The following is a non-exhaustive list of scientific papers and projects that have used notebooks, code or tools from dea-notebooks
.
If you have used material from this repository, please reference them using this citation and add a link to your work below!
Krause, C., Dunn, B., Bishop-Taylor, R., Adams, C., Burton, C., Alger, M., Chua, S., Phillips, C., Newey, V., Kouzoubov, K., Leith, A., Ayers, D., Hicks, A., DEA Notebooks contributors 2021. Digital Earth Australia notebooks and tools repository. Geoscience Australia, Canberra. https://doi.org/10.26186/145234
- Abhik, S., Hope, P., Hendon, H.H., Hutley, L.B., Johnson, S., Drosdowsky, W. and Brown, J., 2021. The Influence of 2015-16 El Niño On the Record-Breaking Mangrove Dieback Along Northern Australia Coast. Scientific Reports, Preprint. https://doi.org/10.21203/rs.3.rs-650667/v1
- Bishop-Taylor, R., Nanson, R., Sagar, S., Lymburner, L., 2021. Mapping Australia's dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sensing of Environment, 267, 112734. https://doi.org/10.1016/j.rse.2021.112734
- Bishop-Taylor, R., Sagar, S., Lymburner, L., Alam, I. and Sixsmith, J., 2019. Sub-pixel waterline extraction: Characterising accuracy and sensitivity to indices and spectra. Remote Sensing, 11(24), p.2984. https://www.mdpi.com/2072-4292/11/24/2984
- Burton, C. A., Rifai, S. W., Renzullo, L. J. and Van Dijk, A. I. J. M., 2024. Enhancing long-term vegetation monitoring in Australia: a new approach for harmonising the Advanced Very High Resolution Radiometer normalised-difference vegetation (NVDI) with MODIS NDVI, Earth System Science Data, Volume 16, pp. 4839-4416. https://doi.org/10.5194/essd-16-4389-2024
- Chatzopoulos-Vouzoglanis, K., Reinke, K.J., Soto‐Berelov, M., Jones, S.D., 2024. Are fire intensity and burn severity associated? Advancing our understanding of FRP and NBR metrics from Himawari-8/9 and Sentinel-2, International Journal of Applied Earth Observation and Geoinformation, Volume 127, 2024, 103673, ISSN 1569-8432. https://doi.org/10.1016/j.jag.2024.103673
- Chen, Y., Guerschman, J., Shendryk, Y., Henry, D., Harrison, M.T., 2021. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, Vol. 13, Page 603 13, 603. https://doi.org/10.3390/RS13040603
- Choo, J., Cherukuru, N., Lehmann, E., Paget, M., Mujahid, A., Martin, P. and Müller, M., 2022. Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: ocean colour remote sensing observations and analysis. Biogeosciences, 19(24), pp.5837-5857.
- DaSilva, MD., Bruce, D., Hesp, PA., da Silva, GM., Downes, J., 2023. Post-Wildfire Coastal Dunefield Response using Photogrammetry and Satellite Indices. Earth Surf. Process. Landforms. https://doi.org/10.1002/esp.5591
- Dunn, B., Ai, E., Alger, M.J., Fanson, B., Fickas, K.C., Krause, C.E., Lymburner, L., Nanson, R., Papas, P., Ronan, M., Thomas, R.F., 2023. Wetlands Insight Tool: Characterising the Surface Water and Vegetation Cover Dynamics of Individual Wetlands Using Multidecadal Landsat Satellite Data. Wetlands 43, 37. https://doi.org/10.1007/s13157-023-01682-7
- Dunn, B., Lymburner, L., Newey, V., Hicks, A. and Carey, H., 2019. Developing a Tool for Wetland Characterization Using Fractional Cover, Tasseled Cap Wetness And Water Observations From Space. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, pp. 6095-6097. https://doi.org/10.1109/IGARSS.2019.8897806
- Gale, M.G., Cary, G.J., van Dijk, A.I.J.M., Yebra, M., 2023. Untangling fuel, weather and management effects on fire severity: Insights from large-sample LiDAR remote sensing analysis of conditions preceding the 2019-20 Australian wildfires. Journal of Environmental Management, Volume 348, p.119474, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2023.119474
- Krause, C.E., Newey, V., Alger, M.J. and Lymburner, L., 2021. Mapping and monitoring the multi-decadal dynamics of Australia’s open waterbodies using Landsat. Remote Sensing, 13(8), p.1437.
