forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq2seq_attention.py
213 lines (188 loc) · 8.34 KB
/
seq2seq_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains a seq2seq model.
WORK IN PROGRESS.
Implement "Abstractive Text Summarization using Sequence-to-sequence RNNS and
Beyond."
"""
import sys
import time
import tensorflow as tf
import batch_reader
import data
import seq2seq_attention_decode
import seq2seq_attention_model
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('data_path',
'', 'Path expression to tf.Example.')
tf.app.flags.DEFINE_string('vocab_path',
'', 'Path expression to text vocabulary file.')
tf.app.flags.DEFINE_string('article_key', 'article',
'tf.Example feature key for article.')
tf.app.flags.DEFINE_string('abstract_key', 'headline',
'tf.Example feature key for abstract.')
tf.app.flags.DEFINE_string('log_root', '', 'Directory for model root.')
tf.app.flags.DEFINE_string('train_dir', '', 'Directory for train.')
tf.app.flags.DEFINE_string('eval_dir', '', 'Directory for eval.')
tf.app.flags.DEFINE_string('decode_dir', '', 'Directory for decode summaries.')
tf.app.flags.DEFINE_string('mode', 'train', 'train/eval/decode mode')
tf.app.flags.DEFINE_integer('max_run_steps', 10000000,
'Maximum number of run steps.')
tf.app.flags.DEFINE_integer('max_article_sentences', 2,
'Max number of first sentences to use from the '
'article')
tf.app.flags.DEFINE_integer('max_abstract_sentences', 100,
'Max number of first sentences to use from the '
'abstract')
tf.app.flags.DEFINE_integer('beam_size', 4,
'beam size for beam search decoding.')
tf.app.flags.DEFINE_integer('eval_interval_secs', 60, 'How often to run eval.')
tf.app.flags.DEFINE_integer('checkpoint_secs', 60, 'How often to checkpoint.')
tf.app.flags.DEFINE_bool('use_bucketing', False,
'Whether bucket articles of similar length.')
tf.app.flags.DEFINE_bool('truncate_input', False,
'Truncate inputs that are too long. If False, '
'examples that are too long are discarded.')
tf.app.flags.DEFINE_integer('num_gpus', 0, 'Number of gpus used.')
tf.app.flags.DEFINE_integer('random_seed', 111, 'A seed value for randomness.')
def _RunningAvgLoss(loss, running_avg_loss, summary_writer, step, decay=0.999):
"""Calculate the running average of losses."""
if running_avg_loss == 0:
running_avg_loss = loss
else:
running_avg_loss = running_avg_loss * decay + (1 - decay) * loss
running_avg_loss = min(running_avg_loss, 12)
loss_sum = tf.Summary()
loss_sum.value.add(tag='running_avg_loss', simple_value=running_avg_loss)
summary_writer.add_summary(loss_sum, step)
sys.stdout.write('running_avg_loss: %f\n' % running_avg_loss)
return running_avg_loss
def _Train(model, data_batcher):
"""Runs model training."""
with tf.device('/cpu:0'):
model.build_graph()
saver = tf.train.Saver()
# Train dir is different from log_root to avoid summary directory
# conflict with Supervisor.
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir)
sv = tf.train.Supervisor(logdir=FLAGS.log_root,
is_chief=True,
saver=saver,
summary_op=None,
save_summaries_secs=60,
save_model_secs=FLAGS.checkpoint_secs,
global_step=model.global_step)
sess = sv.prepare_or_wait_for_session(config=tf.ConfigProto(
allow_soft_placement=True))
running_avg_loss = 0
step = 0
while not sv.should_stop() and step < FLAGS.max_run_steps:
(article_batch, abstract_batch, targets, article_lens, abstract_lens,
loss_weights, _, _) = data_batcher.NextBatch()
(_, summaries, loss, train_step) = model.run_train_step(
sess, article_batch, abstract_batch, targets, article_lens,
abstract_lens, loss_weights)
summary_writer.add_summary(summaries, train_step)
running_avg_loss = _RunningAvgLoss(
running_avg_loss, loss, summary_writer, train_step)
step += 1
if step % 100 == 0:
summary_writer.flush()
sv.Stop()
return running_avg_loss
def _Eval(model, data_batcher, vocab=None):
"""Runs model eval."""
model.build_graph()
saver = tf.train.Saver()
summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
running_avg_loss = 0
step = 0
while True:
time.sleep(FLAGS.eval_interval_secs)
try:
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
except tf.errors.OutOfRangeError as e:
tf.logging.error('Cannot restore checkpoint: %s', e)
continue
if not (ckpt_state and ckpt_state.model_checkpoint_path):
tf.logging.info('No model to eval yet at %s', FLAGS.train_dir)
continue
tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path)
(article_batch, abstract_batch, targets, article_lens, abstract_lens,
loss_weights, _, _) = data_batcher.NextBatch()
(summaries, loss, train_step) = model.run_eval_step(
sess, article_batch, abstract_batch, targets, article_lens,
abstract_lens, loss_weights)
tf.logging.info(
'article: %s',
' '.join(data.Ids2Words(article_batch[0][:].tolist(), vocab)))
tf.logging.info(
'abstract: %s',
' '.join(data.Ids2Words(abstract_batch[0][:].tolist(), vocab)))
summary_writer.add_summary(summaries, train_step)
running_avg_loss = _RunningAvgLoss(
running_avg_loss, loss, summary_writer, train_step)
if step % 100 == 0:
summary_writer.flush()
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.WordToId(data.PAD_TOKEN) > 0
assert vocab.WordToId(data.UNKNOWN_TOKEN) >= 0
assert vocab.WordToId(data.SENTENCE_START) > 0
assert vocab.WordToId(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()
if __name__ == '__main__':
tf.app.run()