-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathssd300.py
executable file
·142 lines (111 loc) · 4.58 KB
/
ssd300.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
from base_model import ResNet34
class SSD300(nn.Module):
"""
Build a SSD module to take 300x300 image input,
and output 8732 per class bounding boxes
vggt: pretrained vgg16 (partial) model
label_num: number of classes (including background 0)
"""
def __init__(self, label_num, backbone='resnet34', model_path=None):
super(SSD300, self).__init__()
self.label_num = label_num
if backbone == 'resnet34':
self.model = ResNet34(model_path=model_path)
out_channels = 256
out_size = 38
self.out_chan = [out_channels, 512, 512, 256, 256, 256]
else:
raise ValueError('Invalid backbone chosen')
self._build_additional_features(out_size, self.out_chan)
# after l2norm, conv7, conv8_2, conv9_2, conv10_2, conv11_2
# classifer 1, 2, 3, 4, 5 ,6
self.num_defaults = [4, 6, 6, 6, 4, 4]
self.loc = []
self.conf = []
for nd, oc in zip(self.num_defaults, self.out_chan):
self.loc.append(nn.Conv2d(oc, nd*4, kernel_size=3, padding=1))
self.conf.append(nn.Conv2d(oc, nd*label_num, kernel_size=3, padding=1))
self.loc = nn.ModuleList(self.loc)
self.conf = nn.ModuleList(self.conf)
# intitalize all weights
self._init_weights()
def _build_additional_features(self, input_size, input_channels):
idx = 0
if input_size == 38:
idx = 0
elif input_size == 19:
idx = 1
elif input_size == 10:
idx = 2
self.additional_blocks = []
if input_size == 38:
self.additional_blocks.append(nn.Sequential(
nn.Conv2d(input_channels[idx], 256, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, input_channels[idx+1], kernel_size=3, padding=1, stride=2),
nn.ReLU(inplace=True),
))
idx += 1
self.additional_blocks.append(nn.Sequential(
nn.Conv2d(input_channels[idx], 256, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, input_channels[idx+1], kernel_size=3, padding=1, stride=2),
nn.ReLU(inplace=True),
))
idx += 1
# conv9_1, conv9_2
self.additional_blocks.append(nn.Sequential(
nn.Conv2d(input_channels[idx], 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, input_channels[idx+1], kernel_size=3, padding=1, stride=2),
nn.ReLU(inplace=True),
))
idx += 1
# conv10_1, conv10_2
self.additional_blocks.append(nn.Sequential(
nn.Conv2d(input_channels[idx], 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, input_channels[idx+1], kernel_size=3),
nn.ReLU(inplace=True),
))
idx += 1
# Only necessary in VGG for now
if input_size >= 19:
# conv11_1, conv11_2
self.additional_blocks.append(nn.Sequential(
nn.Conv2d(input_channels[idx], 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, input_channels[idx+1], kernel_size=3),
nn.ReLU(inplace=True),
))
self.additional_blocks = nn.ModuleList(self.additional_blocks)
def _init_weights(self):
layers = [
*self.additional_blocks,
*self.loc, *self.conf]
for layer in layers:
for param in layer.parameters():
if param.dim() > 1: nn.init.xavier_uniform_(param)
# Shape the classifier to the view of bboxes
def bbox_view(self, src, loc, conf):
ret = []
for s, l, c in zip(src, loc, conf):
ret.append((l(s).view(s.size(0), 4, -1), c(s).view(s.size(0), self.label_num, -1)))
locs, confs = list(zip(*ret))
locs, confs = torch.cat(locs, 2).contiguous(), torch.cat(confs, 2).contiguous()
return locs, confs
def forward(self, data):
layers = self.model(data)
# last result from network goes into additional blocks
x = layers[-1]
additional_results = []
for i, l in enumerate(self.additional_blocks):
x = l(x)
additional_results.append(x)
src = [*layers, *additional_results]
# Feature Map 38x38x4, 19x19x6, 10x10x6, 5x5x6, 3x3x4, 1x1x4
locs, confs = self.bbox_view(src, self.loc, self.conf)
# For SSD 300, shall return nbatch x 8732 x {nlabels, nlocs} results
return locs, confs