-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
91 lines (68 loc) · 3.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright Gabriel B. Stav. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
# Import modules
import argparse
from src.setup.config_loader import Config
from src.setup.pipeline_input import HicProInputFilePreparer
from src.setup.setup_tool import RunDirectorySetup
from src.setup.config_loader import InstantiateConfig
from src.data_preparation.preparation_controller import DataPreparationController
from src.filtering.filtering_controller import FilteringController
from src.statistics.stat_controller import StatController
from src.output.output_formatter import OutputConfiguratorRunner
from pathlib import Path
from dask import compute
from dask.delayed import delayed
from typing import List
from time import time
class Pipeline:
def __init__(self, config_path: Path):
self.config_path = config_path
self.config = self._load_config()
def run(self):
# start time of the pipeline
start_time = time()
# Set up the run directory and instantiate config
setup_tool = RunDirectorySetup(config=self.config, config_path=self.config_path)
setup_tool.prepare_run_environment()
# Prepare input files and create metadata
input_file_preparer = HicProInputFilePreparer(self.config)
grouped_files_list = input_file_preparer.prepare_input_files()
print(f"Preparing input files: {grouped_files_list}")
# Create interaction data
prepared_interactions = self._execute_in_parallel(grouped_files_list, DataPreparationController)
print(f"Making interaction datasets: {prepared_interactions}")
# Filter on the interactions
filtered_interactions = self._execute_in_parallel(prepared_interactions, FilteringController)
print(f"Filtering on interaction datasets: {filtered_interactions}")
# Perform statistical analysis
statistical_output = self._execute_in_parallel(filtered_interactions, StatController)
print(f"Doing statistical modeling: {statistical_output}")
# Configure and write output
self._execute_in_parallel(statistical_output, OutputConfiguratorRunner)
print(f"Writing output!")
# print time taken to run the pipeline
print(f"Time taken to run the pipeline: {time() - start_time} seconds.")
def _execute_in_parallel(self, inputs, controller_class) -> List:
# Ensure inputs is a list for uniform processing
if not isinstance(inputs, list):
inputs = [inputs]
# Create delayed tasks for running each controller class instance
delayed_runs = [delayed(controller_class(self.config, input_obj).run()) for input_obj in inputs]
print(f"Starting parallel execution of {controller_class.__name__} with {len(inputs)} input(s).")
if not delayed_runs:
print("No tasks to execute.")
return []
# Execute tasks in parallel and collect the results
results = compute(*delayed_runs)
# Results are returned as a tuple, convert to list if multiple results, else return single result
return list(results) if len(inputs) > 1 else results[0]
def _load_config(self) -> Config:
config_mapper = InstantiateConfig(self.config_path)
return config_mapper.load_configuration_from_file()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the pipeline with the specified configuration.")
parser.add_argument("--config", "-con", "-c", type=Path, required=True, help="Path to the configuration YAML file.")
parser.add_argument("--run_name", "-r", type=str, required=False, help="Name of the run.")
args = parser.parse_args()
pipeline = Pipeline(args.config)
pipeline.run()