-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCPUKernelAgent.cc
409 lines (340 loc) · 14.6 KB
/
CPUKernelAgent.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
Copyright (c) 2016-2018 General Processor Tech.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
*/
/**
* @author [email protected] and
* [email protected] for General Processor Tech.
*/
#include "CPUKernelAgent.hh"
#include <cstring>
#include <limits>
#include <phsa-rt.h>
#include <setjmp.h>
#include <pthread.h>
#include <signal.h>
#include "common/Logging.hh"
#include "Executable.hh"
#include "phsa-rt.h"
#include "UserModeQueue.hh"
#include "Finalizer/GCC/DLFinalizedProgram.hh"
#include "Signal.hh"
#include "MemoryRegion.hh"
namespace phsa {
std::atomic<bool> ShutDown(false);
CPUKernelAgent::CPUKernelAgent(MemoryRegion &QueueMemRegion)
: Worker(&CPUKernelAgent::Execute, this), QueueRegion(QueueMemRegion),
AgentISA("host-isa") {
ISA::registerISA("host-isa", {CallingConvention{"SystemV", 1, 1}});
}
Queue *CPUKernelAgent::createQueue(uint32_t Size, hsa_queue_type_t Type,
Queue::QueueCallback CB) {
UserModeQueue *Q = new UserModeQueue(Size, Type, QueueRegion, CB, this);
registerQueue(Q);
return Q;
}
void CPUKernelAgent::shutDown() {
ShutDown = true;
if (Worker.joinable()) {
Worker.join();
}
}
CPUKernelAgent::~CPUKernelAgent() {}
bool CPUKernelAgent::AreDimensionsvalid(
hsa_kernel_dispatch_packet_t &KernelPacket) {
int Dimensions = ((1 << (HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS +
HSA_KERNEL_DISPATCH_PACKET_SETUP_WIDTH_DIMENSIONS)) -
1 &
KernelPacket.setup) >>
HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
bool AreOthersOne = true;
switch (Dimensions) {
case 1: {
AreOthersOne &= KernelPacket.grid_size_y == 1 &&
KernelPacket.grid_size_z == 1 &&
KernelPacket.workgroup_size_y == 1 &&
KernelPacket.workgroup_size_z == 1;
break;
}
case 2: {
AreOthersOne &=
KernelPacket.grid_size_z == 1 && KernelPacket.workgroup_size_z == 1;
break;
}
case 3: {
break;
}
default: { return false; }
}
#if 0
// PRM specs has a concept of "partial WGs" and lots of PRM
// conformance tests have WG dimensions greater than grid
// dimensions.
bool AreGridSizesGreaterThanWGs =
KernelPacket.grid_size_x >= KernelPacket.workgroup_size_x &&
KernelPacket.grid_size_y >= KernelPacket.workgroup_size_y &&
KernelPacket.grid_size_z >= KernelPacket.workgroup_size_z;
#endif
return AreOthersOne; // && AreGridSizesGreaterThanWGs;
}
bool CPUKernelAgent::IsPacketTypeValid(uint16_t Header) {
const uint8_t PacketType = Header >> HSA_PACKET_HEADER_TYPE;
return PacketType > HSA_PACKET_TYPE_INVALID &&
PacketType <= HSA_PACKET_TYPE_BARRIER_OR;
}
// Used to interrupt the execution of a kernel when a queue
// is invalidated via hsa_queue_inactivate(). This defines
// a safe spot for the kernel agent to resume at.
jmp_buf InterruptedQueueLandingSpot;
// Use a user signal for handling the case when a running queue must
// be interrupted due to it being invalidated via hsa_queue_inactivate().
// The signal handler will be invoked in case the queue to be invalidated
// is currently running. The handler will return back to
// InterruptedQueueLandingSpot via siglongjmp() to safely proceed
// executing possible other queues.
void QueueInterruptionHandler(int) {
siglongjmp(InterruptedQueueLandingSpot, 1);
}
void CPUKernelAgent::terminateQueue(Queue *Q) {
// Now we either know the queue is running or the Execute
// knows it has been inactivated. Let's interrupt it. There
// is now a race with interrupting the correct queue as Execute
// might finish the Queue and start executing another one, thus
// we must signal the interruption process to avoid Execute
// proceeding to the next queue.
InterruptingTheQueue = true;
if (Q == RunningQueue) {
// Now either the Execute is still running the Q or has finished
// it and waits in the InterruptingTheQueue forever loop.
