-
Notifications
You must be signed in to change notification settings - Fork 108
/
fenci_server.py
570 lines (412 loc) · 16.5 KB
/
fenci_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#coding:utf-8
# py3.5+tensorflow-1.0.1+keras-2.0.6
# seq2seq bilstm+cnn+crf
import os,re
import codecs
import pickle
import time
import bottle
import jieba
jieba.initialize()
import gc
import numpy as np
np.random.seed(1111)
import gensim
import random
import keras
# keras.backend.clear_session()
from keras.layers import *
from keras.models import *
from keras_contrib.layers import CRF
from keras import backend as K
from keras.utils import plot_model
from keras.utils import np_utils
from keras.preprocessing import sequence
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
# input:
# maxlen char_value_dict_len class_label_count
def Bilstm_CNN_Crf(maxlen,char_value_dict_len,class_label_count,embedding_weights=None,is_train=True):
word_input=Input(shape=(maxlen,),dtype='int32',name='word_input')
if is_train:
word_emb=Embedding(char_value_dict_len+2,output_dim=100,\
input_length=maxlen,weights=[embedding_weights],\
name='word_emb')(word_input)
else:
word_emb=Embedding(char_value_dict_len+2,output_dim=100,\
input_length=maxlen,\
name='word_emb')(word_input)
# bilstm
bilstm=Bidirectional(LSTM(64,return_sequences=True))(word_emb)
bilstm_d=Dropout(0.1)(bilstm)
# cnn
half_window_size=2
padding_layer=ZeroPadding1D(padding=half_window_size)(word_emb)
conv=Conv1D(nb_filter=50,filter_length=2*half_window_size+1,\
padding='valid')(padding_layer)
conv_d=Dropout(0.1)(conv)
dense_conv=TimeDistributed(Dense(50))(conv_d)
# merge
rnn_cnn_merge=merge([bilstm_d,dense_conv],mode='concat',concat_axis=2)
dense=TimeDistributed(Dense(class_label_count))(rnn_cnn_merge)
# crf
crf=CRF(class_label_count,sparse_target=False)
crf_output=crf(dense)
# build model
model=Model(input=[word_input],output=[crf_output])
model.compile(loss=crf.loss_function,optimizer='adam',metrics=[crf.accuracy])
# model.summary()
return model
class Documents():
def __init__(self,chars,labels,index):
self.chars=chars
self.labels=labels
self.index=index
# 读取数据
def create_documents(file_name):
documents=[]
chars,labels=[],[]
with codecs.open(file_name,'r','utf-8') as f:
index=0
for line in f:
line=line.strip()
if len(line)==0:
if len(chars)!=0:
documents.append(Documents(chars,labels,index))
chars=[]
labels=[]
index+=1
else:
pieces=line.strip().split()
chars.append(pieces[0])
labels.append(pieces[1])
if pieces[0] in ['。',',',';']:
documents.append(Documents(chars,labels,index))
chars=[]
labels=[]
if len(chars)!=0:
documents.append(Documents(chars,labels,index))
chars,labels=[],[]
return documents
# 生成词典
def get_lexicon(all_documents):
chars={}
for doc in all_documents:
for char in doc.chars:
chars[char]=chars.get(char,0)+1
sorted_chars=sorted(chars.items(),key=lambda x:x[1],reverse=True)
# 下标从1开始 0用来补长
lexicon=dict([(item[0],index+1) for index,item in enumerate(sorted_chars)])
lexicon_reverse=dict([(index+1,item[0]) for index,item in enumerate(sorted_chars)])
return lexicon,lexicon_reverse
def create_embedding(embedding_model,embedding_size,lexicon_reverse):
embedding_weights=np.zeros((len(lexicon_reverse)+2,embedding_size))
for i in range(len(lexicon_reverse)):
embedding_weights[i+1]=embedding_model[lexicon_reverse[i+1]]
embedding_weights[-1]=np.random.uniform(-1,1,embedding_size)
return embedding_weights
def create_matrix(documents,lexicon,label_2_index):
data_list=[]
label_list=[]
index_list=[]
for doc in documents:
data_tmp=[]
label_tmp=[]
for char,label in zip(doc.chars,doc.labels):
data_tmp.append(lexicon[char])
label_tmp.append(label_2_index[label])
data_list.append(data_tmp)
label_list.append(label_tmp)
index_list.append(doc.index)
return data_list,label_list,index_list
def padding_sentences(data_list,label_list,max_len):
