forked from tstandley/Xception-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxception.py
209 lines (153 loc) · 6.11 KB
/
xception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
Creates an Xception Model as defined in:
Francois Chollet
Xception: Deep Learning with Depthwise Separable Convolutions
https://arxiv.org/pdf/1610.02357.pdf
This weights ported from the Keras implementation. Achieves the following performance on the validation set:
Loss:0.9173 Prec@1:78.892 Prec@5:94.292
REMEMBER to set your image size to 3x299x299 for both test and validation
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
"""
import math
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch.nn import init
import torch
__all__ = ['xception']
model_urls = {
'xception':'https://www.dropbox.com/s/1hplpzet9d7dv29/xception-c0a72b38.pth.tar?dl=1'
}
class SeparableConv2d(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=1,stride=1,padding=0,dilation=1,bias=False):
super(SeparableConv2d,self).__init__()
self.conv1 = nn.Conv2d(in_channels,in_channels,kernel_size,stride,padding,dilation,groups=in_channels,bias=bias)
self.pointwise = nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=bias)
def forward(self,x):
x = self.conv1(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self,in_filters,out_filters,reps,strides=1,start_with_relu=True,grow_first=True):
super(Block, self).__init__()
if out_filters != in_filters or strides!=1:
self.skip = nn.Conv2d(in_filters,out_filters,1,stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip=None
self.relu = nn.ReLU(inplace=True)
rep=[]
filters=in_filters
if grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters
for i in range(reps-1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters,filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(filters))
if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(out_filters))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3,strides,1))
self.rep = nn.Sequential(*rep)
def forward(self,inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x+=skip
return x
class Xception(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, num_classes=1000):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()
self.num_classes = num_classes
self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32,64,3,bias=False)
self.bn2 = nn.BatchNorm2d(64)
#do relu here
self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True)
self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True)
self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True)
self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False)
self.conv3 = SeparableConv2d(1024,1536,3,1,1)
self.bn3 = nn.BatchNorm2d(1536)
#do relu here
self.conv4 = SeparableConv2d(1536,2048,3,1,1)
self.bn4 = nn.BatchNorm2d(2048)
self.fc = nn.Linear(2048, num_classes)
#------- init weights --------
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
#-----------------------------
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def xception(pretrained=False,**kwargs):
"""
Construct Xception.
"""
model = Xception(**kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['xception']))
return model