-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
212 lines (172 loc) · 8.68 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch.nn as nn
import torch
from dgl.nn.pytorch import SAGEConv
import dgl
import torch.nn.functional as F
from utility.parser import parse_args
import os
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
if args.gpu >= 0 and torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
class UserRecModel(nn.Module):
def __init__(self, lmbd):
super(UserRecModel, self).__init__()
self.lmbd = lmbd
def create_bpr_loss(self, users, pos_items, neg_items):
pos_scores = (users * pos_items).sum(1)
neg_scores = (users * neg_items).sum(1)
mf_loss = nn.LogSigmoid()(pos_scores - neg_scores).mean()
mf_loss = -1 * mf_loss
regularize = (torch.norm(users) ** 2 + torch.norm(pos_items) ** 2 + torch.norm(neg_items) ** 2) / 2
emb_loss = self.lmbd * regularize / users.shape[0]
return mf_loss + emb_loss, mf_loss, emb_loss
def create_cross_entropy_loss(self, users, items, target, w=15.0):
scores = nn.Sigmoid()((users * items).sum(1))
# weights = torch.tensor([1.0 if i == 0 else w for i in target]).cuda()
mf_loss = nn.BCELoss()(scores, target)
# mf_loss = nn.BCELoss(weight=weights)(scores, target)
regularizer = (torch.norm(users) ** 2 + torch.norm(items) ** 2) / 2
emb_loss = self.lmbd * regularizer / users.shape[0]
return mf_loss + emb_loss, mf_loss, emb_loss
@staticmethod
def rating(u_g_embeddings, pos_i_g_embeddings):
return torch.matmul(u_g_embeddings, pos_i_g_embeddings.t())
def forward(self, *arg, **kwargs):
raise NotImplementedError
def update_parameters(self, *arg, **kwargs):
raise NotImplementedError
def training_data_processing(self):
raise NotImplementedError
class TwoSideGraphModel(UserRecModel):
def __init__(self, in_size, layer_size, dropout, lmbd=1e-5):
super(TwoSideGraphModel, self).__init__(lmbd)
self.in_size = in_size
self.user_layers = nn.ModuleList()
self.item_layers = nn.ModuleList()
self.user_layers.append(SAGEConv(in_size, layer_size[0], 'mean', activation=nn.LeakyReLU(0.2)))
for i in range(len(layer_size) - 1):
self.user_layers.append(SAGEConv(layer_size[i], layer_size[i + 1], 'mean', activation=nn.LeakyReLU(0.2)))
self.item_layers.append(nn.Linear(in_size, layer_size[0]))
for i in range(len(layer_size) - 1):
self.item_layers.append(nn.Linear(layer_size[i], layer_size[i + 1]))
self.feature_dict = nn.ParameterDict()
self.dropout = nn.Dropout(dropout[0])
self.g_user = dgl.graph([])
self.g_item = dgl.graph([])
def update_parameters(self, weight):
self.load_state_dict(weight)
def init_parameters(self, g_user, g_item):
self.g_user = g_user
self.g_item = g_item
self.feature_dict = nn.ParameterDict({
'user': nn.Parameter(nn.init.xavier_uniform_(torch.empty(g_user.num_nodes(), self.in_size))),
'item': nn.Parameter(nn.init.xavier_uniform_(torch.empty(g_item.num_nodes(), self.in_size)))
}).to(device)
def update_graph(self, g_user, g_item):
self.g_user = g_user
self.g_item = g_item
def forward(self, users, pos_items, neg_items):
h_user = self.feature_dict['user']
h_item = self.feature_dict['item']
user_embeds = []
item_embeds = []
user_embeds.append(h_user)
item_embeds.append(h_item)
for layer in self.user_layers:
h_user = layer(self.g_user, h_user)
h_user = self.dropout(h_user) # dropout
h_user = F.normalize(h_user, dim=1, p=2)
user_embeds.append(h_user)
for layer in self.item_layers:
h_item = layer(h_item)
h_item = nn.LeakyReLU(0.2)(h_item)
h_item = self.dropout(h_item) # dropout
h_item = F.normalize(h_item, dim=1, p=2)
item_embeds.append(h_item)
user_embd = torch.cat(user_embeds, 1)
item_embd = torch.cat(item_embeds, 1)
u_g_embeddings = user_embd[users, :]
pos_i_g_embeddings = item_embd[pos_items, :]