padding_data_list=sequence.pad_sequences(data_list,maxlen=max_len)
padding_label_list=[]
for item in label_list:
padding_label_list.append([0]*(max_len-len(item))+item)
return padding_data_list,np.array(padding_label_list)
def process_data(s_file_list,t_file):
ft=codecs.open(t_file,'w','utf-8')
k=0
for s_file in s_file_list:
with codecs.open(s_file,'r','utf-8') as fs:
lines=fs.readlines()
# print(len(lines))
for line in lines:
word_list=line.strip().split()
for word in word_list:
if len(word)==1:
ft.write(word+'\tS\n')
else:
ft.write(word[0]+'\tB\n')
for w in word[1:-1]:
ft.write(w+'\tM\n')
ft.write(word[-1]+'\tE\n')
ft.write('\n')
ft.close()
# 训练模型 保存weights
def process_train(corpus_path,nb_epoch):
# 训练语料
raw_train_file=[corpus_path+os.sep+type_path+os.sep+type_file \
for type_path in os.listdir(corpus_path) \
for type_file in os.listdir(corpus_path+os.sep+type_path)]
process_data(raw_train_file,'train.data')
train_documents=create_documents('train.data')
print(len(train_documents))
# for doc in train_documents[-20:]:
# print(doc.index,doc.chars,doc.labels)
# 生成词典
lexicon,lexicon_reverse=get_lexicon(train_documents)
print(len(lexicon),len(lexicon_reverse))
embedding_model=gensim.models.Word2Vec.load(r'model_conll_law.m')
embedding_size=embedding_model.vector_size
print(embedding_size)
# 预训练词向量
embedding_weights=create_embedding(embedding_model,embedding_size,lexicon_reverse)
print(embedding_weights.shape)
# print(embedding_weights[-1])
# print(lexicon_reverse[4351])
# print(embedding_weights[-2])
# 0 为padding的label
label_2_index={'Pad':0,'B':1,'M':2,'E':3,'S':4,'Unk':5}
index_2_label={0:'Pad',1:'B',2:'M',3:'E',4:'S',5:'Unk'}
train_data_list,train_label_list,train_index_list=create_matrix(train_documents,lexicon,label_2_index)
print(len(train_data_list),len(train_label_list),len(train_label_list))
print(train_data_list[0])
print(train_label_list[0])
max_len=max(map(len,train_data_list))
print('maxlen:',max_len)
train_data_array,train_label_list_padding=padding_sentences(train_data_list,train_label_list,max_len)
print(train_data_array.shape)
print(train_data_array[0])
train_label_array=np_utils.to_categorical(train_label_list_padding,len(label_2_index)).\
reshape((len(train_label_list_padding),len(train_label_list_padding[0]),-1))
print(train_label_array.shape)
print(train_label_array[0])
# model
model=Bilstm_CNN_Crf(max_len,len(lexicon),len(label_2_index),embedding_weights)
print(model.input_shape)
print(model.output_shape)
plot_model(model, to_file='bilstm_cnn_crf_model.png',show_shapes=True,show_layer_names=True)
model.load_weights('train_model.hdf5')
hist=model.fit(train_data_array,train_label_array,batch_size=256,epochs=nb_epoch,verbose=1)
# model.load_weights('best_val_model.hdf5')
'''
test_y_pred=model.predict(train_data_array,batch_size=512,verbose=1)
pred_label=np.argmax(test_y_pred,axis=2)
print(pred_label[0])
'''
score=model.evaluate(train_data_array,train_label_array,batch_size=512)
print(score)
# save model
model.save_weights('train_model.hdf5')
# save lexicon
pickle.dump([lexicon,lexicon_reverse,max_len,index_2_label],open('lexicon.pkl','wb'))
#===========Test================
# input:text
def process_test(text,lexicon,max_len,model):
test_list=[]
for c in text:
test_list.append(lexicon.get(c,len(lexicon)+1))
padding_test_array=sequence.pad_sequences([test_list],maxlen=max_len)
# print(padding_test_array.shape)
test_y_pred=model.predict(padding_test_array,verbose=1)
pred_label=np.argmax(test_y_pred,axis=2)
# print(pred_label[0])
return pred_label[0],padding_test_array[0]
def create_pred_text(text,pred_label):
start_index=len(pred_label)-len(text)
pred_label=pred_label[start_index:]
pred_text=''
for p,t in zip(pred_label,text):
if p in [0,3,4,5]:
pred_text+=(t+' ')
else:
pred_text+=t
return pred_text,pred_label
