-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcitylearn_rllib.py
35 lines (30 loc) · 1.13 KB
/
citylearn_rllib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from ray import tune
from ray.tune.registry import register_env
from ray.rllib.env.wrappers.pettingzoo_env import PettingZooEnv
from citylearn.citylearn_pettingzoo import make_citylearn_env
# Adopted from https://github.com/ray-project/ray/blob/master/rllib/examples/multi_agent_independent_learning.py
if __name__ == "__main__":
def env_creator(args):
schema = 'citylearn_challenge_2022_phase_1'
return PettingZooEnv(make_citylearn_env(schema))
env = env_creator({})
register_env("citylearn", env_creator)
tune.run(
"SAC",
stop={"episodes_total": 60000},
checkpoint_freq=10,
config={
# Enviroment specific
"env": "citylearn",
# General
"num_gpus": 0,
"framework": 'torch',
"num_workers": 2,
# Method specific
"multiagent": {
"policies": env.env.agents,
# "policy_mapping_fn": (lambda agent_id, episode, **kwargs: int(agent_id.split('_')[1])),
"policy_mapping_fn": (lambda agent_id, episode, **kwargs: agent_id),
},
},
)