-
Notifications
You must be signed in to change notification settings - Fork 26
/
fluid.py
67 lines (51 loc) · 2.85 KB
/
fluid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
from scipy.ndimage import map_coordinates, spline_filter
from scipy.sparse.linalg import factorized
from numerical import difference, operator
class Fluid:
def __init__(self, shape, *quantities, pressure_order=1, advect_order=3):
self.shape = shape
self.dimensions = len(shape)
# Prototyping is simplified by dynamically
# creating advected quantities as needed.
self.quantities = quantities
for q in quantities:
setattr(self, q, np.zeros(shape))
self.indices = np.indices(shape)
self.velocity = np.zeros((self.dimensions, *shape))
laplacian = operator(shape, difference(2, pressure_order))
self.pressure_solver = factorized(laplacian)
self.advect_order = advect_order
def step(self):
# Advection is computed backwards in time as described in Stable Fluids.
advection_map = self.indices - self.velocity
# SciPy's spline filter introduces checkerboard divergence.
# A linear blend of the filtered and unfiltered fields based
# on some value epsilon eliminates this error.
def advect(field, filter_epsilon=10e-2, mode='constant'):
filtered = spline_filter(field, order=self.advect_order, mode=mode)
field = filtered * (1 - filter_epsilon) + field * filter_epsilon
return map_coordinates(field, advection_map, prefilter=False, order=self.advect_order, mode=mode)
# Apply advection to each axis of the
# velocity field and each user-defined quantity.
for d in range(self.dimensions):
self.velocity[d] = advect(self.velocity[d])
for q in self.quantities:
setattr(self, q, advect(getattr(self, q)))
# Compute the jacobian at each point in the
# velocity field to extract curl and divergence.
jacobian_shape = (self.dimensions,) * 2
partials = tuple(np.gradient(d) for d in self.velocity)
jacobian = np.stack(partials).reshape(*jacobian_shape, *self.shape)
divergence = jacobian.trace()
# If this curl calculation is extended to 3D, the y-axis value must be negated.
# This corresponds to the coefficients of the levi-civita symbol in that dimension.
# Higher dimensions do not have a vector -> scalar, or vector -> vector,
# correspondence between velocity and curl due to differing isomorphisms
# between exterior powers in dimensions != 2 or 3 respectively.
curl_mask = np.triu(np.ones(jacobian_shape, dtype=bool), k=1)
curl = (jacobian[curl_mask] - jacobian[curl_mask.T]).squeeze()
# Apply the pressure correction to the fluid's velocity field.
pressure = self.pressure_solver(divergence.flatten()).reshape(self.shape)
self.velocity -= np.gradient(pressure)
return divergence, curl, pressure