lexicon,lexicon_reverse,max_len,index_2_label=pickle.load(open('lexicon.pkl','rb'))
# model
model=Bilstm_CNN_Crf(max_len,len(lexicon),len(index_2_label),is_train=False)
model.load_weights('train_model.hdf5')
# 句子长度太长会截断
def word_seg(text):
# train 需要训练就取消这部分注释
# corpus_path='corpus'
# nb_epoch=5
# process_train(corpus_path,nb_epoch)
#=========Test===========
# raw_len=len(text)
pred_label,padding_test_array=process_test(text,lexicon,max_len,model)
pred_text,pred_label=create_pred_text(text,pred_label)
# print(pred_text)
# print(pred_label)
return pred_text,pred_label
import math
def word_seg_by_sentences(text):
'''
# 长度1001切分 不好 如:中国人|寿
count=math.ceil(len(text)/100)
text_list=[]
text_list2=[]
for i in range(count):
# text_list.append(text[i*100:(i+1)*100])
tmp=text[i*100:(i+1)*100]
tmp2=[]
for c in tmp:
tmp2.append(lexicon.get(c,len(lexicon)+1))
text_list.append(tmp)
text_list2.append(tmp2)
'''
text_list=[]
text_list2=[]
i=0
for j in range(len(text)):
if text[j] in [',','。','!',';','?'] or i+100<=j:
tmp=text[i:j+1]
i=j+1
tmp2=[]
for c in tmp:
tmp2.append(lexicon.get(c,len(lexicon)+1))
text_list.append(tmp)
text_list2.append(tmp2)
if i!=j+1:
tmp=text[i:j+1]
tmp2=[]
for c in tmp:
tmp2.append(lexicon.get(c,len(lexicon)+1))
text_list.append(tmp)
text_list2.append(tmp2)
padding_test_array=sequence.pad_sequences(text_list2,maxlen=max_len)
test_y_pred=model.predict(padding_test_array,verbose=1)
pred_label_list=np.argmax(test_y_pred,axis=2)
pred_text_all=''
pred_label_all=[]
for text,label in zip(text_list,pred_label_list):
pred_text,pred_label=create_pred_text(text,label)
pred_text_all+=pred_text
pred_label_all.extend(pred_label)
return pred_text_all,pred_label_all
from lss_fenci_api import samme_cws
def add_color(s):
ns=''
for item in s.split():
ns+=('<b style="background:#ccffe6;">%s</b>' %item)+' '
return ns
'''
# http://127.0.0.1:7777/cut?type=jieba/mine&text=我喜欢你
@bottle.route('/cut',method='GET')
def token_home():
text=bottle.request.GET.getunicode('text')
cut_type=bottle.request.GET.getunicode('type')
if not text:
text=''
if cut_type=='jieba':
s=' '.join(jieba.cut(text.strip())).strip()
s=add_color(s)
return s+'<br>%s<font color="green">[By结巴分词]</font>' %('-'*20)
elif cut_type=='samme':
s=samme_cws(text.strip())[0].strip()
s=add_color(s)
return s+'<br>%s<font color="green">[By Samme分词]</font>' %('-'*20)
else:
s,_=word_seg_by_sentences(text.strip())
s=s.strip()
s=add_color(s)
return s+'<br>%s<font color="green">[By我的分词]</font>' %('-'*20)
'''
from flask import Flask,jsonify,abort
from flask import request
from flask import make_response
app=Flask(__name__)
# 首页
@app.route('/')
def index():
return 'welcome to suda nlp fenci.'
@app.route('/fenci',methods=['GET'])
def get_reply():
text=request.args.get('text','None')
cut_type=request.args.get('type','mine')
if cut_type=='jieba':
s=' '.join(jieba.cut(text.strip())).strip()
s=add_color(s)
return s+'<br>%s<font color="green">[By结巴分词]</font>' %('-'*20)
elif cut_type=='samme':
s=samme_cws(text.strip())[0].strip()
s=add_color(s)
return s+'<br>%s<font color="green">[By Samme分词]</font>' %('-'*20)
else:
s,_=word_seg_by_sentences(text.strip())
##
# keras.backend.clear_session()
s=s.strip()
s=add_color(s)
return s+'<br>%s<font color="green">[By我的分词]</font>' %('-'*20)
# def main():
# text='北京大学生,产量三年中将增长两倍'
# K.clear_session()
def fenci_by_file(source_path,target_path):
if not os.path.exists(target_path):
os.mkdir(target_path)
for filename in os.listdir(source_path):
lines=codecs.open(source_path+os.sep+filename,'r','utf-8').readlines()
f=codecs.open(target_path+os.sep+filename,'w','utf-8')
for line in lines:
line=line.strip()
# splitText,_,_=samme_cws(line)
# splitText=' '.join(jieba.cut(line))
splitText,_=word_seg_by_sentences(line)
f.write(splitText+'\n')
f.close()
print('fenci success!')
