-
Notifications
You must be signed in to change notification settings - Fork 55
/
mf.py
325 lines (275 loc) · 12.7 KB
/
mf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#coding=utf8
'''
solve the matrix factorization by block gradient descent, which can be applied to large scale datasets
'''
import time
import ctypes
import itertools
import sys
import logging
import numpy as np
from scipy.sparse import csr_matrix as cm
from numpy.linalg import norm
from numpy.linalg import svd
from numpy import power
import matplotlib.pyplot as plt
from logging_util import init_logger
def print_cost(func):
def wrapper(*args, **kwargs):
t = time.time()
res = func(*args, **kwargs)
print '%s: %.1fs' % (func.__name__, time.time() - t)
return res
return wrapper
class MF_BGD(object):
def __init__(self, data=None, train_data=[], test_data=[], max_iter=500, K=10, lamb=0.1, eps=0.01, silent_run=False, save_uv=False, call_logger=None):
if call_logger:
global logger
logger = call_logger
self.K = K
self.lamb = lamb
self.eps = eps
self.ite = max_iter
self.tol = 1e-8
self.train_ratio = 0.8
self.silent_run=silent_run
self.save_uv = save_uv
if data is None:
self.filename = 'data/ml-1m-rating.txt'
self.load_data()
else:
self.data = data
self.train_data = train_data
self.train_num = len(self.train_data)
self.test_data = test_data
self.test_num = len(self.test_data)
self.load_lib()
def load_lib(self):
part_dot_lib = ctypes.cdll.LoadLibrary('./partXY.so')
set_val_lib = ctypes.cdll.LoadLibrary('./setVal.so')
self.part_dot = part_dot_lib.partXY
self.set_val = set_val_lib.setVal
def split_data(self):
rand_inds = np.random.permutation(self.obs_num)
self.train_num = int(self.obs_num * self.train_ratio)
self.train_data = self.data[rand_inds[:self.train_num]]
self.test_data = self.data[rand_inds[self.train_num:]]
self.test_num = len(self.test_data)
del rand_inds
def load_data(self):
self.data = np.loadtxt(self.filename, dtype=np.float64)
#self.data[:,2] -= self.data[:,2].mean()
#self.data[:,2] /= self.data[:,2].std()
self.obs_num = len(self.data)
self.split_data()
def get_obs_inds(self):
return self.train_data[:,0].astype(int), self.train_data[:,1].astype(int)
def part_uv(self, U, V, rows, cols, k):
num = len(rows)
output = np.zeros((num,1), dtype=np.float64)
up = U.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
vp = V.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
op = output.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
rsp = rows.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
csp = cols.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
nc = ctypes.c_int(num)
rc = ctypes.c_int(k)
self.part_dot(up, vp, rsp, csp, op, nc, rc)
return output
def p_omega(self, mat, rows, cols):
mat_t = mat.copy()
mat_t[rows, cols] = 0.0
return mat - mat_t
def cal_omega(self, omega, U, V, rows, cols, bias, obs):
puv = self.part_uv(U, V, rows, cols, self.K)
puv = obs - puv - bias
puvp = puv.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
odp = omega.data.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
nc = ctypes.c_int(self.train_num)
self.set_val(puvp, odp, nc)
def obj(self, U, V, omega):
return 1.0 / 2 * power(norm(omega.data),2) + self.lamb / 2.0 * (power(norm(U,'fro'),2) + power(norm(V,'fro'),2))
def train_rmse(self, U, V, bias, omega):
return np.sqrt(power(norm(omega.data),2) / self.train_num)
def get_grad(self, omega, U, V):
du = -omega.dot(V) + self.lamb * U
dv = -omega.T.dot(U) + self.lamb * V
return du, dv
def run(self):
logger.info('MF running: parras: K=%s, reg=%s, lr=%s, silent_run=%s', self.K, self.lamb, self.eps, self.silent_run)
X = cm((self.data[:,2], (self.data[:,0], self.data[:,1]))) #index starting from 0
