forked from Jeevesh8/GHI-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInfer.py
195 lines (147 loc) · 7.16 KB
/
Infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch.nn as nn
import torch
import argparse
from torch.utils.data import DataLoader
import multiprocessing as mp
from os import path
n_wrkrs = mp.cpu_count()
abs_loss_fn = nn.L1Loss()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def define_variables(args_from_train=None) :
global mask_gammas, maximum, gamma_list_len, gammas, real_vals_sum, pred_loss_sum
if args_from_train is not None :
args=args_from_train
maximum = nn.ReLU()
gamma_list_len = len(args.gamma_list)
if hasattr(args,'mask_gamma_list') and args.mask_gamma_list is not None :
mask_gammas = torch.tensor(args.mask_gamma_list, device=device, dtype=torch.float64)
print(mask_gammas)
else :
mask_gammas = torch.ones(gamma_list_len, device=device, dtype=torch.float64)
mask_gammas = mask_gammas.repeat_interleave(args.final_len)
gammas = torch.tensor(args.gamma_list, dtype=torch.float64, device=device)
gammas = gammas.repeat_interleave(args.final_len)
real_vals_sum = 0 #For q-risk
pred_loss_sum = 0 #For q-risk
def mape_loss(pred,real) :
return torch.sum(torch.div(abs_loss_fn(pred,real),torch.abs(real)))/b_sz
def qr_loss(pred, tar) :
global real_vals_sum, pred_loss_sum
if gamma_list_len!=1 :
tar = torch.cat([tar]*gamma_list_len,dim=1)
tar = mask_gammas*tar
real_vals_sum += torch.abs(tar).sum().item()
n = tar.shape[0]
m = tar.shape[1] #/gamma_list_len
loss = (1-gammas)*maximum(tar-pred)+(gammas)*maximum(pred-tar)
loss = mask_gammas*loss
pred_loss_sum += loss.sum().item()
return loss.sum()/(n*m)
def run_to_eval(t, lossfn, give_lists=False, test_dataset=None, times_to_run_model=0, batch_size=1) :
loss_list = []
i = 0
tot_loss = 0
t.eval()
test_data_loader = DataLoader(test_dataset, batch_size = batch_size, num_workers=n_wrkrs, drop_last=True)
it = iter(test_data_loader)
if give_lists :
pred_lis = []
actual_lis = []
time_lis = []
for batch in it :
in_batch = batch['in'].to(device)
out = t(in_batch)
if give_lists :
pred_lis.append(out.tolist())
actual_lis.append(batch['out'].tolist())
time_lis.append(in_batch[0][-1][0:5].int().tolist())
else :
loss = lossfn(out,batch['out'].to(device))
tot_loss += loss.item()
i+=1
if i>times_to_run_model and give_lists :
print(pred_lis)
print(actual_lis)
print(time_lis)
break
print('Evaluation Loss:- ', tot_loss/i)
t.train()
return tot_loss/i
def mae_loss(x,y) :
return torch.abs(x-y)
def diff(x,y) :
return x-y
def evaluate(t, loss = 'rmse', test_dataset=None, args_from_train=None) :
t.eval()
if loss == 'rmse' :
lossfn = nn.MSELoss()
elif loss == 'mape' :
lossfn = mape_loss
elif loss == 'mae' :
lossfn = abs_loss_fn
elif loss == 'mbe' :
lossfn = diff
elif loss == 'qr_loss' :
define_variables(args_from_train)
lossfn = qr_loss
else :
lossfn = nn.MSELoss()
return run_to_eval(t, lossfn, test_dataset=test_dataset)
def predict_next(t, date_lis, test_dataset) :
batch = test_dataset.getitem_by_date(date_lis)
in_batch = batch['in'].to(device).unsqueeze(dim=0)
out = t(in_batch)
if 'out' in batch :
print('Real output :-', batch['out'].tolist())
print('Predicted Output :-', out)
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='avg_loss', help='Choose from avg_loss, predict_list, predict_at_date')
parser.add_argument('--loss', default='rmse', help='Choose from rmse, mbe, mae, mape, qr_loss')
parser.add_argument('--model', default='ar_net', help='Choose from ar_net, trfrmr, cnn_lstm, lstm')
parser.add_argument('--ini_len', type=int, help='Number of columns of input data')
parser.add_argument('--param_file',help='Path to model\'s param file')
parser.add_argument('--batch_size', type=int, default=1, help='To be used in avg_loss mode only.')
parser.add_argument('--date_lis', nargs='*', type=int, help='List of form [Year, Month, Day, Hour, Minute]')
parser.add_argument('--steps', type=int, default=1, help='Number of steps-ahead model was trained to predict')
parser.add_argument('--final_len', type=int, default=1)
parser.add_argument('--seq_len', type=int, default=256)
parser.add_argument('--root_dir',help='Directory where Data*.csv files are located.')
parser.add_argument('--test_start_year', type=int, help='Starting test year. Use only when mode is avg_loss')
parser.add_argument('--test_final_year', type=int, help='Final test year. Use only when mode is avg_loss.')
parser.add_argument('--test_year', type=int, default=-1, help='test data year.')
parser.add_argument('--times_to_run' , type=int, default=200, help='Times to run the model when mode is predict_list')
parser.add_argument('--gamma_list', type=float, nargs='*', help='Gammas for calculating q-risk')
parser.add_argument('--mask_gamma_list', type=int, nargs='*', help='Masks for Gamma values, e.g. use :- to calculate only p50 or p90 risk')
args = parser.parse_args()
from DataSet import Dataset
if args.test_year != -1 :
csv_paths = [args.root_dir+'/Data'+str(args.test_year)+'.csv']
else :
csv_paths = [args.root_dir+'/Data'+str(i)+'.csv' for i in range(args.test_start_year, args.test_final_year+1)]
model_final_len = args.final_len*len(args.gamma_list) if args.gamma_list!=None else args.final_len
dataset_final_len = args.final_len #if not args.interval or args.final_len<=1 else int(args.final_len/2)
test_dataset = Dataset.SRdata(csv_paths, seq_len = args.seq_len, steps = args.steps, final_len=dataset_final_len)
if args.model=='ar_net' :
from Models import AR_Net
t = AR_Net.ar_nt(seq_len = args.seq_len, ini_len=args.ini_len, final_len=model_final_len).to(device)
elif args.model=='cnn_lstm' :
from Models import CNN_LSTM
t = CNN_LSTM.cnn_lstm(seq_len = args.seq_len, ini_len=args.ini_len, final_len=model_final_len).to(device)
elif args.model=='trfrmr' :
from Models import Transformer
t = Transformer.trnsfrmr_nt(seq_len = args.seq_len, ini_len=args.ini_len, final_len=model_final_len).to(device)
elif args.model=='LSTM' :
from Models import LSTM
t = LSTM.lstm(seq_len = args.seq_len, ini_len=args.ini_len, final_len=model_final_len).to(device)
if path.exists(args.param_file) :
t.load_state_dict(torch.load(args.param_file))
t = t.double()
if args.mode=='avg_loss' :
print(evaluate(t,args.loss, test_dataset, args))
elif args.mode=='predict_list' :
print(run_to_eval(t, None, True, test_dataset, args.times_to_run))
elif args.mode == 'predict_next' :
print(predict_next(t,args.date_lis,test_dataset))
if args.loss=='qr_loss' :
print('Q-risk = ', 2*pred_loss_sum/real_vals_sum)