-
Notifications
You must be signed in to change notification settings - Fork 47
/
hugnlp_runner.py
320 lines (281 loc) · 13.7 KB
/
hugnlp_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# -*- coding: utf-8 -*-
# @Time : 2022/08/29 4:09 p.m.
# @Author : JianingWang
# @File : hugnlp_runner.py
# !/usr/bin/env python
# coding=utf-8
"""
This file is the runner of HugNLP.
"""
import math
import os
import time
import torch
import numpy as np
from callback.ema import ExponentialMovingAveragingCallback
from callback.freeze import FreezeCallback
from callback.logger import LoggerCallback
from processors import PROCESSORS
from transformers import CONFIG_MAPPING, AutoConfig, AutoTokenizer, HfArgumentParser
from hugnlp_trainer import HugTrainer, HugSelfTrainer
from transformers.trainer_utils import get_last_checkpoint
from transformers import EarlyStoppingCallback
from config import ModelArguments, DataTrainingArguments, TrainingArguments, SemiSupervisedTrainingArguments
from callback.mlflow import MLflowCallback
from tools.runner_utils.log_util import init_logger
from models import MODEL_CLASSES, TOKENIZER_CLASSES
from models.basic_modules.lora import convert_linear_layer_to_lora, only_optimize_lora_parameters
from evaluators import EVALUATORS_CLASSES
from tools.runner_utils.conifg_extensive import config_extensive
from tools.runner_utils.set_seed import set_seed
import logging
logger = logging.getLogger(__name__)
torch.set_printoptions(precision=3, edgeitems=5, linewidth=160, sci_mode=False)
def print_hello():
length = 82
print("+" + "-"*(length - 2) + "+")
print("|" + " "*(length - 2) + "|")
print(" " + " "*int((length - 2 - 25)/2) + "🤗 Welcome to use HugNLP!" + " "*int((length - 2 - 25)/2) + " ")
print("" + " "*(length) + "")
print("" + " "*int((length - 2 - 32)/2) + "https://github.com/HugAILab/HugNLP" + " "*int((length - 2 - 33)/2) + "")
print("|" + " "*(length - 2) + "|")
print("+" + "-"*(length - 2) + "+")
def main():
# See all possible arguments or by passing the --help flag to this script.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, SemiSupervisedTrainingArguments))
model_args, data_args, training_args, semi_training_args = parser.parse_args_into_dataclasses()
# Print hello world
if training_args.local_rank <= 0 or os.environ['LOCAL_RANK'] == "0":
print_hello()
training_args.output_dir = os.path.join(training_args.output_dir, list(filter(None, model_args.model_name_or_path.split("/")))[-1])
os.makedirs(training_args.output_dir, exist_ok=True)
# Setup logging
log_file = os.path.join(training_args.output_dir,
f"{model_args.model_name_or_path.split(os.sep)[-1]}-{data_args.task_name}-{time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime())}.log")
log_level = training_args.get_process_log_level()
init_logger(log_file, log_level, training_args.local_rank)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
if training_args.local_rank == 0:
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len([i for i in os.listdir(training_args.output_dir) if not i.endswith("log")]) > 0:
raise ValueError(f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome.")
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch.")
# Set seed before initializing model.
set_seed(training_args.seed)
# Obtain tokenizer
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
# "do_lower_case": model_args.do_lower_case #根据model 的tokenizer自己配置
}
tokenizer_class = TOKENIZER_CLASSES.get(model_args.model_type, AutoTokenizer)
if model_args.tokenizer_name:
tokenizer = tokenizer_class.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = tokenizer_class.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Build processors
if data_args.task_name in PROCESSORS:
processor = PROCESSORS[data_args.task_name](data_args, training_args, model_args, tokenizer=tokenizer)
else:
raise ValueError("Unknown task name {}, please check in processor map.".format(data_args.task_name))
# Load pretrained model and tokenizer
# The .from_pretrained methods guarantee that only one local process can concurrently download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"finetuning_task": data_args.task_name
}
# Add num_labels
if hasattr(processor, "labels"):
config_kwargs["num_labels"] = len(processor.labels)
# Set configure
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
if "longformer" in model_args.model_name_or_path:
config.sep_token_id = 102
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
# Add label mapping if use prompt-tuning
if model_args.use_prompt_for_cls:
assert hasattr(processor, "label_word_list"), "If you use prompt, you must design label_word_list in processor."
