Sim: "\<And>\<Psi>' S T. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> \<Psi>' \<rhd> S \<leadsto>[Rel] T"
and Ext: "\<And>\<Psi>' S T \<Psi>''. \<lbrakk>(\<Psi>', S, T) \<in> Rel\<rbrakk> \<Longrightarrow> (\<Psi>' \<otimes> \<Psi>'', S, T) \<in> Rel"
and C1: "\<And>\<Psi>' S T A\<^sub>U \<Psi>\<^sub>U U. \<lbrakk>(\<Psi>' \<otimes> \<Psi>\<^sub>U, S, T) \<in> Rel; extract_frame U = \<langle>A\<^sub>U, \<Psi>\<^sub>U\<rangle>; A\<^sub>U \<sharp>* \<Psi>'; A\<^sub>U \<sharp>* S; A\<^sub>U \<sharp>* T\<rbrakk> \<Longrightarrow> (\<Psi>', S \<parallel> U, T \<parallel> U) \<in> Rel'"
and C2: "\<And>\<Psi>' S T xvec. \<lbrakk>(\<Psi>', S, T) \<in> Rel'; xvec \<sharp>* \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>*xvec\<rparr>S, \<lparr>\<nu>*xvec\<rparr>T) \<in> Rel'"
and C3: "\<And>\<Psi>' S T \<Psi>''. \<lbrakk>(\<Psi>', S, T) \<in> Rel; \<Psi>' \<simeq> \<Psi>''\<rbrakk> \<Longrightarrow> (\<Psi>'', S, T) \<in> Rel"
shows "\<Psi> \<rhd> P \<parallel> R \<leadsto>[Rel'] Q \<parallel> R"
using Eqvt'
proof(induct rule: simI[of _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> QR)
from `bn \<alpha> \<sharp>* (P \<parallel> R)` `bn \<alpha> \<sharp>* (Q \<parallel> R)`
have "bn \<alpha> \<sharp>* P" and "bn \<alpha> \<sharp>* Q" and "bn \<alpha> \<sharp>* R"
by simp+
from `\<Psi> \<rhd> Q \<parallel> R \<longmapsto>\<pi> @ \<alpha> \<prec> QR` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* Q` `bn \<alpha> \<sharp>* R` `bn \<alpha> \<sharp>* subject \<alpha>`
show ?case
proof(induct rule: par_cases[where C = "(P, R)"])
case(c_par1 Q' \<pi>' A\<^sub>R \<Psi>\<^sub>R)
from `A\<^sub>R \<sharp>* (P, R)` have "A\<^sub>R \<sharp>* P" by simp
have FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact
from `A\<^sub>R \<sharp>* \<alpha>` `bn \<alpha> \<sharp>* R` FrR
have "bn \<alpha> \<sharp>* \<Psi>\<^sub>R" by(drule_tac extract_frame_fresh_chain) auto
from FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<leadsto>[Rel] Q"
by(blast intro: Sim P_relQ)
moreover have Q_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>\<pi>' @ \<alpha> \<prec> Q'" by fact
ultimately obtain P' \<pi>'' where P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'"
and P'_rel_q': "(\<Psi> \<otimes> \<Psi>\<^sub>R, P', Q') \<in> Rel"
using `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* \<Psi>\<^sub>R` `bn \<alpha> \<sharp>* P`
by(force dest: simE)
from P_trans Q_trans `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* \<alpha>` `bn \<alpha> \<sharp>* subject \<alpha>` `distinct(bn \<alpha>)` have "A\<^sub>R \<sharp>* P'" and "A\<^sub>R \<sharp>* Q'"
by(blast dest: free_fresh_chain_derivative)+
from P_trans `bn \<alpha> \<sharp>* R` FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* \<alpha>` have "\<Psi> \<rhd> P \<parallel> R \<longmapsto>append_at_end_prov_option \<pi>'' A\<^sub>R @ \<alpha> \<prec> (P' \<parallel> R)"
by(rule_tac Par1)
moreover from P'_rel_q' FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P'` `A\<^sub>R \<sharp>* Q'` have "(\<Psi>, P' \<parallel> R, Q' \<parallel> R) \<in> Rel'" by(rule C1)
ultimately show ?case by blast
next
case(c_par2 R' \<pi>' A\<^sub>Q \<Psi>\<^sub>Q)
from `A\<^sub>Q \<sharp>* (P, R)` have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* R" by simp+
obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* (\<Psi>, A\<^sub>Q, \<Psi>\<^sub>Q, \<alpha>, R)"
by(rule fresh_frame)
hence "A\<^sub>P \<sharp>* \<Psi>" and "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" and "A\<^sub>P \<sharp>* \<alpha>" and "A\<^sub>P \<sharp>* R"
by simp+
have FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" by fact
from `A\<^sub>Q \<sharp>* P` FrP `A\<^sub>P \<sharp>* A\<^sub>Q` have "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P"
by(drule_tac extract_frame_fresh_chain) auto
from FrP FrQ `bn \<alpha> \<sharp>* P` `bn \<alpha> \<sharp>* Q` `A\<^sub>P \<sharp>* \<alpha>` `A\<^sub>Q \<sharp>* \<alpha>`
have "bn \<alpha> \<sharp>* \<Psi>\<^sub>P" and "bn \<alpha> \<sharp>* \<Psi>\<^sub>Q"
by(force dest: extract_frame_fresh_chain)+
obtain A\<^sub>R \<Psi>\<^sub>R where FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* (\<Psi>, P, Q, A\<^sub>Q, A\<^sub>P, \<Psi>\<^sub>Q, \<Psi>\<^sub>P, \<alpha>, R)" and "distinct A\<^sub>R"
by(rule fresh_frame)
then have "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q" and "A\<^sub>R \<sharp>* A\<^sub>Q" and "A\<^sub>R \<sharp>* A\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>Q" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>R \<sharp>* \<alpha>" and "A\<^sub>R \<sharp>* R"
by simp+
from `A\<^sub>Q \<sharp>* R` FrR `A\<^sub>R \<sharp>* A\<^sub>Q` have "A\<^sub>Q \<sharp>* \<Psi>\<^sub>R"
by(drule_tac extract_frame_fresh_chain) auto
from `A\<^sub>P \<sharp>* R` `A\<^sub>R \<sharp>* A\<^sub>P` FrR have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(drule_tac extract_frame_fresh_chain) auto
have R_trans: "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>\<pi>' @ \<alpha> \<prec> R'" by fact
moreover have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>Q) \<otimes> \<Psi>\<^sub>R\<rangle> \<hookrightarrow>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R\<rangle>"
proof -
have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>Q) \<otimes> \<Psi>\<^sub>R\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q\<rangle>"
by(metis frame_int_associativity Commutativity Frame_stat_eq_trans frame_int_composition_sym Frame_stat_eq_sym)
moreover from FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q`
have "(insert_assertion (extract_frame Q) (\<Psi> \<otimes> \<Psi>\<^sub>R)) \<hookrightarrow>\<^sub>F (insert_assertion (extract_frame P) (\<Psi> \<otimes> \<Psi>\<^sub>R))"
by(blast intro: P_relQ Stat_imp)
with FrP FrQ `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R`
have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q\<rangle> \<hookrightarrow>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P\<rangle>" using fresh_comp_chain by auto
moreover have "\<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R\<rangle>"
by(metis frame_int_associativity Commutativity Frame_stat_eq_trans frame_int_composition_sym frame_int_associativity[THEN Frame_stat_eq_sym])
ultimately show ?thesis
by(rule Frame_stat_eq_imp_compose)
qed
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> R \<longmapsto>\<pi>' @ \<alpha> \<prec> R'"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>P` `A\<^sub>P \<sharp>* R` `A\<^sub>Q \<sharp>* R` `A\<^sub>P \<sharp>* \<alpha>` `A\<^sub>Q \<sharp>* \<alpha>`
`A\<^sub>R \<sharp>* A\<^sub>P` `A\<^sub>R \<sharp>* A\<^sub>Q` `A\<^sub>R \<sharp>* \<Psi>\<^sub>P` `A\<^sub>R \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>R \<sharp>* \<Psi>` FrR `distinct A\<^sub>R`
by(force intro: transfer_frame)
with `bn \<alpha> \<sharp>* P` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* \<alpha>` FrP have "\<Psi> \<rhd> P \<parallel> R \<longmapsto>append_at_front_prov_option \<pi>' A\<^sub>P @ \<alpha> \<prec> (P \<parallel> R')"
by(rule_tac Par2) auto
moreover obtain A\<^sub>R' \<Psi>\<^sub>R' where "extract_frame R' = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>" and "A\<^sub>R' \<sharp>* \<Psi>" and "A\<^sub>R' \<sharp>* P" and "A\<^sub>R' \<sharp>* Q"
