-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_cls.py
124 lines (107 loc) · 5.81 KB
/
model_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from keras.layers import Conv2D, Dropout, Input, BatchNormalization, Dense, Lambda
from keras import backend as K
import numpy as np
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
K.set_session(sess)
# these cuda ops are impossible to be wrapped up using keras Lambda layer,
# so it's impossible to successfully build a keras model instance or any kind
from tf_ops.grouping.tf_grouping import query_ball_point, group_point
from tf_ops.sampling.tf_sampling import farthest_point_sample, gather_point
def pointnet2(input_points, nb_classes, is_training):
model_input = Input(tensor=input_points)
sa1_xyz, sa1_points = set_abstraction_msg(model_input,
None,
512,
[0.1, 0.2, 0.4],
[16, 32, 128],
[[32, 32, 64], [64, 64, 128], [64, 96, 128]],
is_training,
use_nchw=True)
sa2_xyz, sa2_points = set_abstraction_msg(sa1_xyz,
sa1_points,
128,
[0.2, 0.4, 0.8],
[32, 64, 128],
[[64, 64, 128], [128, 128, 256], [128, 128, 256]],
is_training,
use_nchw=False)
sa3_xyz, sa3_points = set_abstraction(sa2_xyz,
sa2_points,
[256, 512, 1024],
is_training)
c = Lambda(lambda x: K.reshape(x, [16, -1]))(sa3_points)
# point_net_cls
c = Dense(512, activation='relu')(c)
c = BatchNormalization()(c, training=is_training)
c = Dropout(0.4)(c, training=is_training)
c = Dense(256, activation='relu')(c)
c = BatchNormalization()(c, training=is_training)
c = Dropout(0.4)(c, training=is_training)
# a fully connected layer without activation func
logits = Dense(nb_classes)(c)
return logits
def set_abstraction_msg(xyz, points, npoint, radius_list, nsample_list, mlp_list, is_training, use_nchw):
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
new_points_list = []
for i in range(len(radius_list)):
radius = radius_list[i]
nsample = nsample_list[i]
group_idx = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, group_idx[0])
grouped_xyz -= K.tile(Lambda(lambda x: K.expand_dims(x, axis=2))(new_xyz), [1, 1, nsample, 1])
if points is not None:
grouped_points = group_point(points, group_idx[0])
grouped_points = Lambda(lambda x: K.concatenate(x, axis=-1))([grouped_points, grouped_xyz])
else:
grouped_points = grouped_xyz
if use_nchw: grouped_points = Lambda(lambda x: K.permute_dimensions(x, [0, 3, 1, 2]))(grouped_points)
for j, num_out_channel in enumerate(mlp_list[i]):
grouped_points = Conv2D(num_out_channel, 1, activation="relu")(grouped_points)
grouped_points = BatchNormalization()(grouped_points, training=is_training)
if use_nchw: grouped_points = Lambda(lambda x: K.permute_dimensions(x, [0, 2, 3, 1]))(grouped_points)
new_points = Lambda(lambda x: K.max(x, axis=2))(grouped_points)
new_points_list.append(new_points)
new_points_concat = Lambda(lambda x: K.concatenate(x, axis=-1))(new_points_list)
return new_xyz, new_points_concat
def set_abstraction(xyz, points, mlp, is_training):
# Sample and Grouping
new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points)
# Point Feature Embedding
for i, num_out_channel in enumerate(mlp):
new_points = Conv2D(num_out_channel, 1, activation="relu")(new_points)
new_points = BatchNormalization()(new_points, training=is_training)
# Pooling in Local Regions
new_points = Lambda(lambda x: K.max(x, axis=2, keepdims=True))(new_points)
new_points = Lambda(lambda x: K.squeeze(x, 2))(new_points) # (batch_size, npoints, mlp2[-1])
return new_xyz, new_points
def sample_and_group_all(xyz, points, use_xyz=True):
"""
Inputs:
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Outputs:
new_xyz: (batch_size, 1, 3) as (0,0,0)
new_points: (batch_size, 1, ndataset, 3+channel) TF tensor
Note:
Equivalent to sample_and_group with npoint=1, radius=inf, use (0,0,0) as the centroid
"""
batch_size = xyz.get_shape()[0].value
nsample = xyz.get_shape()[1].value
new_xyz = tf.constant(np.tile(np.array([0, 0, 0]).reshape((1, 1, 3)), (batch_size, 1, 1)), dtype=tf.float32) # (batch_size, 1, 3)
idx = tf.constant(np.tile(np.array(range(nsample)).reshape((1, 1, nsample)), (batch_size, 1, 1)))
grouped_xyz = Lambda(lambda x: K.reshape(x, (batch_size, 1, nsample, 3)))(xyz) # (batch_size, npoint=1, nsample, 3)
if points is not None:
if use_xyz:
new_points = Lambda(lambda x: K.concatenate(x, axis=2))([xyz, points]) # (batch_size, 16, 259)
else:
new_points = points
new_points = Lambda(lambda x: K.expand_dims(x, 1))(new_points) # (batch_size, 1, 16, 259)
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz