-
Notifications
You must be signed in to change notification settings - Fork 11
/
train_planeTR.py
318 lines (256 loc) · 11.9 KB
/
train_planeTR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import scipy.io as sio
import os
import cv2
import time
import random
import pickle
import numpy as np
from PIL import Image
import yaml
import sys
import torch
from torch.utils import data
import torch.nn.functional as F
import torchvision.transforms as tf
from utils.utils import Set_Config, Set_Logger, Set_Ckpt_Code_Debug_Dir
from models.planeTR_HRNet import PlaneTR_HRNet as PlaneTR
from models.ScanNetV1_PlaneDataset import scannetv1_PlaneDataset
from utils.misc import AverageMeter, get_optimizer, get_coordinate_map
from models.matcher import HungarianMatcher
from models.detrStyleLoss import SetCriterion
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import logging
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--mode', default='train', type=str,
help='train / eval')
parser.add_argument('--backbone', default='hrnet', type=str,
help='only support hrnet now')
parser.add_argument('--cfg_path', default='configs/config_planeTR_train.yaml', type=str,
help='full path of the config file')
args = parser.parse_args()
NUM_GPUS = torch.cuda.device_count()
torch.backends.cudnn.benchmark = True
def load_dataset(cfg, args):
transforms = tf.Compose([
tf.ToTensor(),
tf.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
assert NUM_GPUS > 0
if args.mode == 'train':
subset = 'train'
else:
subset = 'val'
if NUM_GPUS > 1:
is_shuffle = False
else:
is_shuffle = subset == 'train'
if cfg.dataset.name == 'scannet':
dataset = scannetv1_PlaneDataset
else:
print("undefined dataset!")
exit()
predict_center = cfg.model.if_predict_center
if NUM_GPUS > 1:
assert args.mode == 'train'
dataset_plane = dataset(subset=subset, transform=transforms, root_dir=cfg.dataset.root_dir, predict_center=predict_center)
data_sampler = torch.utils.data.distributed.DistributedSampler(dataset_plane)
loaders = torch.utils.data.DataLoader(dataset_plane, batch_size=cfg.dataset.batch_size, shuffle=is_shuffle,
num_workers=cfg.dataset.num_workers, pin_memory=True, sampler=data_sampler)
else:
loaders = data.DataLoader(
dataset(subset=subset, transform=transforms, root_dir=cfg.dataset.root_dir, predict_center=predict_center),
batch_size=cfg.dataset.batch_size, shuffle=is_shuffle, num_workers=cfg.dataset.num_workers, pin_memory=True
)
data_sampler = None
return loaders, data_sampler
def train(cfg, logger):
logger.info('*' * 40)
localtime = time.asctime(time.localtime(time.time()))
logger.info(localtime)
logger.info('start training......')
logger.info('*' * 40)
model_name = (cfg.save_path).split('/')[-1]
# set random seed
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# set ckpt/code/debug dir to save
checkpoint_dir = Set_Ckpt_Code_Debug_Dir(cfg, args, logger)
# build network
network = PlaneTR(cfg)
# load nets into gpu
if NUM_GPUS > 1:
network = DDP(network.to(device), device_ids=[args.local_rank], find_unused_parameters=True)
else:
network = network.to(device)
# load pretrained weights if existed
if not (cfg.resume_dir == 'None'):
loc = 'cuda:{}'.format(args.local_rank)
model_dict = torch.load(cfg.resume_dir, map_location=loc)
model_dict_ = {}
if NUM_GPUS > 1:
for k, v in model_dict.items():
k_ = 'module.' + k
model_dict_[k_] = v
network.load_state_dict(model_dict_)
else:
network.load_state_dict(model_dict)
# set up optimizers
optimizer = get_optimizer(network.parameters(), cfg.solver)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg.solver.lr_step, gamma=cfg.solver.gamma)
# build data loader
data_loader, data_sampler = load_dataset(cfg, args)
# set network state
if_predict_center = cfg.model.if_predict_center
use_lines = cfg.model.use_lines
network.train(not cfg.model.fix_bn)
k_inv_dot_xy1 = get_coordinate_map(device)
# set losses and cost matcher
matcher = HungarianMatcher(cost_class=1., cost_param=1.)