config.label_word_list = processor.label_word_list
# Add other config
config = config_extensive(config, model_args)
processor.set_config(config)
# Set model
model_class = MODEL_CLASSES[data_args.task_type]
if type(model_class) == dict:
model_class = model_class[model_args.model_type]
if training_args.pre_train_from_scratch:
logger.info("Training new model from scratch")
model = model_class(config)
else:
logger.info("Continual Tuning a Pre-trained Model")
model = model_class.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
# ignore_mismatched_sizes=True
)
# Resize token embeddings
try:
model.resize_token_embeddings(len(tokenizer))
except:
print("Fail to resize token embeddings.")
if model_args.lora_dim > 0 and training_args.deepspeed is not None:
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
# model = prepare_model_for_int8_training(model) # INT8 quantification
# load lora
logger.info("You have set LORA parameter-efficient learning.")
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05, bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
train_dataset, eval_dataset, test_dataset, unlabeled_dataset = None, None, None, None
# Obtain tokenized data
tokenized_datasets = processor.get_tokenized_datasets()
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = tokenized_datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = tokenized_datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
if training_args.do_predict:
if "test" not in tokenized_datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = tokenized_datasets["test"]
if data_args.max_predict_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_predict_samples))
if semi_training_args.use_semi:
assert "unlabeled_data" in tokenized_datasets.features, "If you choose semi-supervised training, you must define unlabeled data."
unlabeled_dataset = tokenized_datasets["unlabeled_dataset"]
if semi_training_args.unlabeled_data_num is not None:
unlabeled_dataset = unlabeled_dataset.select(range(semi_training_args.unlabeled_data_num))
# Set evaluator
assert data_args.task_type in EVALUATORS_CLASSES, "You must define an evaluator for '{}'".format(data_args.task_type)
evaluator_class = EVALUATORS_CLASSES[data_args.task_type]
evaluator = evaluator_class(
model_args=model_args,
data_args=data_args,
model=model,
training_args=training_args,
processor=processor,
eval_dataset=eval_dataset,
test_dataset=test_dataset,
)
# Set data collator
data_collator = processor.get_data_collator()
if hasattr(processor, "compute_metrics"):
# first to choose defined "compute_metrics" in processor.
compute_metrics = processor.compute_metrics
elif hasattr(evaluator, "default_compute_metrics"):
# second to choose defined "default_compute_metrics" in evaluator.
compute_metrics = evaluator.default_compute_metrics
else:
# set None, in this case, evaluating in training time will not calculate metric.
compute_metrics = None
# Obtain tracking
callbacks = [LoggerCallback]
if data_args.mlflow_location or data_args.tracking_uri:
mlflow_callback = MLflowCallback(model_args, data_args, training_args)
callbacks.append(mlflow_callback)
if model_args.early_stopping_patience:
callbacks.append(EarlyStoppingCallback(early_stopping_patience=model_args.early_stopping_patience))
if model_args.freeze_epochs:
callbacks.append(FreezeCallback(freeze_epochs=model_args.freeze_epochs, freeze_keyword=model_args.freeze_keyword))
if model_args.ema:
callbacks.append(ExponentialMovingAveragingCallback(model_args.ema_decay))
if training_args.do_predict_during_train:
from callback.evaluate import DoPredictDuringTraining
callbacks.append(DoPredictDuringTraining(test_dataset, processor))
# Obtain trainer
if not semi_training_args.use_semi:
# traditional trainer
trainer = HugTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks
)
else:
# self-trainer
trainer = HugSelfTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Update trainer state
evaluator.reset_trainer(trainer if not semi_training_args.use_semi else trainer.student_trainer)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
evaluator.evaluate()
# Prediction
if training_args.do_predict and not training_args.do_predict_during_train:
logger.info("*** Predict ***")
evaluator.predict()
if __name__ == "__main__":
main()