-
Notifications
You must be signed in to change notification settings - Fork 1
/
nlp.py
313 lines (244 loc) · 9.23 KB
/
nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import json
import os
import xml.etree.ElementTree as ET
from text_to_int import text_to_int
from util import try_parse_float
from parse_tree import ParseTree
class NLP(object):
FILE_FORMAT = 'question-{}.xml'
def __init__(self, sentences):
self.sentences = sentences
@classmethod
def read(cls, parse_dir, i):
file_name = cls.FILE_FORMAT.format(i)
file_path = os.path.join(parse_dir, file_name)
xml_tree = ET.parse(file_path)
return cls.from_xml(xml_tree.getroot())
@staticmethod
def from_xml(xml):
sentences = list()
for sentence in xml.find('document').find('sentences'):
sentences.append(Sentence.from_xml(sentence))
return NLP(sentences)
# These number words are fair game to replace in the text
# since they are a natural language representation of numerical
# operation. 'Twice' is equivalent to '2.0 times'
# This is distinct from the case of 'problem constants' like
# 0.01 for percent (%) problems
@staticmethod
def try_parse_number_word(w):
number_word_map = {'twice': 2.0,
'triple': 3.0,
'half': 0.5,
'thrice': 3.0,
'double': 2.0}
special = number_word_map.get(w.lower())
if special is not None:
return special
try:
return float(text_to_int(w))
except:
return None
@staticmethod
def clean(s):
for c in ['<', '>']:
s = s.replace(c, '')
return s
def questions(self):
return {i: s for i, s in enumerate(self.sentences) if s.is_question()}
def commands(self):
return {i: s for i, s in enumerate(self.sentences) if s.is_command()}
def words(self):
words = list()
for s in self.sentences:
for t in s.tokens:
words.append(t.word)
return words
def lemmas(self):
lemmas = list()
for s in self.sentences:
for t in s.tokens:
lemmas.append(t.lemma)
return lemmas
def bigrams(self):
bigrams = list()
for s in self.sentences:
count = len(s.tokens)
for i in range(count - 1):
bigrams.append((s.tokens[i].word, s.tokens[i + 1].word))
return bigrams
def nouns(self):
nouns = list()
for s_index, s in enumerate(self.sentences):
for t_index, t in enumerate(s.tokens):
if t.pos in ['NN', 'NNS']:
nouns.append({'noun': t.word,
'sentence': s_index,
'token': t_index})
return nouns
def numbers(self):
tokens = list()
for s_index, s in enumerate(self.sentences):
for t_index, t in enumerate(s.tokens):
tokens.append((s_index, t_index, t))
numbers = list()
for s_index, t_index, t in tokens:
def append_number(number):
numbers.append({'number': abs(number),
'sentence': s_index,
'token': t_index})
from_number_word = self.try_parse_number_word(t.word)
if from_number_word is not None:
append_number(from_number_word)
continue
from_word = try_parse_float(t.word)
if from_word is not None:
append_number(from_word)
continue
if '-' in t.word:
for part in t.word.split('-'):
from_split = try_parse_float(part)
if from_split is not None:
append_number(from_split)
continue
from_split_word = self.try_parse_number_word(part)
if from_split_word is not None:
append_number(from_split_word)
continue
# In question 2189 there is a blank in the text '___'
# which is interpreted as a NUMBER but with no value
if t.ner == 'NUMBER' and t.normalized_ner is not None:
cleaned = self.clean(t.normalized_ner)
from_number_ner = try_parse_float(cleaned)
if from_number_ner is not None:
append_number(from_number_ner)
continue
if t.ner == 'MONEY':
no_dollar_sign = t.normalized_ner.strip('$')
from_money_ner = try_parse_float(no_dollar_sign)
if from_money_ner is not None:
append_number(from_money_ner)
continue
# Was seeing '4.0 dollars' being counted as 2 occurences of 4.0
last_s = last_t = last_n = None
cleaned_numbers = list()
for num in numbers:
n = num['number']
s = num['sentence']
t = num['token']
if not(n == last_n and s == last_s and t == last_t + 1):
cleaned_numbers.append(num)
last_n = n
last_s = s
last_t = t
return cleaned_numbers
def __str__(self):
return json.dumps(self.to_json())
def to_json(self):
return {'sentences': [s.to_json() for s in self.sentences]}
class Sentence(object):
def __init__(self, tokens, parse, dependencies):
self.tokens = tokens
self.parse = parse
self.dependencies = dependencies
@staticmethod
def from_xml(xml):
tokens = [Token.from_xml(t) for t in xml.find('tokens')]
parse = xml.findtext('parse')
dependencies = list()
for d in xml.findall('dependencies'):
dependencies.extend(Dependency.from_xml(d))
return Sentence(tokens, parse, dependencies)
def as_text(self):
return ' '.join([t.word for t in self.tokens])
def is_question(self):
for t in self.tokens:
if t.word == '?':
return True
def is_command(self):
first = self.tokens[0]
return (first.pos == 'VB'
and first.word.lower() == first.lemma.lower())
def object_of_sentence(self):
return self.search_for_object(self.parse_tree(), 0)
@classmethod
def search_for_object(cls, tree, index):
if tree.value in ['PP']:
return (None, -1)
if tree.value in ['NN', 'NNS']:
return (tree.children[0].value, index)
for child in tree.children:
v = cls.search_for_object(child, index)
index += child.token_count()
if v[0] is not None:
return v
return (None, -1)
def phrases(self):
return self.phrases_from_tree(self.parse_tree(), 0)
@classmethod
def phrases_from_tree(cls, tree, index):
if tree.children and tree.value[-1] == 'P':
tokens = tree.token_count()
return [list(range(index, index + tokens))]
phrases = list()
for c in tree.children:
sub_phrases = cls.phrases_from_tree(c, index)
for sub in sub_phrases:
phrases.append(sub)
index += c.token_count()
return phrases
def parse_tree(self):
return ParseTree.from_parse_string(self.parse)
def __str__(self):
return json.dumps(self.to_json())
def to_json(self):
return {'tokens': [t.to_json() for t in self.tokens],
'parse': self.parse,
'dependencies': [d.to_json() for d in self.dependencies]}
class Token(object):
def __init__(self, word, lemma, pos, ner, normalized_ner):
self.word = word
self.lemma = lemma
self.pos = pos
self.ner = ner # Named Entity Recognizer
self.normalized_ner = normalized_ner
@staticmethod
def from_xml(xml):
word = xml.findtext('word')
lemma = xml.findtext('lemma')
pos = xml.findtext('POS')
ner = xml.findtext('NER')
normalized_ner = xml.findtext('NormalizedNER')
return Token(word, lemma, pos, ner, normalized_ner)
def __str__(self):
return json.dumps(self.to_json())
def to_json(self):
return {'word': self.word,
'lemma': self.lemma,
'pos': self.pos}
class Dependency(object):
def __init__(self, kind, relation, governor_index, dependent_index):
self.kind = kind
self.relation = relation
self.governor_index = governor_index
self.dependent_index = dependent_index
@staticmethod
def from_xml(xml):
kind = xml.get('type')
kind = kind.replace('-dependencies', '')
deps = list()
for d in xml.findall('dep'):
relation = d.get('type')
gov = d.find('governor')
gov_i = gov.get('idx')
dep = d.find('dependent')
dep_i = dep.get('idx')
deps.append(Dependency(kind, relation, gov_i, dep_i))
return deps
def __str__(self):
return json.dumps(self.to_json())
def to_json(self):
return {'kind': self.kind,
'relation': self.relation,
'governor_index': self.governor_index,
'dependent_index': self.dependent_index}