forked from spiros/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets_prep.R
176 lines (145 loc) · 6.28 KB
/
datasets_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Logistic Regression Notes
# Prepare the datasets
setwd("/Users/selvaprabhakaran/Documents/work/datasets")
library(mlbench)
library(kernlab)
library(klaR)
library(ISLR)
### BINARY --------------------------------------------
# Breast Cancer
data("BreastCancer") # predict if the cancer is benign or malignant
bc <- BreastCancer
bc$Class <- ifelse(as.character(BreastCancer$Class) == "malignant", 1, 0)
write.csv(bc, "BreastCancer.csv", row.names=F)
saveRDS(bc, "BreastCancer.rds")
# mlbench::Ionosphere
data("Ionosphere") # predict if the free electors are 'good' radar returns showing some structure in ionosphere or 'bad'
is <- Ionosphere
is$Class <- ifelse(as.character(Ionosphere$Class) == "good", 1, 0)
write.csv(is, "Ionosphere.csv", row.names=F)
saveRDS(is, "Ionosphere.rds")
# mlbench::PimaIndiansDiabetes
data("PimaIndiansDiabetes") # Predict if diabetic or not
pid <- PimaIndiansDiabetes
pid$diabetes <- ifelse(as.character(pid$diabetes) == "pos", 1, 0)
write.csv(is, "PimaIndiansDiabetes.csv", row.names=F)
saveRDS(is, "PimaIndiansDiabetes.rds")
# mlbench::HouseVotes84
data(HouseVotes84) # Predict of the congressman is a 'democrat' or 'republican' based on votes cast on 16 social issues.
hv <- HouseVotes84
hv$Class <- ifelse(as.character(hv$Class) == "republican", 1, 0)
write.csv(hv, "HouseVotes84.csv", row.names=F)
saveRDS(hv, "HouseVotes84.rds")
# mlbench::Sonar
data(Sonar) # predict if detected object is a "Rock" or "Metal" based on energy in particular frequency band.
sr <- Sonar
sr$Class <- ifelse(as.character(sr$Class) == "R", 1, 0)
write.csv(sr, "Sonar.csv", row.names=F)
saveRDS(sr, "Sonar.rds")
# klaR::GermanCredit
data("GermanCredit") # Predict if applicants have good or bad credit risk based on social and financial metrics.
gc <- GermanCredit
gc$credit_risk <- ifelse(as.character(gc$credit_risk) == "good", 1, 0)
write.csv(gc, "GermanCredit.csv", row.names=F)
saveRDS(gc, "GermanCredit.rds")
# kernlab::spam
data(spam) # Detect if an email is spam or not based on presence / count of various words/characters.
sp <- spam
sp$type <- ifelse(as.character(sp$type) == "spam", 1, 0)
write.csv(sp, "spam.csv", row.names=F)
saveRDS(sp, "spam.rds")
# kernlab::promotergene
data(promotergene) # Detect if a region of DNA contains promotergene or not based on the sequence of DNA bases.
pg <- promotergene
pg$Class <- ifelse(as.character(pg$Class) == "+", 1, 0)
write.csv(pg, "promotergene.csv", row.names=F)
saveRDS(pg, "promotergene.rds")
# kernlab::ticdata
data(ticdata) # insurance data. Determine if a person will buy an insurance policy or not based on socio-economic data.
tic <- ticdata
tic$CARAVAN <- ifelse(as.character(tic$CARAVAN) == "insurance", 1, 0)
write.csv(tic, "ticdata.csv", row.names=F)
saveRDS(tic, "ticdata.rds")
# kernlab::musk
data(musk) # Predict if a molecule is a musk or not, based on distances from origin.
ms <- musk
ms$Class <- ifelse(as.character(ms$Class) == 1, 1, 0)
write.csv(ms, "musk.csv", row.names=F)
saveRDS(ms, "musk.rds")
### Multiclass datasets --------------------------------------------------
# mlbench::zoo
data("Zoo") # determine if an animal is one of 7 classes like: mammal, fish, bird etc.