by(rule_tac fresh_frame[where C="(\<Psi>, P, Q)"]) auto
moreover from R_trans FrR `distinct A\<^sub>R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* \<alpha>` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P` `bn \<alpha> \<sharp>* Q` `bn \<alpha> \<sharp>* R` `bn \<alpha> \<sharp>* subject \<alpha>` `distinct(bn \<alpha>)`
obtain p \<Psi>' A\<^sub>R' \<Psi>\<^sub>R' where S: "set p \<subseteq> set(bn \<alpha>) \<times> set(bn(p \<bullet> \<alpha>))" and "(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'" and Fr_r': "extract_frame R' = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "bn(p \<bullet> \<alpha>) \<sharp>* R" and "bn(p \<bullet> \<alpha>) \<sharp>* \<Psi>" and "bn(p \<bullet> \<alpha>) \<sharp>* P" and "bn(p \<bullet> \<alpha>) \<sharp>* Q" and "bn(p \<bullet> \<alpha>) \<sharp>* R"
and "A\<^sub>R' \<sharp>* \<Psi>" and "A\<^sub>R' \<sharp>* P" and "A\<^sub>R' \<sharp>* Q"
by(rule_tac C="(\<Psi>, P, Q, R)" and C'="(\<Psi>, P, Q, R)" in expand_frame) (assumption | simp)+
from `A\<^sub>R \<sharp>* \<Psi>` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> \<Psi>)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `bn \<alpha> \<sharp>* \<Psi>` `bn(p \<bullet> \<alpha>) \<sharp>* \<Psi>` S have "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" by simp
from `A\<^sub>R \<sharp>* P` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> P)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `bn \<alpha> \<sharp>* P` `bn(p \<bullet> \<alpha>) \<sharp>* P` S have "(p \<bullet> A\<^sub>R) \<sharp>* P" by simp
from `A\<^sub>R \<sharp>* Q` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> Q)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `bn \<alpha> \<sharp>* Q` `bn(p \<bullet> \<alpha>) \<sharp>* Q` S have "(p \<bullet> A\<^sub>R) \<sharp>* Q" by simp
from FrR have "(p \<bullet> extract_frame R) = p \<bullet> \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by simp
with `bn \<alpha> \<sharp>* R` `bn(p \<bullet> \<alpha>) \<sharp>* R` S have "extract_frame R = \<langle>(p \<bullet> A\<^sub>R), (p \<bullet> \<Psi>\<^sub>R)\<rangle>"
by(simp add: eqvts)
with `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* Q` have "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R), P, Q) \<in> Rel" by(rule_tac P_relQ)
hence "((\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>', P, Q) \<in> Rel" by(rule Ext)
with `(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R', P, Q) \<in> Rel" by(blast intro: C3 Associativity composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P` `A\<^sub>R' \<sharp>* Q` have "(\<Psi>, P \<parallel> R', Q \<parallel> R') \<in> Rel'" by(rule_tac C1)
ultimately show ?case by blast
next
case(c_comm1 \<Psi>\<^sub>R M N Q' A\<^sub>Q \<Psi>\<^sub>Q K xvec R' A\<^sub>R yvec zvec)
have FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact
from `A\<^sub>R \<sharp>* (P, R)` have "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* R" by simp+
from `A\<^sub>Q \<sharp>* (P, R)` have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* R" by simp+
from `xvec \<sharp>* (P, R)` have "xvec \<sharp>* P" and "xvec \<sharp>* R" by simp+
obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* (\<Psi>, A\<^sub>Q, \<Psi>\<^sub>Q, A\<^sub>R, M, N, K, R, P, xvec,yvec,zvec)" and "distinct A\<^sub>P"
by(rule fresh_frame)
hence "A\<^sub>P \<sharp>* \<Psi>" and "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" and "A\<^sub>P \<sharp>* M" and "A\<^sub>P \<sharp>* R"
and "A\<^sub>P \<sharp>* N" and "A\<^sub>P \<sharp>* K" and "A\<^sub>P \<sharp>* A\<^sub>R" and "A\<^sub>P \<sharp>* P" and "A\<^sub>P \<sharp>* xvec"
and "A\<^sub>P \<sharp>* yvec" and "A\<^sub>P \<sharp>* zvec"
by simp+
have Q_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> Q'" and R_trans: "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'"
by fact+
from FrP FrR `A\<^sub>Q \<sharp>* P` `A\<^sub>P \<sharp>* R` `A\<^sub>R \<sharp>* P` `A\<^sub>P \<sharp>* A\<^sub>Q` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>P \<sharp>* xvec` `xvec \<sharp>* P`
have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "xvec \<sharp>* \<Psi>\<^sub>P"
by(force dest!: extract_frame_fresh_chain)+
from R_trans FrR `distinct A\<^sub>R` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* xvec` `xvec \<sharp>* R` `xvec \<sharp>* Q` `xvec \<sharp>* \<Psi>` `xvec \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>R \<sharp>* Q`
`A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* \<Psi>\<^sub>Q` `xvec \<sharp>* K` `A\<^sub>R \<sharp>* K` `A\<^sub>R \<sharp>* N` `A\<^sub>R \<sharp>* R` `xvec \<sharp>* R` `A\<^sub>R \<sharp>* P` `xvec \<sharp>* P` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>P \<sharp>* xvec` `zvec \<sharp>* xvec` `zvec \<sharp>* A\<^sub>R`
`A\<^sub>Q \<sharp>* A\<^sub>R` `A\<^sub>Q \<sharp>* xvec` `A\<^sub>R \<sharp>* \<Psi>\<^sub>P` `xvec \<sharp>* \<Psi>\<^sub>P` `distinct xvec` `xvec \<sharp>* M`
obtain p \<Psi>' A\<^sub>R' \<Psi>\<^sub>R' where S: "set p \<subseteq> set xvec \<times> set(p \<bullet> xvec)" and Fr_r': "extract_frame R' = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'" and "A\<^sub>R' \<sharp>* Q" and "A\<^sub>R' \<sharp>* \<Psi>" and "(p \<bullet> xvec) \<sharp>* \<Psi>"
and "(p \<bullet> xvec) \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>\<^sub>Q" and "(p \<bullet> xvec) \<sharp>* K" and "(p \<bullet> xvec) \<sharp>* R"
and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* A\<^sub>P" and "(p \<bullet> xvec) \<sharp>* A\<^sub>Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>\<^sub>P"
and "A\<^sub>R' \<sharp>* P" and "A\<^sub>R' \<sharp>* N" and dp: "distinct_perm p" and "(p \<bullet> xvec) \<sharp>* N" and "(p \<bullet> xvec) \<sharp>* xvec" and "(p \<bullet> xvec) \<sharp>* zvec"
by(rule_tac C="(\<Psi>, Q, \<Psi>\<^sub>Q, K, R, P, A\<^sub>P, A\<^sub>Q, \<Psi>\<^sub>P)" and C'="(\<Psi>, Q, \<Psi>\<^sub>Q, K, R, P, A\<^sub>P, A\<^sub>Q, \<Psi>\<^sub>P,zvec)" in expand_frame)
(assumption | simp)+
from `A\<^sub>R \<sharp>* \<Psi>` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> \<Psi>)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S have "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" by simp
from `A\<^sub>R \<sharp>* P` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> P)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* P` `(p \<bullet> xvec) \<sharp>* P` S have "(p \<bullet> A\<^sub>R) \<sharp>* P" by simp
from `A\<^sub>R \<sharp>* Q` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> Q)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* Q` `(p \<bullet> xvec) \<sharp>* Q` S have "(p \<bullet> A\<^sub>R) \<sharp>* Q" by simp
from `A\<^sub>R \<sharp>* R` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> R)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* R` `(p \<bullet> xvec) \<sharp>* R` S have "(p \<bullet> A\<^sub>R) \<sharp>* R" by simp
from `A\<^sub>R \<sharp>* K` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> K)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* K` `(p \<bullet> xvec) \<sharp>* K` S have "(p \<bullet> A\<^sub>R) \<sharp>* K" by simp
