-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathlamb.py
executable file
·210 lines (185 loc) · 9.43 KB
/
lamb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2021, Habana Labs Ltd. All rights reserved.
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MIT License
#
# Copyright (c) 2019 cybertronai
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
from torch.optim import Optimizer
class NVLAMB(Optimizer):
"""Implements a pure pytorch variant of FuseLAMB (NVLAMB variant) optimizer from apex.optimizers.FusedLAMB
reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
NOT SUPPORTED now! (default: False)
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
grad_averaging (bool, optional): whether apply (1-beta2) to grad when
calculating running averages of gradient. (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
max_grad_norm (float, optional): value used to clip global grad norm
(default: 1.0)
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
weight decay parameter (default: False)
adjust_step (boolean, optional): Decrement step for bias correction (needed for
Zero01 optimization when using DeepSpeed).
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, bias_correction=True,
betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01,
amsgrad=False, adam_w_mode=True,
grad_averaging=True, set_grad_none=True,
max_grad_norm=1.0, use_nvlamb=False, fused=False, adjust_step=False):
if amsgrad:
raise RuntimeError('NVLAMB does not support the AMSGrad variant.')
defaults = dict(lr=lr, bias_correction=bias_correction,
betas=betas, eps=eps, weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm)
super().__init__(params, defaults)
self.fused = fused
self.adam_w_mode = 1 if adam_w_mode else 0 # dummy for now, always use adam_w mode (wd is excluded from EMA)
self.set_grad_none = set_grad_none
self.use_nvlamb = use_nvlamb
self.adjust_step = adjust_step
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group['params']:
p.grad = None
else:
super(NVLAMB, self).zero_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
device = self.param_groups[0]["params"][0].device
loss = None
if closure is not None:
loss = closure()
global_grad_norm = torch.zeros(1, device=device)
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
global_grad_norm.add_(grad.pow(2).sum())
global_grad_norm_ = torch.sqrt(global_grad_norm)
max_grad_norm = self.defaults['max_grad_norm']
if global_grad_norm_ > max_grad_norm:
clip_global_grad_norm = global_grad_norm_ / max_grad_norm
else:
clip_global_grad_norm = 1.0
for group in self.param_groups:
bias_correction = 1 if group['bias_correction'] else 0
beta1, beta2 = group['betas']
grad_averaging = 1 if group['grad_averaging'] else 0
if grad_averaging:
beta3 = 1 - beta1
else:
beta3 = 1.0
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
step_size = group['lr']
if bias_correction:
# TODO (SW-84908): (Assi) To verify if the below is correct for ZerO1 and Zero0.
if self.adjust_step:
bias_correction_step = group['step'] - 1 if (group['step'] > 1) else group['step']
else:
bias_correction_step = group['step']
bias_correction1 = 1 - beta1 ** bias_correction_step
bias_correction2 = 1 - beta2 ** bias_correction_step
else:
bias_correction1, bias_correction2 = 1.0, 1.0
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.div_(clip_global_grad_norm)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg_, exp_avg_sq_ = state['exp_avg'], state['exp_avg_sq']
# Decay the first and second moment running average coefficient
# m_t
exp_avg_.mul_(beta1).add_(grad, alpha=beta3)
# v_t
exp_avg_sq_.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# create clones to avoid modifying runner stats
exp_avg = exp_avg_.div(bias_correction1)
exp_avg_sq = exp_avg_sq_.div(bias_correction2)
# || w_t ||
weight_norm = p.data.norm(2.0)
# u_t
exp_avg_sq_sqrt = torch.sqrt(exp_avg_sq)
adam_step = exp_avg.div_(exp_avg_sq_sqrt.add_(group['eps']))
if group['weight_decay'] != 0:
adam_step.add_(p.data, alpha=group['weight_decay'])
# || u_t ||
adam_norm = adam_step.norm(2.0)
if (group['weight_decay'] != 0 or self.use_nvlamb) and adam_norm > 0 and weight_norm > 0:
trust_ratio = weight_norm / adam_norm
trust_ratio = trust_ratio.item()
else:
trust_ratio = 1
state['weight_norm'] = weight_norm
state['adam_norm'] = adam_norm
state['trust_ratio'] = trust_ratio
#p.data.add_(adam_step, alpha=-step_size * trust_ratio)
alpha = -step_size * trust_ratio
adam_step2 = adam_step * alpha
p.data.add_(adam_step2)