write.csv(Zoo, "Zoo.csv", row.names=F)
saveRDS(Zoo, "Zoo.rds")
# mlbench::Soybean
data("Soybean") # Determine thh class of soybean (out of 15 classes) based on crop and growth characteristis.
write.csv(Soybean, "Soybean.csv", row.names=F)
saveRDS(Soybean, "Soybean.rds")
# mlbench::Glass
data("Glass") # Identify the type of Glass (out of 7 types) based on chemical composition.
write.csv(Glass, "Glass.csv", row.names=F)
saveRDS(Glass, "Glass.rds")
# mlbench::LetterRecognition
data("LetterRecognition") # Identify the alphabet based on pixel position characteristics
write.csv(LetterRecognition, "LetterRecognition.csv", row.names=F)
saveRDS(LetterRecognition, "LetterRecognition.rds")
# mlbench::Vehicle
data("Vehicle") # Identify vehicle type (out of 4 types) based on geometric characteristics.
write.csv(Vehicle, "Vehicle.csv", row.names=F)
saveRDS(Vehicle, "Vehicle.rds")
# mlbench::Vowel
data("Vowel") # Predict vowel based on utteracnce variables.
write.csv(Vowel, "Vowel.csv", row.names=F)
saveRDS(Vowel, "Vowel.rds")
# kernlab::income
data("income") # Predict annual income bucket of household based on social variables.
write.csv(income, "income.csv", row.names=F)
saveRDS(income, "income.rds")
## Continuous Y datasets:
# mlbench::Servo
data("Servo") # Determine the class of Servo system.
write.csv(Servo, "Servo.csv", row.names=F)
saveRDS(Servo, "Servo.rds")
### Continuous Y Variable - Regression -----------------------------
# ISLR::Carseats
data(Carseats) # predict unit sales of child carseats based on marketing and demographic metrics.
write.csv(Carseats, "Carseats.csv", row.names=F)
saveRDS(Carseats, "Carseats.rds")
# Multinomial or coninuous regression
# ISLR::Hitters
data(Hitters) # predict league of baseball hitters based on basedball performance data.
write.csv(Hitters, "Hitters.csv", row.names=F)
saveRDS(Hitters, "Hitters.rds")
# ISLR::College
data("College") # predict number of applications based on academic metrics.
write.csv(College, "College.csv", row.names=F)
saveRDS(College, "College.rds")
# ISLR::Wage
data("Wage") # predict wage of workers based on demgraphic variables.
write.csv(Wage, "Wage.csv", row.names=F)
saveRDS(Wage, "Wage.rds")
# mlbench::BostonHousing
data("BostonHousing") # predict median value of houses at various locations based on demographic variables.
write.csv(BostonHousing, "BostonHousing.csv", row.names=F)
saveRDS(BostonHousing, "BostonHousing.rds")
# MASS::Cars93
data("Cars93") # Predict the mileage / make based on car's features
write.csv(Cars93, "Cars93.csv", row.names=F)
saveRDS(Cars93, "Cars93.rds")
# ISLR::Auto
data("Auto") # similar to Cars93. Predict mileage of cars based on various features.
write.csv(Auto, "Auto.csv", row.names=F)
saveRDS(Auto, "Auto.rds")
## ISLR::Khan
data(Khan) # Predict type of tumour based on gene expression
# write.csv(Khan, "Khan.csv", row.names=F)
saveRDS(Khan, "Khan.rds")
## Time series
# ISLR::Smarket # predict weekly stock market returns
data(Smarket)
write.csv(Smarket, "Smarket.csv", row.names=F)
saveRDS(Smarket, "Smarket.rds")
# ISLR::Weekly # predict weekly stock market returns
data("Weekly")
write.csv(Weekly, "Weekly.csv", row.names=F)
saveRDS(Weekly, "Weekly.rds")