-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathions_copy.py
386 lines (259 loc) · 14.1 KB
/
ions_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python
from __future__ import division, absolute_import, print_function, unicode_literals
from qutip import *
from scipy import *
import numpy as np
from error_handling import *
import scipy.linalg as LA
class HilbertSpace(object):
def __init__(self, ion_number, ion_motional_hilbert_space_dim, ion_electronic_hilbert_space_dim = 2, state_type='pure'):
""" It takes a tuple of labels and their corresponding Hilbert space dimensions.
"""
#self.__subsystems_dic = subsystems_dic
self.__set_hilbert_space_dimensions_array = self.__hilbert_space_dimensions()
self.__identity_operators_array = self.__identity_operators_array()
def construct_hilbert_space(self):
pass
def get_hilbert_space_array(self):
return self.__subsystems_list
def __set_identity_operators_array(self):
for subsystem_dimensions in self.get_hilbert_space_array():
tensor( qeye(subsystem_dimensions) )
def get_identity_operators_array(self):
return self.__identity_operators_array
class Ion:
'''
Create an Ion object with ion_number (>=0),
motional_state (>=0) and electronic_state (either 0 or 1).
'''
def __init__( self, ion_number, ion_motional_hilbert_space_dim, ion_electronic_hilbert_space_dim = 2, state_type='pure', carrier_freq = 0.0):
self.ion_number = ion_number
#HilbertSpace.__init__(self)
self.ion_motional_hilbert_space_dim = ion_motional_hilbert_space_dim
self.ion_electronic_hilbert_space_dim = ion_electronic_hilbert_space_dim
self.state_type = state_type
self.ion_motional_state = None
self.carrier_freq = carrier_freq
#self.ion_electronic_state = None
#self.set_hilbert_space()
def initialize_ion_state(func):
def wrapper(self, hilbert_space_dim, state):
if self.state_type == 'pure':
if hilbert_space_dim <= state:
raise Dimensionerror( "Ion number {}\n".format(self.ion_number) )
else:
func(self, hilbert_space_dim, state)
elif self.state_type == 'density_operator':
if type(state) != qutip.qobj.Qobj:
raise Statetypeerror( self.ion_number, self.state_type )
else:
if hilbert_space_dim <= state.shape[0] - 1:
raise Dimensionerror( "Ion number {}\n".format(self.ion_number) )
else:
func(self, hilbert_space_dim, state)
return wrapper
@initialize_ion_state
def initialize_ion_motional_state(self, motional_hilbert_space_dim, ion_motional_state):
self.motional_state_is_initialized = True
self.ion_motional_state = basis( motional_hilbert_space_dim, ion_motional_state )
@initialize_ion_state
def initialize_ion_motional_density_operator( self, ion_motional_hilbert_space_dim, density_operator ):
self.motional_state_is_initialized = True
self.ion_motional_state = density_operator
@property
def get_motional_state( self ):
try:
return self.ion_motional_state
except AttributeErroer as e:
print(e, "\nNo motional state is assinged to ion number {}".format(self.ion_number) )
@initialize_ion_state
def initialize_ion_electronic_state(self, electronic_hilbert_space_dim, ion_electronic_state_num):
self.electronic_state_is_initialized = True
self.ion_electronic_state = basis( electronic_hilbert_space_dim, ion_electronic_state_num )
@initialize_ion_state
def initialize_ion_electronic_density_operator(self, electronic_hilbert_space_dim, density_operator):
self.electronic_state_is_initialized = True
self.ion_electronic_state = density_operator
def set_ion_electronic_state_number(self, state):
if state == 0 or state == 1:
self.ion_electronic_state_number = state
else:
raise Exception("Ion electronic state could be only o (ground state) or 1 (excited state).")