from `A\<^sub>P \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* A\<^sub>P` `A\<^sub>P \<sharp>* M` S have "A\<^sub>P \<sharp>* (p \<bullet> M)" by(simp add: fresh_chain_simps)
from `A\<^sub>Q \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* A\<^sub>Q` `A\<^sub>Q \<sharp>* M` S have "A\<^sub>Q \<sharp>* (p \<bullet> M)" by(simp add: fresh_chain_simps)
from `A\<^sub>P \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* A\<^sub>P` `A\<^sub>P \<sharp>* A\<^sub>R` S have "(p \<bullet> A\<^sub>R) \<sharp>* A\<^sub>P" by(simp add: fresh_chain_simps)
from `A\<^sub>Q \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* A\<^sub>Q` `A\<^sub>Q \<sharp>* A\<^sub>R` S have "(p \<bullet> A\<^sub>R) \<sharp>* A\<^sub>Q" by(simp add: fresh_chain_simps)
have "A\<^sub>P \<sharp>* (p\<bullet>\<Psi>\<^sub>R)" using S `A\<^sub>P \<sharp>* xvec` `(p\<bullet>xvec) \<sharp>* A\<^sub>P` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R`
by(simp add: fresh_chain_simps)
from Q_trans S `xvec \<sharp>* Q` `(p \<bullet> xvec) \<sharp>* Q` have "(p \<bullet> (\<Psi> \<otimes> \<Psi>\<^sub>R)) \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ (p \<bullet> M)\<lparr>N\<rparr> \<prec> Q'"
by(rule_tac input_perm_frame_subject) (simp add: fresh_star_def)+
with `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S have Q_trans: "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<rhd> Q \<longmapsto> Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ (p \<bullet> M)\<lparr>N\<rparr> \<prec> Q'"
by(simp add: eqvts)
from FrR have "(p \<bullet> extract_frame R) = p \<bullet> \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by simp
with `xvec \<sharp>* R` `(p \<bullet> xvec) \<sharp>* R` S have FrR: "extract_frame R = \<langle>(p \<bullet> A\<^sub>R), (p \<bullet> \<Psi>\<^sub>R)\<rangle>"
by(simp add: eqvts)
from R_trans have "(p \<bullet> xvec) \<sharp>* R'" using `(p\<bullet>xvec) \<sharp>* R` `(p\<bullet>xvec) \<sharp>* N` `distinct xvec` `(p\<bullet>xvec) \<sharp>* xvec` `xvec \<sharp>* K`
by(auto dest!: output_fresh_chain_derivative)
from R_trans have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto> Some (\<langle>(p\<bullet>A\<^sub>R); zvec, (p\<bullet>M)\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'"
using S `xvec \<sharp>* \<Psi>` `(p\<bullet>xvec) \<sharp>* \<Psi>` `xvec \<sharp>* \<Psi>\<^sub>Q` `(p\<bullet>xvec) \<sharp>* \<Psi>\<^sub>Q` `xvec \<sharp>* K` `(p\<bullet>xvec) \<sharp>* K`
dp `xvec \<sharp>* R` `(p\<bullet>xvec) \<sharp>* R` `(p\<bullet>xvec) \<sharp>* N` `(p\<bullet>xvec) \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* R'` `(p \<bullet> xvec) \<sharp>* zvec` `zvec \<sharp>* xvec`
by(subst perm_bool[where pi=p,symmetric]) (simp add: eqvts residual_inject bound_output_chain_alpha''[symmetric])
moreover note FrR
moreover from FrR `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* Q` have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<leadsto>[Rel] Q"
by(metis Sim P_relQ)
with Q_trans obtain \<pi> P' where P_trans: "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<longmapsto>\<pi> @ (p \<bullet> M)\<lparr>N\<rparr> \<prec> P'" and P'_rel_q': "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R), P', Q') \<in> Rel"
by(force dest: simE)
from P_trans `A\<^sub>P \<sharp>* P` have "A\<^sub>P \<sharp>* \<pi>" by(rule trans_fresh_provenance)
from P_trans Q_trans `A\<^sub>R' \<sharp>* P` `A\<^sub>R' \<sharp>* Q` `A\<^sub>R' \<sharp>* N` have "A\<^sub>R' \<sharp>* P'" and "A\<^sub>R' \<sharp>* Q'"
by(blast dest: input_fresh_chain_derivative)+
from P_trans `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>P \<sharp>* M` `A\<^sub>P \<sharp>* P` `A\<^sub>P \<sharp>* \<pi>` `distinct A\<^sub>P` `A\<^sub>P \<sharp>* (p\<bullet>\<Psi>\<^sub>R)` `A\<^sub>P \<sharp>* (p \<bullet> M)`
obtain tvec K' where \<pi>: "\<pi> = Some(\<langle>A\<^sub>P; tvec, K'\<rangle>)" and "distinct tvec" and "tvec \<sharp>* \<Psi>" and "tvec \<sharp>* (p\<bullet>M)" and "tvec \<sharp>* P" and "tvec \<sharp>* N" and "tvec \<sharp>* P'" and "tvec \<sharp>* (p\<bullet>\<Psi>\<^sub>R)" and "tvec \<sharp>* \<Psi>\<^sub>R" and "A\<^sub>P \<sharp>* tvec" and MeqK: "(\<Psi> \<otimes> (p\<bullet>\<Psi>\<^sub>R)) \<otimes> \<Psi>\<^sub>P \<turnstile> (p\<bullet>M) \<leftrightarrow> K'" and "tvec \<sharp>* A\<^sub>R" and "tvec \<sharp>* zvec" and "tvec \<sharp>* \<Psi>\<^sub>P" and "tvec \<sharp>* R" and "tvec \<sharp>* xvec" and "tvec \<sharp>* (p\<bullet>A\<^sub>R)"
by(frule_tac input_provenance'[where C="(\<Psi>,\<Psi>\<^sub>R,p\<bullet>\<Psi>\<^sub>R,A\<^sub>R,p\<bullet>A\<^sub>R,R,zvec,\<Psi>\<^sub>P,xvec)"]) auto
from P_trans have P_trans: "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<longmapsto> Some(\<langle>A\<^sub>P; tvec, K'\<rangle>) @ (p \<bullet> M)\<lparr>N\<rparr> \<prec> P'"
unfolding \<pi> .
have "zvec \<sharp>* (p\<bullet>\<Psi>\<^sub>R)" using `zvec \<sharp>* xvec` `zvec \<sharp>* \<Psi>\<^sub>R` `(p\<bullet>xvec) \<sharp>* zvec` S
by(simp add: fresh_chain_simps)
have FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" by fact
from MeqK have "(\<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<turnstile> (p \<bullet> M) \<leftrightarrow> K'"
by(metis stat_eq_ent Associativity associativity_sym)
moreover have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>Q) \<otimes> (p \<bullet> \<Psi>\<^sub>R)\<rangle> \<hookrightarrow>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> (p \<bullet> \<Psi>\<^sub>R)\<rangle>"
proof -
have "\<langle>A\<^sub>P, (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>\<^sub>P\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> (p \<bullet> \<Psi>\<^sub>R)\<rangle>"
by(metis frame_res_chain_pres frame_nil_stat_eq Commutativity Assertion_stat_eq_trans Composition Associativity)
moreover from FrR `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* Q`
have "(insert_assertion (extract_frame Q) (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R))) \<hookrightarrow>\<^sub>F (insert_assertion (extract_frame P) (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)))"
by(metis P_relQ Stat_imp)
with FrP FrQ `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>P \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* A\<^sub>P` `A\<^sub>Q \<sharp>* xvec` `(p \<bullet> xvec) \<sharp>* A\<^sub>Q` S
have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>\<^sub>Q\<rangle> \<hookrightarrow>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>\<^sub>P\<rangle>" using fresh_comp_chain
by(simp add: fresh_chain_simps)
moreover have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>Q) \<otimes> (p \<bullet> \<Psi>\<^sub>R)\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>Q, (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>\<^sub>Q\<rangle>"
by(metis frame_res_chain_pres frame_nil_stat_eq Commutativity Assertion_stat_eq_trans Composition Associativity)
ultimately show ?thesis by(rule_tac Frame_stat_eq_imp_compose)
qed
moreover note `(p \<bullet> A\<^sub>R) \<sharp>* A\<^sub>P` `(p \<bullet> A\<^sub>R) \<sharp>* A\<^sub>Q` `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* Q` `(p \<bullet> A\<^sub>R) \<sharp>* R` `(p \<bullet> A\<^sub>R) \<sharp>* K`
`A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* P` `A\<^sub>P \<sharp>* (p \<bullet> M)` `A\<^sub>Q \<sharp>* R` `A\<^sub>Q \<sharp>* (p \<bullet> M)` `A\<^sub>P \<sharp>* xvec` `xvec \<sharp>* P` `A\<^sub>P \<sharp>* R`
moreover have "(p\<bullet>A\<^sub>R) \<sharp>* \<Psi>\<^sub>P" using `(p\<bullet>A\<^sub>R) \<sharp>* A\<^sub>P` `(p\<bullet>A\<^sub>R) \<sharp>* P` FrP
by(auto dest: extract_frame_fresh_chain)
moreover have "(p\<bullet>A\<^sub>R) \<sharp>* \<Psi>\<^sub>Q" using `(p\<bullet>A\<^sub>R) \<sharp>* A\<^sub>Q` `(p\<bullet>A\<^sub>R) \<sharp>* Q` FrQ
by(auto dest: extract_frame_fresh_chain)
moreover have "(p\<bullet>A\<^sub>R) \<sharp>* K'" using P_trans
`(p \<bullet> A\<^sub>R) \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* A\<^sub>P` `tvec \<sharp>* (p \<bullet> A\<^sub>R)`
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'')
moreover from `distinct A\<^sub>R` have "distinct(p \<bullet> A\<^sub>R)" by simp
moreover note `distinct zvec`
moreover from `zvec \<sharp>* A\<^sub>R` have "(p\<bullet>A\<^sub>R) \<sharp>* zvec"
using S `zvec \<sharp>* xvec` `(p\<bullet>xvec) \<sharp>* zvec`
by(subst (asm) perm_bool[where pi=p,symmetric]) (simp add: eqvts)
moreover note `zvec \<sharp>* \<Psi>` `zvec \<sharp>* R`
moreover have "zvec \<sharp>* \<Psi>\<^sub>P" using `zvec \<sharp>* (P,R)` `A\<^sub>P \<sharp>* zvec` FrP
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* K'" using `zvec \<sharp>* (P,R)` P_trans
`A\<^sub>P \<sharp>* zvec` `tvec \<sharp>* zvec`
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'')
moreover from `A\<^sub>P \<sharp>* zvec` have "zvec \<sharp>* A\<^sub>P" by simp
moreover note `zvec \<sharp>* A\<^sub>Q`
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> R \<longmapsto>Some (\<langle>(p\<bullet>A\<^sub>R); zvec, (p\<bullet>M)\<rangle>) @ K'\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'"
by(rule_tac comm1_aux) assumption+
with P_trans FrP have "\<Psi> \<rhd> P \<parallel> R \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R')" using FrR `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* R`
`xvec \<sharp>* P` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* (p \<bullet> M)` `(p \<bullet> A\<^sub>R) \<sharp>* K'` `(p \<bullet> A\<^sub>R) \<sharp>* A\<^sub>P`
`tvec \<sharp>* \<Psi>` `tvec \<sharp>* \<Psi>\<^sub>P` `tvec \<sharp>* R` `zvec \<sharp>* \<Psi>` `zvec \<sharp>* (p\<bullet>\<Psi>\<^sub>R)` `zvec \<sharp>* (P,R)`
by(rule_tac Comm1) (assumption | simp)+
moreover from P'_rel_q' have "((\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>', P', Q') \<in> Rel" by(rule Ext)
with `(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R', P', Q') \<in> Rel" by(metis C3 Associativity composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* P'` `A\<^sub>R' \<sharp>* Q'` `A\<^sub>R' \<sharp>* \<Psi>` have "(\<Psi>, P' \<parallel> R', Q' \<parallel> R') \<in> Rel'" by(rule_tac C1)
with `xvec \<sharp>* \<Psi>` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R'), \<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> R')) \<in> Rel'" by(rule_tac C2)
ultimately show ?case by blast
next
case(c_comm2 \<Psi>\<^sub>R M xvec N Q' A\<^sub>Q \<Psi>\<^sub>Q K R' A\<^sub>R yvec zvec)
have FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" by fact
from `A\<^sub>Q \<sharp>* (P, R)` have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* R" by simp+
have FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact
from `A\<^sub>R \<sharp>* (P, R)` have "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* R" by simp+
from `xvec \<sharp>* (P, R)` have "xvec \<sharp>* P" and "xvec \<sharp>* R" by simp+
obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* (\<Psi>, A\<^sub>Q, \<Psi>\<^sub>Q, A\<^sub>R, M, N, K, R, P, xvec, yvec, zvec)" and "distinct A\<^sub>P"
by(rule fresh_frame)
hence "A\<^sub>P \<sharp>* \<Psi>" and "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" and "A\<^sub>P \<sharp>* M" and "A\<^sub>P \<sharp>* R"
and "A\<^sub>P \<sharp>* N" "A\<^sub>P \<sharp>* K" and "A\<^sub>P \<sharp>* A\<^sub>R" and "A\<^sub>P \<sharp>* P" and "A\<^sub>P \<sharp>* xvec" and "A\<^sub>P \<sharp>* yvec"
and "A\<^sub>P \<sharp>* zvec"
by simp+
from FrP FrR `A\<^sub>Q \<sharp>* P` `A\<^sub>P \<sharp>* R` `A\<^sub>R \<sharp>* P` `A\<^sub>P \<sharp>* A\<^sub>Q` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>P \<sharp>* xvec` `xvec \<sharp>* P`
have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "xvec \<sharp>* \<Psi>\<^sub>P"
by(force dest!: extract_frame_fresh_chain)+
have Q_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'" by fact
note `\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> R'` FrR
moreover from FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<leadsto>[Rel] Q" by(metis P_relQ Sim)
with Q_trans obtain P' \<pi> where P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<longmapsto>\<pi> @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P'" and P'_rel_q': "(\<Psi> \<otimes> \<Psi>\<^sub>R, P', Q') \<in> Rel"
using `xvec \<sharp>* \<Psi>` `xvec \<sharp>* \<Psi>\<^sub>R` `xvec \<sharp>* P`
by(force dest: simE)
from P_trans Q_trans `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* xvec` `xvec \<sharp>* M` `distinct xvec` have "A\<^sub>R \<sharp>* P'" and "A\<^sub>R \<sharp>* Q'"
by(blast dest: output_fresh_chain_derivative)+
from P_trans `A\<^sub>P \<sharp>* P` have "A\<^sub>P \<sharp>* \<pi>" by(rule trans_fresh_provenance)
from P_trans `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* M` `A\<^sub>P \<sharp>* P` `distinct A\<^sub>P`
`A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>P \<sharp>* \<pi>`
obtain tvec K' where \<pi>: "\<pi> = Some(\<langle>A\<^sub>P; tvec, K'\<rangle>)" and "distinct tvec" and "tvec \<sharp>* \<Psi>" and "tvec \<sharp>* M" and "tvec \<sharp>* P" and "tvec \<sharp>* N" and "tvec \<sharp>* P'" and "tvec \<sharp>* A\<^sub>R" and "tvec \<sharp>* \<Psi>\<^sub>R" and "A\<^sub>P \<sharp>* tvec" and "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<turnstile> K' \<leftrightarrow> M" and "tvec \<sharp>* zvec" and "tvec \<sharp>* \<Psi>\<^sub>P" and "tvec \<sharp>* R"
unfolding residual_inject
by(frule_tac output_provenance'[where C="(\<Psi>,A\<^sub>R,\<Psi>\<^sub>R,\<Psi>\<^sub>P,N,P,P',zvec,R)"]) auto
hence "\<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>R \<turnstile> K' \<leftrightarrow> M"
by(metis Associativity associativity_sym stat_eq_ent)
moreover have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>Q) \<otimes> \<Psi>\<^sub>R\<rangle> \<hookrightarrow>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R\<rangle>"
proof -
have "\<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R\<rangle>"
by(metis frame_res_chain_pres frame_nil_stat_eq Commutativity Assertion_stat_eq_trans Composition Associativity)
moreover from FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q`
have "(insert_assertion (extract_frame Q) (\<Psi> \<otimes> \<Psi>\<^sub>R)) \<hookrightarrow>\<^sub>F (insert_assertion (extract_frame P) (\<Psi> \<otimes> \<Psi>\<^sub>R))"
by(metis P_relQ Stat_imp)
with FrP FrQ `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R`
have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q\<rangle> \<hookrightarrow>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P\<rangle>" using fresh_comp_chain by simp