M, N = X.shape
omega = cm((self.train_data[:,2], (self.train_data[:,0], self.train_data[:,1])), shape=(M,N)) #index starting from 0
if len(self.test_data):
trows, tcols = self.test_data[:,0].astype(np.int32), self.test_data[:,1].astype(np.int32)
U = np.random.rand(M, self.K) * 0.0002
V = np.random.rand(N, self.K) * 0.0002
bias = self.train_data[:,2].mean()# in reality, bias can also be updated, modified later
#bias = 0.0
eps_1 = eps_2 = self.eps
rows, cols = omega.tocoo().row.astype(np.int32), omega.tocoo().col.astype(np.int32)
obs = omega.copy().data.astype(np.float64).reshape(self.train_num, 1)
self.cal_omega(omega, U, V, rows, cols, bias, obs)
objs_1 = [self.obj(U, V, omega)]
objs_2 = []
trmses = []
rmses, maes, costs, acu_cost = [], [], [], []
run_start = time.time()
for rnd in range(0, self.ite):
start = time.time()
self.cal_omega(omega, U, V, rows, cols, bias, obs)
#grad_bias = -omega + self.lamb * bias
#bias = bias - 1.0/eps_1 * grad_bias
du, dv = self.get_grad(omega, U, V)
l_omega = omega.copy()
for t1 in range(0, 20):
#line search
LU = U - 1.0/eps_1 * du
LV = V - 1.0/eps_1 * dv
self.cal_omega(l_omega, LU, LV, rows, cols, bias, obs)
l_obj = self.obj(LU, LV, l_omega)
if l_obj < objs_1[rnd]:
U, V = LU, LV
eps_1 *= 0.95
objs_1.append(l_obj)
trmses.append(self.train_rmse(U, V, bias,l_omega))
break
else:
eps_1 *= 1.5
if t1 == 19:
break
lrate = (objs_1[rnd] - objs_1[rnd+1]) / objs_1[rnd]
end = time.time()
costs.append(round(end-start, 1))
acu_cost.append(int(end-run_start))
if len(self.test_data):
preds = self.part_uv(U, V, trows, tcols, self.K)
rmses.append(self.cal_rmse(preds))
maes.append(self.cal_mae(preds))
if not self.silent_run:
logger.info('iter=%s, obj=%.4f(%.2f%%), ls:((%.4f, %s), (%.4f, %s)), train_rmse=%.4f,rmse=%.4f, mae=%.4f, time:%.1fs', rnd, objs_1[rnd], lrate * 100, eps_1, t1, eps_1, t1, trmses[rnd], rmses[rnd], maes[rnd], end-start)
else:
logger.info('iter=%s, obj=%.4f(%.2f%%), ls:((%.4f, %s), (%.4f, %s)), train_rmse=%.4f, time:%.1fs', rnd, objs_1[rnd], lrate * 100, eps_1, t1, eps_1, t1, trmses[rnd], end-start)
if abs(lrate) < self.tol:
#import pdb;pdb.set_trace()
break
if objs_1[rnd] < self.tol:
break
self.rmses = rmses if rmses else 99.0
self.maes = maes if maes else 99.0
if self.save_uv:
np.savetxt(dir_+'mf_features/ratings_only/U_K%s.res' % self.K, U)
np.savetxt(dir_+'mf_features/ratings_only/V_K%s.res' % self.K, V)
return U, V
def get_test_rmse(self):
return np.mean(self.rmses[-5:])
def get_test_mae(self):
return np.mean(self.maes[-5:])
def cal_rmse(self, preds):
#user or item not occured in train dataset are set to 3 as default
# beyond the 1,5 also need to set to 1 or 5
delta = preds - self.test_data[:,2].reshape(preds.shape)
rmse = np.sqrt(np.square(delta).sum() / self.test_num)
return rmse
def cal_mae(self, preds):
delta = preds - self.test_data[:,2].reshape(preds.shape)
mae = np.abs(delta).sum() / self.test_num
return mae
def run_basedline(filename, K, eps, lamb, max_iter, silent_run=True):
'''
mf as baseline
'''
start_time = time.time()
ratings = np.loadtxt(filename,dtype=np.float64)
uids = set([int(r) for r in ratings[:,0]])
bids = set([int(r) for r in ratings[:,1]])
uid2iid = {v:k for k,v in enumerate(uids)}
bid2iid = {v:k for k,v in enumerate(bids)}
ratings[:,0] = [uid2iid[int(r)] for r in ratings[:,0]]
ratings[:,1] = [bid2iid[int(r)] for r in ratings[:,1]]
print 'finish loading data, cost %.2f seconds, users: %s, items: %s, obs: %s, density=%.4f' % (time.time() - start_time, len(uids), len(bids), len(ratings), len(ratings) * 1.0 / len(uids) / len(bids))
rand_inds = np.random.permutation(ratings.shape[0])
train_num = int(ratings.shape[0] * 0.8)
train_data = ratings[rand_inds[:train_num]]