def get_zposition(self):
try:
return self.position
except AttributeError as e:
print(e, "\nNo position is assigned to ion number {}".format(self.ion_number) )
def set_position(self, position):
self.position = position
@property
def get_motional_state(self):
try:
return self.ion_motional_state
except AttributeError as e:
print(e, "\nNo motional state assigned to ion number {}.".format(self.ion_number) )
@property
def get_electronic_state(self):
try:
return self.ion_electronic_state
except AttributeError as e:
return self.ion_electronic_state_number
#else:
# print( e, "\nNo electronic state assigned to ion number {}.".format(self.ion_number) )
class Chain:
def __init__(self, N, ion_motional_hilbert_space_dim, ion_electronic_hilbert_space_dim = 2, state_type = 'pure'):
self.num_of_ions = N
self.ion_motional_hilbert_space_dim = ion_motional_hilbert_space_dim
self.ion_electronic_hilbert_space_dim = ion_electronic_hilbert_space_dim
self.Ions = [Ion(i, self.ion_motional_hilbert_space_dim, self.ion_electronic_hilbert_space_dim, state_type) for i in range(N)]
self.state = None
self.state_type = state_type
self.motional_states_are_set = False
self.electronic_states_are_set = False
def initialize_chain_electronic_states( self, **kwargs):
''' Initialize the initial electronic state of ions that are in coherent interaction with lasers
and pulses. kwargs include lasers and pulses as keys.
'''
self.chain_electronic_states_initialized = False
all_lasers = list(kwargs['lasers']) + list(kwargs['pulses'])
ions_interacting_with_laser = [laser.ion_num for laser in all_lasers]
for ion_num in ions_interacting_with_laser:
self.chain_electronic_states_initialized = True
try:
if self.state_type == 'pure':
self.Ions[ion_num-1].initialize_ion_electronic_state( self.ion_electronic_hilbert_space_dim, self.Ions[ion_num-1].ion_electronic_state_number )
elif self.state_type == 'density_operator':
density_operator = basis( self.ion_electronic_hilbert_space_dim, self.Ions[ion_num-1].ion_electronic_state_number ) * basis( self.ion_electronic_hilbert_space_dim, self.Ions[ion_num-1].ion_electronic_state_number ).dag()
self.Ions[ion_num-1].initialize_ion_electronic_density_operator( self.ion_electronic_hilbert_space_dim, density_operator )
#else:
# print("Ion numbering starts at 0 and ends at number of ions - 1.")
except ValueError as e:
print("Error: Ions name formatting must be as 'ion10' ", e)
def set_pure_electronic_state_numbers( self, args ):
''' Set the initial electronic state of ions given in input,
Example for input format: args = (0, 0, 0, 1, 0)
for a chain of 5 ions.
'''
if len(args) != self.num_of_ions:
raise Exception("Number of arguments must be equal to the number of ions in the chain. \nLength of state = {}, whereas, number of ions = {}.".format(len(args), self.num_of_ions ) )
else:
for i in range(len(args)):
self.Ions[i].set_ion_electronic_state_number( args[i] )
self.electronic_states_are_set = True
@property
def get_electronic_state( self ):
states = [ ion.get_electronic_state for ion in self.Ions if type(ion.get_electronic_state) != int ]
if states != []:
return tensor(states)
else:
print("No electronic state is assigned.")
def set_pure_motional_state( self, args):
''' Initialize the initial motional state of ions given in input,
Example for input format: args = (0, 0, 0, 1, 0)
for a chain of 5 ions.
'''
if len(args) != self.num_of_ions:
print("Number of arguments must be equal to the number of ions in the chain. \nLength of state = {}, whereas, number of ions = {}.".format(len(args), self.num_of_ions ) )
else:
for i in range(len(args)):
self.Ions[i].initialize_ion_motional_state( self.ion_motional_hilbert_space_dim, args[i] )
self.motional_states_are_set = True
def set_thermal_motional_state( self, args):
''' Initialize the initial motional state of ions given in input,
Example for input format: args = (1.5, 1.0, ..., 2.4)
for a chain of N ions. Where each float number is the thermal state nbar of the nth ion.