moreover have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>Q) \<otimes> \<Psi>\<^sub>R\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q\<rangle>"
by(metis frame_res_chain_pres frame_nil_stat_eq Commutativity Assertion_stat_eq_trans Composition Associativity)
ultimately show ?thesis by(rule_tac Frame_stat_eq_imp_compose)
qed
moreover note `distinct A\<^sub>R`
moreover from `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>Q \<sharp>* A\<^sub>R` have "A\<^sub>R \<sharp>* A\<^sub>P" and "A\<^sub>R \<sharp>* A\<^sub>Q" by simp+
moreover have "A\<^sub>R \<sharp>* K'"
using P_trans `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* A\<^sub>P` `tvec \<sharp>* A\<^sub>R`
unfolding \<pi> by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'')
moreover have "zvec \<sharp>* P" and "zvec \<sharp>* R" using `zvec \<sharp>* (P,R)` by auto
moreover have "zvec \<sharp>* K'"
using P_trans `zvec \<sharp>* P` `A\<^sub>P \<sharp>* zvec` `tvec \<sharp>* zvec`
unfolding \<pi> by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'')
moreover note `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* K` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P`
`A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* M` `A\<^sub>Q \<sharp>* R` `A\<^sub>Q \<sharp>* M` `A\<^sub>R \<sharp>* xvec` `xvec \<sharp>* M` `A\<^sub>R \<sharp>* \<Psi>\<^sub>P` `A\<^sub>R \<sharp>* \<Psi>\<^sub>Q`
`A\<^sub>R \<sharp>* K'` `distinct zvec` `zvec \<sharp>* \<Psi>`
moreover have "A\<^sub>R \<sharp>* zvec" using `zvec \<sharp>* A\<^sub>R` by simp
moreover have "zvec \<sharp>* \<Psi>\<^sub>P" using `zvec \<sharp>* P` `A\<^sub>P \<sharp>* zvec` FrP
by(auto dest: extract_frame_fresh_chain)
moreover from `A\<^sub>P \<sharp>* zvec` have "zvec \<sharp>* A\<^sub>P" by simp
moreover note `zvec \<sharp>* A\<^sub>Q`
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K'\<lparr>N\<rparr> \<prec> R'"
by(rule_tac comm2_aux) assumption+
with P_trans FrP have "\<Psi> \<rhd> P \<parallel> R \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R')" using FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* R`
`A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* R` and `xvec \<sharp>* R` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>P \<sharp>* M` `A\<^sub>R \<sharp>* K'` `tvec \<sharp>* \<Psi>` `tvec \<sharp>* \<Psi>\<^sub>P` `tvec \<sharp>* R` `zvec \<sharp>* \<Psi>` `zvec \<sharp>* \<Psi>\<^sub>R` `zvec \<sharp>* P`
unfolding \<pi>
by(rule_tac Comm2) (assumption|auto)+
moreover from `\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K'\<lparr>N\<rparr> \<prec> R'` FrR `distinct A\<^sub>R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* P'` `A\<^sub>R \<sharp>* Q'` `A\<^sub>R \<sharp>* N` `A\<^sub>R \<sharp>* K'`
obtain \<Psi>' A\<^sub>R' \<Psi>\<^sub>R' where Req_r': "\<Psi>\<^sub>R \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'" and Fr_r': "extract_frame R' = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "A\<^sub>R' \<sharp>* \<Psi>" and "A\<^sub>R' \<sharp>* P'" and "A\<^sub>R' \<sharp>* Q'"
by(rule_tac C="(\<Psi>, P', Q')" and C'="\<Psi>" in expand_frame) auto
from P'_rel_q' have "((\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>', P', Q') \<in> Rel" by(rule Ext)
with Req_r' have "(\<Psi> \<otimes> \<Psi>\<^sub>R', P', Q') \<in> Rel" by(metis C3 Associativity composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* P'` `A\<^sub>R' \<sharp>* Q'` `A\<^sub>R' \<sharp>* \<Psi>` have "(\<Psi>, P' \<parallel> R', Q' \<parallel> R') \<in> Rel'"
by(rule_tac C1)
with `xvec \<sharp>* \<Psi>` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R'), \<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> R')) \<in> Rel'" by(rule_tac C2)
ultimately show ?case by blast
qed
qed
lemma bang_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and Rel' :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes "(\<Psi>, P, Q) \<in> Rel"
and "eqvt Rel'"
and "guarded P"
and "guarded Q"
and c_sim: "\<And>\<Psi>' S T. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> \<Psi>' \<rhd> S \<leadsto>[Rel] T"
and c_ext: "\<And>\<Psi>' S T \<Psi>''. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> (\<Psi>' \<otimes> \<Psi>'', S, T) \<in> Rel"
and c_sym: "\<And>\<Psi>' S T. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> (\<Psi>', T, S) \<in> Rel"
and Stat_eq: "\<And>\<Psi>' S T \<Psi>''. \<lbrakk>(\<Psi>', S, T) \<in> Rel; \<Psi>' \<simeq> \<Psi>''\<rbrakk> \<Longrightarrow> (\<Psi>'', S, T) \<in> Rel"
and Closed: "\<And>\<Psi>' S T p. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> ((p::name prm) \<bullet> \<Psi>', p \<bullet> S, p \<bullet> T) \<in> Rel"
and Assoc: "\<And>\<Psi>' S T U. (\<Psi>', S \<parallel> (T \<parallel> U), (S \<parallel> T) \<parallel> U) \<in> Rel"
and Par_pres: "\<And>\<Psi>' S T U. (\<Psi>', S, T) \<in> Rel \<Longrightarrow> (\<Psi>', S \<parallel> U, T \<parallel> U) \<in> Rel"
and Frame_par_pres: "\<And>\<Psi>' \<Psi>\<^sub>U S T U A\<^sub>U. \<lbrakk>(\<Psi>' \<otimes> \<Psi>\<^sub>U, S, T) \<in> Rel; extract_frame U = \<langle>A\<^sub>U, \<Psi>\<^sub>U\<rangle>; A\<^sub>U \<sharp>* \<Psi>'; A\<^sub>U \<sharp>* S; A\<^sub>U \<sharp>* T\<rbrakk> \<Longrightarrow>
(\<Psi>', U \<parallel> S, U \<parallel> T) \<in> Rel"
and Res_pres: "\<And>\<Psi>' S T xvec. \<lbrakk>(\<Psi>', S, T) \<in> Rel; xvec \<sharp>* \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>*xvec\<rparr>S, \<lparr>\<nu>*xvec\<rparr>T) \<in> Rel"
and Scope_ext: "\<And>xvec \<Psi>' S T. \<lbrakk>xvec \<sharp>* \<Psi>'; xvec \<sharp>* T\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>*xvec\<rparr>(S \<parallel> T), (\<lparr>\<nu>*xvec\<rparr>S) \<parallel> T) \<in> Rel"
and Trans: "\<And>\<Psi>' S T U. \<lbrakk>(\<Psi>', S, T) \<in> Rel; (\<Psi>', T, U) \<in> Rel\<rbrakk> \<Longrightarrow> (\<Psi>', S, U) \<in> Rel"
and Compose: "\<And>\<Psi>' S T U W. \<lbrakk>(\<Psi>', S, T) \<in> Rel; (\<Psi>', T, U) \<in> Rel'; (\<Psi>', U, W) \<in> Rel\<rbrakk> \<Longrightarrow> (\<Psi>', S, W) \<in> Rel'"
and C1: "\<And>\<Psi> S T U. \<lbrakk>(\<Psi>, S, T) \<in> Rel; guarded S; guarded T\<rbrakk> \<Longrightarrow> (\<Psi>, U \<parallel> !S, U \<parallel> !T) \<in> Rel'"
and Der: "\<And>\<Psi>' S \<pi> \<alpha> S' T. \<lbrakk>\<Psi>' \<rhd> !S \<longmapsto>\<pi> @ \<alpha> \<prec> S'; (\<Psi>', S, T) \<in> Rel; bn \<alpha> \<sharp>* \<Psi>'; bn \<alpha> \<sharp>* S; bn \<alpha> \<sharp>* T; guarded T; bn \<alpha> \<sharp>* subject \<alpha>\<rbrakk> \<Longrightarrow>
\<exists>\<pi>' T' U W. \<Psi>' \<rhd> !T \<longmapsto>\<pi>' @ \<alpha> \<prec> T' \<and> (\<Psi>', S', U \<parallel> !S) \<in> Rel \<and> (\<Psi>', T', W \<parallel> !T) \<in> Rel \<and>
(\<Psi>', U, W) \<in> Rel \<and> ((supp U)::name set) \<subseteq> supp S' \<and>
((supp W)::name set) \<subseteq> supp T'"
shows "\<Psi> \<rhd> R \<parallel> !P \<leadsto>[Rel'] R \<parallel> !Q"
using `eqvt Rel'`
proof(induct rule: simI[of _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> RQ')
from `bn \<alpha> \<sharp>* (R \<parallel> !P)` `bn \<alpha> \<sharp>* (R \<parallel> !Q)` have "bn \<alpha> \<sharp>* P" and "bn \<alpha> \<sharp>* (!Q)" and "bn \<alpha> \<sharp>* Q" and "bn \<alpha> \<sharp>* R" by simp+