test_data = ratings[rand_inds[train_num:]]
mf = MF_BGD(data=ratings, train_data=train_data, test_data=test_data, max_iter=max_iter, K=K, eps=eps, lamb=lamb,silent_run=silent_run)
mf.run()
return mf.get_test_rmse()
def run_5_validations(rating_filename, K, eps, lamb, max_iter, silent_run=True):
'''
mf as baseline
'''
exp_id = int(time.time())
logger.info('start run_5_validations, ratings_filename=%s, K=%s,eps=%s,reg=%s,max_iter=%s', rating_filename, K,eps,lamb,max_iter)
ratings = np.loadtxt(rating_filename,dtype=np.float64)
rating_filename = rating_filename.split('/')[-1].replace('.txt', '')
uids = set([int(r) for r in ratings[:,0]])
bids = set([int(r) for r in ratings[:,1]])
uid2iid = {v:k for k,v in enumerate(uids)}
bid2iid = {v:k for k,v in enumerate(bids)}
ratings[:,0] = [uid2iid[int(r)] for r in ratings[:,0]]
ratings[:,1] = [bid2iid[int(r)] for r in ratings[:,1]]
def get_triplets(filename):
triplets = np.loadtxt(filename, dtype=np.float64)
triplets[:,0] = [uid2iid[int(r)] for r in triplets[:,0]]
triplets[:,1] = [bid2iid[int(r)] for r in triplets[:,1]]
return triplets
exp_rmses, exp_maes = [], []
val_start = time.time()
for rnd in xrange(5):
start_time = time.time()
train_filename = dir_ + 'exp_split/%s/%s_train_%s.txt' % (rnd+1, rating_filename, rnd+1)
test_filename = dir_ + 'exp_split/%s/%s_test_%s.txt' % (rnd+1, rating_filename, rnd+1)
logger.info('start validation %s, train_filename=%s, test_filename=%s', rnd+1, train_filename, test_filename)
train_data = get_triplets(train_filename)
test_data = get_triplets(test_filename)
mf = MF_BGD(data=ratings, train_data=train_data, test_data=test_data, max_iter=max_iter, K=K, eps=eps, lamb=lamb,silent_run=silent_run)
mf.run()
exp_rmses.append(mf.get_test_rmse())
exp_maes.append(mf.get_test_mae())
logger.info('finish validation %s, cost %.2f minutes, rmse=%.4f, mae=%.4f', rnd+1, (time.time() - start_time) / 60.0, exp_rmses[rnd], exp_maes[rnd])
val_end = time.time()
logger.info('**********finish 5 validations,rating from %s, cost %.2f minutes!K=%s,eps=%s,lamb=%s,max_iter=%s******\n*******exp_rmses=%s, exp_rmses=%s******\n*****avg: rmse=%.4f,mae=%.4f****', rating_filename, (val_end - val_start) / 60.0, K, eps, lamb, max_iter, exp_rmses, exp_maes, np.mean(exp_rmses), np.mean(exp_maes))
def grid_search(filename):
#filenames = ['ratings_filter5.txt',]
print 'grid search for %s' % filename
Ks = [10,20,30,40,50]
epss = [0.001, 0.01, 0.1, 1, 10, 100]
lambs = [0.01,0.1,1,5,10, 100]
res = []
for K, eps, lamb in itertools.product(Ks, epss, lambs):
rmse = run_basedline(filename, K, eps, lamb)
res.append((filename, K, eps,lamb, rmse))
res = sorted(res, key=lambda d:d[-1], reverse=False)
fw = open('data/yelp/samples/grid_res_%s' % filename, 'w+')
fw.write('\n'.join(['%s\t%s\t%s\t%s\t%s' % (f,k,e,l,r) for f,k,e,l,r in res]))
fw.close()
if __name__ == '__main__':
if len(sys.argv) == 3:
dt = sys.argv[1]
global logger
global dir_
dir_ = 'data/%s/' % dt
exp_id = int(time.time())
log_filename = 'log/%s_mf.log' % dt
logger = init_logger('exp_%s' % str(exp_id), log_filename, logging.INFO, False)
if int(sys.argv[2]) == 1:
filename = dir_ + 'ratings.txt'
K = 10
eps = 10
lamb = 1
max_iter = 500
exp_rmses = []
for i in range(1):
exp_rmses.append(run_basedline(filename, K, eps, lamb, max_iter, silent_run=False))
print 'K=%s,eps=%s,lamb=%s,max_iter=%s, exp_rmses=%s,avg_rmse=%s' % (K,eps,lamb,max_iter, exp_rmses, np.mean(exp_rmses))
elif int(sys.argv[2]) == 2:
filename = dir_ + 'ratings.txt'
K = 10
eps = 10
lamb = 10
max_iter = 1000
run_5_validations(filename, K, eps, lamb, max_iter, silent_run=False)
elif int(sys.argv[2]) == 3:
filename = 'UBNUI.res'
grid_search(filename)