// It should be now safe to signal the thread so it can interrupt
// the execution and jump back to the safe spot.
pthread_kill(Worker.native_handle(), SIGUSR1);
while (Q == RunningQueue) {
}
}
InterruptingTheQueue = false;
}
void CPUKernelAgent::Execute() {
struct sigaction SigHandler;
SigHandler.sa_handler = &QueueInterruptionHandler;
sigemptyset(&SigHandler.sa_mask);
SigHandler.sa_flags = 0;
sigaction(SIGUSR1, &SigHandler, NULL);
// Resume execution here in case the currently executed queue is
// inactivate during its execution.
sigsetjmp(InterruptedQueueLandingSpot, 1);
RunningQueue = nullptr;
InterruptingTheQueue = false;
while (!ShutDown) {
std::list<Queue *> Queues = getQueues();
RunningQueue = nullptr;
for (Agent::queue_iterator It = Queues.begin(), End = Queues.end();
It != End; ++It) {
Queue *Q = *It;
hsa_queue_t *HSAQueue = Q->getHSAQueue();
RunningQueue = Q;
if (InterruptingTheQueue)
while (true) {
}
if (Q->isInactivated() || Q->isDestroyed()) {
continue;
}
// For multi producer queues, the doorbell signal might not monotonically
// increase: The packet updates from multiple producers might not
// end up to the queue in the write index order. Therefore, we must
// monitor the doorbell signal for any changes to avoid missing packets
// that are added for older write index than the largest we have already
// processed. The read index update can be done only after all packets
// until that read index have been processed.
// TO CHECK: Can this actually lead unoptimal queue processing or
// even starvation as writers with lower write indices can hold back queue
// writing (as the read index cannot be updated) even though there are
// free slots _after_ the lower write index due to them having been
// processed earlier/faster?
hsa_signal_value_t DoorBell =
hsa_signal_load_acquire(HSAQueue->doorbell_signal);
if (DoorBell == std::numeric_limits<hsa_signal_value_t>::max() ||
DoorBell == Q->getLastHandledDoorBell()) {
continue;
}
Q->setLastHandledDoorBell(DoorBell);
uint64_t CurrentReadIndex = Q->loadReadIndex(MemoryOrder::Relaxed);
uint64_t CurrentWriteIndex = Q->loadWriteIndex(MemoryOrder::Relaxed);
uint64_t QueueSize = HSAQueue->size;
// In multiple producer queue we have to always check all packets
// in the queue up to the write index, because we cannot be sure we
// have received the highest write index from the door bell due to
// multiple updaters of the write index.
// In single producer queues, we execute packets in order as we know
// the new packets are added by a single producer to a single write
// position which are handed out in monotonically increasing order.
int PacketsToCheck =
HSAQueue->type == HSA_QUEUE_TYPE_SINGLE ?
(Q->getLastHandledDoorBell() - CurrentReadIndex) : QueueSize;
for (uint64_t CurrentIndex = CurrentReadIndex,
LastIndex = CurrentReadIndex + PacketsToCheck;
CurrentIndex <= LastIndex; ++CurrentIndex) {
int PacketIndex = CurrentIndex % QueueSize;
if (CurrentIndex >= CurrentWriteIndex)
break;
AQLPacket *PacketBuffer =
static_cast<AQLPacket *>(HSAQueue->base_address);
AQLPacket &Packet = PacketBuffer[PacketIndex];
Signal *CompletionSignal = nullptr;
uint16_t PacketType =
(Packet.AgentDispatch.header >> HSA_PACKET_HEADER_TYPE) & 0xff;
// INVALID marks either a packet that is not in use (has already
// being processed) or is being updated by the producer.
if (PacketType == HSA_PACKET_TYPE_INVALID) {
// If it's a processed packet, we might be able to update the
// read index, to free space in the ring buffer.
if (Q->IsPacketProcessed(PacketIndex)) {
// We can only update read index if all the packets until this
// packet have been processed.
if (CurrentReadIndex == CurrentIndex) {
CurrentReadIndex = CurrentIndex + 1;
Q->storeReadIndex(CurrentReadIndex, MemoryOrder::Relaxed);
Q->SetPacketProcessed(PacketIndex, false);
}
}
continue;
}
if (PacketType == HSA_PACKET_TYPE_BARRIER_AND) {
hsa_barrier_and_packet_t &BarrierAndPacket = Packet.BarrierAnd;
// Check the barrier condition.
bool BarrierConditionOK = true;
for (int i = 0; i < 5; ++i) {
hsa_signal_t Dep = BarrierAndPacket.dep_signal[i];
if (Dep.handle == 0)
continue;
hsa_signal_value_t Val = hsa_signal_load_acquire(Dep);
if (Val != 0) {
BarrierConditionOK = false;
break;
}
}
// Unsatisfied barrier. Skip to the next packet in the next queue.