from `\<Psi> \<rhd> R \<parallel> !Q \<longmapsto>\<pi> @ \<alpha> \<prec> RQ'` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* R` `bn \<alpha> \<sharp>* !Q` `bn \<alpha> \<sharp>* subject \<alpha>` show ?case
proof(induct rule: par_cases[where C=P])
case(c_par1 R' \<pi>' A\<^sub>Q \<Psi>\<^sub>Q)
from `extract_frame (!Q) = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` have "A\<^sub>Q = []" and "\<Psi>\<^sub>Q = S_bottom'" by simp+
with `\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>\<pi>' @ \<alpha> \<prec> R'` `bn \<alpha> \<sharp>* P` have "\<Psi> \<rhd> R \<parallel> !P \<longmapsto>append_at_end_prov_option \<pi>' A\<^sub>Q @ \<alpha> \<prec> (R' \<parallel> !P)"
by(rule_tac Par1) (assumption | simp)+
moreover from `(\<Psi>, P, Q) \<in> Rel` `guarded P` `guarded Q` have "(\<Psi>, R' \<parallel> !P, R' \<parallel> !Q) \<in> Rel'"
by(rule C1)
ultimately show ?case by blast
next
case(c_par2 Q' \<pi>' A\<^sub>R \<Psi>\<^sub>R)
have Q_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !Q \<longmapsto>\<pi>' @ \<alpha> \<prec> Q'" and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact+
with `bn \<alpha> \<sharp>* R` `A\<^sub>R \<sharp>* \<alpha>` have "bn \<alpha> \<sharp>* \<Psi>\<^sub>R" by(force dest: extract_frame_fresh_chain)
with Q_trans `(\<Psi>, P, Q) \<in> Rel` `bn \<alpha> \<sharp>* \<Psi>``bn \<alpha> \<sharp>* P` `bn \<alpha> \<sharp>* Q` `guarded P` `bn \<alpha> \<sharp>* subject \<alpha>`
obtain P' \<pi>'' S T where P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'" and "(\<Psi> \<otimes> \<Psi>\<^sub>R, P', T \<parallel> !P) \<in> Rel"
and "(\<Psi> \<otimes> \<Psi>\<^sub>R, Q', S \<parallel> !Q) \<in> Rel" and "(\<Psi> \<otimes> \<Psi>\<^sub>R, S, T) \<in> Rel"
and suppT: "((supp T)::name set) \<subseteq> supp P'" and suppS: "((supp S)::name set) \<subseteq> supp Q'"
by(drule_tac c_sym) (auto dest: Der c_ext)
from P_trans FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* \<alpha>` `bn \<alpha> \<sharp>* R` have "\<Psi> \<rhd> R \<parallel> !P \<longmapsto>append_at_front_prov_option \<pi>'' A\<^sub>R @ \<alpha> \<prec> (R \<parallel> P')"
by(rule_tac Par2) auto
moreover
{
from `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* (!Q)` `A\<^sub>R \<sharp>* \<alpha>` P_trans Q_trans `bn \<alpha> \<sharp>* subject \<alpha>` `distinct(bn \<alpha>)` have "A\<^sub>R \<sharp>* P'" and "A\<^sub>R \<sharp>* Q'"
by(force dest: free_fresh_chain_derivative)+
from `(\<Psi> \<otimes> \<Psi>\<^sub>R, P', T \<parallel> !P) \<in> Rel` FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P'` `A\<^sub>R \<sharp>* P` suppT have "(\<Psi>, R \<parallel> P', R \<parallel> (T \<parallel> !P)) \<in> Rel"
by(rule_tac Frame_par_pres) (auto simp add: fresh_star_def fresh_def psi.supp)
hence "(\<Psi>, R \<parallel> P', (R \<parallel> T) \<parallel> !P) \<in> Rel" by(blast intro: Assoc Trans)
moreover from `(\<Psi>, P, Q) \<in> Rel` `guarded P` `guarded Q` have "(\<Psi>, (R \<parallel> T) \<parallel> !P, (R \<parallel> T) \<parallel> !Q) \<in> Rel'"
by(rule C1)
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>R, Q', S \<parallel> !Q) \<in> Rel` `(\<Psi> \<otimes> \<Psi>\<^sub>R, S, T) \<in> Rel` have "(\<Psi> \<otimes> \<Psi>\<^sub>R, Q', T \<parallel> !Q) \<in> Rel"
by(blast intro: Par_pres Trans)
with FrR `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P'` `A\<^sub>R \<sharp>* Q'` `A\<^sub>R \<sharp>* (!Q)` suppT suppS have "(\<Psi>, R \<parallel> Q', R \<parallel> (T \<parallel> !Q)) \<in> Rel"
by(rule_tac Frame_par_pres) (auto simp add: fresh_star_def fresh_def psi.supp)
hence "(\<Psi>, R \<parallel> Q', (R \<parallel> T) \<parallel> !Q) \<in> Rel" by(blast intro: Assoc Trans)
ultimately have "(\<Psi>, R \<parallel> P', R \<parallel> Q') \<in> Rel'" by(blast intro: c_sym Compose)
}
ultimately show ?case by blast
next
case(c_comm1 \<Psi>\<^sub>Q M N R' A\<^sub>R \<Psi>\<^sub>R K xvec Q' A\<^sub>Q yvec zvec)
from `extract_frame (!Q) = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` have "A\<^sub>Q = []" and "\<Psi>\<^sub>Q = S_bottom'" by simp+
have R_trans: "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> R'" and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact+
have Q_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !Q \<longmapsto>Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'" by fact
from FrR `xvec \<sharp>* R` `A\<^sub>R \<sharp>* xvec` have "xvec \<sharp>* \<Psi>\<^sub>R" by(force dest: extract_frame_fresh_chain)
with Q_trans `(\<Psi>, P, Q) \<in> Rel` `xvec \<sharp>* \<Psi>``xvec \<sharp>* P` `xvec \<sharp>* (!Q)` `guarded P` `xvec \<sharp>* K`
obtain P' \<pi> S T where P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !P \<longmapsto>\<pi> @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P'" and "(\<Psi> \<otimes> \<Psi>\<^sub>R, P', T \<parallel> !P) \<in> Rel"
and "(\<Psi> \<otimes> \<Psi>\<^sub>R, Q', S \<parallel> !Q) \<in> Rel" and "(\<Psi> \<otimes> \<Psi>\<^sub>R, S, T) \<in> Rel"
and suppT: "((supp T)::name set) \<subseteq> supp P'" and suppS: "((supp S)::name set) \<subseteq> supp Q'"
apply(drule_tac c_sym)
apply(drule_tac Der)
apply(rule c_ext)
by auto
from P_trans
obtain tvec K' where \<pi>: "\<pi> = Some(\<langle>([]); tvec, K'\<rangle>)" and "distinct tvec" and "tvec \<sharp>* \<Psi>" and "tvec \<sharp>* K" and "tvec \<sharp>* P" and "tvec \<sharp>* N" and "tvec \<sharp>* P'" and "tvec \<sharp>* \<Psi>\<^sub>R" and MeqK: "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<one> \<turnstile> K' \<leftrightarrow> K" and "tvec \<sharp>* A\<^sub>R" and "tvec \<sharp>* zvec" and "tvec \<sharp>* R" and "tvec \<sharp>* xvec" and "tvec \<sharp>* yvec" and "tvec \<sharp>* A\<^sub>R"
unfolding residual_inject
by(frule_tac output_provenance'[where C="(\<Psi>,\<Psi>\<^sub>R,A\<^sub>R,R,zvec,\<Psi>\<^sub>P,xvec,yvec)"]) (auto simp add: frame.inject)
have "A\<^sub>R \<sharp>* K'" using `A\<^sub>R \<sharp>* P` P_trans `tvec \<sharp>* A\<^sub>R`
unfolding \<pi>
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'' frame_chain_fresh_chain)
have "yvec \<sharp>* K'" using `yvec \<sharp>* P` P_trans `tvec \<sharp>* yvec`
unfolding \<pi>
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'' frame_chain_fresh_chain)
from MeqK have "\<Psi> \<otimes> \<Psi>\<^sub>R \<otimes> \<one> \<turnstile> K' \<leftrightarrow> K"
by (metis Associativity stat_eq_ent)
hence "\<Psi> \<otimes> \<one> \<otimes> \<Psi>\<^sub>R \<turnstile> K' \<leftrightarrow> K"
by (metis Commutativity composition_sym stat_eq_ent)
note `\<Psi> \<otimes> \<Psi>\<^sub>R \<otimes> \<one> \<turnstile> K' \<leftrightarrow> K`
moreover have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; yvec, K\<rangle>) @ K'\<lparr>N\<rparr> \<prec> R'"
using R_trans `\<Psi> \<otimes> \<one> \<otimes> \<Psi>\<^sub>R \<turnstile> K' \<leftrightarrow> K` FrR `distinct A\<^sub>R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* K'`
`distinct yvec` `yvec \<sharp>* A\<^sub>R` `yvec \<sharp>* A\<^sub>R` `yvec \<sharp>* \<Psi>` `yvec \<sharp>* K'` `yvec \<sharp>* R`
unfolding `\<Psi>\<^sub>Q = S_bottom'`
by(rule_tac comm2_aux[where A\<^sub>P="[]" and A\<^sub>Q="[]"]) (assumption|auto intro!: Frame_stat_imp_refl)+
