-
Notifications
You must be signed in to change notification settings - Fork 20
/
train.py
361 lines (302 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright 2020 InterDigital Communications, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import random
import shutil
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from compressai.datasets import ImageFolder
from compressai.zoo import models
class RateDistortionLoss(nn.Module):
"""Custom rate distortion loss with a Lagrangian parameter."""
def __init__(self, lmbda=1e-2):
super().__init__()
self.mse = nn.MSELoss()
self.lmbda = lmbda
def forward(self, output, target):
N, _, H, W = target.size()
out = {}
num_pixels = N * H * W
out["bpp_loss"] = sum(
(torch.log(likelihoods).sum() / (-math.log(2) * num_pixels))
for likelihoods in output["likelihoods"].values()
)
out["mse_loss"] = self.mse(output["x_hat"], target)
out["loss"] = self.lmbda * 255 ** 2 * out["mse_loss"] + out["bpp_loss"]
return out
class AverageMeter:
"""Compute running average."""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class CustomDataParallel(nn.DataParallel):
"""Custom DataParallel to access the module methods."""
def __getattr__(self, key):
try:
return super().__getattr__(key)
except AttributeError:
return getattr(self.module, key)
def configure_optimizers(net, args):
"""Separate parameters for the main optimizer and the auxiliary optimizer.
Return two optimizers"""
parameters = {
n
for n, p in net.named_parameters()
if not n.endswith(".quantiles") and p.requires_grad
}
aux_parameters = {
n
for n, p in net.named_parameters()
if n.endswith(".quantiles") and p.requires_grad
}
# Make sure we don't have an intersection of parameters
params_dict = dict(net.named_parameters())
inter_params = parameters & aux_parameters
union_params = parameters | aux_parameters
assert len(inter_params) == 0
assert len(union_params) - len(params_dict.keys()) == 0
optimizer = optim.Adam(
(params_dict[n] for n in sorted(parameters)),
lr=args.learning_rate,
)
aux_optimizer = optim.Adam(
(params_dict[n] for n in sorted(aux_parameters)),
lr=args.aux_learning_rate,
)
return optimizer, aux_optimizer
def train_one_epoch(
model, criterion, train_dataloader, optimizer, aux_optimizer, epoch, clip_max_norm
):
model.train()
device = next(model.parameters()).device
for i, d in enumerate(train_dataloader):
d = d.to(device)
optimizer.zero_grad()
aux_optimizer.zero_grad()
out_net = model(d)
out_criterion = criterion(out_net, d)
out_criterion["loss"].backward()
if clip_max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_max_norm)
optimizer.step()
aux_loss = model.aux_loss()
aux_loss.backward()
aux_optimizer.step()
if i % 100 == 0:
print(
f"Train epoch {epoch}: ["
f"{i*len(d)}/{len(train_dataloader.dataset)}"
f" ({100. * i / len(train_dataloader):.0f}%)]"
f'\tLoss: {out_criterion["loss"].item():.3f} |'
f'\tMSE loss: {out_criterion["mse_loss"].item() * 255 ** 2 / 3:.3f} |'
f'\tBpp loss: {out_criterion["bpp_loss"].item():.2f} |'
f"\tAux loss: {aux_loss.item():.2f}"
)
def test_epoch(epoch, test_dataloader, model, criterion):
model.eval()
device = next(model.parameters()).device
loss = AverageMeter()
bpp_loss = AverageMeter()
mse_loss = AverageMeter()
aux_loss = AverageMeter()
with torch.no_grad():
for d in test_dataloader:
d = d.to(device)
out_net = model(d)
out_criterion = criterion(out_net, d)
aux_loss.update(model.aux_loss())
bpp_loss.update(out_criterion["bpp_loss"])
loss.update(out_criterion["loss"])
mse_loss.update(out_criterion["mse_loss"])
print(
f"Test epoch {epoch}: Average losses:"
f"\tLoss: {loss.avg:.3f} |"
f"\tMSE loss: {mse_loss.avg * 255 ** 2 / 3:.3f} |"
f"\tBpp loss: {bpp_loss.avg:.2f} |"
f"\tAux loss: {aux_loss.avg:.2f}\n"
)
return loss.avg
def save_checkpoint(state, is_best, filename):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename[:-8]+"_best"+filename[-8:])
def parse_args(argv):
parser = argparse.ArgumentParser(description="Example training script.")