- Malan, N., Roughan, M., Hemming, M. et al. Quantifying coastal freshwater extremes during unprecedented rainfall using long timeseries multi-platform salinity observations. Nat Commun 15, 424 (2024). https://doi.org/10.1038/s41467-023-44398-2
- Nanson, R., Bishop-Taylor, R., Sagar, S., Lymburner, L., (2022). Geomorphic insights into Australia's coastal change using a national dataset derived from the multi-decadal Landsat archive. Estuarine, Coastal and Shelf Science, 265, p.107712. Available: https://doi.org/10.1016/j.ecss.2021.107712
- Pucino, N., Kennedy, D.M., Young, M. and Ierodiaconou, D., 2022. Assessing the accuracy of Sentinel-2 instantaneous subpixel shorelines using synchronous UAV ground truth surveys. Remote Sensing of Environment, 282, p.113293.
- Short, M.A., Norman, R.S., Pillans, B., De Deckker, P., Usback, R., Opdyke, B.N., Ransley, T.R., Gray, S. and McPhail, D.C., 2020. Two centuries of water-level records at Lake George, NSW. Australian Journal of Earth Sciences, pp.1-20. https://www.tandfonline.com/doi/pdf/10.1080/08120099.2020.1821247
- Sutton, A., Fisher, A., Metternicht, G. Assessing the Accuracy of Landsat Vegetation Fractional Cover for Monitoring Australian Drylands. Remote Sens. 2022, 14, 6322. https://doi.org/10.3390/rs14246322
- Taylor, P., Almeida, A. C. D., Kemmerer, E., & de Salles Abreu, R. O. 2023. Improving spatial predictions of Eucalypt plantation growth by combining interpretable machine-learning with the 3-PG model. Frontiers in Forests and Global Change, 6, 1181049. https://doi.org/10.3389/ffgc.2023.1181049
- Teng, J., Penton, D.J., Ticehurst, C., Sengupta, A., Freebairn, A., Marvanek, S., Vaze, J., Gibbs, M., Streeton, N., Karim, F. and Morton, S., 2022. A Comprehensive Assessment of Floodwater Depth Estimation Models in Semiarid Regions. Water Resources Research, 58(11), p.e2022WR032031.
- Tsai, Ya-Lun & Tseng, Kuo-Hsin., 2023. Monitoring Multidecadal Coastline Change and Reconstructing Tidal Flat Topography. International Journal of Applied Earth Observation and Geoinformation, 118, 103260. https://doi.org/10.1016/j.jag.2023.103260
- Wellington, M.J. and Renzullo, L.J., 2021. High-Dimensional Satellite Image Compositing and Statistics for Enhanced Irrigated Crop Mapping. Remote Sensing, 13(7), p.1300.
- Wellington, M.J., Lawes, R. and Kuhnert, P., 2023. A framework for modelling spatio-temporal trends in crop production using generalised additive models. Computers and Electronics in Agriculture, 212, p.108111. https://doi.org/10.1016/j.compag.2023.108111
- Förtsch, S. & Hill, S., 2021, April 22 - April 23. The Bavarian Open Data Cube [Presentation]. Geopython, online.
- Förtsch, S., Otte, I., Thiel, M., Fäth, J., Schuldt, B., Ullmann, T., 2022, May 23 - May 27. Forest intelligence - The online analytical processing cube in the context of forestry [Poster]. ESA Living Planet Symposium, Bonn, Germany. http://dx.doi.org/10.13140/RG.2.2.31623.88483
- DaSilva, MD., Bruce, D., Hillman, M., Advancing Earth Observation Forum (AEO22), Brisbane 2022, EO360 Interactive session titled, ‘Generating an automated early warning system for Australian plantation forest health issues’
- University of New England, 2023. GISC436 : Remote Sensing and Image analysis
- Swinburne University of Technology, Space Technology and Industry Institute, 2023, 2024. Earth Observation and Data Analysis Short Course 2024 , Earth Observation and Data Analysis Short Course 2023
- Australian National University, Centre for Water and Landscape Dynamics (WALD) under contract for Geoscience Australia, 2022. Digital Earth Australia for Geospatial Analysts. Materials available under Apache 2.0 Licence here and link to github repository: https://github.com/ANU-WALD/dea_training
- Flinders University, 2021, 2022. Remote Sensing for All Disciplines. Undergrad and postgrad course.
- University of Newcastle, 2021. Advanced Remote Sensing Data and Applications. Graduate Certificate in Spatial Science.
- University of Queensland, 2021. Code-Based Computing for Geospatial Data: the Digital Earth Australia (DEA) Sandbox platform. GEOM3001/7001 Advanced Earth Observation Sciences.
- University of Tasmania, 2021. Remote Sensing: Image Analysis. Bachelor of Surveying and Spatial Sciences.
- University of Tasmania, 2021. Spatial Research Project. Bachelor of Surveying and Spatial Sciences.
- Grayson Cooke, 2019. Invalid data. https://www.graysoncooke.com/invalid-data
- Grayson Cooke, 2019. Open Air. https://www.graysoncooke.com/open