Skip to content

Latest commit

 

History

History
194 lines (138 loc) · 6.8 KB

File metadata and controls

194 lines (138 loc) · 6.8 KB

Project

This repository is the basic implementation and introduction for utilizing language models for reconstructing implicit knowledge, as described in our paper (Becker et al. 2021).

Important Installation Requirements

PyTorch (conda environment)

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

Install tensorflow-datasets

pip install tensorflow-datasets

pip install tensorflow-gpu

Install transformers

pip install transformers

pip install pytorch-lightning

Data examples

Source Sentence 1: Not everyone should be obliged to pay the TV & radio licence.
Source Sentence 2: Particularly the younger generations are no longer dependent on the programming of public broadcasters.    
Concept1: public broadcasters
Concept2: financed by the TV & radio licence    
Path predicted by CONNECT: (public broadcasters, financed by the TV & radio licence)  -> receives action   
Target Sentence: Public broadcasters are financed by the TV & radio licence.

Models to be fine-tuned

GPT-2 | XLNet | BART

Our best performing language model BART, finetuned on e-SLNI (without constraints; with concepts as constraints; and with commonsense knowledge paths as constraints), can be downloaded from here.

Prepare training data (exclude the target sentence for test data in each line in case of GPT-2 and XLNet models)

line = [sentence1, sentence2, concept1, concept2, target sentence]

training: 
GPT-2: 
        source line:  line[0]+'<|endoftext|>' + line[1] + '<|endoftext|>' + line[2] + '<sep>' + line[3] + '<sep>' + line[4] + '\n'
XLNet:  
        source line: line[0]+'<sep>' + line[1] + '<sep>' + line[2] + '<sep>' + line[3] + '<sep>' + line[4] + '\n'
BART:   
        source line: line[0]+'</s>' + line[1] + '</s>' + line[2] + '<sep>' + line[3]+ '\n'
        target line: line[4] +'\n'

testing:
GPT-2: 
        source line:  line[0]+'<|endoftext|>' + line[1] + '<|endoftext|>' + line[2] + '<sep>' + line[3] + '\n'
XLNet:  
        source line: line[0]+'<sep>' + line[1] + '<sep>' + line[2] + '<sep>' + line[3] + '\n'
BART:   
        source line: line[0]+'</s>' + line[1] + '</s>' + line[2] + '<sep>' + line[3]+ '\n'

target line: line[4] +'\n'

Write the prepared lines into files

from preprocess import write_gpt2_file, write_xlnet_file, write_bart_file

For example: 
    
    gpt2_path = 'data/gpt2/'
    file = 'train.source'
    write_gpt2_file(gpt2_train_lines, gpt2_path + file, mode ='train')

Write the prepared training sources lines for GPT-2 and XLNet model with pad tokens (BART model pads the data itself during training): 

    from transformers import AutoTokenizer
    from preprocess import pad_sources

    gpt2_tokenizer = AutoTokenizer('gpt2')
    xlnet_tokenizer = AutoTokenizer('xlnet-large-cased')

    pad_sources(gpt2_tokenizer, new_path, gpt2_train_lines, block_size, model = 'gpt2')
    pad_sources(xlnet_tokenizer, new_path, xlnet_train_lines, block_size, model = 'xlnet')

Fine-tuning

GPT-2:
python finetune_gpt2.py \
--model_name_or_path=gpt2 \
--model_type=gpt2 \
--per_device_train_batch_size=8 \
--per_gpu_train_batch_size=8 \
--train_data_file=data/esnli/gpt2/train.source \
--valid_data_file=data/esnli/gpt2/valid.source
--output_dir=./finetune_gpt2_esnli \
--do_train \
--block_size=96 \
--save_steps=500 \
--save_total_limit=1 \

XLNet: (the block_size has to be even)
python finetune_xlnet.py \
--model_name_or_path=xlnet-large-cased \
--model_type=xlnet \
--per_device_train_batch_size=8 \
--per_gpu_train_batch_size=8 \
--train_data_file=data/esnli/xlnet/train.source \
--output_dir=./finetune_xlnet_esnli_heads_nl \
--save_steps=500 \
--block_size=96 \
--save_total_limit=1 \
--do_train

BART: 
python finetune_bart_pl.py \
--model_name_or_path=facebook/bart-large-cnn \
--tokenizer_name=facebook/bart-large-cnn \
--learning_rate=3e-5 \
--gpus=1 \
--num_train_epochs=3 \
--max_source_length=80 \
--max_target_length=20 \
--train_batch_size=8 \
--data_dir=../data/esnli/bart/ \
--output_dir=./finetune_bart_esnli \
--do_train

Generation

Source lines should be prepared differently for each type of model:
GPT-2: 
        source line:  line[0]+'<|endoftext|>' + line[1] + '<|endoftext|>' + line[2] + '<sep>' + line[3] + '\n'
XLNet:  
        source line: line[0]+'<sep>' + line[1] + '<sep>' + line[2] + '<sep>' + line[3] + '\n'
BART:   
        source line: line[0]+'</s>' + line[1] + '</s>' + line[2] + '<sep>' + line[3]+ '\n'


Script: lm_generate.py

The required arguments for running the generation script: 
    --model_path: where the fine-tuned model directory is stored
    --model_type: gpt2, xlnet or bart
    --test_src: the path to the test source file
    --save_path: where to save the generations

For example:
GPT-2:
python lm_generate.py \
        --model_path=finetune_gpt2_esnli_corec_path \
        --model_type=gpt2 \
        --test_src=data/ikat/ikat_test_corec_path.gpt2_source \
        --save_path=data/esnli/ikat_test_corec_path.gpt2_pred

XLNet:
python lm_generate.py \
        --model_path=finetune_xlnet_esnli_corec_path \
        --model_type=xlnet \
        --test_src=data/ikat/ikat_test_corec_path.xlnet_source \
        --save_path=data/esnli/ikat_test_corec_path.xlnet_pred

BART:
python lm_generate.py \
        --model_path=seq2seq/finetune_bart_esnli_corec_path/best_tfmr \
        --model_type=bart \
        --test_src=data/ikat/ikat_test_corec_path.bart_source \
        --save_path=data/esnli/ikat_test_corec_path.bart_pred

postprocess

from postprocess import process_generations, write_generations

For example:
1. get the predicted lines from one prediction file: 
    path = 'data/esnli/ikat_test_corec_path.gpt2_pred'
    lines = [line.strip() for line in open(path).readlines()]
    generations = process_generations(lines, model_name='gpt2')

2. postprocess and write the generations for the prediction files of one model:
    path = 'data/esnli/gpt2/'
    new_path = 'generations/esnli/gpt2/'
    write_generations(path, new_path, model_name = 'gpt2')

If you use our model, please cite:

Becker, M., Liang, S., and Frank, A. (2021c). Reconstructing Implicit Knowledge with Language Models. Accepted at: Deep Learning Inside Out (DeeLIO): Workshop on Knowledge Extraction and Integration for Deep Learning Architectures.

For questions or comments email us: [email protected]