parser.add_argument(
"-m",
"--model",
default="stf",
choices=models.keys(),
help="Model architecture (default: %(default)s)",
)
parser.add_argument(
"-d", "--dataset", type=str, required=True, help="Training dataset"
)
parser.add_argument(
"-e",
"--epochs",
default=100,
type=int,
help="Number of epochs (default: %(default)s)",
)
parser.add_argument(
"-lr",
"--learning-rate",
default=1e-4,
type=float,
help="Learning rate (default: %(default)s)",
)
parser.add_argument(
"-n",
"--num-workers",
type=int,
default=30,
help="Dataloaders threads (default: %(default)s)",
)
parser.add_argument(
"--lambda",
dest="lmbda",
type=float,
default=1e-2,
help="Bit-rate distortion parameter (default: %(default)s)",
)
parser.add_argument(
"--batch-size", type=int, default=16, help="Batch size (default: %(default)s)"
)
parser.add_argument(
"--test-batch-size",
type=int,
default=64,
help="Test batch size (default: %(default)s)",
)
parser.add_argument(
"--aux-learning-rate",
default=1e-3,
type=float,
help="Auxiliary loss learning rate (default: %(default)s)",
)
parser.add_argument(
"--patch-size",
type=int,
nargs=2,
default=(256, 256),
help="Size of the patches to be cropped (default: %(default)s)",
)
parser.add_argument("--cuda", action="store_true", help="Use cuda")
parser.add_argument(
"--save", action="store_true", default=True, help="Save model to disk"
)
parser.add_argument(
"--save_path", type=str, default="ckpt/model.pth.tar", help="Where to Save model"
)
parser.add_argument(
"--seed", type=float, help="Set random seed for reproducibility"
)
parser.add_argument(
"--clip_max_norm",
default=1.0,
type=float,
help="gradient clipping max norm (default: %(default)s",
)
parser.add_argument("--checkpoint", type=str, help="Path to a checkpoint")
args = parser.parse_args(argv)
return args
def main(argv):
args = parse_args(argv)
print(args)
if args.seed is not None:
torch.manual_seed(args.seed)
random.seed(args.seed)
train_transforms = transforms.Compose(
[transforms.RandomCrop(args.patch_size), transforms.ToTensor()]
)
test_transforms = transforms.Compose(
[transforms.CenterCrop(args.patch_size), transforms.ToTensor()]
)
train_dataset = ImageFolder(args.dataset, split="train", transform=train_transforms)
test_dataset = ImageFolder(args.dataset, split="test", transform=test_transforms)
device = "cuda" if args.cuda and torch.cuda.is_available() else "cpu"
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
pin_memory=(device == "cuda"),
)
test_dataloader = DataLoader(
test_dataset,
batch_size=args.test_batch_size,
num_workers=args.num_workers,
shuffle=False,
pin_memory=(device == "cuda"),
)
net = models[args.model]()
net = net.to(device)
if args.cuda and torch.cuda.device_count() > 1:
net = CustomDataParallel(net)
optimizer, aux_optimizer = configure_optimizers(net, args)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min", factor=0.3, patience=4)
criterion = RateDistortionLoss(lmbda=args.lmbda)
last_epoch = 0
if args.checkpoint: # load from previous checkpoint
print("Loading", args.checkpoint)
checkpoint = torch.load(args.checkpoint, map_location=device)
last_epoch = checkpoint["epoch"] + 1
net.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
aux_optimizer.load_state_dict(checkpoint["aux_optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
best_loss = float("inf")
for epoch in range(last_epoch, args.epochs):
print(f"Learning rate: {optimizer.param_groups[0]['lr']}")
train_one_epoch(
net,
criterion,
train_dataloader,
optimizer,
aux_optimizer,
epoch,
args.clip_max_norm,
)
loss = test_epoch(epoch, test_dataloader, net, criterion)
lr_scheduler.step(loss)
is_best = loss < best_loss
best_loss = min(loss, best_loss)
if args.save:
save_checkpoint(
{
"epoch": epoch,
"state_dict": net.state_dict(),
"loss": loss,
"optimizer": optimizer.state_dict(),
"aux_optimizer": aux_optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
},
is_best,
args.save_path,
)
if __name__ == "__main__":
main(sys.argv[1:])