-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
42 lines (39 loc) · 1.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import math
# reference from https://github.com/jianzhangcs/ISTA-Net-PyTorch
def my_zero_pad(img, block_size=32):
old_h, old_w = img.shape
delta_h = (block_size - np.mod(old_h, block_size)) % block_size
delta_w = (block_size - np.mod(old_w, block_size)) % block_size
img_pad = np.concatenate((img, np.zeros([old_h, delta_w])), axis=1)
img_pad = np.concatenate((img_pad, np.zeros([delta_h, old_w + delta_w])), axis=0)
new_h, new_w = img_pad.shape
return img, old_h, old_w, img_pad, new_h, new_w
def psnr(img1, img2):
img1.astype(np.float32)
img2.astype(np.float32)
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 255.0
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
# reference from https://github.com/cszn
def H(img, mode, inv=False):
if inv:
mode = [0, 1, 2, 5, 4, 3, 6, 7][mode]
if mode == 0:
return img
elif mode == 1:
return img.rot90(1, [2, 3]).flip([2])
elif mode == 2:
return img.flip([2])
elif mode == 3:
return img.rot90(3, [2, 3])
elif mode == 4:
return img.rot90(2, [2, 3]).flip([2])
elif mode == 5:
return img.rot90(1, [2, 3])
elif mode == 6:
return img.rot90(2, [2, 3])
elif mode == 7:
return img.rot90(3, [2, 3]).flip([2])