neg_i_g_embeddings = item_embd[neg_items, :]
return u_g_embeddings, pos_i_g_embeddings, neg_i_g_embeddings
def one_train(self, users, pos_items, neg_items):
u_g_embeddings, pos_i_g_embeddings, neg_i_g_embeddings = self.forward(users, pos_items, neg_items)
loss, mf_loss, emb_loss = self.create_bpr_loss(u_g_embeddings,
pos_i_g_embeddings, neg_i_g_embeddings)
return loss, mf_loss, emb_loss
def one_train_cross_entropy_loss(self, users, items, targets, w=15.0):
u_g_embeddings, i_g_embeddings, _ = self.forward(users, items, [])
loss, mf_loss, emb_loss = self.create_cross_entropy_loss(
u_g_embeddings, i_g_embeddings, torch.tensor(targets, dtype=torch.float32, device=device), w)
return loss, mf_loss, emb_loss
def one_test(self, users, pos_items, neg_items):
u_g_embeddings, pos_i_g_embeddings, _ = self.forward(users, pos_items, neg_items)
rate_batch = self.rating(u_g_embeddings, pos_i_g_embeddings).detach().cpu()
return rate_batch
def training_data_processing(self):
pass
class NCF(UserRecModel):
def __init__(self, in_size, layer_size, dropout, lmbd=1e-5):
super(NCF, self).__init__(lmbd)
self.in_size = in_size
self.user_layers = nn.ModuleList()
self.item_layers = nn.ModuleList()
self.user_layers.append(nn.Linear(in_size, layer_size[0]))
for i in range(len(layer_size) - 1):
self.user_layers.append(nn.Linear(layer_size[i], layer_size[i + 1]))
self.item_layers.append(nn.Linear(in_size, layer_size[0]))
for i in range(len(layer_size) - 1):
self.item_layers.append(nn.Linear(layer_size[i], layer_size[i + 1]))
self.feature_dict = nn.ParameterDict()
self.dropout = nn.Dropout(dropout[0])
def update_parameters(self, weight):
self.load_state_dict(weight)
def init_parameters(self, g_user, g_item):
self.feature_dict = nn.ParameterDict({
'user': nn.Parameter(nn.init.xavier_uniform_(torch.empty(g_user.num_nodes(), self.in_size))),
'item': nn.Parameter(nn.init.xavier_uniform_(torch.empty(g_item.num_nodes(), self.in_size)))
}).to(device)
def forward(self, users, pos_items, neg_items):
h_user = self.feature_dict['user']
h_item = self.feature_dict['item']
user_embeds = []
item_embeds = []
user_embeds.append(h_user)
item_embeds.append(h_item)
for layer in self.user_layers:
h_user = layer(h_user)
h_user = nn.LeakyReLU(0.2)(h_user)
h_user = self.dropout(h_user) # dropout
h_user = F.normalize(h_user, dim=1, p=2)
user_embeds.append(h_user)
for layer in self.item_layers:
h_item = layer(h_item)
h_item = nn.LeakyReLU(0.2)(h_item)
h_item = self.dropout(h_item) # dropout
h_item = F.normalize(h_item, dim=1, p=2)
item_embeds.append(h_item)
user_embd = torch.cat(user_embeds, 1)
item_embd = torch.cat(item_embeds, 1)
u_g_embeddings = user_embd[users, :]
pos_i_g_embeddings = item_embd[pos_items, :]
neg_i_g_embeddings = item_embd[neg_items, :]
return u_g_embeddings, pos_i_g_embeddings, neg_i_g_embeddings
def one_train(self, users, pos_items, neg_items):
u_g_embeddings, pos_i_g_embeddings, neg_i_g_embeddings = self.forward(users, pos_items, neg_items)
loss, mf_loss, emb_loss = self.create_bpr_loss(u_g_embeddings,
pos_i_g_embeddings, neg_i_g_embeddings)
return loss, mf_loss, emb_loss
def one_train_cross_entropy_loss(self, users, items, targets, w=15.0):
u_g_embeddings, i_g_embeddings, _ = self.forward(users, items, [])
loss, mf_loss, emb_loss = self.create_cross_entropy_loss(
u_g_embeddings, i_g_embeddings, torch.tensor(targets, dtype=torch.float32, device=device), w)
return loss, mf_loss, emb_loss
def one_test(self, users, pos_items, neg_items):
u_g_embeddings, pos_i_g_embeddings, _ = self.forward(users, pos_items, neg_items)
rate_batch = self.rating(u_g_embeddings, pos_i_g_embeddings).detach().cpu()
return rate_batch
def training_data_processing(self):
pass