'''
if len(args) != self.num_of_ions:
print("Number of arguments must be equal to the number of ions in the chain. \nLength of state = {}, whereas, number of ions = {}.".format(len(args), self.num_of_ions ) )
else:
args = [thermal_dm( self.ion_motional_hilbert_space_dim, arg ) for arg in args]
for i in range(len(args)):
self.Ions[i].initialize_ion_motional_density_operator( self.ion_motional_hilbert_space_dim, args[i] )
self.motional_states_are_set = True
@property
def get_motional_state( self ):
"""Return the 'motional quantum state' of the ion chain as one state (could be pure or mixed):
"""
return tensor([ ion.get_motional_state for ion in self.Ions ])
@property
def initial_state( self):
"""Get ion chain quantum state, starting with electronic states of all ions that are in coherent interaction with continuous/pulsed lasers.
"""
if self.chain_electronic_states_initialized:
return tensor( self.get_electronic_state, self.get_motional_state )
else:
return self.get_motional_state
def set_zpositions( self, zpositions ):
if len(zpositions) == self.num_of_ions:
for i in range(self.num_of_ions):
self.Ions[i].set_position( zpositions[i] )
else:
raise Exception("Number of given ions don't match with number of elements in zpositions array.")
def get_positions(self):
return [ion.get_zposition() for ion in self.Ions]
def set_carrier_frequencies(self, freq_reference, magnetic_field_gradient):
"""Set carrier frequencies for each ion in the chain.
For now set all carrier frequencies equal to each other.
"""
for ion in self.Ions:
ion.carrier_freq = freq_reference
def set_couplings( self, omega_x):
if self.num_of_ions == 1:
self.couplings = [[omega_x]]
else:
self.couplings = self.generate_omegax( omega_x, nearest_neighbor_coupling=0)
def generate_omegax(self, omega_x, nearest_neighbor_coupling=0):
couplings = self.generate_couplings(self.num_of_ions, omega_x, self.get_positions(), nearest_neighbor_coupling)
local_radial_freqs = self.generate_local_radial_freqs(omega_x, couplings)
omegax = np.zeros((self.num_of_ions, self.num_of_ions))
# Construct the matrix of local radial frequencies and couplings
for i in range(self.num_of_ions):
for j in range(self.num_of_ions):
if i == j:
omegax[i][i] = local_radial_freqs[i]
else:
omegax[i][j] = couplings[i][j]
return omegax
def set_normal_mode_structure(self):
"""Set the normal mode structure.
"""
#Expand local destruction operator of ions in terms of normal modes
self.normal_in_local_modes = LA.eig( self.couplings )[1]
#Expand normal destruction operator of chain in terms of local ion modes
self.local_in_normal_modes = np.conjugate(LA.eig( self.couplings )[1].T)
#Compute normal mode eigenvalues as reals
self.eigenvalues = abs(LA.eig( self.couplings )[0])
def get_couplings(self, potential='harmonic'):
return self.couplings
@staticmethod
def generate_couplings(N, omega_x, zposition_arr = [], nearest_neighbor_coupling = 0,
mass = 40 * 1.672621e-27):
'''Return the matrix of couplings.
Note that nearest_neighbor_coupling is used only when zposition_arr is empty.
'''
eps0 = 8.85419e-12
echarge = 1.60218e-19
if zposition_arr != []:
k = echarge**2/(8*mass*omega_x*np.pi*eps0)
elif nearest_neighbor_coupling != 0:
k = nearest_neighbor_coupling
zposition_arr = range(N)
else:
raise Exception("Either ion positions or the nearest neighbor coupling is missing!")
t = np.zeros((len(zposition_arr),len(zposition_arr)))
for i in range(len(zposition_arr)):
for j in range(len(zposition_arr)):
if i != j:
t[i][j] = k / absolute(zposition_arr[i]-zposition_arr[j]) ** 3
return t
@staticmethod
def generate_local_radial_freqs(omega_x, couplings):
"""Return the array of local radial frequencies
"""
ion_numbers = range(len(couplings[0]))
local_radial_freqs = [omega_x for i in ion_numbers]
for i in ion_numbers:
for j in ion_numbers:
if j != i:
local_radial_freqs[i] -= couplings[i][j]
return local_radial_freqs