ultimately have "\<Psi> \<rhd> R \<parallel> !P \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> P')"
using P_trans `\<Psi>\<^sub>Q = S_bottom'` `xvec \<sharp>* R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* M` `A\<^sub>R \<sharp>* P` FrR
`yvec \<sharp>* \<Psi>` `yvec \<sharp>* \<Psi>\<^sub>R` `yvec \<sharp>* P` `tvec \<sharp>* \<Psi>` `tvec \<sharp>* R`
unfolding \<pi>
by(rule_tac Comm1[where A\<^sub>Q="[]"]) (assumption | simp)+
moreover from `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* (!Q)` `A\<^sub>R \<sharp>* xvec` P_trans Q_trans `xvec \<sharp>* K` `distinct xvec`
have "A\<^sub>R \<sharp>* P'" and "A\<^sub>R \<sharp>* Q'" by(force dest: output_fresh_chain_derivative)+
moreover with R_trans FrR `distinct A\<^sub>R` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* N` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* (!Q)` `A\<^sub>R \<sharp>* M`
obtain \<Psi>' A\<^sub>R' \<Psi>\<^sub>R' where Fr_r': "extract_frame R' = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>" and "\<Psi>\<^sub>R \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'" and "A\<^sub>R' \<sharp>* \<Psi>"
and "A\<^sub>R' \<sharp>* P'" and "A\<^sub>R' \<sharp>* Q'" and "A\<^sub>R' \<sharp>* P" and "A\<^sub>R' \<sharp>* Q"
by(rule_tac C="(\<Psi>, P, P', Q, Q')" and C'=\<Psi> in expand_frame) auto
moreover
{
from `(\<Psi> \<otimes> \<Psi>\<^sub>R, P', T \<parallel> !P) \<in> Rel` have "((\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>', P', T \<parallel> !P) \<in> Rel" by(rule c_ext)
with `\<Psi>\<^sub>R \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R', P', T \<parallel> !P) \<in> Rel"
by(metis Associativity Stat_eq composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P'` `A\<^sub>R' \<sharp>* P` suppT have "(\<Psi>, R' \<parallel> P', R' \<parallel> (T \<parallel> !P)) \<in> Rel"
by(rule_tac Frame_par_pres) (auto simp add: fresh_star_def fresh_def psi.supp)
hence "(\<Psi>, R' \<parallel> P', (R' \<parallel> T) \<parallel> !P) \<in> Rel" by(blast intro: Assoc Trans)
with `xvec \<sharp>* \<Psi>` `xvec \<sharp>* P` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> P'), (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> T)) \<parallel> !P) \<in> Rel"
by(metis Res_pres psi_fresh_vec Scope_ext Trans)
moreover from `(\<Psi>, P, Q) \<in> Rel` `guarded P` `guarded Q` have "(\<Psi>, (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> T)) \<parallel> !P, (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> T)) \<parallel> !Q) \<in> Rel'"
by(rule C1)
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>R, Q', S \<parallel> !Q) \<in> Rel` `(\<Psi> \<otimes> \<Psi>\<^sub>R, S, T) \<in> Rel` have "(\<Psi> \<otimes> \<Psi>\<^sub>R, Q', T \<parallel> !Q) \<in> Rel"
by(blast intro: Par_pres Trans)
hence "((\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>', Q', T \<parallel> !Q) \<in> Rel" by(rule c_ext)
with `\<Psi>\<^sub>R \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R', Q', T \<parallel> !Q) \<in> Rel"
by(metis Associativity Stat_eq composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P'` `A\<^sub>R' \<sharp>* Q'` `A\<^sub>R' \<sharp>* Q` suppT suppS have "(\<Psi>, R' \<parallel> Q', R' \<parallel> (T \<parallel> !Q)) \<in> Rel"
by(rule_tac Frame_par_pres) (auto simp add: fresh_star_def fresh_def psi.supp)
hence "(\<Psi>, R' \<parallel> Q', (R' \<parallel> T) \<parallel> !Q) \<in> Rel" by(blast intro: Assoc Trans)
with `xvec \<sharp>* \<Psi>` `xvec \<sharp>* (!Q)` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> Q'), (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> T)) \<parallel> !Q) \<in> Rel"
by(metis Res_pres psi_fresh_vec Scope_ext Trans)
ultimately have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> P'), \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> Q')) \<in> Rel'" by(blast intro: c_sym Compose)
}
ultimately show ?case by blast
next
case(c_comm2 \<Psi>\<^sub>Q M xvec N R' A\<^sub>R \<Psi>\<^sub>R K Q' A\<^sub>Q yvec zvec)
from `extract_frame (!Q) = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` have "A\<^sub>Q = []" and "\<Psi>\<^sub>Q = S_bottom'" by simp+
have R_trans: "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'" and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact+
then obtain p \<Psi>' A\<^sub>R' \<Psi>\<^sub>R' where S: "set p \<subseteq> set xvec \<times> set(p \<bullet> xvec)"
and Fr_r': "extract_frame R' = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>" and "(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'" and "A\<^sub>R' \<sharp>* \<Psi>"
and "A\<^sub>R' \<sharp>* N" and "A\<^sub>R' \<sharp>* R'" and "A\<^sub>R' \<sharp>* P" and "A\<^sub>R' \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>"
and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* Q" and "xvec \<sharp>* A\<^sub>R'" and "(p \<bullet> xvec) \<sharp>* A\<^sub>R'"
and "distinct_perm p" and "(p \<bullet> xvec) \<sharp>* R'" and "(p \<bullet> xvec) \<sharp>* N"
using `distinct A\<^sub>R` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* M` `A\<^sub>R \<sharp>* xvec` `A\<^sub>R \<sharp>* N` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* (!Q)`
`xvec \<sharp>* \<Psi>` `xvec \<sharp>* P` `xvec \<sharp>* (!Q)` `xvec \<sharp>* R` `xvec \<sharp>* M` `distinct xvec`
by(rule_tac C="(\<Psi>, P, Q)" and C'="(\<Psi>, P, Q)" in expand_frame) (assumption | simp)+
have Q_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !Q \<longmapsto>Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> Q'" by fact
with Q_trans S `(p \<bullet> xvec) \<sharp>* N` have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !Q \<longmapsto>Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) @ K\<lparr>(p \<bullet> N)\<rparr> \<prec> (p \<bullet> Q')" using `distinct_perm p` `xvec \<sharp>* (!Q)` `(p \<bullet> xvec) \<sharp>* Q`
by(rule_tac input_alpha) auto
with `(\<Psi>, P, Q) \<in> Rel` `guarded P`
obtain P' \<pi> S T where P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> !P \<longmapsto>\<pi> @ K\<lparr>(p \<bullet> N)\<rparr> \<prec> P'" and "(\<Psi> \<otimes> \<Psi>\<^sub>R, P', T \<parallel> !P) \<in> Rel"
and "(\<Psi> \<otimes> \<Psi>\<^sub>R, (p \<bullet> Q'), S \<parallel> !Q) \<in> Rel" and "(\<Psi> \<otimes> \<Psi>\<^sub>R, S, T) \<in> Rel"
and suppT: "((supp T)::name set) \<subseteq> supp P'" and suppS: "((supp S)::name set) \<subseteq> supp(p \<bullet> Q')"
by(drule_tac c_sym) (auto dest: Der c_ext)
from P_trans
obtain tvec K' where \<pi>: "\<pi> = Some(\<langle>([]); tvec, K'\<rangle>)" and "distinct tvec" and "tvec \<sharp>* \<Psi>" and "tvec \<sharp>* K" and "tvec \<sharp>* P" and "tvec \<sharp>* (p\<bullet>N)" and "tvec \<sharp>* N" and "tvec \<sharp>* P'" and "tvec \<sharp>* \<Psi>\<^sub>R" and MeqK: "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<one> \<turnstile> K \<leftrightarrow> K'" and "tvec \<sharp>* A\<^sub>R" and "tvec \<sharp>* zvec" and "tvec \<sharp>* R" and "tvec \<sharp>* xvec" and "tvec \<sharp>* yvec" and "tvec \<sharp>* A\<^sub>R"
by(frule_tac input_provenance'[where C="(\<Psi>,\<Psi>\<^sub>R,A\<^sub>R,R,p\<bullet>N,N,zvec,\<Psi>\<^sub>P,xvec,yvec)"]) (auto simp add: frame.inject)
have "A\<^sub>R \<sharp>* K'" using `A\<^sub>R \<sharp>* P` P_trans `tvec \<sharp>* A\<^sub>R`
