-
Notifications
You must be signed in to change notification settings - Fork 0
/
naiveBayes_model.py
41 lines (41 loc) · 1.49 KB
/
naiveBayes_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from nltk import word_tokenize
from nltk.corpus import stopwords
import nltk
import numpy
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
import string
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix, classification_report
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
import pickle
from sklearn import metrics
import numpy as np
from sklearn import cross_validation
from sklearn import datasets
from sklearn import svm
def text_process(text):
'''
Takes in a string of text, then performs the following:
1. Remove all punctuation
2. Remove all stopwords
3. Return the cleaned text as a list of words
'''
nopunc = [char for char in text if char not in string.punctuation]
nopunc = ''.join(nopunc)
return [word for word in nopunc.split() if word.lower() not in stopwords.words('english')]
yelp = pd.read_csv('movie-pang02.csv')
X = yelp['text']
z=X
y = yelp['class']
print(X.shape)
bow_transformer = CountVectorizer(analyzer=text_process).fit(X)
X = bow_transformer.transform(X)
#لغاية هنا كدا دا كان جزء الpreprocessing
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, y, test_size=0.3, random_state=101)
loaded_model = pickle.load(open('finalized_naive_bayes_model.sav', 'rb'))
result = loaded_model.predict(X_test[10])
print(result)