if (!BarrierConditionOK)
break;
CompletionSignal =
Signal::fromHSAObject(BarrierAndPacket.completion_signal);
} else if (PacketType == HSA_PACKET_TYPE_BARRIER_OR) {
hsa_barrier_or_packet_t &BarrierOrPacket = Packet.BarrierOr;
// Check the barrier condition.
bool BarrierConditionOK = false;
for (int i = 0; i < 5; ++i) {
hsa_signal_t Dep = BarrierOrPacket.dep_signal[i];
if (Dep.handle == 0) {
continue;
}
hsa_signal_value_t Val = hsa_signal_load_acquire(Dep);
if (Val == 0) {
BarrierConditionOK = true;
break;
}
}
// Unsatisfied barrier. Skip to the next packet in the next queue.
if (!BarrierConditionOK)
break;
CompletionSignal =
Signal::fromHSAObject(BarrierOrPacket.completion_signal);
} else if (PacketType == HSA_PACKET_TYPE_KERNEL_DISPATCH) {
hsa_kernel_dispatch_packet_t &KernelPacket = Packet.KernelDispatch;
CompletionSignal =
Signal::fromHSAObject(KernelPacket.completion_signal);
bool HasIterations = !(KernelPacket.workgroup_size_x == 0 ||
KernelPacket.workgroup_size_y == 0 ||
KernelPacket.workgroup_size_z == 0);
bool ValidDimensions = AreDimensionsvalid(KernelPacket);
bool ValidType = IsPacketTypeValid(KernelPacket.header);
void *GroupMemory = KernelPacket.group_segment_size != 0
? GroupMemoryRegion->allocate(
KernelPacket.group_segment_size, 16)
: nullptr;
bool ValidGroupMemory =
GroupMemory != nullptr || KernelPacket.group_segment_size == 0;
Kernel *K = dynamic_cast<Kernel *>(
Symbol::fromHandle(KernelPacket.kernel_object));
if (K != nullptr && HasIterations && ValidDimensions && ValidType &&
ValidGroupMemory) {
GCCBrigKernel KernelFunction =
reinterpret_cast<GCCBrigKernelSignature *>(K->Address);
PHSAKernelLaunchData LaunchData;
LaunchData.dp = &KernelPacket;
LaunchData.packet_id = CurrentIndex;
bool RelocatedKernargs;
if ((uint64_t)KernelPacket.kernarg_address %
K->KernargSegmentAlignment ==
0) {
LaunchData.kernarg_addr = KernelPacket.kernarg_address;
RelocatedKernargs = false;
} else {
if (posix_memalign(&LaunchData.kernarg_addr,
K->KernargSegmentAlignment,
K->KernargSegmentSize) != 0)
abort();
std::memcpy(LaunchData.kernarg_addr, KernelPacket.kernarg_address,
K->KernargSegmentSize);
RelocatedKernargs = true;
}
KernelFunction(&LaunchData, GroupMemory, LaunchData.kernarg_addr);
if (RelocatedKernargs) {
free(LaunchData.kernarg_addr);
}
} else if (!ValidType) {
Q->ExecuteCallback(HSA_STATUS_ERROR_INVALID_PACKET_FORMAT);
} else if (!ValidDimensions) {
Q->ExecuteCallback(HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS);
} else if (!ValidGroupMemory) {
Q->ExecuteCallback(HSA_STATUS_ERROR_INVALID_ALLOCATION);
} else {
Q->ExecuteCallback(HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
}
if (GroupMemory != nullptr) {
GroupMemoryRegion->free(GroupMemory);
}
} else {
PRINT_VAR(PacketType);
ABORT_UNIMPLEMENTED;
}
Packet.AgentDispatch.header = HSA_PACKET_TYPE_INVALID;
if (CurrentReadIndex == CurrentIndex) {
CurrentReadIndex = CurrentIndex + 1;
Q->storeReadIndex(CurrentReadIndex, MemoryOrder::Relaxed);
Q->SetPacketProcessed(PacketIndex, false);
} else {
// There are unprocessed packets before this index, we cannot
// update the read index yet, but have to wait until the earlier
// ones have been processed.
Q->SetPacketProcessed(PacketIndex, true);
}
if (CompletionSignal != nullptr) {
CompletionSignal->store(0, MemoryOrder::Relaxed);
}
}
}
}
ShutDown = false;
}
#ifdef __GNUC__
// Stops the executor thread gracefully when dlclose() is called for
// the runtime lib.
__attribute__((destructor)) static void StopExecutorThread() {
ShutDown = true;
}
#endif
}