unfolding \<pi>
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'' frame_chain_fresh_chain)
have "yvec \<sharp>* K'" using `yvec \<sharp>* P` P_trans `tvec \<sharp>* yvec`
unfolding \<pi>
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'' frame_chain_fresh_chain)
from MeqK have "\<Psi> \<otimes> \<Psi>\<^sub>R \<otimes> \<one> \<turnstile> K \<leftrightarrow> K'"
by (metis Associativity stat_eq_ent)
hence "\<Psi> \<otimes> \<one> \<otimes> \<Psi>\<^sub>R \<turnstile> K \<leftrightarrow> K'"
by (metis Commutativity composition_sym stat_eq_ent)
note `\<Psi> \<otimes> \<Psi>\<^sub>R \<otimes> \<one> \<turnstile> K \<leftrightarrow> K'`
moreover have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; yvec, K\<rangle>) @ K'\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'"
using R_trans `\<Psi> \<otimes> \<one> \<otimes> \<Psi>\<^sub>R \<turnstile> K \<leftrightarrow> K'` FrR `distinct A\<^sub>R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* K'`
`distinct yvec` `yvec \<sharp>* A\<^sub>R` `yvec \<sharp>* A\<^sub>R` `yvec \<sharp>* \<Psi>` `yvec \<sharp>* K'` `yvec \<sharp>* R`
unfolding `\<Psi>\<^sub>Q = S_bottom'`
by(rule_tac comm1_aux[where A\<^sub>P="[]" and A\<^sub>Q="[]"]) (assumption|auto intro!: Frame_stat_imp_refl)+
with S `(p \<bullet> xvec) \<sharp>* N` `(p \<bullet> xvec) \<sharp>* R'` have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; yvec, K\<rangle>) @ K'\<lparr>\<nu>*(p \<bullet> xvec)\<rparr>\<langle>(p \<bullet> N)\<rangle> \<prec> (p \<bullet> R')"
apply(simp add: residual_inject)
by(subst bound_output_chain_alpha''[symmetric]) auto
ultimately have "\<Psi> \<rhd> R \<parallel> !P \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> R') \<parallel> P')"
using P_trans FrR `\<Psi>\<^sub>Q = S_bottom'` `(p \<bullet> xvec) \<sharp>* P` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* M` `A\<^sub>R \<sharp>* P`
`yvec \<sharp>* \<Psi>` `yvec \<sharp>* \<Psi>\<^sub>R` `yvec \<sharp>* P` `tvec \<sharp>* \<Psi>` `tvec \<sharp>* R`
unfolding \<pi>
by(rule_tac Comm2) (assumption | simp)+
moreover from `A\<^sub>R' \<sharp>* P` `A\<^sub>R' \<sharp>* Q` `A\<^sub>R' \<sharp>* N` S `xvec \<sharp>* A\<^sub>R'` `(p \<bullet> xvec) \<sharp>* A\<^sub>R'` P_trans Q_trans `distinct_perm p` have "A\<^sub>R' \<sharp>* P'" and "A\<^sub>R' \<sharp>* Q'"
apply -
apply(drule_tac input_fresh_chain_derivative, auto)
apply(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, symmetric, of _ _ p], simp)
by(force dest: input_fresh_chain_derivative)+
from `xvec \<sharp>* P` `(p \<bullet> xvec) \<sharp>* N` P_trans `distinct_perm p` have "(p \<bullet> xvec) \<sharp>* (p \<bullet> P')"
apply(drule_tac input_fresh_chain_derivative, simp)
apply(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, symmetric, of _ _ p], simp)
by(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, symmetric, of _ _ p], simp)
{
from `(\<Psi> \<otimes> \<Psi>\<^sub>R, P', T \<parallel> !P) \<in> Rel` have "(p \<bullet> (\<Psi> \<otimes> \<Psi>\<^sub>R), (p \<bullet> P'), p \<bullet> (T \<parallel> !P)) \<in> Rel"
by(rule Closed)
with `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` `xvec \<sharp>* P` `(p \<bullet> xvec) \<sharp>* P` S have "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R), p \<bullet> P', (p \<bullet> T) \<parallel> !P) \<in> Rel"
by(simp add: eqvts)
hence "((\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>', p \<bullet> P', (p \<bullet> T) \<parallel> !P) \<in> Rel" by(rule c_ext)
with `(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R', (p \<bullet> P'), (p \<bullet> T) \<parallel> !P) \<in> Rel"
by(metis Associativity Stat_eq composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P'` `A\<^sub>R' \<sharp>* P` `xvec \<sharp>* A\<^sub>R'` `(p \<bullet> xvec) \<sharp>* A\<^sub>R'` S `distinct_perm p` suppT
have "(\<Psi>, R' \<parallel> (p \<bullet> P'), R' \<parallel> ((p \<bullet> T) \<parallel> !P)) \<in> Rel"
apply(rule_tac Frame_par_pres)
apply(assumption | simp add: fresh_chain_simps)+
by(auto simp add: fresh_star_def fresh_def)
hence "(\<Psi>, R' \<parallel> (p \<bullet> P'), (R' \<parallel> (p \<bullet> T)) \<parallel> !P) \<in> Rel" by(blast intro: Assoc Trans)
with `xvec \<sharp>* \<Psi>` `xvec \<sharp>* P` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> (p \<bullet> P')), (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> (p \<bullet> T))) \<parallel> !P) \<in> Rel"
by(metis Res_pres psi_fresh_vec Scope_ext Trans)
hence "(\<Psi>, \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> R') \<parallel> P'), (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> (p \<bullet> T))) \<parallel> !P) \<in> Rel"
using `(p \<bullet> xvec) \<sharp>* R'` `(p \<bullet> xvec) \<sharp>* (p \<bullet> P')` S `distinct_perm p`
apply(erule_tac rev_mp) by(subst res_chain_alpha[of p]) auto
moreover from `(\<Psi>, P, Q) \<in> Rel` `guarded P` `guarded Q` have "(\<Psi>, (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> (p \<bullet> T))) \<parallel> !P, (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> (p \<bullet> T))) \<parallel> !Q) \<in> Rel'"
by(rule C1)
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>R, (p \<bullet> Q'), S \<parallel> !Q) \<in> Rel` `(\<Psi> \<otimes> \<Psi>\<^sub>R, S, T) \<in> Rel` have "(\<Psi> \<otimes> \<Psi>\<^sub>R, (p \<bullet> Q'), T \<parallel> !Q) \<in> Rel"
by(blast intro: Par_pres Trans)
hence "(p \<bullet> (\<Psi> \<otimes> \<Psi>\<^sub>R), p \<bullet> p \<bullet> Q', p \<bullet> (T \<parallel> !Q)) \<in> Rel" by(rule Closed)
with S `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` `xvec \<sharp>* (!Q)` `(p \<bullet> xvec) \<sharp>* Q` `distinct_perm p`
have "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R), Q', (p \<bullet> T) \<parallel> !Q) \<in> Rel" by(simp add: eqvts)
hence "((\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> \<Psi>', Q', (p \<bullet> T) \<parallel> !Q) \<in> Rel" by(rule c_ext)
with `(p \<bullet> \<Psi>\<^sub>R) \<otimes> \<Psi>' \<simeq> \<Psi>\<^sub>R'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R', Q', (p \<bullet> T) \<parallel> !Q) \<in> Rel"
by(metis Associativity Stat_eq composition_sym)
with Fr_r' `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P'` `A\<^sub>R' \<sharp>* Q'` `A\<^sub>R' \<sharp>* Q` suppT suppS `xvec \<sharp>* A\<^sub>R'` `(p \<bullet> xvec) \<sharp>* A\<^sub>R'` S `distinct_perm p`
have "(\<Psi>, R' \<parallel> Q', R' \<parallel> ((p \<bullet> T) \<parallel> !Q)) \<in> Rel"
apply(rule_tac Frame_par_pres)
apply(assumption | simp)+
apply(simp add: fresh_chain_simps)
by(auto simp add: fresh_star_def fresh_def)
hence "(\<Psi>, R' \<parallel> Q', (R' \<parallel> (p \<bullet> T)) \<parallel> !Q) \<in> Rel" by(blast intro: Assoc Trans)
with `xvec \<sharp>* \<Psi>` `xvec \<sharp>* (!Q)` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> Q'), (\<lparr>\<nu>*xvec\<rparr>(R' \<parallel> (p \<bullet> T))) \<parallel> !Q) \<in> Rel"
by(metis Res_pres psi_fresh_vec Scope_ext Trans)
ultimately have "(\<Psi>, \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> R') \<parallel> P'), \<lparr>\<nu>*xvec\<rparr>(R' \<parallel> Q')) \<in> Rel'" by(blast intro: c_sym Compose)
}
ultimately show ?case by blast
qed
qed
end
end