You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, wondering if you think that it would be possible to use AWQ with sparsegpt ? i tried to make an AWQ model work with sparsegpt by finding the awq.modules.linear.gemv.WQLinear_GEMV layer of the model but still block on the add batch part with this error.
Traceback (most recent call last):
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\opt.py", line 320, in
opt_sequential(model, dataloader, DEV)
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\opt.py", line 101, in opt_sequential
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\transformers\models\opt\modeling_opt.py", line 552, in forward
hidden_states, self_attn_weights, present_key_value = self.self_attn(
^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\transformers\models\opt\modeling_opt.py", line 182, in forward
query_states = self.q_proj(hidden_states) * self.scaling
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1574, in _call_impl
hook_result = hook(self, args, result)
^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\opt.py", line 95, in tmp
gpts[name].add_batch(inp[0].data, out.data)
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\sparsegpt.py", line 52, in add_batch
self.H += inp.matmul(inp.t())
RuntimeError: The size of tensor a (96) must match the size of tensor b (768) at non-singleton dimension 1
just want to know if its possible, or if someone has an idea?
The text was updated successfully, but these errors were encountered:
Hi, wondering if you think that it would be possible to use AWQ with sparsegpt ? i tried to make an AWQ model work with sparsegpt by finding the awq.modules.linear.gemv.WQLinear_GEMV layer of the model but still block on the add batch part with this error.
Traceback (most recent call last):
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\opt.py", line 320, in
opt_sequential(model, dataloader, DEV)
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\opt.py", line 101, in opt_sequential
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\transformers\models\opt\modeling_opt.py", line 552, in forward
hidden_states, self_attn_weights, present_key_value = self.self_attn(
^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\transformers\models\opt\modeling_opt.py", line 182, in forward
query_states = self.q_proj(hidden_states) * self.scaling
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\AppData\Local\anaconda3\envs\nouvel_env\Lib\site-packages\torch\nn\modules\module.py", line 1574, in _call_impl
hook_result = hook(self, args, result)
^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\opt.py", line 95, in tmp
gpts[name].add_batch(inp[0].data, out.data)
File "C:\Users\mjarnier\travail2\sparse\sparsegpt-master\sparsegpt.py", line 52, in add_batch
self.H += inp.matmul(inp.t())
RuntimeError: The size of tensor a (96) must match the size of tensor b (768) at non-singleton dimension 1
just want to know if its possible, or if someone has an idea?
The text was updated successfully, but these errors were encountered: