-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_NopeSAC.py
272 lines (238 loc) · 9.07 KB
/
train_NopeSAC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import os
import torch
torch.multiprocessing.set_sharing_strategy("file_system")
from collections import OrderedDict
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
launch,
)
import copy
from typing import Any, Dict, List, Set
import itertools
from detectron2.evaluation import inference_on_dataset
from detectron2.utils.logger import setup_logger
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.solver.build import get_default_optimizer_params
# required so that .register() calls are executed in module scope
import NopeSAC_Net.modeling # noqa
from NopeSAC_Net.config import get_sparseplane_cfg_defaults
from NopeSAC_Net.data import PlaneRCNNMapper as dataMapper
from NopeSAC_Net.evaluation import MP3DEvaluator
import random
import numpy as np
import shutil
import time
import logging
logger = logging.getLogger(__name__)
if not logger.isEnabledFor(logging.INFO):
setup_logger(name=__name__)
def copy_all_code(src_dir, dst_dir, include_dir=['configs', 'NopeSAC_Net', 'tools', 'configsV2', 'configsV3']):
for files in os.listdir(src_dir):
name = os.path.join(src_dir, files)
back_name = os.path.join(dst_dir, files)
if os.path.isfile(name):
if 'LICENSE' in name:
continue
if not os.path.exists(back_name):
shutil.copy(name, back_name)
else:
raise
else:
if files in include_dir:
if not os.path.exists(back_name):
# os.makedirs(back_name)
shutil.copytree(name, back_name)
else:
raise
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name):
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type # defined in register_mp3d.py
if evaluator_type == "mp3d":
return MP3DEvaluator(dataset_name, cfg, True, output_dir=cfg.OUTPUT_DIR)
else:
raise ValueError("The evaluator type is wrong")
@classmethod
def build_test_loader(cls, cfg, dataset_name):
return build_detection_test_loader(
cfg,
dataset_name,
mapper=dataMapper(cfg, False, dataset_names=(dataset_name,)),
)
@classmethod
def build_train_loader(cls, cfg):
dataset_names = cfg.DATASETS.TRAIN
return build_detection_train_loader(
cfg, mapper=dataMapper(cfg, True, dataset_names=dataset_names)
)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
count = 0.
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if "sem_seg_head" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.SEM_SEG_HEAD_MULTIPLIER
if "plane_matcher_net" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.PLANE_MATCHER_HEAD_MULTIPLIER
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
@classmethod
def vis(cls, cfg):
"""
Args:
cfg (CfgNode):
model (nn.Module):
Returns:
dict: a dict of result metrics
"""
return {}
@classmethod
def test(cls, cfg, model):
"""
Args:
cfg (CfgNode):
model (nn.Module):
Returns:
dict: a dict of result metrics
"""
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
data_loader = cls.build_test_loader(cfg, dataset_name)
evaluator = cls.build_evaluator(cfg, dataset_name)
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
assert isinstance(
results_i, dict
), "Evaluator must return a dict on the main process. Got {} instead.".format(
results_i
)
return results
def setup(args):
cfg = get_cfg()
get_sparseplane_cfg_defaults(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "meshrcnn" module
setup_logger(
output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="planeTR"
)
return cfg
def main(args):
cfg = setup(args)
if comm.is_main_process() and not args.eval_only:
our_dir = os.path.join(cfg.OUTPUT_DIR, 'code')
copy_all_code('./', our_dir)
if cfg.FIX_SEED:
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
torch.backends.cudnn.deterministic = True
# print(cfg)
if args.eval_only:
model = Trainer.build_model(cfg)
# model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
# res = Trainer.vis(cfg)
return res
trainer = Trainer(cfg)
print("# of layers require gradient:")
for c in trainer.checkpointer.model.named_children():
grad = np.array(
[
param.requires_grad
for param in getattr(trainer.checkpointer.model, c[0]).parameters()
]
)
print(c[0], grad.sum())
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)