-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsimple_trainer.py
157 lines (139 loc) · 5.37 KB
/
simple_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding:utf-8 -*-
# @FileName :run_classifier.py
# @Time :2021/4/14 19:45
# @Author :huanghui
import numpy as np
from tfbert.data import Dataset
from tfbert.models import create_word_embeddings, dropout, create_initializer
from tfbert.models.loss import cross_entropy_loss
from tfbert.models.layers import conv2d_layer, max_pooling_layer
import tensorflow.compat.v1 as tf
from tfbert import SimplerTrainer, ProgressBar, set_seed
import pandas as pd
from collections import Counter
from tqdm import tqdm, trange
import platform
from sklearn.metrics import accuracy_score
if platform.system() == 'Windows':
bar_fn = ProgressBar
else:
bar_fn = tqdm
set_seed(42)
class TextCNN:
def __init__(self,
max_seq_length,
vocab_size,
is_training,
input_ids,
label_ids):
embedding, _ = create_word_embeddings(
input_ids=input_ids, vocab_size=vocab_size, embedding_size=300
)
embedding = tf.expand_dims(embedding, -1)
pooled_outputs = []
for i, filter_size in enumerate([2, 3, 5]):
with tf.variable_scope("conv_{}".format(filter_size)):
filter_shape = [filter_size, 300, 1, 128]
h = conv2d_layer(embedding, filter_shape)
pooled = max_pooling_layer(h, ksize=[1, max_seq_length - filter_size + 1, 1, 1])
pooled_outputs.append(pooled)
conv_output = tf.concat(pooled_outputs, 3)
conv_output = tf.reshape(conv_output, [-1, 128 * 3])
with tf.variable_scope("classifier"):
# dropout = get_dropout_prob(is_training, dropout_prob=dropout)
if is_training:
conv_output = dropout(conv_output, dropout_prob=0.3)
self.logits = tf.layers.dense(
conv_output,
5,
kernel_initializer=create_initializer(0.02),
name='logits'
)
if label_ids is not None:
self.loss = cross_entropy_loss(self.logits, label_ids, 5)
def get_model_fn(is_training, vocab_size):
def model_fn():
input_ids = tf.placeholder(shape=[None, 32], dtype=tf.int64, name='input_ids')
if is_training:
label_ids = tf.placeholder(shape=[None], dtype=tf.int64, name='label_ids')
else:
label_ids = None
model = TextCNN(
32, vocab_size,
is_training=is_training,
input_ids=input_ids,
label_ids=label_ids)
inputs = {'input_ids': input_ids}
outputs = {"logits": model.logits}
if is_training:
outputs['loss'] = model.loss
inputs['label_ids'] = label_ids
outputs['label_ids'] = label_ids
return inputs, outputs
return model_fn
def create_vocab(train_file, dev_file):
datas = pd.read_csv(train_file, encoding='utf-8', sep='\t').values.tolist()
datas.extend(
pd.read_csv(dev_file, encoding='utf-8', sep='\t').values.tolist()
)
words = []
for data in datas:
words.extend(list(data[1]))
words = [word.strip() for word in words if word.strip()]
counter = Counter(words)
words = counter.most_common(5000)
vocabs = ["<PAD>", "<UNK>"] + [word[0] for word in words]
vocab2id = dict(zip(vocabs, range(len(vocabs))))
return vocab2id
def load_dataset(filename, is_training, batch_size, max_seq_length, vocab2id, label2id):
data = pd.read_csv(filename, encoding='utf-8', sep='\t').values.tolist()
examples = []
for d in data:
label, text = d
id_ = list(map(lambda x: vocab2id[x] if x in vocab2id else vocab2id['<UNK>'], list(text)))
id_ = id_[:max_seq_length]
id_ += [vocab2id["<PAD>"]] * (max_seq_length - len(id_))
examples.append({'input_ids': id_, 'label_ids': label2id[label]})
dataset = Dataset(examples,
is_training=is_training,
batch_size=batch_size,
drop_last=is_training,
buffer_size=len(examples),
max_length=max_seq_length)
dataset.format_as(['input_ids', 'label_ids'])
return dataset
max_length = 32
batch_size = 32
data_dir = "D:/python/data/data/classification"
vocab2id = create_vocab(data_dir + "/train.csv", data_dir + "/dev.csv")
label2id = {'体育': 0, '娱乐': 1, '家居': 2, '房产': 3, '教育': 4}
train_dataset = load_dataset(
data_dir + "/train.csv",
True, batch_size, max_length, vocab2id, label2id
)
dev_dataset = load_dataset(
data_dir + "/dev.csv",
False, batch_size, max_length, vocab2id, label2id
)
trainer = SimplerTrainer(
optimizer_type='adamw',
learning_rate=5e-5
)
trainer.build_model(model_fn=get_model_fn(True, len(vocab2id)))
trainer.compile()
trainer.init_variables()
best_score = 0
for epoch in trange(5):
epoch_iter = bar_fn(train_dataset)
for d in epoch_iter:
loss = trainer.train_step(d)
epoch_iter.set_description(desc='epoch {} ,loss {:.4f}'.format(epoch + 1, loss))
epoch_iter.close()
outputs = trainer.predict(dev_dataset.get_all_features(), output_names=['logits', 'label_ids'])
y_true, y_pred = outputs['label_ids'], np.argmax(outputs['logits'], axis=-1)
score = accuracy_score(y_true, y_pred)
if score > best_score:
best_score = score
trainer.save_pretrained('output')
print()
print(score)