Skip to content

Latest commit

 

History

History
73 lines (64 loc) · 3.51 KB

README.md

File metadata and controls

73 lines (64 loc) · 3.51 KB

Fisheye-InternImage

The following codes are the solutions (3st place, private score: 0.66886) for the dacon competition.

If you would like to know more about the competition, please refer to the following link:

2023 Samsung AI Challenge : Camera-Invariant Domain Adaptation

  • 주최 : Samsung Advanced Institute of Technology
  • 주관 : DACON

Usage

Move to the "segmentation" directory and follow the README.md

Directory Structure


/workspace
├── configs
│   ├── _base_
│   │   ├── datasets
│   │   │   ├── samsung_fisheye.py
│   ├── samsung
│   │   ├── exp_01.py
│   │   ├── exp_02.py
│   │   ├── exp_03.py
│   │   ├── exp_04.py
│   │   ├── exp_05.py
├── data
│   ├── preprocess_data (will be made after running fisheye_transform.py)
│   │   ├── train_fisheye_gt
│   │   ├── train_fisheye_image
│   │   ├── val_fisheye_gt
│   │   ├── val_fisheye_image
│   ├── test_image
│   ├── train_source_gt
│   ├── train_source_image
│   ├── train_target_image
│   ├── val_source_gt
│   ├── val_source_image
│   ├── sample_submission.csv
│   ├── test.csv
│   ├── train_source.csv
│   ├── train_target.csv
│   ├── val_source.csv
├── results
│   ├── exp_04.pkl
│   ├── exp_05.pkl
├── submission
│   ├── exp_04.csv
│   ├── exp_05.csv
├── work_dirs
│   ├── exp_04
│   │   ├── best_mIoU_iter_22000.pth
├── fisheye_transform.py
├── submit.py
├── test.py
├── train.py
      .
      .
      .

Experiments

The final submission is exp_04.

Index Model Private mIoU Public mIoU Val mIoU (%) Iter Fine-tuned model Pre-trained model
exp_01 UperNet 0.64483 0.6192 67.30 20000 ckpt ckpt
exp_02 Mask2Former 0.66456 0.62771 66.01 9000 ckpt ckpt
exp_03 UperNet 0.65114 0.62775 68.03 14000 ckpt ckpt
exp_04 Mask2Former 0.66886 0.63133 70.34 22000 ckpt ckpt
exp_05 Mask2Former 0.67288 0.62905 - 40000 ckpt ckpt