forked from baowenbo/DAIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolab_interpolate.py
162 lines (132 loc) · 6.34 KB
/
colab_interpolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import time
import os
from torch.autograd import Variable
import torch
import numpy as np
import numpy
import networks
from my_args import args
from imageio import imread, imsave
from AverageMeter import *
import shutil
import datetime
torch.backends.cudnn.benchmark = True
model = networks.__dict__[args.netName](
channel = args.channels,
filter_size = args.filter_size,
timestep = args.time_step,
training = False)
if args.use_cuda:
model = model.cuda()
model_path = './model_weights/best.pth'
if not os.path.exists(model_path):
print("*****************************************************************")
print("**** We couldn't load any trained weights ***********************")
print("*****************************************************************")
exit(1)
if args.use_cuda:
pretrained_dict = torch.load(model_path)
else:
pretrained_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
# 4. release the pretrained dict for saving memory
pretrained_dict = []
model = model.eval() # deploy mode
frames_dir = args.frame_input_dir
output_dir = args.frame_output_dir
timestep = args.time_step
time_offsets = [kk * timestep for kk in range(1, int(1.0 / timestep))]
input_frame = args.start_frame - 1
loop_timer = AverageMeter()
final_frame = args.end_frame
torch.set_grad_enabled(False)
# we want to have input_frame between (start_frame-1) and (end_frame-2)
# this is because at each step we read (frame) and (frame+1)
# so the last iteration will actuall be (end_frame-1) and (end_frame)
while input_frame < final_frame - 1:
input_frame += 1
start_time = time.time()
filename_frame_1 = os.path.join(frames_dir, f'{input_frame:0>5d}.png')
filename_frame_2 = os.path.join(frames_dir, f'{input_frame+1:0>5d}.png')
X0 = torch.from_numpy(np.transpose(imread(filename_frame_1), (2,0,1)).astype("float32") / 255.0).type(args.dtype)
X1 = torch.from_numpy(np.transpose(imread(filename_frame_2), (2,0,1)).astype("float32") / 255.0).type(args.dtype)
assert (X0.size(1) == X1.size(1))
assert (X0.size(2) == X1.size(2))
intWidth = X0.size(2)
intHeight = X0.size(1)
channels = X0.size(0)
if not channels == 3:
print(f"Skipping {filename_frame_1}-{filename_frame_2} -- expected 3 color channels but found {channels}.")
continue
if intWidth != ((intWidth >> 7) << 7):
intWidth_pad = (((intWidth >> 7) + 1) << 7) # more than necessary
intPaddingLeft = int((intWidth_pad - intWidth) / 2)
intPaddingRight = intWidth_pad - intWidth - intPaddingLeft
else:
intPaddingLeft = 32
intPaddingRight= 32
if intHeight != ((intHeight >> 7) << 7):
intHeight_pad = (((intHeight >> 7) + 1) << 7) # more than necessary
intPaddingTop = int((intHeight_pad - intHeight) / 2)
intPaddingBottom = intHeight_pad - intHeight - intPaddingTop
else:
intPaddingTop = 32
intPaddingBottom = 32
pader = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom])
X0 = Variable(torch.unsqueeze(X0,0))
X1 = Variable(torch.unsqueeze(X1,0))
X0 = pader(X0)
X1 = pader(X1)
if args.use_cuda:
X0 = X0.cuda()
X1 = X1.cuda()
y_s, offset, filter = model(torch.stack((X0, X1),dim = 0))
y_ = y_s[args.save_which]
if args.use_cuda:
X0 = X0.data.cpu().numpy()
if not isinstance(y_, list):
y_ = y_.data.cpu().numpy()
else:
y_ = [item.data.cpu().numpy() for item in y_]
offset = [offset_i.data.cpu().numpy() for offset_i in offset]
filter = [filter_i.data.cpu().numpy() for filter_i in filter] if filter[0] is not None else None
X1 = X1.data.cpu().numpy()
else:
X0 = X0.data.numpy()
if not isinstance(y_, list):
y_ = y_.data.numpy()
else:
y_ = [item.data.numpy() for item in y_]
offset = [offset_i.data.numpy() for offset_i in offset]
filter = [filter_i.data.numpy() for filter_i in filter]
X1 = X1.data.numpy()
X0 = np.transpose(255.0 * X0.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
y_ = [np.transpose(255.0 * item.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight,
intPaddingLeft:intPaddingLeft+intWidth], (1, 2, 0)) for item in y_]
offset = [np.transpose(offset_i[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0)) for offset_i in offset]
filter = [np.transpose(
filter_i[0, :, intPaddingTop:intPaddingTop + intHeight, intPaddingLeft: intPaddingLeft + intWidth],
(1, 2, 0)) for filter_i in filter] if filter is not None else None
X1 = np.transpose(255.0 * X1.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
interpolated_frame_number = 0
shutil.copy(filename_frame_1, os.path.join(output_dir, f"{input_frame:0>5d}{interpolated_frame_number:0>3d}.png"))
for item, time_offset in zip(y_, time_offsets):
interpolated_frame_number += 1
output_frame_file_path = os.path.join(output_dir, f"{input_frame:0>5d}{interpolated_frame_number:0>3d}.png")
imsave(output_frame_file_path, np.round(item).astype(numpy.uint8))
end_time = time.time()
loop_timer.update(end_time - start_time)
frames_left = final_frame - input_frame
estimated_seconds_left = frames_left * loop_timer.avg
estimated_time_left = datetime.timedelta(seconds=estimated_seconds_left)
print(f"****** Processed frame {input_frame} | Time per frame (avg): {loop_timer.avg:2.2f}s | Time left: {estimated_time_left} ******************" )
# Copying last frame
last_frame_filename = os.path.join(frames_dir, str(str(final_frame).zfill(5))+'.png')
shutil.copy(last_frame_filename, os.path.join(output_dir, f"{final_frame:0>5d}{0:0>3d}.png"))
print("Finished processing images.")