def main():
## word_seg 中有训练模块 指定corpus_path 和 nb_epoch
# text='南京市长莅临指导,大家热烈欢迎。'
# print(len(text))
# pred_text,pred_label=word_seg(text)
# print(pred_text)
##############################################
# 长句子测试 按标点切分后测试
text=''
for i in range(10):
# text+='''项脊轩,旧南阁子也。室仅方丈,可容一人居。百年老屋,尘泥渗漉,雨泽下注;每移案,顾视,无可置者。又北向,不能得日,日过午已昏。余稍为修葺,使不上漏。前辟四窗,垣墙周庭,以当南日,日影反照,室始洞然。又杂植兰桂竹木于庭,旧时栏楯,亦遂增胜。借书满架,偃仰啸歌,冥然兀坐,万籁有声;而庭堦寂寂,小鸟时来啄食,人至不去。三五之夜,明月半墙,桂影斑驳,风移影动,珊珊可爱。
# 然余居于此,多可喜,亦多可悲。先是庭中通南北为一。迨诸父异爨,内外多置小门,墙往往而是。东犬西吠,客逾庖而宴,鸡栖于厅。庭中始为篱,已为墙,凡再变矣。家有老妪,尝居于此。妪,先大母婢也,乳二世,先妣抚之甚厚。室西连于中闺,先妣尝一至。妪每谓余曰:”某所,而母立于兹。”妪又曰:”汝姊在吾怀,呱呱而泣;娘以指叩门扉曰:‘儿寒乎?欲食乎?’吾从板外相为应答。”语未毕,余泣,妪亦泣。余自束发,读书轩中,一日,大母过余曰:”吾儿,久不见若影,何竟日默默在此,大类女郎也?”比去,以手阖门,自语曰:”吾家读书久不效,儿之成,则可待乎!”顷之,持一象笏至,曰:”此吾祖太常公宣德间执此以朝,他日汝当用之!”瞻顾遗迹,如在昨日,令人长号不自禁。
# 轩东,故尝为厨,人往,从轩前过。余扃牖而居,久之,能以足音辨人。轩凡四遭火,得不焚,殆有神护者。
# 项脊生曰:”蜀清守丹穴,利甲天下,其后秦皇帝筑女怀清台;刘玄德与曹操争天下,诸葛孔明起陇中。方二人之昧昧于一隅也,世何足以知之,余区区处败屋中,方扬眉、瞬目,谓有奇景。人知之者,其谓与坎井之蛙何异?”
# 余既为此志,后五年,吾妻来归,时至轩中,从余问古事,或凭几学书。吾妻归宁,述诸小妹语曰:”闻姊家有阁子,且何谓阁子也?”其后六年,吾妻死,室坏不修。其后二年,余久卧病无聊,乃使人复葺南阁子,其制稍异于前。然自后余多在外,不常居。
# 庭有枇杷树,吾妻死之年所手植也,今已亭亭如盖矣。殷昊。'''
text+='南京市长莅临指导,大家热烈欢迎。公交车中将禁止吃东西!'
splitText,predLabel=word_seg_by_sentences(text)
print(splitText)
# 测试速度[极慢] 23362字 71KB / 248s word_seg
# jieba 0.11s
'''
# big_test:
# jieba:3737920字/18.97s=179043字/s 11487682B/18.97s=0.578M/s
# Samme-Java:3737920字/3.641s=1026619字/s 11487682B/3.641s=3.0089M/s
lines=codecs.open('test_documents/test_file_big.txt','r','utf-8').readlines()
time0=time.time()
count=0
splitTextList=[]
# for line in codecs.open('test_documents/test_file.txt','r','utf-8'):
for line in lines:
line=line.strip()
# mine
# splitText,predLabel=word_seg(line)
# jieba
splitText=' '.join(jieba.cut(line))
splitTextList.append(splitText)
count+=len(line)
lines=codecs.open('test_documents/test_file_big.txt','r','utf-8').read()
splitText,predLabel=word_seg_by_sentences(lines)
print('cost time:' ,(time.time()-time0))
# print(len(splitTextList),count)
print(splitText[0])
# f=codecs.open('test_documents/cws_result_jieba.txt','w','utf-8')
# f.write('\n'.join(splitTextList))
# f.close()
'''
# fenci_by_file('test_documents/conll2012_test_raw','test_documents/conll2012_test_pred_mine')
if __name__ == '__main__':
# bottle.run(host='0.0.0.0',port=7777)
app.run(host='0.0.0.0',port=7777,debug=False)
# main()