weight_dict = {'loss_ce': 1, 'loss_param_l1': 1, 'loss_param_cos': 5, 'loss_embedding': 5,
'loss_Q': 2, 'loss_center_instance': 1, 'loss_center_pixel': 1, 'loss_depth_pixel': 1} # run 8
losses = ['labels', 'param', 'embedding', 'Q']
if if_predict_center:
losses.append('center')
if cfg.model.if_predict_depth:
losses.append('depth')
criterion = SetCriterion(num_classes=2, matcher=matcher, weight_dict=weight_dict, eos_coef=1, losses=losses,
k_inv_dot_xy1=k_inv_dot_xy1)
logger.info(f"used losses = {weight_dict}")
# main loop
start_epoch = 0
for epoch in range(start_epoch, cfg.num_epochs):
if NUM_GPUS > 1:
data_sampler.set_epoch(epoch)
# -------------------------------------- time log
batch_time = AverageMeter()
# -------------------------------------- loss log
losses = AverageMeter()
metric_tracker = {'Classify_instance': ('loss_ce', AverageMeter()),
'Pull': ('loss_pull', AverageMeter()),
'Push': ('loss_push', AverageMeter()),
'PlaneParam_L1': ('loss_param_l1', AverageMeter()),
'PlaneParam_Cos': ('loss_param_cos', AverageMeter()),
'PlaneParam_Q': ('loss_Q', AverageMeter()),
'Center_Pixel': ('loss_center_pixel', AverageMeter()),
'Center_Plane': ('loss_center_instance', AverageMeter()),
'Depth_pixel': ('loss_depth_pixel', AverageMeter()),
'PlaneParam_Angle': ('mean_angle', AverageMeter())}
tic = time.time()
for iter, sample in enumerate(data_loader):
image = sample['image'].to(device) # b, 3, h, w
instance = sample['instance'].to(device)
# semantic = sample['semantic'].to(device)
gt_depth = sample['depth'].to(device) # b, 1, h, w
gt_seg = sample['gt_seg'].to(device)
# gt_plane_parameters = sample['plane_parameters'].to(device)
valid_region = sample['valid_region'].to(device)
gt_plane_instance_parameter = sample['plane_instance_parameter'].to(device)
gt_plane_instance_centers = sample['gt_plane_instance_centers'].to(device)
gt_plane_pixel_centers = sample['gt_plane_pixel_centers'].to(device)
num_planes = sample['num_planes']
data_path = sample['data_path']
if use_lines:
num_lines = sample['num_lines']
lines = sample['lines'].to(device) # 200, 4
else:
num_lines = None
lines = None
# forward pass
outputs = network(image, lines, num_lines)
# -------------------------------------- data process
bs = image.size(0)
targets = []
for i in range(bs):
gt_plane_num = int(num_planes[i])
tgt = torch.ones([gt_plane_num, 6], dtype=torch.float32, device=device)
tgt[:, 0] = 1
tgt[:, 1:4] = gt_plane_instance_parameter[i, :gt_plane_num, :]
tgt[:, 4:] = gt_plane_instance_centers[i, :gt_plane_num, :]
tgt = tgt.contiguous()
targets.append(tgt)
outputs['gt_instance_map'] = instance
outputs['gt_depth'] = gt_depth
outputs['gt_plane_pixel_centers'] = gt_plane_pixel_centers
outputs['valid_region'] = valid_region
if 'aux_outputs' in outputs.keys():
for i, _ in enumerate(outputs['aux_outputs']):
outputs['aux_outputs'][i]['gt_instance_map'] = instance
# calculate losses
loss_dict, _, loss_dict_aux = criterion(outputs, targets)
if loss_dict_aux:
loss_lastLayer = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_aux = 0.
aux_weight = cfg.aux_weight
for li in range(len(loss_dict_aux)):
loss_aux_li = sum(loss_dict_aux[li][k] * weight_dict[k] for k in loss_dict_aux[li].keys() if k in weight_dict)
loss_aux += (loss_aux_li * aux_weight)
loss_final = loss_lastLayer + loss_aux
else:
loss_final = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# -------------------------------------- Backward
optimizer.zero_grad()
loss_final.backward()
optimizer.step()
# -------------------------------------- update losses and metrics
losses.update(loss_final.item())
for name_log in metric_tracker.keys():
name_loss = metric_tracker[name_log][0]
if name_loss in loss_dict.keys():
loss_cur = float(loss_dict[name_loss])
metric_tracker[name_log][1].update(loss_cur)
# -------------------------------------- update time
batch_time.update(time.time() - tic)
tic = time.time()
# ------------------------------------ log information
if iter % cfg.print_interval == 0 and args.local_rank == 0:
# print(data_path)
log_str = f"[{epoch:2d}][{iter:5d}/{len(data_loader):5d}] " \
f"Time: {batch_time.val:.2f} ({batch_time.avg:.2f}) " \
f"Loss: {losses.val:.4f} ({losses.avg:.4f}) "
for name_log, (_, tracker) in metric_tracker.items():
log_str += f"{name_log}: {tracker.val:.4f} ({tracker.avg:.4f}) "
logger.info(log_str)
print(f"[{model_name}-> {epoch:2d}][{iter:5d}/{len(data_loader):5d}] "
f"Time: {batch_time.val:.2f} ({batch_time.avg:.2f}) "
f"Loss: {losses.val:.4f} ({losses.avg:.4f}) ")
logger.info('-------------------------------------')
lr_scheduler.step()
# log for one epoch
logger.info('*' * 40)
log_str = f"[{epoch:2d}] " \
f"Loss: {losses.avg:.4f} "
for name_log, (_, tracker) in metric_tracker.items():
log_str += f"{name_log}: {tracker.avg:.4f} "
logger.info(log_str)
logger.info('*' * 40)
# save checkpoint
if cfg.save_model and args.local_rank == 0:
if (epoch + 1) % cfg.save_step == 0 or epoch >= 58:
if NUM_GPUS > 1:
torch.save(network.module.state_dict(), os.path.join(checkpoint_dir, f"network_epoch_{epoch}.pt"))
else:
torch.save(network.state_dict(), os.path.join(checkpoint_dir, f"network_epoch_{epoch}.pt"))
if __name__ == '__main__':
cfg = Set_Config(args)
# ------------------------------------------- set distribution
if args.mode == 'train' and NUM_GPUS > 1:
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
print('initialize DDP successfully... ')
# ------------------------------------------ set logger
logger = Set_Logger(args, cfg)
# ------------------------------------------ main
if args.mode == 'train':
train(cfg, logger)
else:
exit()